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Introduction

1. The main theorem. A closed convex curve in the plane E, is usually defined
as the boundary of a compact convex set.! Alternatively, if the curve is given in
parametric form we could say that the curve is conver provided it never crosses a
straight line more than twice. The second definition has the advantage of extending
in a natural way to closed curves in an even-dimensional space E;, as follows:

Let

(N C: xi=x(t), (=1,...,2n; 0<¢:2257),

where x;(t) are continuous functions of period 2z, be a closed curve in E,,. We
shall say that (' is conwvex in E,, provided that it never crosses a hyperplane more
than 2n times. If (' is convex in E,, and spans the space E,,, i.e. is not contained
in a lower-dimensional flat space, then we shall say that (' is convexr on E.,. It
will be shown below (Article 5) that curves convex in E,, are rectifiable. As an

example of a curve convex on E,, we mention the curve

1
(2) Cy:  xy=cost,xz=4%co82¢, ..., 22, 1= -~ COSML,
n
. . 1 . .
x,=sint, x;=48in 2¢, ..., 22, = -sinn{, (051<2n).
n R
Indeed, C; is convex in Ep,, for if I{z,, ..., 2,,) i8 any linear function and if we

substitute the x; as defined by (2), we find that I=7,(f) is a real trigonometric

* This work was performed on a National Bureau of Standards contract with the University of
California, Los Angeles, and was sponsored (in part) by the Office of Scientific Research, USAF.
! See [1], page 3, in the list of references at the end of this paper.
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polynomial of order » which is known never to change sign more than 27 times
within a period.

The main result is the following theorem

1. Let C be a closed curve convex in Ei, and let L denote its length. Let K =K (C)
be the convex hull of C and let V=1V (K) denote the 2 n-dimensional volume of K. Then
the following inequality holds

(3) L= 2an)"n! 2n)! V(K),

with the equality sign if and only if the curve C agrees up to a rigid motion and a
similitude, followed perhaps by a reflexion, with the curve Cy® defined by (2).

If n=1, (3) reduces to the classical isoperimetric inequality L?> 4z V for curves
convex in the plane, V now denoting the area enclosed by C, and where equality
holds only if C is a circle. The inequality (3) shows that among all closed curves
convex in E,, and of given length L, only those which are similar to C, will maxi-

mize the volume V (K (C)) of their convex hull,

2. Two related theorems. Theorem I will follow from the following theorem in

which there is no reference to convex curves:

II. Let «(t), (i=1,...,2n), be absolutely continuous functions of period 2 7, not all
being constant and such that z; (t) € L, (0, 2 ). Then the following inequality holds

2n 2n 2n
2n n
4) {f (?zfz)dt} > n"f---fdet N (8y), 2 (1), o (L), @1 (b), «ooy @i (tn), 2 (La) ]| B2y ... dita,
H 5 @

the integrand of the right-hand side being a determinant of order 2n whose ith row is
written out. Moreover, we have the equality sign if and only if the functions z(t) arise
from the special set of functions (2) by a right-handed orthogonal transformation followed
by a similitude with positive ratio and a translation.

This theorem will be established by means of Fourier series, a method first used
by A. Hurwitz?® for the special case when n=1. In this classical case, Fourier expan-
sions reduce the problem to a quadratic inequality easily established by completing
squares. It will be seen by means of Fourier expansions that Theorem II is equi-

valent to the following theorem

* The curve C, is a simple example of a closed screw-line in Egy (see [10]). A curve C,, related
to Cy by similitudes, and the corresponding K (C,), play an important role in CARATHEODORY's
paper [2] and also in the so-called trigonometric moment problem.

3 See [8].
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III. Let
(5) M=”ail’bil’a!2,bi2’ -“’almsblm""”’ (i=l9"-’2n)s

be a real matrix of 2n rows and infinitely many columns, M =0, and such that the

sum of the squares of the elements in every row converges. Let

(6) Dy, Gar - Gn) = det |l @u,, big,, s, Bugys ons @iz bl
(15§, <ja<-- <fn).

Setting

(7) S =v§1 g(a?r'*'bizv)

and

(8) o= 3 ;.D(jl’jzi""jn)’

fi<e<dy 7.17‘2---7n

then the last series converges absolutely and we have the inequality
(9) S*=(2n)" n! @,
with equality holding if and only if the matrix (5) has only zero elements, except in its

first 2n columns which form a square matrix with elements positively proportional to a

right-orthogonal matrix.

The section-headings describe the contents of the paper. The discussion starts

with an account of indispensable properties of convex polygons and curves.

§ 1. On closed curves convex in E;, and the volumes of their convex hulls

3. On convex polygons. Let
(ll) H=P0P1...Pk, P¢=(:c“,x,2,...,x.m)

be a polygon with vertices in E,. We assume that Il spans E,,, which is the case
provided the matrix

(1-2) X::“l)xﬂ;xﬂ,'--’xlm“) (1:=0: "'sk; kzm)v
is of rank m+ 1. We introduce the following

Definition 1. We say that the polygon Il is convex on E,, provided it spans E,, and
crosses no hyperplane more than m times. If in this definition we do mot require that
I1 should span E,, then we say that I is convex in En.

