Points fixes d'une application holomorphe d'un domaine borné dans lui-même

par

PIERRE MAZET

et

JEAN-PIERRE VIGUÉ(1)

Université de Paris VI Paris, France Université de Paris VI Paris, France

1. Introduction

L'étude de l'ensemble des points fixes d'une application holomorphe d'un domaine borné dans lui-même a déjà fait l'objet d'un certain nombre de travaux. Le premier résultat sur cette question a été obtenu par M. Hervé [H] qui a montré le théorème suivant :

Théorème 1.1. Soit B la boule-unité ouverte de \mathbb{C}^n pour la norme euclidienne. Soit $f: B \rightarrow B$ une application holomorphe. Alors, l'ensemble des points fixes de f est l'intersection de B avec un sous-espace affine V de \mathbb{C}^n .

En fait, comme B est homogène, si l'ensemble Fix f des points fixes de f est non vide, on peut se ramener au cas où l'origine 0 est un point fixe de f. La démonstration utilise le fait que B est strictement convexe. Ce résultat a d'abord été généralisé par A. Renaud [Re] au cas de la boule-unité ouverte d'un espace de Hilbert. Ensuite, E. Vesentini [Ve1 et Ve2] a montré, en utilisant la notion de géodésique complexe, le théorème suivant :

THÉORÈME 1.2. Soit B la boule-unité ouverte d'un espace de Banach complexe E. Soit $f: B \rightarrow B$ une application holomorphe telle que f(0)=0. Supposons de plus que tout point x de la frontière de B soit un point complexe-extrémal de l'adhérence \bar{B} de B. Alors, l'ensemble des points fixes de f est l'intersection de B avec $Ker(f'_0-id)$, (où f'_0 désigne la dérivée de f à l'origine).

La démonstration du théorème repose sur un résultat d'existence et d'unicité des

⁽¹⁾ Membres de l'U.A.213 du C.N.R.S.

géodésiques complexes passant par l'origine 0 et un point a de B. Dans le cas où on ne suppose rien sur la frontière de B, des exemples (voir M. Hervé [H] ou E. Vesentini [Ve2]) montrent que l'on ne peut pas espérer un résultat aussi satisfaisant. Cependant, dans le cas d'un domaine borné de \mathbb{C}^n , J.-P. Vigué [Vi5] montre le résultat de nature locale suivant :

Théorème 1.3. Soit X un domaine borné de \mathbb{C}^n . Soit $f: X \rightarrow X$ une application holomorphe. Alors, l'ensemble des points fixes de f est une sous-variété analytique complexe de X.

Si on suppose de plus que X est convexe, on a un résultat global [Vi4].

Théorème 1.4. Soit X un domaine borné convexe de \mathbb{C}^n . Soit $f: X \rightarrow X$ une application holomorphe. Alors, l'ensemble Fix f des points fixes de f est une sousvariété analytique connexe de X, et, si Fix f est non vide, il existe une rétraction holomorphe $\psi: X \rightarrow \operatorname{Fix} f$.

La généralisation de ces résultats à la dimension infinie est assez délicate. Dans le cas d'un produit fini de boules-unités d'espaces de Hilbert, ce fut fait par M. Abd-Alla [A1 et A2] en utilisant des méthodes de J.-P. Vigué [Vi3] et E. Vesentini [Ve2].

Le but de cet article est de montrer le théorème suivant :

Théorème 1.5. Soit X un domaine borné d'un espace de Banach complexe E. Soit a un point de X, et soit $f: X \rightarrow X$ une application holomorphe telle que f(a)=a. Supposons que l'une des hypothèses suivantes soit vérifiée :

- (H_1) $E = Ker(f'_a id) + Im(f'_a id)$ $(f'_a désigne la dérivée de f au point a);$
- (H_2) E est le dual d'un espace E_* , et la dérivée f_a' est continue pour la topologie faible $\sigma(E,E_*)$. Alors, l'ensemble Fix f des points fixes de f est, au voisinage de a, une sous-variété analytique complexe directe, tangente en a à $\operatorname{Ker}(f_a'-\operatorname{id})$.

Remarquons tout de suite que l'hypothèse (H_2) est vérifiée dès que E est réflexif, car on peut prendre alors pour E_* le dual E' de E, et f'_a qui est continue pour la topologie de la norme, l'est aussi pour $\sigma(E, E')$.

Nous verrons au paragraphe 7 que l'on peut préciser un peu ce résultat. Si $B(a,r) \subset X \subset B(a,R)$ il existe $\varrho > 0$ ne dépendant que de r et R (et non de f) et un voisinage U de a qui contient $B(a,\varrho)$ tel que $\operatorname{Fix} f \cap U$ soit une sous-variété analytique complexe directe connexe de U, tangente en a à $\operatorname{Ker}(f'_a - \operatorname{id})$. En particulier, si $\operatorname{Ker}(f'_a - \operatorname{id}) = \{0\}$, a est le seul point fixe de f dans la boule $B(a,\varrho)$.

Cet énoncé se généralise immédiatement au cas où X est une variété hyperbolique, c'est-à-dire une variété analytique complexe pour laquelle la pseudo-distance de Kobayashi k_X est une distance qui définit la topologie de X (voir T. Franzoni et E. Vesentini [Fr]). En effet, f est contractante pour k_X et conserve donc les boules de centre a pour cette distance. Comme le problème est local, il suffit de tout restreindre à une boule de rayon suffisamment petit pour être isomorphe à un ouvert borné d'un espace de Banach.

Dans le cas des domaines bornés convexes, nous en déduirons le théorème global suivant :

Théorème 1.6. Soit X un domaine convexe borné d'un espace de Banach complexe E. Soit a un point de X, et soit $f: X \rightarrow X$ une application holomorphe telle que f(a)=a. Supposons que l'une des hypothèses (H_1) ou (H_2) soit vérifiée au point a. Dans l'hypothèse (H_2) , supposons de plus qu'il existe une famille $(\sigma_i)_{i\in I}$ d'élément de E_* tels que $X=\{x\in E| \operatorname{Re}\langle x-a|\sigma_i\rangle<1\}$ (c'est toujours le cas si E est réflexif).

Alors l'ensemble Fix f des points fixes de f est une sous-variété analytique complexe directe de X, tangente en a à $Ker(f'_a-id)$, et il existe une rétraction holomorphe $h: X \to Fix f$.

Remarquons que ce théorème est, dans un certain sens, une variante relative du théorème d'unicité de H. Cartan (voir H. Cartan [C1] ou [Vi1 ou Vi2]) qui dit que, si $f: X \rightarrow X$ est une application holomorphe telle que f(a)=a, $f'_a=id$, alors f est la transformation identique.

Nous terminerons cet article par des exemples qui montrent que les conclusions des théorèmes 1.5 et 1.6 ne sont pas valables sans quelques hypothèses raisonnables.

2. Rappels, notations et remarques

Commençons par quelques rappels sur les fonctions holomorphes sur les espaces de Banach complexe.

Soit φ une application holomorphe d'un voisinage de l'origine 0 d'un espace de Banach complexe E dans un espace de Banach complexe F. Elle admet (voir P. Mazet [M] ou J.-P. Ramis [R]), au voisinage de l'origine, un développement en série de polynômes homogènes

$$\varphi = \sum_{n=0}^{\infty} P_n(\varphi),$$

où $P_n(\varphi)$ est la composante homogène de degré n du développement. De plus, ce développement converge normalement sur un voisinage de l'origine suffisamment petit.

Pour tout $n \in \mathbb{N}$, on notera

$$\tau_n(\varphi) = \sum_{r \leq n} P_r(\varphi)$$

le développement de φ tronqué à l'ordre n.

Nous avons le lemme suivant :

Lemme 2.1. Soit φ une application holomorphe définie au voisinage de 0 dans E, à valeurs dans F, telle que $\varphi(0)=0$. Soit ψ une application holomorphe définie au voisinage de 0 dans F, à valeurs dans G. On a:

- (i) $\tau_n(\psi \circ \varphi) = \tau_n(\tau_n(\psi) \circ \tau_n(\varphi))$;
- (ii) $P_n(\psi \circ \varphi) = P_n(\tau_{n-1}(\psi) \circ \tau_{n-1}(\varphi)) + P_1(\psi) \circ P_n(\varphi) + P_n(\psi) \circ P_1(\varphi)$.

