ON THE EXCEPTIONAL GROUP OF A WEIERSTRASS
CURVE IN AN ALGEBRAIC FIELD

BY

GOSTA BERGMAN

1. Let 4 and B be two numbers satisfying

(1) 4A4%-27B%=+0.
Then
(2) V=2~ Az B

is a curve of genus 1, and its coordinates can be represented by

[a::X.) (u; 4 4, 4 B);

(3)
[y=‘}g)’(u; 44, 4B).

If , o' is a primitive pair of periods of the p-function, the number « is determined
mod w, @" by the point (z, y), which will be called the point u. If v is a rational
integer, and if

ruzx0 (mod w, w'),

the coordinates of the point vu will generally be denoted by (z,, %,). Three points

uy, Uy, U lie on a straight line, if
U, +Fuy,+u;=0 (mod w, o),

and conversely. If the number u is commensurable with a period, and if g is the
smallest natural number that makes qu a period, then u is called an exceptional point
of order q (see Nagell [7]). Since there are two independent periods, there exist ¢*
exceptional points, whose orders divide ¢. The point of order 1 is the infinite point
of inflexion, and the points of order 2 are given by y=0.

If A and B belong to a field £, a point on (2) is said to be a point in Q,

if its coordinates belong to this field. If u, and wu, are exceptional points in Q, the
8 — 533807 Acta Mathematica. 91. Imprimé le 10 juin 1954.
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same is true of u;+wu,, and in this way the exceptional points in § form an abelian
group, the exceptiondl group tn £ on the curve (2) (see Chatelet [5]). If Q is an
algebraic field, the following result is known (see Cassels (4] and Bergman [1]):
Theorem 1. Let  be an algebraic field, let 4 and B be integers in Q which
satisfy (1), and let w be an excepltional point of order g>1 in § on the curve (2). Then
the coordinates (x, y) of this point are integers in K, if q 18 not a power of an odd

prime, and if q 1s a power of the odd prime p, then px is an integer in K.

It follows from a theorem due to Weil [9] that the exceptional group in an
algebraic field is finite, but Weil’'s proof does not make it possible to find the points
of the group, if , 4 and B are given. In the case =K (1) this problem has been
solved by Nagell ([7], p. 8-15), who has proved the following theorem:

Theorem 2. Let A and B be integers in K (1), which satisfy (1), and let (x, )
be an exceptional point tn K (1) on the curve (2), whose order is >2. Then x and y

are integers, and y* divides 4 A*— 27 B2

By a similar theorem the exceptional points can be found, if § is an imaginary
quadratic field (see Billing [3], p. 120, Nagell [8], p. 12, Cassels [4], and Bergman [1]).
Chitelet has tried to solve the general problem {see {3], [6]), but he has not published
his results.

In this paper we shall find a limit of the order of an exceptional point in
on a given curve (2), if & is a given algebraic field, and at the same time we shall
give an independent proof of this special case of Weil's theorem. If the order of
an exceptional point cannot exceed an assigned limit M, there cannot be more than
M? exceptional points in €, and hence they can be determined {(see Nagell (8], p.
9-11). A limit of the order of a point is given by theorem 6 and theorem 12.

2. If » is a rational integer, we define

g(vu)
)= 2, = 0);
Py (u) (o @] (o (#)=0)
then p_,(u)= —, (¥), and it is known that

_ P2 (U) YPua (u)

(4) TP () —p ()= = T

if » and A are rational integers +=0. If x, 4 and u are rational integers +0, we have

[p (xu) —p Auw)]+[p (Au) — p (uu)] +[p (uu) —p (xu)] =0,
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and consequently
(5) Yot a (4) Pu—2(u) Wﬁ () +yaap () Ya—u () 1,02 (%) + Put () Pru—n (u) 93 (u) = 0;
here x, 1, p may be supposed to be any rational integers. If we choose
Ix=v+1; [%=v+l;
A=yv—1; or A=y
l =1 l u=1
we find (the letter u is omitted):

©) [verpz=1, [wu+'2 Pr—1— Yo yri1l;
\¥2vt1 = or2 ¥ — oot Wit1.
We may also take

[x=v— 1; [x=v;

| A=»+1 or 1Z=v+l
in (4) and find
[ Yoo Ya=Pr-1 Yir1 (Be1 — Zos1);

()
l Y2o+1 :wf wfﬂ (@ — 2y 11).

Now it is known that

=1 v = —2y;
y3=32'—6A42"—12Bx— A%

Ya= -2y (22°—10A42"-40B2*—104*2* —8 A Bz + 2 4> - 16 BY),

115

1
and it follows from the formulas (6) that w.,1; and — ., are polynomials in x, 4
Y2

and B with rational integral coefficients. It is also known (see for instance Berg-

man [2], p. 493-494) that

Yo vu) oy,
(8) - ’ - 3"
o P (W) Yo Yo
A line
y=0z+e

cuts the curve (2) in three points u,, u,, 3, and it is seen that

o= P (1) + p (ug) + g (ug).
8*% — 533807.