The convexity of Il in (or on) E, evidently means the following: If I(P) =

=1l(xy, ..., Zy) 18 an arbitrary linear function of the coordinates, then in the sequence
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of numbers I(P,), [(P,), ..., 1(Px), we should have at most m changes of signs. Now

3

the important difference between ‘‘convexity in E,” and “convexity on E,” becomes

IR

apparent. Indeed, for “convexity on E,” the following lemma is identical, except in

terminology, to a theorem of F. Gantmakher and M. Krein?:

Lemma 1. The polygon Il s convex on E, if and only if the matrix X, defined by
(1.2) is of rank m + 1 and all its non-vanishing minors of order m + 1 are of the

same sign.

This lemma seems intuitively clear for the case of the plane E,, for it says that
the convexity of Il on E, requires that no two among the triangles P, Pz P, (x <f <7y)
should have opposite orientations.

We are now confronted with a basic distinction depending on the parity of the
dimension number m. If m ¢s even we readily see that if Il is convex on E,, then

also the closed polygon
I[I,=P,P,... P, Py

is convex on E,. Indeed, if n (I(P)=0) is a hyperplane and Il crosses z less than
m times, then also I, will not cross @ more than m times. However, if Il crosses
7t exactly m times, then P, and P, are never on opposite sides of & (m being even),
so that the last side I’ P, does not cross m. For the closed polygon II, it does not
matter which vertex is taken to be the first, as long as the correct cyclic order of
the vertices is preserved. The convexity of 1I; may also be described in a way which
ignores ab initio which vertex might be the first: 1I; should never cross z more
than m times, as we go once around the polygon. Notice that the number of such
crossings is always even. The same indifference to cyclic permutations is also shared
by the criterion of Lemma 1: Cyclic permutations of the rows of the matrix X will
not change the common sign of its minors of the odd order m+ 1.

The situation is quite different if m is odd. In this case it can be shown that

the first and the last vertex of a polygon, convex on E,, can never coincide.

4. On convex curves. The above definitions and results extend readily to con-
tinuous arcs and closed curves. In view of our particular aim we restrict the discus-

sion to even dimensions m=2n and closed curves. The basic definition is as follows:

4 See their recent book [4], Theorem 3, page 297. Also proved in [14], Theorem 1. ANNE WHITNEY
and the author were unaware of the book by GANTMAKHER and KREIN when [14] was published.
However, the priority clearly belongs to the Russian authors. See also footnote 5 for the connection
with the work of J. HJELMSLEV.
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Definition 2. The closed curve
(1.3) C: z=x@t) @=1,...,2n;0<t<2n),

where the continuous functions x;(t), defined for all t, have the period 2m, is said to be
convex on Ky, provided C spans By, and all closed polygons inscribed in C are convex
in Egn. If in this definition we do not require that C should span Es,, then we say

that C is convexr in Ey,.5%
A criterion is given by

Lemma 2. The closed curve C, defined by (1.3), is convex on Ei, if and only if

the determinants
(1.4) A=det |1, 2 (t), ..o Zan (ti)]| Uo<t, < <ton<ty+2m)
do not all vanish and the non-vanishing ones have the same sign.

Proof. Let us inscribe in € a closed polygon I1 =P, P, ... P, P, corresponding to

the parameter values
(1.5) bg <<ty <o <l <ty+2m.

The conditions are necessary. Assume C' convex on E,,. Let Il span E,;,. But

then, by Lemma 1, the matrix

X=||Lat), ., zn @)l  (E=0,1,..., k)

® Professor W. FENCHEL kindly called to my attention the fundamental paper [7] of HIELMSLEV.
HieLmsLEv ([7], pp. 4, 6, 7, 23, 41) calls the polygon II, of (1.1), monotone. provided the matrix
(1.2) satisfies the conditions of Lemma 1. By Lemma 1 we thus see that II is convex on E if and
only if IT is monotone in the sense of HyELMSLEV. Similarly, in view of our Definition 2 and Lemma 2
we gee that the curve (1.3) is convex on Ejz, if and only if it is monotone in the sense of HIJELMSLEV
((7]), p- 60). We should also point out the connection with the concept of an arc of order m in E,;
due to C. JUEL; see MarRcHAUD [9] and ScHERK [13], also for references. Arcs of order m in E,, are
convex on Ep, but not conversely. A theorem of HseLMsLEvV ([7], p. 62) should be especially quoted,
being closely related to our Lemma 2. Its statement for the closed curve (1.3) in Ey, is as follows:
If no subarc of C is in a Egy_1, then C is of order 2n if and only if all determinants (1.4) are posivive
or all are negative. One may even omit in the statement the assumption concerning the subares of C.
In {15] I have recently said (p. 227) that by this theorem HJELMSLEV has essentially anticipated the
result of GANTMAKHER-KREIN, This view was perhaps exaggerated.