Démonstration. Par composition des développements en série, on trouve

$$\psi \circ \varphi = \sum_{r=0}^{\infty} \sum_{q_1, \dots, q_r} \tilde{P}_r(\psi) [P_{q_1}(\varphi), \dots, P_{q_r}(\varphi)],$$

où $\tilde{P}_r(\psi)$ est l'application r-linéaire symétrique associée au polynôme homogène $P_r(\psi)$. Le terme de degré n de ce développement s'obtient donc en sommant les termes pour lesquels $q_1+\ldots+q_r=n$. Comme $\varphi(0)=0$, $P_0(\varphi)$ est nul, et il suffit de considérer les termes pour lesquels $q_i \ge 1$, pour tout i. Pour ces termes, on a : $q_i \le n$ et $r \le n$.

On en déduit que, dans $P_n(\psi \circ \varphi)$, n'interviennent que des termes qui se trouvent dans $\tau_n(\psi)$ et dans $\tau_n(\varphi)$. On peut donc, pour calculer $P_n(\psi \circ \varphi)$, remplacer les développements de ψ et φ par les développements tronqués à l'ordre n, ce qui prouve (i).

En outre, pour que $P_n(\varphi)$ intervienne dans $P_n(\psi \circ \varphi)$, il faut que l'un des q_i soit égal à n, mais ceci impose alors : r=1. De même, pour que $P_n(\psi)$ intervienne, il faut que r=n, ce qui impose $q_1=\ldots=q_n=1$. Les termes correspondants sont respectivement $P_1(\psi)\circ P_n(\varphi)$ et $P_n(\psi)\circ P_1(\varphi)$. En dehors de ces termes, seuls les développements tronqués à l'ordre (n-1) interviennent, ce qui prouve (ii).

Ce lemme interviendra de façon fondamentale dans notre démonstration. Nous utiliserons aussi les remarques suivantes :

Soit X un domaine borné d'un espace de Banach complexe E, contenant l'origine, et soit $f: X \rightarrow X$ une application holomorphe. Les itérées f^p de f sont encore des

applications holomorphes de X dans X. Comme X est borné, on déduit des inégalités de Cauchy que, dans le développement en série de polynômes homogènes de f^p à l'origine, pour tout $n \in \mathbb{N}$, l'ensemble des $P_n(f^p)$ est borné.

Soit maintenant X une variété analytique banachique complexe. Conformément à l'habitude, nous noterons T(X) le fibré tangent à X, $T_a(X)$ l'espace tangent au point $a \in X$, et si $f: X \to X$ est une application holomorphe, nous noterons $T_a(f)$: $T_a(X) \to T_{f(a)}(X)$ l'application linéaire tangente au point a.

On dit que X est une variété hyperbolique si la pseudo-distance de Kobayashi k_X sur X est une varie distance qui définit la topologie de X (voir T. Franzoni et E. Vesentini [Fr]). En particulier tout domaine borné d'un espace de Banach complexe est une variété hyperbolique.

3. Premier résultat local

Dans ce paragraphe, nous allons montrer le théorème suivant :

Théorème 3.1. Soit X une variété analytique banachique complexe hyperbolique, soit a un point de X, et soit $f: X \rightarrow X$ une application holomorphe telle que f(a)=a. Supposons que l'une des hypothèses suivantes soit vérifiée :

- (H₁) $T_a(X) = \operatorname{Ker}(T_a(f) \operatorname{id}) + \operatorname{Im}(T_a(f) \operatorname{id});$
- (H'_1) L'application linéaire ψ induite par $T_a(f)$ sur $T_a(X)$ / $Ker(T_a(f)-id)$ n'admet pas 1 comme valeur specrale;
 - (H''_1) Ker $(T_a(f)-id)$ est un sous-espace vectoriel de codimension finie de $T_a(X)$.

Alors, l'ensemble Fix f des points fixes de f est, au voisinage de a, une sous-variété directe de X, tangente en a à $Ker(T_a(f)-id)$.

Avant de démontrer le théorème, faisons quelques remarques : quitte à remplacer X par une boule $B_k(a,r)$ pour la distance de Kobayashi k_X de centre a et de rayon r suffisamment petit, on peut se ramener au cas où X est un domaine borné d'un espace de Banach complexe E, et f une application holomorphe de X dans X. L'espace tangent $T_a(X)$ s'identifie à E, et l'application linéaire tangente $T_a(f)$ est la dérivée f'_a de f au point a.

Posons $\varphi = f'_a - \mathrm{id}$, $F = \mathrm{Ker} \varphi = \{ v \in E | f'_a \cdot v = v \}$, et $G = \mathrm{Im} \varphi$.

L'hypothèse (H₁) s'écrit alors E=F+G, mais, puisque $F=\operatorname{Ker} \varphi$, on a $F+G=^{-1}(\varphi(G))$ ce qui permet d'écrire (H₁) : $\varphi(E)\subset\varphi(G)$, c'est-à-dire $G\subset\varphi(G)$ et même

 $\varphi(G)=G$ (l'inclusion $\varphi(G)\subset G$ est évidente). L'hypothèse (H₁) signifie donc que l'application de G dans G induite par φ est surjective.

Par ailleurs $G = \operatorname{Im} \varphi$ s'identifie canoniquement à $E/\operatorname{Ker} \varphi = E/F$ et l'application induite par f'_a —id sur E/F s'identifie à l'application de G dans G induite par φ L'hypothèse (H'₁) signifie donc que cette application est bijective.

Montrons qu'elle est, a priori, injective, cela prouvera $(H_1)\Leftrightarrow (H_1') \Rightarrow (H_1)$ (puisque (H_1'') entraîne que G est de dimension finie). Tout revient donc à prouver $F \cap G = \{0\}$.

Pour tout $n \in \mathbb{N}^*$ posons

$$\theta_n = \frac{1}{n} \sum_{p=0}^{n-1} (f'_a)^p.$$

Si $x \in F$, on a $\theta_n(x) = x$ et donc $\theta_n(x) \to x$ quand $n \to \infty$. Si $x \in G$, soit $y \in E$ tel que $x = (f'_a - id)(y)$. On a :

$$\theta_n(x) = \frac{1}{n} \sum_{p=0}^{n-1} (f'_a)^p \circ (f'_a - \mathrm{id})(y) = \frac{1}{n} [(f'_a)^n - \mathrm{id}](y).$$

D'après les inégalités de Cauchy, $(f'_a)^n$ est borné indépendamment de n et donc $\theta_n(x) \to 0$ quand $n \to \infty$. Il s'ensuit bien $F \cap G = \{0\}$.

Remarquons en outre que, sous l'hypothèse (H_1) , on a alors $E=F\oplus G$ et $\theta_n(x)\to\theta(x)$ quand $n\to\infty$, où θ est la projection de E sur F parallèlement à G. Par ailleurs comme l'on peut borner $(f'_a)^n$ indépendamment de n, il en va de même des moyennes θ_n et l'opérateur θ est donc continu. En particulier son noyau G est fermé.

Il suffit donc de montrer le théorème 3.1 sous l'hypothèse (H_1) . En fait, nous allons montrer le résultat un peu plus fort suivant :

PROPOSITION 3.2. Soit f une application holomorphe d'un voisinage de l'origine d'un espace de Banach complexe E, à valeurs dans E, et telle que f(0)=0. On suppose que, pour tout $n \in \mathbb{N}$, l'ensemble des composantes homogènes de degré n des itérées f^p de f est borné. On suppose aussi que

$$E = \text{Ker}(f_0' - \text{id}) + \text{Im}(f_0' - \text{id}).$$

Alors, l'ensemble Fix f des points fixes de f est, au voisinage de l'origine, une sousvariété directe tangente en 0 à $Ker(f'_0-id)$.

Démonstration. Soit $\varphi = f_0' - id$. Soient $F = \text{Ker}(f_0' - id)$ et $G = \text{Im}(f_0' - id)$. Nous

avons vu qu'il existe une décomposition directe de

$$E = F \oplus G$$
.

et nous nous placerons dans cette décomposition de E.

Nous voulons montrer que l'ensemble des points fixes de f est, au voisinage de (0,0) dans $F \oplus G$ une sous-variété tangente à F.

Considérons l'ensemble $Y = \{(x, y) \in F \oplus G | f(x, y) - (0, y) \in F\}$. On a clairement Fix $f \subset Y$. Nous allons prouver que, au voisinage de 0:

- (1) Y est une sous-variété analytique directe tangente en 0 à F.
- (2) Fix f = Y.