116 GOSTA BERGMAN

If v is a natural number =2, and if neither (v =1)u nor v« is a period, the three

finite points u, (v —1)u, —vu lie on a straight line, and we have

, +
xv:ile’ _6= y._,_y]:
x, — X,
and consequently
y+ 9\
© (B28) -z 4ot
2, — 2,

If y=2, and if 2u is not a period, we also have

3x2— A4
10 0=
and hence
2_A 2.
11) (3“’2‘y ) =22, +1,.
1

By (10) we may write

[A=3a%—26y,;
1B=xf—Axl—yf= —223+ 2682y, — vt

and it follows that
(12) 44— 27 B =y} [36 2% (2, — 1)) + 1088 2, y, — 328° y, — 27 4],

if y,40 and if é is defined by (10).
If p is a prime ideal in an algebraic field £, and if « is a number +0 in Q,

it will be convenient to write

(13) p/ja,
f
_Pa
[« 5 ’

where a and b are integral ideals in £ and pfab. Here v may be any rational
integer, but if »=0, « is said to be an integer mod p.

If p is a divisor of 2, and if 4 and B are integers mod p, it follows from
theorem 1 that the coordinates of a finite exceptional point in £ on the curve (2)

are integers mod P.

3. Let 2 be an algebraic field, let p be a prime ideal in &, let 4 and B be
integers mod p in £ which satisfy (1), and let » be a finite point in § on (2),
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whose coordinates are integers mod p. Then the numbers y, (u) (»=0, £1, £2,..))

are integers mod ), and we suppose

(14) Yo 3 a0, P37/ s, P27/ [yps, P17/ [y,

where r is a rational integer =0. Then it follows from the formulas (6) that
(15) po=DT Sy i v+,
and we shall examine the conditions for

POV o

The result will be found in theorem 3, but the following lemmas are needed:

Lemma 1. If v and t are natural numbers, and if yp +0, then
p@e—l)z?r/_‘/’_ﬂ.
W
Yar

S s L (wese yio1— e 2 Pis1]
Ve Y ) '

Proof. By (6)

and then it follows from (15) that the lemma is true for v=2. Now let y be a

natural number and choose

[x=yt+l; x=(y+1)t
A=yt—1, ov JA=y
\,u= 1 p=1
in (5). We find
1 v,
?’;7? ~ %[V)yt+2 Poi—1— Pyt-2 Pyer1l;
2 2
Pey+1e Yyt Yy r1)
# = Yo+t Yiy+1xe-1 (it_) —Yyt+1 Pye-1 (—y‘y:t“—t) ‘
Here we take y=1,2, 3,..., and the lemma follows by induction.
Lemma 2. If

p(s“—l)r+l/% and p(tz—l)r+1/¢t’

where 0 <s<t, we have t—s=3.
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Proof. First suppose {=s+1. Then we choose

x=8—1,
A=2
u=1

in (5) and find
Y1 Ps-3+ Y3 Pi-1— P YPs-2 i =0.
It follows that
p(s*—2s)r+1/%_l,

but then s may be replaced by s—1 and so on, and this is impossible, since

pBTHL Ly,
Next suppose ¢=s+2. Then we take

lx=s;
A=2;

1/t=1

Vs+oPs—2+ Pa Wi — Yer1 Ps—1 Y3 =0.

in (5) and find

It follows that
p(x’i‘lx)r\t l/wﬂi”

but this is impossible, according to the first part of the proof.

Consequently ¢t —s>3, and the lemma is proved.

Lemma 3. Suppose
PO, v=1,2,8, ..., 5= 1; pEDTEL/y,

where s ts a natural number =5. Then
p(t’—l)r+l/wh

if and only if t is divisible by s.
Proof. If y,=0, we have ,,=0 (»=1,2,3,...), and if y,+0, %}"—8 is divisible

by p®*-D#r by lemma 1. This proves the first part of the lemma.

To prove the second part we suppose

p@E-Dr+1 [, where vs<t=vs+y<(v+1)s.
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By lemma 2 y =3, and we may suppose

PEDfyy h=ys+1, vs+2, ..., vs+y—1.
If y is even (y=2p), we take

x=vs+f—1;
A=p+1;

pu=p-1
in (5) and find

Yeyrs—2 Y1+ Yy YaWerp1— Y2¥Pus Pir1=0,

but this is impossible, since 0<y<s and vs<wys+f—1<L
If yis odd (y=28-+1), we take

x=vs+f;
A=pg+1
p=p

in (5) and find

YeWos—1 Wb+ Wy Yrsin— Yot Yos Wi =0,
and this is impossible, since 0<y<s and vs<vs+g<t.
Consequently ¢ must be divisible by s, and the lemma is proved.