I also owe to W. FENCHEL the following reference: E. EGERVARY, On the smallest convex cover of
a simple arc of space-curve, Publ. math. Debrecen, I (1949), 65-70, in which its author solves the
problem of the present paper for open arcs in E;. As yet unsolved is the problem for the particu-
larly interesting case of closed curves in E; (see [1], footnote on p. 111).
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has all non-vanishing minors of order 2n+1 of the same sign. Given two non-
vanishing determinants A,, A,, of the form (1.4), we may so choose the parameter
values (1.5), that A, and A, are among the minors of X. But then A; A,>0.

The conditions are sufficient. This follows directly by Lemma 1 and Definitions
1 and 2.

Remarks. 1. Our old definition of a closed polygon convex on E,, agrees with
the new definition if applied to the polygon considered as a closed curve.

2. Lemma 2 may be rephrased in geometric terms as follows: The continuous
closed curve P=P(t) in E,, is convex on Es, if and only if it has the following
properties: If Py, P, ..., Py, are 2n-1 points on C, in correct cyclic order corre-
sponding to ‘increasing values of ¢, then the 2n-dimensional simplices [Py, P, ..., Ps,]
should not be all degenerate and the non-degenerate ones should have the same
orientation.

3. It seems natural and useful to classify the curves convex on E,, into posi-
tively convex and negatively convex curves, depending on the common sign of the de-
terminants A, or the common orientation of the simplices [P,, P,, ..., P3a].

4. An adaptation of these definitions and results to open arcs in even or odd-
dimensional spaces seems perfectly straight-forward. As an example we mention that
one full turn (but no longer arc) of a right-handed circular helix in E, is positively
convex on E;.8

5. Lemma 2 applies easily to show that the curve C,, defined by (2), is posi-
tively convex on E:,. Indeed, in this case the determinant (1.4), familiar from the
problem of trigonometric interpolation, may be evaluated explicitly and we find

A==—-T]sin b

>0.
'n‘ P 2

5. Convex curves are rectifiable.” We need the following

Definition 3. The bounded real function f(t), a<t<b, is said to be non-oscillatory
provided there 18 a fixed natural integer N such that for every real c the function f(t)—c

changes sign at most N limes in the range [a, b).

With this definition we have

¢ In this example which can be widely generalized we are especially close to PéLyA’s paper [12].
? The contents of Article 5 where developed in the course of a conversation with Ta. S. MoTzKIN,
Here we are close to MARCcHAUD'’s work [9], Chapitre I.
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Lemma 3. If f(¢) is non-oscillatory in the range [a, b], then f(t) is of bounded

variation, n fact
(1.6) Total variation of f(¢)< N (sup f—inff).

Proof. Let ay=1,<t <---<t,=b and let Py= (4, f (t:)) be the corresponding points
on the graph z={(f). Consider the polygon Py P, ... P; and its orthogonal projection
PyP;... P, into the segment I=[inf f<ax<sup f] of the a-axis. Since Py P,... Py
may cross a horizontal line x=c¢ at most N times we conclude that the k open (or
void) segments Py Pi, Py P;, ..., Py, P; may cover a point of I at most N times.
But then

k-1
2P P <N-m(I)
or "

S |fte) = f )| SN (sup fint ),

whence (1.6) follows on taking the supremum of the left side.

This result clearly implies

Lemma 4. A closed curve C convex in E,, ts necessarily rectifiable.

Indeed, let €' be defined by the equations (1.3), say. Now f(t)=ax;(t) being con-
tinuous is also bounded in the range [0, 27]. However, this function is also non-
oscillatory, with N =2n in Definition 3, because ¢ may cross the hyperplane x =c
at most 2n times. By Lemma 3 all z;(f) are of bounded variation, which proves
Lemma 4.

6. On the volume of polyhedra spanned by convex polygons. Let II be
a closed polygon convex on E;,. We wish to cxpress the volume of the convex
polyhedron K (I1) in terms of volumes of simplices. We restrict our discussion to
the first significant case when n=2. The simplification in notations thus afforded is

considerable, it being obvious at all times how the general case is to be treated.

Lemma 6. Let I1=P, P, ... P, Py be a closed polygon in E, which is convex on E,.
Let K=K (I1) denote its convex hull, V (K) the volume of K. Let O be a point in the
wntertor of K. The volume of K is given by the formula

(1'7) V(K)___ UZOV[O, Pi) PH—lsPI’ Pj+l]y (Pm+1=Po))

1
21
where the summand is the volume of the simplex of vertices O, Py, Py, Pj, Pjyy, it
being zero if the simplex is degenerate.
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Proof. (i) By Lemma 1 we know that the matrix
(1.8) X=H1,xn, Ti2, xi3axi4n, (1=0,1,..., m),

is of rank 5 and that all non-vanishing minors of order 5 are of the same sign.
There is no restriction in assuming these minors to be positive, i.e. the polygon II

to be positively convex on E,. However, we shall assume for the moment that
(1.9) All 5th order minors of X are positive,

showing later how this restriction can be removed.