Pour cela, considérons l'application H définie au voisinage de l'origine dans $F \times F \times G$, à valeurs dans $F \times G$

$$H(x, z, y) = f(x, y) - (z, y).$$

Considérons l'équation H(x, z, y)=(0, 0). La dérivée partielle $(\partial H/\partial(z, y))(0, 0, 0)$ vaut $(-\mathrm{id}|_F, \varphi|_G)$. Sous l'hypothèse (H_1) , cette dérivée partielle est un automorphisme linéaire de $F \times G$. Le théorème des fonctions implicites (voir par exemple [Di]) montre alors que l'équation H(x, y, z)=0 définit, au voisinage de l'origine, z et y comme des fonctions holomorphes de x. Soient $z=\alpha(x)$, $y=\beta(x)$. On a :

$$f(x, \beta(x)) = (\alpha(x), \beta(x)),$$

et on vérifie facilement que

$$\alpha(0) = 0$$
, $\beta(0) = 0$, $\alpha'_0 = id|_F$, $\beta'_0 = 0$.

Alors Y est, au voisinage de 0, le graphe de β , ce qui prouve le point (1). Pour démontrer le point (2) il suffit de prouver $\alpha = id$.

Nous allons donc montrer par récurrence sur n que $\tau_n(\alpha) = \tau_n(id)$, c'est-à-dire, l'égalité jusqu'à l'ordre n des développements en série de polynômes homogènes.

Nous savons déjà que $\alpha(0)=0$, $\alpha'_0=id$, ce qui prouve l'hypothèse de récurrence pour n=1. Supposons-la démontrée à l'ordre (n-1). Montrons-la à l'ordre n.

On a donc

$$\tau_{n-1}(\alpha) = \tau_{n-1}(\mathrm{id}).$$

On en déduit que

$$\tau_{n-1}(id, \beta) = \tau_{n-1}(\alpha, \beta) = \tau_{n-1}[f \circ (id, \beta)].$$

En appliquant f^p , et d'après le lemme 2.1, on en déduit

$$\tau_{n-1}[f^p \circ (\mathrm{id},\beta)] = \tau_{n-1}[f^{p+1} \circ (\mathrm{id},\beta)].$$

Ainsi $\tau_{n-1}[f^p \circ (id, \beta)]$ est un polynôme A indépendant de p. Posons

$$B_p = P_n[f^p \circ (\mathrm{id}, \beta)].$$

Appliquons $f \ge f^p \circ (id, \beta)$. D'après le lemme 2.1, on obtient

$$B_{p+1} = B + P_n(f) \circ P_1(A) + P_1(f) \circ B_p$$

où B est la composante de degré n de $\tau_{n-1}(f) \circ A$. En particulier, les deux premiers termes ne dépendent pas de p, et en posant

$$C = B + P_n(f) \circ P_1(A)$$
,

on obtient

$$B_{p+1} = C + f_0' \circ B_p.$$

Soit Π la projection de E sur F parallèlement à G. On a :

$$\Pi \circ B_{n+1} = \Pi \circ C + \Pi \circ f_0' \circ B_n.$$

Les sous-espaces F et G étant stables par f'_0 , le projecteur Π commute avec f'_0 . Comme $f'_0|_F = \mathrm{id}$, $f'_0 \circ \Pi = \Pi$, et on a :

$$\Pi \circ B_{p+1} = \Pi \circ C + \Pi \circ B_p.$$

On en déduit que $\Pi \circ B_p = p(\Pi \circ C) + \Pi \circ B_0$.

Par hypothèse, les $P_r(f^p)$ $(r \le n)$ sont bornés indépendamment de p; par suite, les B_p et $\Pi \circ B_p$ le sont également. Ainsi, $\Pi \circ C = 0$, et on a :

$$\Pi \circ B_1 = \Pi \circ B_0$$
.

Cette relation signifie que

$$\Pi \circ P_n[f \circ (\mathrm{id}, \beta)] = \Pi \circ P_n(\mathrm{id}, \beta)$$

soit que

$$\Pi \circ P_n(\alpha, \beta) = \Pi \circ P_n(\mathrm{id}, \beta).$$

On trouve donc $P_n(\alpha(x)) = P_n(x)$, ce qui montre le résultat à l'ordre n. Le théorème est démontré.

Remarquons que la deuxième partie de la démonstration est une version, dans un cas plus compliqué, du théorème d'unicité de H. Cartan (comparer avec [Vi1 ou Vi2].

Bien sûr, même si la condition (H_1) est vérifiée en tout point de Fix f, la variété Fix f n'est pas forcément connexe. Considérons par exemple l'application f(z)=1/z de la couronne $A_2=\{z\in \mathbb{C}|1/2<|z|<2\}$ dans elle-même. Nous donnerons d'ailleurs au paragraphe 7 un exemple qui montre que, même en dimension finie, les différentes composantes de Fix f ne sont pas toutes de la même dimension, ce qui répond à une question de J-P. Vigué [Vi5].

4. Deuxième cas local

Dans ce paragraphe, nous allons traiter en particulier le cas des domaines bornés d'un espace de Banach réflexif. Nous avons le théorème suivant :

Théorème 4.1. Soit X une variété analytique banachique complexe hyperbolique, soit a un point de X, et soit $f: X \rightarrow X$ une application holomorphe telle que f(a)=a. Supposons que l'une des hypothèses suivantes soit vérifiée :

- (H_2) l'espace tangent $T_a(X)$ est le dual d'un espace de Banach E_* , et l'application linéaire tangente $T_a(f)$ est continue pour la topologie faible $\sigma(T_a(X), E_*)$;
- (H'_2) l'espace tangent $T_a(X)$ est un espace de Banach réflexif (ou, ce qui revient au même, X est modelée sur des ouverts d'un espace de Banach réflexif E).

Alors, l'ensemble des points fixes de f est, au voisinage de a, une sous-variété directe de X, tangente en a à $Ker(T_a(f)-id)$.

Avant de faire la démonstration, remarquons, comme précédemment, quitte à considérer une boule $B_k(a,r)$ pour la distance de Kobayashi k_X de centre a et de rayon r suffisamment petit, qu'on peut se ramener au cas où X est un domaine borné d'un espace de Banach complexe E, et où a est l'origine 0 de E. Il est clair d'autre part, que f'_0 , qui est continue pour la topologie de la norme, est aussi continue pour la topologie faible $\sigma(E, E')$, où E' est le dual topologique de E. Si on suppose que E est réflexif, E est le dual de E'; ainsi $(H'_2) \Rightarrow (H_2)$.

Démonstration du théorème sous l'hypothèse (H₂). La méthode que nous allons employer consiste à utiliser des techniques ergodiques qui sont classiques dans le cas

linéaire (voir par exemple N. Dunford et J. Schwartz [Du]), c'est-à-dire, à considérer des moyennes d'itérées de f. Plus précisément, choisissons une fois pour toutes un ultrafiltre non trivial sur N que nous noterons \mathscr{U} . Si $(x_n)_{n \in \mathbb{N}}$ est une suite bornée de E, formons les moyennes

$$y_n = \frac{1}{n}(x_0 + x_1 + \dots + x_{n-1}).$$

Il s'agit encore d'une suite bornée. Comme E est le dual de E_* , cette suite est relativement compacte pour la topologie faible $\sigma(E, E_*)$; on peut donc considérer la limite de la suite y_n selon l'ultrafiltre $\mathscr U$. Nous noterons $\mu((x_n)_{n\in\mathbb N})$ cette limite, et nous dirons que c'est la moyenne des $(x_n)_{n\in\mathbb N}$. Il est clair que cette moyenne est une fonction linéaire des $(x_n)_{n\in\mathbb N}$, que, si x_n est indépendant de n, $\mu((x_n)_{n\in\mathbb N})=x_0$ et que $||x_n|| \le R$, pour tout $n\in\mathbb N$ entraîne $||\mu((x_n)_{n\in\mathbb N})|| \le R$. En outre, si on considère la suite décalée $(x_n')_{n\in\mathbb N}$, où $x_n'=x_{n+1}$, et les moyennes

$$y'_n = \frac{1}{n}(x'_0 + \ldots + x'_{n-1}) = \frac{1}{n}(x_1 + \ldots + x_n),$$

on a

$$y'_n - y_n = \frac{1}{n} (x_n - x_0) \to 0.$$

Par suite $\mu((x'_n)_{n \in \mathbb{N}}) = \mu((x_n)_{n \in \mathbb{N}})$.

Considérons alors, puisque X est borné, la moyenne des itérées de f

$$g(x) = (\mu(f^n(x)).$$

C'est une application de X dans E qui vérifie évidemment

$$Fix f \subset Fix g$$
.

(Nous prouverons en fait l'égalité au voisinage de 0). Nous avons le lemme suivant :

LEMME 4.2 L'application g est holomorphe.

Démonstration. Il est évident que g est bornée puisque g(X) est contenu dans l'adhérence faible de l'enveloppe convexe de X. Il suffit donc de montrer (voir J.-P. Ramis [Ra], proposition I.2.1.1, p. 17) que, pour tout $\varphi \in E'$, et pour toute droite affine Δ de E, $\varphi \circ g|_{\Lambda \cap X}$ est une application holomorphe.