To abbreviate our notation let
Ty Xz X3 Xy
Xyip Tz Ty Xig
D (x, x;, x;, 2, 7)) = Ty Tz XTyz Xje

Tr1 Tre T3 Trg

bt et et el et

Ty X2 Xz Xy

The assumption (1.9) implics that every four points Py, Py, P, P, (0<i<j<k<l<m)
determine uniquely a 3-flat (i, j, k, I), of equation D (z, z(, 2;, xx, ;) =0, containing
no other point P, since D(x,, 2, 75, y, 1) =0 if v=14, 4, k, 1. We now assert the
following: All 3-dimensional faces of K (I} are precisely in the 3-flats
w(i,e+1,5,7+1), (O<i<it+l<ji<j+l=m),

(1.10)
(0,2, i+ 1, m), (O<i<e-1<m).

Indeed, that these 3-flats contain 3-faces of K (II) is seen as follows: The assump-

tion (1.9) implies the inequalities

D(x,, 2, iy, 75, 1) >0 if v=4, 0+, 5,5+ 1,
(1.11)

D(x,, xy, @i, 241, Tm) <0 if »+0,4,1+1,m,
which show that each of the planes (1.10) leave all the other vertices strictly on
one side. The 3-flats (1.10) are therefore planes of support of K (II). On the other
hand none of the 3-flats through four of the points, other than the 3-flats (1.10),

can possibly be a plane of support of K (II), for such a 3-flat is seen to have some

of the vertices on one of its sides and others on the other side. We conclude?® that

8 From this result and its extension to Ea, it is easy to derive the following: The curve C convex
on Eg, 8 on the boundary of its convex hull K (C). This is closely related to a result of W. GusTIN [5].
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the 3-dimensional faces of K (I1) are the simplices [P;, Py, P;, Ps,1], where the pair
(%, §) runs over the set S of pairs (¢, j) defined by the conditions

0<i<i+l<j<j+1l<m or O<i<i+l<j=m.
We may summarize the situation by the relation

Boundary of K ()= 2 [P;, Pi;y, P;, Py, (Pmsi=DPy).

S

If O is a point interior to K= K (II) we obtain, by central projection from O,
the relation
(1.12) K=§[O, P, Py, P, Pii)

which describes a dissection of K into 4-dimensional simplices. On passing to volumes

we obtain i
V(K):%,V[O, Piy Pi+1’ Pf’ Pi+1]'

Let us observe now that all simplices on the right-hand side of (1.12) are positivery
oriented. Indeed, by (1.11) we see that if (s,7) € § then all determinants D (z,, z:,
Tii1, X, Tya) (=1, -+ 1, 4, 74 1) are positive. But then also D (x, @, @iy, 27, 2741) >0
if the point (z) is in the interior of K, this determinant being a linear combination
with positive coefficients of non-negative determinants some of which must be positive.

On choosing the point O as the origin of the coordinate system we have
"o 1
V(A):% VIO, P, P.1, Py, Pia]= 41 %D(O,Tn Tivts Xy, Xyia).

Finally, the last expression may be written as

m

X 1
(1.13) V(K)= -"— i > det ||z, Tiires Ty 200
i, j=0

since all new terms entering into the double summation will vanish if they have
coincident rows while the duplication of old terms is offset by the new factor 2! in
the denominator., Now (1.13) is precisely the relation (1.7) we wished to establish.

(i) We now wish to remove the assumption (1.9) on which we relied heavily in
our previous discussion. We do this by the following simple device. We need the
matrix

N " Niseo..oms  (O<g<]).

It follows from a theorem of Pdlya® that all minors of this matrix, of all orders,

are positive. Moreover, this matrix clearly converges to the unit matrix as ¢—0.

9 See [11], Problem 76, page 49.
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Dividing the elements of each row by the sum of all elements in that row we obtain
a new matrix which we denote by H,. Returning to the matrix (1.8) we form the
product

X*ZHGX: ” 1y x:l: x:ﬁ‘l: x:%: x;’;“i=0,.... m
and easily infer the following: The new matrix X*, whose elements depend on g,

enjoys the property (1.9) and defines a closed polygon
n*=pypP...P,LPy in E,,

whose vertices are as close to those of Il as we wish, provided ¢ is sufficiently small.
Iet K*=K(II*). By our previous discussion we know that V (K*) may be expressed
by the analogue of (1.13). Also V (K*)—V (K), as ¢—0. By continuity we see that
(1.13) again holds even if the condition (1.9) is disregarded.

7. The volume V (K (()) expressed as an integral. We are now turning to

the main result of this section:

Theorem 1. Let C be a closed curve convex on E,, defined by
(1.14) C: x=z(t), (=1,...,2n; 05t<2n).

We assume the x,(t) to be absolutely continuous in [0, 27], a condition which i3 auto-
matically fulfilled if the parameter t is proportional to the arc-length along C. Then the
volume of the convex hull K (C) may be expressed by the following Lebesgue integral

2n  2=n

& ’ '

(1.15) V(K(0) = @) f---fdet foy (8y), i (8y), oy @i (t), i (La) ]| ¥y ... ditn,
o 0

where ¢ = +1 or —1 depending on whether C 1is positively or negatively convex on Ey,.1°

Proof. Again, to simplify our notation we assume that n=2. Let us assume
that C is positively convex on E,. Divide the range [0, 27] in 2* equal parts by
the points

t,=2nv/2%, (»=0,1, ..., m=2"-1),
and let P, be the corresponding point on C. The inscribed polygon Il =P, P, ... P, P,
being positively convex on E,, provided k is sufficiently large, by (1.13) we have

l m
V(K(n)) = 2_’Z! l%odet ”xw (ti)y X, (tf+l), Zy (tf)y Zy (t/+1)“'

10 We lose no generality by restricting our discussion to curves convex on Egy, for if C is con-
tained in a lower-dimensional flat space, then both sides of (1.15) evidently vanish.
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Subtracting the first and third column of the determinant from those just ahead

we obtain
i1 b1

z, (&), f x, (rnd7y, 2, (1), f x, () d T,

t; t;

m

1
VK@) = 574 3 det
41, &

and finally

tiy1 Yl
f det ||z, (&), 2, (1), 2 (), %, (T,) || d 7y d 7,

fi

m

1
(1.16) V(K (IT))= 274“'1'20
T4t 7

A passage to the limit in this relation, as k— co, presents no difficulties. On
the left side V (K (I1))—V (K (C)). Indeed, the inclusion K (I1)< K (C) implies that

(1.17) V(K ()< V(K (C)).

On the other hand the increasing sequence of sets K (II) converges to a limit which
includes the set K, (C) of interior points of K (C). This remark and (1.17) imply

measure of K, (C) < lim V(K (1)) < V(K ((C))
k—o00
and the equality of the extreme terms implies the desired conclusion.

There remains to show that the sum 8§ on the right-hand side of {1.16) con-

verges to a double integral which we may write as

n te1 by
J= ‘}zo J f det ”xv (71), x, (T1)s 2, (7a), x, (Tz)ll dt,d7,.
T &

In order to show that §—J, we expand each of the two determinants into 4! terms

and find for their difference the expression
2, (1) 2, () [, (b) 2,,(t) — =,,(1;) ,, (75)].

Given £>0, the equi-uniform continuity of all products =z, () 2, (r,) shows that all

square brackets will be in absolute value less than g, each within its respective cell
thTIStH,l, t,S'rzSt,H,

provided that k is sufficiently large. But then

2n 2n

|S—J|<2¢ S ff|x;,(rl)|-|:c;.(t2)|drldtz=A-e.
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This concludes a proof of Theorem 1 for n=2. The alterations necessary to deal

with the general case of E;, are deemed to be obvious in every respect.

8. A proof that Theorem II implies the isoperimetric inequality of Theo-
rem I. Let the curve (, defined by (1), be positively convex on E;,. Let us assume,
moreover, that the parameter t=2ms/L, where s is the arc length along C. For
these functions z;(t) we have the inequality (4) of Theorem II which we take for
granted for the moment. Both sides of (4) have a geometric meaning which we wish
to derive. By (1.15), the right-hand side of (4) is equal to

n"n! (2n)! V(K (C)).

2n ds 2 L2
2 __ (%9 _
2.3 (d t) 47°

1

Since

holds almost everywhere, the left-hand side of (4) equals

2n

M 2 n
(J ]in dt) ~@n) " L™,
o

Thus (4) reduces to the isoperimetric inequality (3) with equality only if C is

similar to Cy.

§ 2. Further properties of V(K (C)) and reformulation of Theorem II in terms

of Fourier series

9. An expression for V(K (C)) in terms of areas of 2-dimensional projec-
tions of C. Assuming the curve C to be positively convex on E;,, we have found
the expression

1
@1 VEO)=

27 2n
jf det || (1), 2 (1) s 20 ), 2, ()| Ay - dbo.

v 9

We now expand the determinant, by a repeated application of Laplace’s rule, by
second-order minors formed from the pairs of columns (1,2), (3,4), ..., (2n—1,2n),
obtaining a sum

Ty, (n) x,',n(t,,)

z,, (tn) x;n (ta)

T, (t2) x,’,, (t2)

xv, (tz) x;. (tz)

Ty, (4) x;,l (t)

z,, (¢,) x,’., (t)

which after integration becomes

(2.2) 2" S + A (g, ) A (g, vg) e A (thns ¥a),
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where A (i,j) represents the area of the projection of C on the plane a,0x;, while
(2.3) M1 Vis Uas Vas «oos Uny Vn

is an arrangement of the set of numbers 1, 2, ..., 27 into pairs such that g <w. It
is clear that those arrangements (2.3) which differ only in the order of their pairs
will contribute identical terms to the sum (2.2), there being n! such. Thus (2.2} re-

duces to
(24) 2"”'2 iA(lul,’Vl) ces A(,um 'Vn)

where we sum only over such arrangements (2.3) in which the n pairs are arranged
lexicographically: g, <pus< -+ <pn. The sign of each term of (2.4) is (—1)", where I
is the number of inversions in the permutation