Commençons par le cas où φ provient d'un élément α de E_* . On a alors

$$\varphi \circ g|_{\Delta \cap X} = \langle g|\alpha\rangle|_{\Delta \cap X} = \lim_{\mathcal{U}} \left\langle \frac{1}{n} \left(id + f + \dots + f^{n-1} \right) \middle| \alpha \right\rangle \middle|_{\Delta \cap X}.$$

Cependant, les $\langle (1/n)(\mathrm{id}+f+\ldots+f^{n-1})|\alpha\rangle|_{\Delta\cap X}$ forment une famille uniformément bornée de fonctions holomorphes. Le théorème de Montel assure que la limite est uniforme sur les compacts de $\Delta\cap X$, ce qui montre que $\varphi\circ g|_{\Delta\cap X}$ est holomorphe. Lorsque φ est un élément quelconque de E', on peut l'approcher, pour la topologie faible $\sigma(E',E)$, par des éléments de E_* de norme plus petite. On a donc, pout tout $y\in E$,

$$\varphi(y) = \lim_{i} \langle y | \alpha_i \rangle, \text{ avec } ||\alpha_i|| \leq ||\varphi||.$$

Par suite,

$$\varphi \circ g|_{\Delta \cap X} = \lim_{i} \langle g|\alpha_{i}\rangle|_{\Delta \cap X}.$$

Comme g est bornée, $\varphi \circ g|_{\Delta \cap X}$ est encore la limite d'une famille bornée de fonctions holomorphes, et, d'après le théorème de Montel, est donc holomorphe.

L'application g a les propriétés suivantes :

LEMME 4.3. (i) $g \circ f = g$,

(ii) $g_0' \circ f_0' = f_0' \circ g_0' = g_0'$.

De plus, g'_0 est un projecteur de E sur $F=Ker(f'_0-id)$.

Démonstration. Montrons d'abord (i). Par définition,

$$g(f(x)) = \lim_{y \to 0} \frac{1}{n} (f(x) + \dots + f^{n}(x)),$$

et on a déjà vu que la moyenne de la suite décalée était égale à la moyenne de la suite donnée. Ainsi, $g \circ f(x) = f(x)$. Par dérivation, on obtient

$$g_0' \circ f_0' = g_0'$$

Etudions maintenant $f'_0 \circ g'_0$. Si $v \in E$, on a:

$$g'_0 \cdot v = \lim_{\mathcal{U}} \frac{1}{n} \left(\sum_{p=0}^{n-1} f'_0^p \cdot v \right).$$

En composant avec f'_0 , on trouve

$$f'_0 \circ g'_0 \cdot v = f'_0 \cdot \lim_{\mathcal{U}} \frac{1}{n} \left(\sum_{p=0}^{n-1} f'^p_0 \cdot v \right).$$

Comme f_0' est continue pour la topologie faible $\sigma(E, E_*)$, on a :

$$f'_0 \circ g'_0 \cdot v = \lim_{\mathcal{U}} f'_0 \cdot \left(\frac{1}{n} \sum_{p=0}^{n-1} f'_0^{p} \cdot v \right) = \lim_{\mathcal{U}} \left(\frac{1}{n} \sum_{p=1}^{n} f'_0^{p} \cdot v \right) = g'_0 \cdot v,$$

d'après le résultat sur les moyennes des suites décalées, et (ii) est démontré.

On en déduit $\text{Im } g_0' \subset F$; il est clair d'autre part que g_0' restreint à F est égal à id_F . Cela suffit à montrer que g_0' est un projecteur de E sur F.

Dans le cas linéaire, ce lemme montre que $f \circ g = g$. Ce n'est pas vrai dans le cas général. Ainsi, si $X = \{z \in \mathbb{C} | 1/2 < |z| < 2\}$, et f(z) = 1/z, on trouve

$$g(z) = \frac{1}{2} \left(z + \frac{1}{z} \right),$$

et g n'est pas une application de X dans l'ensemble des points fixes de f. Pour remédier à cet inconvénient, on va considérer les itérées g^n de g qui sont toutes définies au voisinage de 0 puisque g(0)=0.

LEMME 4.4 Pout tout $n \in \mathbb{N}$, on a:

$$\tau_n(f \circ g^n) = \tau_n(g^n) = \tau_n(g^{n+1}).$$

Démonstration. Pour n=0, c'est une conséquence de f(0)=g(0)=0. Pour n=1, c'est le résultat démontré au lemme 4.3. Faisons la démonstration par récurrence sur n; plus précisément, en supposant $\tau_{n-1}(f \circ g^{n-1}) = \tau_{n-1}(g^{n-1})$ prouvons:

- (1) $\tau_{n-1}(g^{n-1}) = \tau_{n-1}(g^n)$ et
- (2) $\tau_n(f \circ g^n) = \tau_n(g^n)$.

Posons $A = \tau_{n-1}(g^{n-1})$, $B = P_n(g^{n-1})$, $U = \tau_{n-1}(f)$, $V = P_n(f)$. Alors, si

$$A_p = \tau_{n-1}(f^p \circ g^{n-1}), \quad B_p = P_n(f^p \circ g^{n-1})$$

ces polynômes peuvent être déterminés par les relations $A_0=A$, $B_0=B$ et

$$A_{p+1} = \tau_{n-1}(U \circ A_p)$$

$$B_{n+1} = P_n(U \circ A_n) + V \circ P_1(A_n) + P_1(f) \circ B_n$$

obtenues grâce au lemme 2.1.

En particulier l'hypothèse $\tau_{n-1}(f \circ g^{n-1}) = \tau_{n-1}(g^{n-1})$ s'écrit $A_1 = A_0$, c'est-à-dire $\tau_{n-1}(U \circ A) = A$, on en tire immédiatement $A_p = A$ et donc $B_{p+1} = C + P_1(f) \circ B_p$ où $C = P_n(U \circ A) + V \circ P_1(A)$ est indépendant de p.

Maintenant

$$g^{n} = g \circ g^{n-1} = \lim_{\mathcal{U}} \frac{1}{p} (g^{n-1} + f \circ g^{n-1} + \dots + f^{p-1} \circ g^{n-1}).$$

On en déduit des relations analogues pour les développements en série, d'où

$$\tau_{n-1}(g^n) = \mu \left[\tau_{n-1}(f^p \circ g^{n-1})_{p \in \mathbb{N}} \right] = \mu \left[(A_p)_{p \in \mathbb{N}} \right]$$
$$P_n(g^n) = \mu \left[P_n(f^p \circ g^{n-1})_{p \in \mathbb{N}} \right] = \mu \left[(B_p)_{p \in \mathbb{N}} \right].$$

Comme $A_p=A$ est indépendant de p, il vient

$$\tau_{n-1}(g^n) = A = \tau_{n-1}(g^{n-1})$$

d'où le point (1). Par ailleurs le lemme 2.1 prouve

$$\begin{split} \tau_{n-1}(f \circ g^n) &= \tau_{n-1}(U \circ A) = A = \tau_{n-1}(g^n) \\ P_n(f \circ g^n) &= P_n(U \circ A) + V \circ P_1(A) + P_1(f) \circ P_n(g^n) \\ &= C + P_1(f) \circ \mu [(B_n)_{n \in \mathbb{N}}]. \end{split}$$

Cependant $P_1(f)$ est linéaire et continue pour $\sigma(E, E_*)$, il s'ensuit

$$P_1(f) \circ \mu[(B_n)_{n \in \mathbb{N}}] = \mu[(P_1(f) \circ B_n)_{n \in \mathbb{N}}].$$

Comme C est indépendant de p on en tire

$$P_n(f \circ g^n) = \mu[(C + P_1(f) \circ B_n)_{n \in \mathbb{N}}] = \mu[(B_{n+1})_{n \in \mathbb{N}}].$$

L'invariance de la moyenne par décalage d'une suite prouve alors

$$P_n(f \circ g^n) = \mu[(B_n)_{n \in \mathbb{N}}] = P_n(g^n).$$

On a déja vu $\tau_{n-1}(f \circ g^n) = \tau_{n-1}(g^n)$, on a donc

$$\tau_n(f\circ g^n)=\tau_n(g^n),$$

c'est le point (2).

En conclusion, pour tout entier p, la suite $P_p(g^n)$ stationne à partir de n=p. On peut donc définir une série formelle h qui coïncide avec le développement en série de polynomes de g^n jusqu'à l'ordre n. Il est clair que l'on a $f \circ h = h$ et $h \circ h = h$. Il nous faut montrer maintenant que h est une série convergente. Commençons par le lemme suivant :

LEMME 4.5. Il existe un voisinage ouvert V de 0 dans E tel que $g(V) \subset V$.