(1 2..2n-1 Zn)

ﬂl 1’1 ee /,tn VYn
The number of terms in (2.4) is obtained by first counting pairs indiscriminately and
then dividing by n!, to throw out their order. We thus find in (2.4)

) ()3 - B2 v

terms. On replacing the integral in (2.1) by its equivalent expression (2.4) we obtain

the following

Theorem 2. If the closed curve C is positively convex on E,, then
n

2
(2.5) V(K ()= @) 2 (=" A (uy, %) A (pt2s %) - A (ptn, ¥n),

where A (i,]) denotes the area of the projection of C on the plane x,0x;, while the
summation runs over all 1-3-5...(2n—1) permutations p,, vy, ttg, Vg, -+, fns Yn, Of
the numbers 1,2, ..., 2n, such that pu<v and p,<us< '+ <pn. Finally the exponent I

s the number of inversions in the corresponding permutation.

Examples. 1. For n=2, (2.5) becomes
VIKC)=3{4(1,2)A3,4)—A(1,3)4(2,4)+A4(1,4) A(2,3)}.
2. Let us evaluate V(K (C,)) for the curve C, defined by the equations (2) of

our Introduction. For this case we find on inspection that

2n
A, v)= [z, ) 2, () dE=0, (u<v),
0
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unless p is odd and »=p+1, when

A(l,2)=n,A(3,4)=g, ...,A(2n—1,2n):g-
The sum (2.5) reduces now to one term only
2" 2" 7"
-2 41,2 - L
V(K (Cp)) (2n)!A( ,2)4(3,4)...42n—1,29) ! 2]

Also the length of C, is easily found from (2):
2n
L= fl/):x,’zdtznﬂ.
H

These values are seen to verify the isoperimetric relation (3) with the equality sign

holding.

10. Reformulation of Theorem II in terms of Fourier series. We return

to Theorem II of the Introduction and expand z;(f) in its Fourier series

d cos vt sin vt
(2.6) I O

vel

where we assume the constant term to vanish without loss of generality. But then
' hed
(2.7) x ()~ 2 (—ai, sinvt+ by, cos vt),
vl

and Parseval’s relation gives

2n

Jx{z dt=n 3 (af, +b},),
F v=l
whence
Zn 2n 2n oo
(2.8) [ Eat)ar-ny 5 @trsn,
1 f=1 vl
b

We also wish to express the right-hand side of (4) in terms of the Fourier
coefficients a;,, b;,. This can be done in two ways leading to formally different but

necessarily equivalent expressions.

A. We wish to show that the integral

2n 2n
(2.9) J= ff det ||z (¢,), 21 (&), «--s T (tn), @1 (ta) || Aty ... dibn
[ 0



AN ISOPERIMETRIC INEQUALITY FOR CLOSED CURVES 157

may be expressed as
1

(2.10) J:(Q.n)"n' ﬁ_—-—D(jli 7‘2! ey jn),
Jy< i <dp 7172 oo In
where
(2.11) D (jy, Jys -ees Gn) = det |[ayy,, bij,s @iy, bigys oony aigy, b ||

Formally, there is no difficulty whatsoever. Indeed, if we introduce the expansions
(2.6) and (2.7) into (2.9), writing the determinant as a sum of determinants obtained
from the individual terms of the Fourier series, on using the orthogonality properties
of the trigonometric system we find the expansion (2.10). A proof of the validity
of (2.10), which includes a proof of the absolute convergence of the n-fold series
(2.10), follows from the following remark: The integral J is essentially the constant
term of the n-fold Fourier expansion of the determinant under the integral sign.
As we operate throughout within the class L,, we will actually obtain that constant
term by introducing formally the Fourier expansion of each element and gathering
all terms which contribute to it. This, however, is precisely what was done above.

In terms of the quantities .S and @, defined by (7) and (8), and using (2.8)
and (2.10), the inequality (4) becomes

A" 8*"=2nan)" n! @,
which is equivalent to (9). The equivalence of the Theorems II and III is now
apparent if we refer to the Riesz-Fischer theorem.

B. An alternative expression for J, or equivalently for
p— 1 S
C@2a) el

may now be derived by observing the following: In Theorem 2 we have expressed
V(K (C)) in terms of the A(4,j) by the formula (2.5). It is clear that this result
amounts to a similar expression for the integral J without any reference to curves

convex on E;,. In fact, by (2.1) and (2.5) we find
J=2"n! > (—1)" A (g, %) - A (n, ¥n),

while Parseval’s relation gives

2n

. ’ 21
A(’l/,})= fx; Z/ dt=7lkzl 70 (a,k b,k—a,k b”‘).

0

Introducing now the new expressions
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o0

.. 1
(212) (’l,, 7)2 Z I;) (Ilik bjlc—al'k bik);
k=1

we find, on combining the last four relations, the desired expression

(2.13) D=3 (= 1) (p11, %) (ft2, ¥3) -+ (pims ¥2),

which will be found useful in the next section.