Démonstration. Remarquons que pout tout $p \in \mathbb{N}$, l'ensemble des composantes de degré p des itérées de g est fini, donc borné. Nous avons vu au lemme 4.3 que g'_0 est un projecteur de E sur $F=\text{Ker}(f'_0-\text{id})=\text{Ker}(g'_0-\text{id})$. Ainsi, nous avons

$$E = \text{Ker}(g_0' - \text{id}) \oplus \text{Im}(g_0' - \text{id}).$$

D'après la proposition 3.2, l'ensemble Fix g est une sous-variété directe de E, tangente en 0 à F. Soit $G=\text{Ker }g_0'$; on a $E=F\oplus G$, et quitte à se placer dans une carte locale, on peut supposer qu'au voisinage de 0, Fix g coïncide avec F. Dans la décomposition de $E=F\oplus G$, on a g(x,0)=(x,0).

Définissons une nouvelle norme $\| \ \|_1$ sur E, par

$$||(x, y)||_1 = ||x|| + ||y||_1$$

 $\| \ \|_1$ est une norme sur E équivalente à la norme donnée. Soit $B_1(0,R)$ une boule pour cette norme $\| \ \|_1$, telle que, sur $B_1(0,R)$, g soit définie et $\|g''\|$ soit bornée par M. D'après la formule de Taylor, on a :

$$||g(x, y) - g(x, 0) - g'_{(x,0)} \cdot (0, y)||_1 \le \frac{M}{2} ||y||_1^2.$$

De même

$$||g'_{(x,0)} - g'_{(0,0)}||_1 \le M||x||_1$$

d'où, on tire

$$||g'_{(x,0)}\cdot(0,y)-g'_{(0,0)}\cdot(0,y)||_1 \le M||x||_1||y||_1.$$

Comme g(x, 0) = (x, 0) et $g'_{(0,0)} \cdot (0, y) = (0, 0)$, on en tire

$$||g(x,y)||_1 \le ||(x,0)||_1 + M||x||_1||y||_1 + \frac{M}{2}||y||_1^2 \le ||(x,0)||_1 + M||y||_1(||x||_1 + 1/2||y||_1) \le ||(x,y)||_1.$$

dès que $M(||x||_1 + 1/2||y||_1) < 1$.

On peut donc trouver $R' \subset R$ tel que $g(B_1(0,R')) \subset B_1(0,R')$ et $V = B_1(0,R')$ a la propriété désirée.

Pour un tel voisinage V, g, et par conséquent g^n , envoient V dans lui-même. Soient r et R tels que $B(0, r) \subset V \subset B(0, R)$. Pour tout $p \in \mathbb{N}$, et tout $r_0 < r$, les inégalités de Cauchy montrent que

$$||P_p(g^n)||_{B(0,r_0)} \leq R\left(\frac{r_0}{r}\right)^p.$$

Comme $\tau_n(g^n)$ et $\tau_n(g^{n+q})$ sont indépendants de q, on en déduit que

$$||g^n - g^{n+q}||_{B(0,r_0)} \le 2R \sum_{p>n} \left(\frac{r_0}{r}\right)^p \le 2R \left(\frac{r_0}{r}\right)^n \frac{r_0}{r-r_0}.$$

Ainsi, (g^n) est une suite de Cauchy pour la norme de la convergence uniforme sur $B(0,r_0)$. Sa limite est donc une fonction holomorphe sur B(0,r) qui admet pour développement en série de polynômes au voisinage de 0 la série formelle h trouvée précédemment.

Notons encore h cette limite, on a, au voisinage de 0, $f \circ h = h$ et $h \circ h = h$. Si U est la composante connexe de 0 dans $h^{-1}(B(0,r))$, ces égalités sont vraies sur tout U ce qui prouve en particulier $h(U) \subset U$.

Ainsi h est une rétraction holomorphe de U dans U dont l'image est formée de points fixes de f (d'après $f \circ h = h$). Comme il est clair, par construction, que h laisse fixes les points de Fix f, on a h(U)=Fix $f \cap U$.

Il reste à prouver que h(U) est une sous-variété directe de U tangente en 0 à F; cela découle de $h'_0=g'_0$ projecteur de E sur F et du lemme suivant (H. Cartan [C2]).

Lemme 4.6. Soit φ une rétraction holomorphe d'un voisinage de l'origine d'un espace de Banach telle que $\varphi(0)=0$. Alors, au voisinage de 0, φ est linéarisable (c'està-dire qu'il existe une carte locale θ , définie au voisinage de l'origine et telle que

$$\varphi_0' = \theta \circ \varphi \circ \theta^{-1}$$
).

Démonstration. En effet, on a $\varphi \circ \varphi = \varphi$ et par suite $\varphi'_0 \circ \varphi'_0 = \varphi'_0$. On en déduit $(id - \varphi'_0 - \varphi) \circ \varphi = -\varphi'_0 \circ \varphi$ et

$$\varphi_0' \circ (\mathrm{id} - \varphi_0' - \varphi) = -\varphi_0' \circ \varphi.$$

Si on pose $\theta = id - \varphi'_0 - \varphi$, on a

$$\theta_0' = id - 2\varphi_0', \quad \theta_0'^2 = id.$$

Ainsi θ'_0 , qui est involutif, est inversible. On en déduit que θ est une carte locale au voisinage de l'origine, et que $\varphi = \theta^{-1} \circ \varphi'_0 \circ \theta$. Le résultat est démontré.

5. Premier cas global

En dimension finie, dans le cas des domaines bornés convexes, J.-P. Vigué [Vi4] a montré un résultat plus fort, à savoir que l'ensemble des points fixes de f est une sous-variété analytique connexe de D, rétracte holomorphe de D. C'est ce résultat que nous allons maintenant généraliser.

THÉORÈME 5.1. Soit X un domaine borné convexe d'un espace de Banach complexe E. Soit a un point de X, soit $f: X \rightarrow X$ une application holomorphe telle que f(a)=a, et supposons que l'une des hypothèses (H_1) , (H'_1) ou (H''_1) soit vérifiée au point a. Alors l'ensemble Fix f des points fixes de f est une sous-variété analytique complexe directe de X, et il existe une rétraction holomorphe $h: X \rightarrow Fix f$.

Avant de démontrer le théorème, remarquons qu'il suffit en fait de supposer que l'hypothèse (H_1) , (H'_1) ou (H''_1) est satisfaite en un seul point de Fix f.

Démonstration du théorème 5.1. Comme dans le théorème 3.1, considérons la décomposition directe de E

$$E = F \oplus G$$

où $F = \operatorname{Ker}(f'_a - \operatorname{id})$, $G = \operatorname{Im}(f'_a - \operatorname{id})$, et on a vu que F et G sont stables par f'_a . Ainsi, $(\operatorname{id} - f'_a)|_G$ est une application linéaire de G dans lui-même, et sous l'une des hypothèses (H_1) , (H'_1) ou (H''_1) , nous avons vu que $(\operatorname{id} - f'_a)|_G$ est un isomorphisme linéaire de G. Il existe donc une constante K telle que $\|((\operatorname{id} - f'_a)|_G)^{-1}\| \leq K$.

Pour tout $n \in \mathbb{N}$, considérons maintenant l'application holomorphe

$$\varphi_n = \frac{1}{n} \sum_{p=0}^{n-1} f^p = \frac{1}{n} (\text{id} + f + \dots + f^{n-1}).$$

Comme X est convexe, φ_n est une application holomorphe de X dans X.

Soit $v \in G$. Alors, $v = u - f'_a \cdot u$, avec $||u|| \le K||v||$. On a

$$\varphi'_{na} \cdot v = \frac{1}{n} \sum_{n=0}^{n-1} f'^{p}_{a}(u - f'_{a} \cdot u) = \frac{1}{n} (u - f'^{n}_{a} \cdot u).$$

Les inégalités de Cauchy montrent l'existence constante de k telle que

$$||(f_a')^n|| \leq k.$$

On a donc

$$\|\varphi'_{na}\cdot v\| \le \frac{1}{n}(\|u\|+k\|u\|) \le \frac{K}{n}(1+k)\|v\|.$$

Choisissons un entier n tel que K(1+k)/n < 1. Considérons maintenant la suite des itérées

$$h_p = (\varphi_n)^p.$$

Il est clair que h_p est une application holomorphe de X dans X, et le théorème sera une conséquence du lemme suivant. Rappelons d'abord qu'une partie A de X est dite complétement intérieure à X si la distance de A à la frontière de X est strictement positive.

Lemme 5.2. Soit X un domaine borné d'un espace de Banach complexe $E=F \oplus G$, et supposons que les boules pour la distance de Kobayashi sont complétement intérieures à X. Soit a un point de X, et soit $f: X \to X$ une application holomorphe telle que f(a)=a, $f'_a|_F=\mathrm{id}$, $||f'_a|_G||<1$. Alors, la suite des idées f^n converge uniformément sur toute boule complétement intérieure à X vers une rétraction holomorphe h de X sur l'ensemble des points fixes de f qui est une sous-variété directe connexe de X.

Démonstration. Remarquons d'abord que l'application induite par f'_a sur E/F (isomorphe à G) est de norme <1. Par suite, elle n'admet pas 1 comme valeur spectrale, et on peut appliquer le théorème 3.1. Au voisinage de a, l'ensemble Fix f des points fixes de f est une sous-variété analytique complexe directe de E, tangente en a à F. Plaçons-nous dans une carte locale dans laquelle a=0, et où Fix f, est égal au voisinage de f0, a f1. On déduit des inégalités de Cauchy qu'il existe un voisinage f1. Une f2. Une f3. Une l'origine dans f4. Cauchy f5. Une que, pour tout f6. Une f7.

$$\left\| \frac{\partial f}{\partial y}(x, y) \right\| < k < 1.$$

On déduit du théorème des accroissements finis que, pour tout $(x, y) \in U$, on a

$$||f(x, y) - f(x, 0)|| = ||f(x, y) - (x, 0)|| \le k||y||.$$

Par suite, pour tout (r_2, r_3) tels que $r_2 \le r_0, r_3 \le r_1$, on a

$$f(B(0, r_2) \times B(0, r_3)) \subset B(0, r_2 + kr_3) \times B(0, kr_3).$$

On peut donc trouver $r_2>0$ et $r_3>0$ suffisamment petits tels que, pour tout $n \in \mathbb{N}$,

$$f^{n}(B(0, r_{2}) \times B(0, r_{3})) \subset B(0, r_{0}) \times B(0, k^{n}r_{3}).$$

Etudions maintenant $||f^{n+1}-f^n||_{B(0,r_1)\times B(0,r_2)}$. Soient $(x,y)\in B(0,r_2)\times B(0,r_3)$. On a :

$$||f^{n+1}(x,y)-f^{n}(x,y)|| \le ||f(f^{n}(x,y))-\Pi(f^{n}(x,y))|| + ||\Pi(f^{n}(x,y))-f^{n}(x,y)||,$$

où Π est la projection sur F, parallèlement à G.

$$||f^{n+1}(x, y) - f^n(x, y)|| \le k k^n r_3 + k^n r_3 \le 2k^n r_3.$$

Ceci suffit à montrer que $(f^n)_{n \in \mathbb{N}}$ est une suite de Cauchy pour la norme de la convergence uniforme sur $B(0, r_2) \times B(0, r_3)$. D'après J.-P. Vigué [Vi1], c'est une suite de Cauchy pour la norme de la convergence uniforme sur toute boule complètement intérieure à X. Notons h sa limite; comme les boules pour la distance de Kobayashi sont complètement intérieures à X, h est encore à valeurs dans X.

La suite f^{n+1} converge aussi vers h, d'où $f \circ h = h$. Plus généralement $f^p \circ h = h$ et, faisant tendre p vers l'infini on obtient $h \circ h = h$.

Ainsi h est une rétraction holomorphe dont l'image est formée de points fixes de f (puisque $f \circ h = h$). Comme il est clair que tout point fixe de f est fixe pour f^p et donc pour h l'image de h est exactement Fix f.

Remarquons en outre que le lemme 4.6 montre que l'image de h est une sous-variété directe de X; comme h est continue et X est connexe cette image est connexe et le lemme est démontré.

Nous pouvons maintenant achever la démonstration du théorème 5.1. D'après L. Harris [Ha], proposition 2.3, p. 381, comme X est un domaine borné convexe, les boules pour la distance de Kobayashi sont complètement intérieures à X; le lemme 5.2 peut donc s'appliquer à φ_n et à la suite de ses itérés. Il suffit alors de prouver $\operatorname{Fix} f = \operatorname{Fix} \varphi_n$.

On a évidemment Fix $f \subset \text{Fix } \varphi_n$. Par ailleurs, par construction φ'_{na} induit l'identité sur F et une application de norme strictement inférieure à 1 sur G; il s'ensuit $\text{Ker}(\varphi'_{na}-\text{id})=F=\text{Ker}(f'_a-\text{id})$. Alors le théorème 3.1 prouve qu'au voisinage de a, Fix f et Fix φ_n sont des sous-variétés ayant le même espace tangent en a, de l'inclusion on déduit donc l'égalité au voisinage de a.

Comme Fix φ_n est une sous-variété connexe, l'inclusion et le principe du prolongement analytique assurent Fix $f = \text{Fix } \varphi_n$, ce qui achève la démonstration du théorème.

Remarquons, pour conclure ce paragraphe, que le lemme 5.2 entraîne pour les applications holomorphes tangentes à un projecteur le corollaire suivant :

COROLLAIRE 5.3. Soit X un domaine borné d'un espace de Banach complexe E, et supposons que les boules pour la distance de Kobayashi soient complètement intérieures à X. Soit a un point de X, et soit $f: X \rightarrow X$ une application holomorphe telle que f(a)=a, et que f'_a soit un projecteur. Alors, la suite des itérées f^n converge uniformément sur toute boule B complètement intérieure à X vers une rétraction holomorphe A de A sur Fix A.

6. Deuxième cas global

Nous allons maintenant donner les résultats globaux obtenus dans le cas des domaines bornés convexes à partir du deuxième résultat local.

Théorème 6.1. Soit X un domaine borné convexe d'un espace de Banach complexe E. Soit a un point de X, et soit $f: X \rightarrow X$ une application holomorphe telle que f(a)=a. Supposons que l'une des hypothèses suivantes soit vérifiée :

 (H_2^*) E est le dual d'un espace de Banach E_* , la dérivée f'_a de f au point a est continue pour la topologie faible $\sigma(E,E_*)$, et il existe une famille d'éléments $(\sigma_i)_{i\in I}$ de E_* tels que

$$X = \{x \in E | \operatorname{Re} \langle x - a, \sigma_i \rangle < 1\}.$$

(H₂) E est un espace de Banach réflexif.

Alors, l'ensemble Fix f des points fixes de f est une sous-variété analytique complexe directe de X, et il existe une rétraction holomorphe $h: X \rightarrow Fix f$.

Avant de montrer le théorème, faisons les remarques suivantes : si X est un domaine borné convexe d'un espace de Banach complexe E, il existe, d'après le théorème de Hahn-Banach, une famille de formes linéaires continues $(\varphi_i)_{i \in I}$ de E' telles que

$$X = \{x \in E | \operatorname{Re} \left[\varphi_i(x-a) \right] < 1, \forall i \in I \}.$$

Ainsi, si X est un domaine borné convexe d'un espace de Banach réflexif, il est clair qu'il satisfait à l'hypothèse (H_2^*) .

Au sujet de l'hypothèse (H_2^*) , remarquons que, si E est le dual de E_* , muni de la norme déduite de la norme de E_* , la boule-unité ouverte B de E est bien définie au sens de l'hypothèse (H_2^*) , par des formes linéaires provenant de E_* .

Enfin, nous verrons par un exemple que la conclusion du théorème 6.1 n'est plus vraie si le domaine borné convexe X n'est pas défini par des formes linéaires provenant de E_{*} .

Démonstration du théorème 6.1. Plaçons-nous donc dans l'hypothèse (H_2^*) . Pour tout $n \in \mathbb{N}$, considérons

$$\varphi_n = \frac{1}{n} (\mathrm{id} + f + \dots + f^{n-1}).$$

Comme X est convexe, φ_n est une application holomorphe de X dans X. On a donc, pour tout $x \in D$, pour tout $i \in I$,

Re
$$\langle \varphi_n(x) - a, \sigma_i \rangle < 1$$
.

Comme les bornés de E sont relativement compacts pour la topologie faible $\sigma(E, E_*)$, la suite φ_n converge faiblement vers une application holomorphe $\varphi: X \to E$. De

Re
$$\langle \varphi_n(x) - a, \sigma_i \rangle < 1$$
,

on déduit que

Re
$$\langle \varphi(x)-a, \sigma_i \rangle \leq 1$$
,

avec égalité si et seulement si

Re
$$\langle \varphi(x) - a, \sigma_i \rangle \equiv 1$$
,

pour tout $x \in X$. Il suffit de considérer $\varphi(a)=a$, pour montrer que

Re
$$\langle \varphi_n(x) - a, \sigma_i \rangle < 1$$
.