3. A proof of Theorem III
P

11. A first special case of Theorem III. Let us first establish the following

Lemma 6. Let
(3.1) D = det || ;|

be a real determinant of order m. Then
m J\m
(3.2) (>: cf,-) =m" DY,
1, 7=1
with the equality sign if and only if the elements of D are proportional to the elements
of an orthogonal matriz.

Proof. By Hadamard’s inequality!! we have

(3.3) D*< (12 c},) (; ciﬁ;) (,:/_30%) ‘

By the inequality between the arithmetic and geometric mean we have

. ; - . l . m
(3.4) (z cf,) (2 cfm) > c%,) :
i i m

Notice that (3.3) and (3.4) imply (3.2). Moreover, equality in (3.2) implies the equality
signs in both (3.3) and (3.4). Equality in (3.3) shows that the rows of D are ortho-

gonal to each other and the equality in (3.4) requires that
;C‘f}=>_;0§j:'“=;<l‘fn1,

which concludes a proof of Lemma 6.
The special case of Theorem III which we have in mind is the case when all
columns of the matrix M vanish except the first 2 columns. The inequality (9)

reduces then to

11 See [6].
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2n n

(3.5) > 5 (ak, + b)) n2(2n)"D(1,2, ey ).

i=] p=1

However, this inequality is implied by (3.2) for m=2n and ||¢;|| = M. Moreover, the
equality sign in (3.5) does not only imply, by Lemma 6, that the elements of M are
proportional to those of an orthogonal matrix, but even that they are positively pro-

portional to a right-orthogonal matrix. This establishes Theorem III in this special case.

12. An algebraic lemma. Let

(3.6) X= ||sz||z,j-1, ew2n

be a real skew-symmetric matrix, which means that X'= — 2. We first establish the

following identity in x:

-zl Z -
(3.7) l I A
where P, (z) is a real polynomial of degree n.
Proof. By matrix maultiplication we find
I o -zl X -zl X
’E' xl ’ X -zl :H 0 YX¥-2I

and passing to determinants we have

|- X ,
" = (—ay"| X E-2%1],
-zl
whence the identity in z
—xI Z .
(3.8) = | e -2
2 -zl

The right-hand side of this identity may now be factored. Indeed, by the skew-
symmetry of £ we have

E -2z (E-2)=2Z—2(Z+Z)V+2I=X2" +a%1,
whence
(3.9) | E+22T|=|Z -1

On the other hand
o(x)=|E—-=xl]

11 —533807. Acta mathematica. 91. Imprimé le 27 octobre 1954,



160 1. J. SCHOENBERG

is an even polynomial in z, because

d(—2)=|Z+al|=|-Z—zI|=|Z ~zI|=|Z~zI|=¢ ().
Thus
|Z—~2I|=P,(—2%,

and by (3.9) we have

| E+ 22T = (Pa(—2%)
Replacing 2> by —a® we now obtain, via (3.8), the identity (3.7) which we wished
to establish.

We may now state our
Lemma 7. If X is a real skew-symmetric matrix of order 2n, then the symmetric

0
> ol

malrix

(3.10) Q=

of order 4n, has at most n distinct and positive characteristic values.

Indeed, the identity (3.7) gives precise information on the characteristic values
of the matrix (3.10). It shows that they are all of multiplicity 2 and in pairs sym-

metric with respect to the origin, from which the conclusion of Lemma 7 follows.

13. A second special case of Theorem III: The matrix M has only a

finite number of non-zero columns. We assume throughout this Article 13 that
a,,——-bu=0, (i=l,...,2n; j=m+l,m+2,...),

where m is a fixed number >n. Let us normalize the problem by requiring that

m 2n
(3.11) S=32 3 (af, + b},) = 2n.
=1 {=1
We are to show, then, that
1
(3.12) ¢

with equality only under conditions as stated in Theorem III. This will be shown
by maximizing the function @ =@ (a,, b;,) subject to the relation (3.11), a procedure
which requires the first partial derivatives of the function @. These derivatives are
obtained as follows:

Let us denote by ai;(i<j) the sum of those terms of the expression (2.13) which
contain (i,j) as one of their n factors, with that factor (u,, vs)=(i,]) removed. Let i
be fixed (=1, ...,2n). On replacing the removed factors, (2.13) may now be written as
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i-1 2n

(3.13) D=3 (j,%) ot 2 (i, 9) o

i=1 =i+l

Indeed, this way of writing @ represents a classification of the original terms of the
sum (2.13) where all terms having (j,¢) as a factor (j<i) form the class (j, ¢) 0;4,
and all terms having (¢,7) as a factor (¢<j) form the class (¢, 7)0;;. Thus in the
case when n=2

D=(1,2)(3,4)—(1,3) (2,4)+ (1, 4) (2, 3);

if i=3, the classification (3.13) amounts to writing

D=(1,3) 0,31 (2,3) 0y3+ (3, 4) 03,
where
o= —(2,4), 0;3=(1,4), 05,=(1,2).
We may also write (3.13) as
2

i .
(v, 9) 015.
F=i+1

$-1
‘15:2:1 (&) (—o5) +

If we extend the meaning of the symbol ¢;; by agreeing that it be skew-symmetric

in its subscripts, we may write the last relation as

(3.14) (15=121'>:T:(i,7')og;, (t=1,...,2n).