Ainsi, φ est une application holomorphe de X dans X. Considérons maintenant la suite des itérées $h_n = \varphi^n$. D'après le résultat local, on a, en supposant que a est l'origine 0 de E:

$$\tau_n(f \circ \varphi^n) = \tau_n(\varphi^n) = \tau_n(\varphi^{n+1}).$$

En particulier $\tau_1(\varphi) = \tau_1(\varphi^2)$ montre que φ'_0 est un projecteur et le corollaire 5.3 montre

que la suite itérés φ^n converge uniformément sur toute boule complètement intérieure à X vers une rétraction holomorphe h de X sur Fix φ .

Par construction de φ , on a Fix $f \subset \text{Fix } \varphi = \text{Im } h$.

Par ailleurs, $\tau_n(f \circ \varphi^n) = \tau_n(\varphi^n)$ prouve $f \circ h = h$ et donc Im $h \subset \text{Fix } f$, d'où Fix f = Im h et le théorème en découle.

7. Un résultat semi-global

Nous allons voir maintenant que l'on peut utiliser des méthodes inspirées de celles employées dans le cas d'un domaine borné convexe pour préciser la taille de l'ouvert U tel que l'ensemble Fix $f \cap U$ soit une sous-variété de U.

Soit X un domaine borné contenant l'origine, soient r et R deux constantes strictement positives telles que $B(0,r) \subset X \subset B(0,R)$. (Dans l'hypothèse (H₂), on suppose toujours que E est muni de la norme déduite de la norme de E_* .) Nous avons alors le théorème suivant :

Théorème 7.1. Avec les notations précédentes, il existe une constante ϱ strictement positive ne dépendant que de r et R pour laquelle, si $f: X \rightarrow X$ est une application holomorphe admettant 0 pour point fixe et vérifiant en ce point l'une des hypothèses (H_1) , (H'_1) , (H'_1) , (H'_2) ou (H'_2) alors il existe un voisinage ouvert U de 0 contenant $B(0,\varrho)$ tel que Fix $f \cap U$ soit une sous-variété analytique complexe directe connexe de U, tangente en 0 à $Ker(f'_0-id)$.

En particulier, si $Ker(f'_0-id)=\{0\}$, 0 est le seul point fixe de f dans $B(0,\varrho)$.

Démonstration. Soit $F = \text{Ker}(f_0' - \text{id})$. Considérons

$$\varphi_n = \frac{1}{n} (\mathrm{id} + f + \dots + f^{n-1}).$$

Plaçons-nous d'abord dans l'un des cas (H_1) , (H'_1) ou (H''_1) . Soit $G = Im(f'_0 - id)$, et considérons la dérivée φ'_{n0} de φ_n à l'origine. Les inégalités de Cauchy montrent que $||\varphi'_{n0}|| \le R/r$. On a déjà vu que, pour tout vecteur $v \in E$,

$$\varphi'_{n0} \cdot v \to \Pi(v)$$

où Π est le projecteur de E sur F parallèlement à G. Ainsi, $\|\Pi\| \le R/r$. Choisissons un nombre réel $\varepsilon > 0$ très petit et un entier n suffisamment grand pour que

$$||\varphi'_{n0}|_G|| < \varepsilon.$$

Posons $\varphi = \varphi_n$.

Plaçons-nous maintenant dans l'un des cas (H_2) ou (H'_2) . Nous savons alors que φ_n converge pour la topologie faible vers une application holomorphe $\varphi: X \to B(0, R)$. Sa dérivée à l'origine φ'_0 est un projecteur Π de E sur F parallèlement à $G = \operatorname{Ker} \varphi'_0$. On a de même

$$\|\Pi\| \leq \frac{R}{r}$$
.

Une fois ces définitions posées, nous pouvons traiter ensemble tous les cas (H_1) , (H_1') , (H_2') , (H_2') , (H_2') . Considérons la décomposition directe de E

$$E = F \oplus G$$
.

et écrivons $x=(x_1,x_2)$ les coordonnées de x dans cette composition. Munissons $F \oplus G$ de la norme équivalente

$$||(x_1, x_2)||_{\infty} = \sup(||x_1||, ||x_2||).$$

Comme II est de norme $\leq R/r$, si $x=(x_1,x_2)$, il est clair que l'on a :

$$\frac{r}{R+r}\|(x_1,x_2)\|_{\infty} \leq \|x\| \leq 2\|(x_1,x_2)\|_{\infty}.$$

A l'aide des inégalités de Cauchy, on peut trouver une constante ϱ_0 strictement positive et qui ne dépend que de r et R, telle que, pour tout x appartenant à la boule $B_{\infty}(0,\varrho_0)$ pour la norme $\|\cdot\|_{\infty}, \|\varphi_x'|_G\| < 1/2$. Pour tout point $x_1 \in B(0,\varrho_0) \cap F$, il existe au plus un point $y(x_1) \in B(0,\varrho_0) \cap G$ tel que

$$(id - \Pi)(\varphi(x_1, y(x_1))) = y(x_1).$$

En fait, on obtient $y(x_1)$ comme la limite de la suite des itérées

$$[(\mathrm{id}-\Pi)\,\varphi(x_1,\cdot)]^n(0).$$

A l'aide des inégalités de Cauchy, on montre que

$$\|(\mathrm{id} - \Pi)(\varphi(x_1, 0))\| \le \alpha = \varepsilon \|x_1\| + \frac{R+r}{r} \left(\frac{R}{r-\varrho_0}\right)^2 \|x_1\|^2.$$

Si $\alpha < \varrho_0/2$, on en déduit que $||y(x_1)|| < 2\alpha$. Ceci permet de déterminer $\varrho_1 \le \varrho_0$, ne dépendent

dant que de r et R, tel que $x_1 \in F$

$$||x_1|| < \varrho_1 \implies (x_1, y(x_1)) \in B_{\infty}(0, \varrho_1).$$

Considérons dans $B_{\infty}(0, \varrho_1)$ la sous-variété V qui est le graphe de l'application

$$B_{\infty}(0,\varrho_1) \cap F \rightarrow B_{\infty}(0,\varrho_1) \cap G$$
$$x_1 \mapsto y(x_1).$$

Il est clair que V est une sous-variété analytique directe connexe de $B_{\infty}(0,\varrho_1)$ qui contient $\operatorname{Fix} \varphi \cap B_{\infty}(0,\varrho_1)$. D'autre part d'après le théorème local (voir théorème 3.1 et théorème 4.1), au voisinage de 0, V est exactement égal à $\operatorname{Fix} f$. Le théorème de prolongement analytique montre que $V \subset \operatorname{Fix} f \cap B_{\infty}(0,\varrho_1)$. L'égalité $V = \operatorname{Fix} f \cap B_{\infty}(0,\varrho_1)$ provient du fait que $\operatorname{Fix} f$ est contenu dans $\operatorname{Fix} \varphi$. D'autre part, $B_{\infty}(0,\varrho_1)$ contient $B(0,r\varrho_1/(r+R))$ et ceci achève la démonstration du théorème.

8. Exemples

Comme nous l'avons déjà dit, dans le cas d'un domaine borné quelconque X, l'ensemble des points fixes d'une application holomorphe $f: X \rightarrow X$ n'est pas connexe en général, et J.-P. Vigué [Vi5] demandait si toutes les composantes connexes de Fix f avaient la même dimension. Ce n'est pas le cas comme le montre l'exemple suivant :

Exemple 8.1. Soit X le domaine borné de \mathbb{C}^2 défini par

$$X = \{(x, y) \in \mathbb{C}^2 | 1/2 < |x| < 2, |xy^2| < 1\}.$$

Soit $f: X \rightarrow X$ définie par

$$f(x,y)=(1/x,xy).$$

Il est facile de vérifier que f est bien une application holomorphe de X dans X et que l'ensemble Fix f est égal à $A_1 \cup A_{-1}$, où

$$A_1 = \{(x, y) \in X | x = 1\},$$

$$A_{-1} = \{(x, y) \in X | x = -1, y = 0\}.$$

Ainsi, $\dim A_1=1$, et $\dim A_{-1}=0$.

Une question importante est de savoir ce qui se passe quand aucune des conditions

 (H_1) ou (H_2) n'est vérifiée. Nous allons voir qu'en général, Fix f n'est plus une sous-variété analytique de X. Le premier exemple que nous allons donner est dans la boule-unité de $c_0(N)$.

Exemple 8.2. Considérons l'espace de Banach complexe $c_0(N)$ des suites convergeant vers 0 à l'infini, et soit B sa boule-unité ouverte. Soit N un entier strictement positif, soit $\varphi: \Delta^N \to \Delta^N$ une application holomorphe du polydisque Δ^N dans lui-même. Soit maintenant f l'application holomorphe de B dans B définie par $f((z_n)_{n \in N}) = (Z_n)_{n \in N}$, où $(Z_0, ..., Z_{N-1}) = (z_0, ..., z_{N-1})$, $(Z_N, ..., Z_{2N-1}) = \varphi(z_0, ..., z_{N-1})$, $Z_{2N+k} = z_{N+k}$, $\forall k \ge 0$.

PROPOSITION 8.3. L'ensemble Fix f est égal à $\varphi^{-1}(0) \times \{0\}$. Ce n'est donc pas, en général, une sous-variété analytique de B.

Démonstration. L'équation $f((z_n)_{n\in\mathbb{N}})=(z_n)_{n\in\mathbb{N}}$ entraı̂ne que, pour tout $n\geq 0$,

$$z_{2N+k+nN} = z_{N+k}.$$

Comme $(z_n)_{n\in\mathbb{N}}$ appartient à $c_0(N)$, ceci entraı̂ne que, pour tout $k\geq 0, z_{N+k}=0$. Par suite,

$$\varphi(z_0,...,z_{N-1})=0,$$

et le résultat est démontré.

Cet exemple est inspiré d'un exemple de [Hy]. Son principal inconvénient est que $c_0(N)$ n'est pas un dual; aussi, nous allons maintenant construire un exemple dans le cas de $l^{\infty}(N)$.

Exemple 8.4. Soit $l^{\infty}(N)$ l'espace de Banach complexe des suites bornées, muni de la norme de la convergence uniforme. Soit N un entier strictement positif, soit \mathcal{U} un ultrafiltre non trivial sur N, et pour $i=0,\ldots,N-1$, définissons

$$\mu_i((x_n)_{n \in \mathbb{N}}) = \lim_{\mathcal{U}} \frac{1}{k} (x_i + x_{i+N} + \dots + x_{i+(k-1)N}).$$

Soit

$$X = \{(x_n)_{n \in \mathbb{N}} \in l^{\infty}(\mathbb{N}) | ||(x_n)|| < 1, |\mu_i((x_n))| < 1/2, i = 0, ..., N-1 \}.$$

Il et clair que X est un domaine borné convexe de $l^{\infty}(N)$. (Bien sûr, X ne peut pas être défini par une famille de formes linéaires provenant de $l^{1}(N)$.)

Soit $\varphi = (\varphi_i)_{i=0,\dots,N-1}$ une application holomorphe $\Delta(0,1/2)^N \to \Delta(0,1)^N$, où $\Delta(0,r)$ désigne le disque ouvert de centre 0 et de rayon r dans C. Considérons l'application holomorphe $f: X \to X$ définie par

$$f((x_n)_{n\in\mathbb{N}}) = (X_n)_{n\in\mathbb{N}}$$

οù

$$(X_0, \dots, X_{N-1}) = \varphi((\mu_i((x_n)_{n \in \mathbb{N}}))_{i=0, \dots, N-1})$$

$$X_{N+i} = x_i, \quad \text{pour tout} \quad i \ge 0.$$

Puisque $|\mu_i((x_n))| < 1/2$ sur X, f définit bien une application holomorphe de X dans X. L'ensemble des points fixes de f est décrit par la proposition suivante :

PROPOSITION 8.5. L'ensemble Fix f des points fixes de f est égal à

$$A = \{(x_n)_{n \in \mathbb{N}} | x_n = x_{n+N}, \forall n \in \mathbb{N}, (x_0, ..., x_{N-1}) \in \text{Fix } \varphi\}.$$

Démonstration. Il est clair que $A \subset Fix f$. Si on considère $x \in Fix f$, on a forcément

$$x_{N+i} = x_i, \quad \forall i \ge 0.$$

Par suite $\mu_i((x_n)_{n \in \mathbb{N}}) = x_i$, ce qui donne l'équation $\varphi((x_i)_{i=0,\dots,N-1}) = (x_i)_{i=0,\dots,N-1}$

A partir de cette proposition, il est facile de construire des exemples divers. Par exemple, n'importe quel sous-ensemble analytique de $\Delta(0,1/2)^N$ défini par N équations holomorphes bornées définit l'ensemble des points fixes d'une application f.

En effet, si $(g_i)_{i=0,...,N-1}$ sont les équations de V, on peut les supposer bornées par 1/2, et prendre

$$\varphi_i(x_0, ..., x_{n-1}) = x_i + g_i(x_0, ..., x_{N-1}).$$

Un autre exemple intéressant est le suivant : prenons N=1, et soit $\varphi(x_0)=4x_0^2$. L'ensemble des points fixes de f est formé de deux points (0,0,...,0,...) et (1/4,1/4,...,1/4,...). $\varphi'(0)=0$, ce qui montre qu'à l'origine, la condition (H_2) est vérifiée. Cependant (H_2^*) ne l'est pas, et il n'existe pas de rétraction holomorphe $h: X \to Fix f$.

Bibliographie

- [A1] ABD-ALLA, M., L'ensemble des points fixes d'une application holomorphe. C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 451-454.
- [A2] L'ensemble des points fixes d'une application holomorphe dans un produit fini de boules-unités d'espaces de Hilbert est une sous-variété banachique complexe. Ann. Mat. Pura Appl. (4), 153 (1988), 63-76.
- [Be] Bedford, E., On the automorphism group of a Stein manifold. Math. Ann., 266 (1983), 215-227.
- [Bo] Bourbaki, N., Espaces vectoriels topologiques. Chapitres 1 et 2, Hermann, Paris, 1966.
- [C1] CARTAN, H., Les fonctions de deux variables complexes et le problème de la représentation analytique. J. Math. Pures et Appl. (9), 11 (1931), 1-114.
- [C2] Sur les rétractions d'une variété. C. R. Acad. Sci. Paris Sér. I Math., 303 (1986), 715-716.
- [Di] DIEUDONNÉ, J., Foundations of Modern Analysis. Acad. Press Inc., New York, 1960.
- [Du] DUNFORD, N. & SCHWARTZ, J., Linear Operators, part I. Interscience Publishers, Inc., New York, 1958.
- [Fr] Franzoni, T. & Vesentini, E., Holomorphic Maps and Invariant Distances. Mathematical Studies, 40. North-Holland, Amsterdam, 1980.
- [Ha] Harris, L., Schwarz-Pick system of pseudometrics for domains in normed linear spaces, in Advances in Holomorphy. Mathematical Studies 34, pp. 345-406. North-Holland, Amsterdam, 1979.
- [Hy] HAYDEN, T. & SUFFRIDGE, T., Fixed points of holomorphic maps in Banach spaces. *Proc. Amer. Math. Soc.*, 60 (1976), 95-105.
- [H] Hervé, M. Quelques propriétés des applications analytiques d'une boule à m dimensions dans elle-même. J. Math Pures et Appl. (9), 42 (1963), 117-147.
- [M] MAZET, P., Analytic Sets in Locally Convex Spaces. Mathematical Studies, 89. North-Holland, Amsterdam, 1984.
- [Ra] RAMIS, J.-P., Sous-ensembles analytiques d'une variété banachique complexe. Ergebnisse der Mathematik, Springer-Verlag, Berlin, 1970.
- [Re] Renaud, A., Quelques propriétés des applications analytiques d'une boule de dimension infinie dans une autre. Bull. Sci. Math. (2), 97 (1973), 129-159.
- [Ve1] VESENTINI, E., Complex geodesics. Compositio Math., 44 (1981), 375-394.
- [Ve2] Complex geodesics and holomorphic maps. Sympos. Math., 26 (1982), 211-230.
- [Vi1] Vigué, J.-P., Le groupe des automorphismes analytiques d'un domaine borné d'un espace de Banach complexe. Application aux domaines bornés symétriques. Ann. Sci. École Norm. Sup. (4), 9 (1976), 203-282.
- [Vi2] Domaines bornés symétriques, dans Geometry Seminar « Luigi Bianchi ». Lecture Notes in Mathematics, 1022, pp. 125-177, 1983.
- [Vi3] Points fixes d'applications holomorphes dans un produit fini de boules-unités d'espaces de Hilbert. Ann. Mat. Pura Appl. (4), 137 (1984), 245-256.
- [Vi4] Points fixes d'applications holomorphes dans un domaine borné convexe de Cⁿ. Trans. Amer. Math. Soc., 289 (1985), 345-353.
- [Vi5] Sur les points fixes d'applications holomorphes. C. R. Acad. Sci. Paris Sér. I Math., 303 (1986), 927-930.