However,

(3.15) (¢, )= k%I Ilc (@ir bk -~ aje bi),

and ¢; is independent (for all j) of the variables au, by (k=1, ..., m), by its con-

struction. From the last two relations we obtain the partial derivatives

ap i 1 o LS|
— = = by, - =— 5 .
6a,k 121 i k i* ab,k jgl 011 ’C ik

Let us now assume that the elements of the matrix M are such as to make @
assume its absolutely maximal value subject to the condition (3.11), or 8" =(2n)".
The Lagrange multiplier rule assures us of the existence of two constants u and 4,

not both vanishing, such that all first partial derivatives of the function
G=u®—Ai8"

vanish.l? We therefore have the 4 nm equations

12 See CARATHEODORY’s book [3] for the formulation of the multiplier rule in the form
needed here.
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Icﬂ =u0;b—2nik8"  ay =0,
6am j
(3.16)
Icéﬁ = u20ia—2n2kS by =0,
ab,k j

(=1, ...,20; k=1, ..., m).

If we multiply these equations by ai/k and b,k/k, respectively, and add them all
together, we obtain, in view of (3.15) and (3.14):

0=u>0;0)-2nA8" =2nud®—-2018"
i
or

(3.17) u®=18"

However, the maximal value @ is clearly positive (because m >n) and so is §=2n.
We conclude that both constants g, 4 are non-vanishing and we may therefore assume
that u=1 and hence that 1 is positive.

The equations (3.16), with x =1, may be interpreted as follows: In terms of the

matrices
(3.18 Y=ol o 0 =
B = || O 20 = ’
) 17l 2 ¥ 0
and the column vectors
(319) vk=(alk7---)a2n,k)blky'--;b‘.!n,k)a (k:l,...,m),

the 4nm equations (3.16) may be written as m matrix relations
(3.20) Que=C2n) " kdv., (k=1,...,m).

We have therefore reached the following conclusion: If the elements of M maxi-
mize @ subject to the condition (3.11), then there exists a positive constant A satisfying
the relations (3.20).

These relations show that if v, =0, then (2»)" k1 is a characteristic value of the
matrix 2. By Lemma 7 we know that {2 can have at most »n distinct positive
characteristic values. We conclude that at most » among the vectors (3.19) are non.
vanishing. Let these be among the n vectors v, ..., v, (1<j§<--<j.<m). But

then, the expansion (8) reduces to a single term:

<D=.1

—D {5y, ..., 7n)-
T (0 7n)

Since @ >0, we conclude that none of the vectors v, ..., v, vanishes,
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Now the solution of our problem is clear: 1. If j, =1, ..., j,=n, then our pro-
blem has already been solved (Article 11). 2. If j, >#=, then by the inequality (3.5)
applied to D(j,, ..., j.) we find

n! i

W D= =Dy, eens fn) <D Gy, ey fn) < - =
e T 7 71 Jn) @n)

1

whence @< 1/n!, in contradiction to the fact that the maximal value of @ should
be at least 1/n!, by the result in the special case discussed in Article 11. This
completes a proof of Theorem IIT for a “finite” matrix M, or if we wish, a proof

of Theorem II for the case when the z;(t) are trigonometric polynomials.

14. Completing a proof of Theorem III. Let us now drop the assumption

of a finite matrix M. Let again
(3.21) S=2n

hold and let us show that
(3.22) S"=2n)"n! @
always holds, with the equality sign only as stated in Theorem III.

1. We can never have the reverse inequality
S"<(2n)"n! P.

Indeed, if this inequality were correct, let us truncate the matrix M by replacing
all columns beyond the 2mth one by zero columns. For m sufficiently large, the

reverse inequality would still hold, in contradiction with the finite case already settled.

2. We can have the equality sign in (3.22) only in the case described by Theorem II1.

Indeed, let us assume that
S*=(2n)"n! .

We may clearly assume M to have infinitely many non-zero columns. We now pro-
ceed as follows: Let m be a fixed number >2#n and let us “unfreeze” the first 2m
columns of the matrix M in such a way that (3.21) is preserved. To these 4 mn
variables we apply the multiplier rule as above, there being no difference from the
previous case except that the finite sums (3.15) now become infinite series. Everything
is the same as in Article 13, with the exception of the relation (3.17) which now

becomes
u®@n=2128""18n,

where
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m

2n 1
Dn= 2 01 2> 7 (@b — ay bix),

i, j=1 k=1 k

m 2n

Sp=S 3 (ak + b).

k=1i=1

However, since @,—® and §,—8, as m—> oo, it is clear that on choosing m suffi-
ciently large, we have @, >0, 8,,>0, hence again p =1, A>0. But then we find, as
before, that at most n among the vectors (3.19) may be non-zero. For sufficiently
large m, this conclusion contradicts our assumption that M has infinitely many non-

zero columns.
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