Lemma 4. There exists a number s=5 satisfying

;,(yl—l)f//wv’ 'V=l) 21 AR} S_l’ p(?!?‘“])rﬁ 1/1/’8’

and if N is the norm of b, we have

s<2N+1.

Proof. Let ¢ be a number =5, and suppose

POy, v=1,2,...,t— 1.
Then it follows from (4) that

p2r//z’¢ —

if 0<A<x and x+A<t Hence the numbers

0, xz,—x, T3—xy, ..., Tye-1)—x; (¢t odd)
or

0, 2,—2, T3— %, -.., Tyt — 2%, (¢ even)

119
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are divisible by P2” but incongruent mod p2’+1, and consequently
t<2N-+1.

If ¢t is taken as large as possible, we have

p(t’—l)i+l/wt’

and the lemma is proved.

If the lemmas 3 and 4 are combined, we get the following theorem:

Theorem 3. Let 2 be an algebraic field, let p be a prime ideal in S with the
norm N, let A and B be integers mod P in & which satisfy (1), and let u be a finite
roint in S on (2), whose coordinates are integers mod ). Finally let r be a rational

tnteger and suppose

L S U U UL Ul (TSR Ul L
Then

p(.ﬁ_l)r/w” ” 0,
and there exists a number 825 satisfying
PO =07y if v is not divisible by s,

pe =T+l Sy i v is divisible by s;
82N +1.

4. In the following sections ) is supposed to be a divisor of 2, and a natural

number m is defined by

{16} pmli2.

Since the curves (2) and

y=1r"—Ao*z— Bo®

are equivalent, if o is a number +0 in §, we shall also suppose that 4 and B are
integers mod ) and that 4% and B? are not both divisible by p'2.

The following theorem will often be used:
Theorem 4. Let u be an exceptional point in S of order g>4, and suppose
Yllys Y[1Yss
where ¢ s a rational integer =0. Define a number n by

n=m-+e¢,
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where m is defined by (16). Then p™/jp, and P*™/jy,, and we have one of the following cases:
1. 87/jy3. Then theorem 3 may be applied.
2. p37fyl. Then 4/q, and if the numbers k and d are defined by

ok s, 8n=3k+d,

we have
pro*=Dk/fw 4f y= 11 (mod 4);
a7) PHEDE  if y=2 (mod 4);
pHOP-DE+5A) [ it =0 (mod 4).

3. p37+l/ud. Then 3/q, and if the numbers k and d are defined by

PE/jys; 83k=8n+d,
we have

8 pYeDnjjy,, if 31,
(18) pHOS=Dntdl fy, it 3/,
Proof. Since y,= —2y,, we have P*//y,, and if we take v=2 in (8), it follows
that p°7//y,. The formulas (17) and (18) may be proved by induction, if (6) is used.

In the second case it follows from (17) that ¢ is divisible by 4, and in the third
case it follows from (18) that ¢ is divisible by 3.

5. In this section we shall suppose
(19) p/A, it ym/B,

where m is defined by (16). In this case a limit of the order of an exceptional point

in § is found in the following way:

Theorem 5. Let A and B satisfy (19), let w be an exceptional point in Q of order
qg>2, and define a rational integer ¢20 by

pcl///yl'
Then ¢ depends on Q, p, A and B only. The number ¢ also satisfies the inequality
2¢=m+3,

except if p*/[A and p™+3/|B, but in this case the only possible value of q is 4.

Proof. We have the following cases:

1. p#4; pb//B, b<m. Since the coordinates of an exceptional point are integers

mod p, (11) gives p™/3af—A, but then p™/a}— Az, and p?//z}— A2, — B. Hence
2¢=b, and b depends on £, p and B only.
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2. ptd4; ym*t1/B. As in case 1, p"/3af— A4, but then p/y,, and now (11) shows
that p”+1/323— 4. Tt follows that 7z, and p™/jaf— A, and hence h//xi— A=z, — B
and 2c=m.

3. p//A. Since p/3x; — A, we have p/x;. But then p//32i — 4, and since 2z, +x,
is an integer mod P, (11) shows that ¢=0.

4. pYJ/A; p#B. As in case 3, p"/3x}— 4 and p/x;. Consequently pfa} — Az — B
and ¢=0.

5. P*//4; p/B. Since )/xz,, we have ¢>0. If g=+4, we replace » by 2u in (11)
and find p/x,. But 2x,+z, is a square, and consequently p?/2z,+x, and p*/x,.
Then p*//323— A, and since D/y,, we have m=1 and p72x,+x, But this is im-
possible, since if ¢=+8, we may replace u by 4% in (11) and find p/z,, and if ¢=38,
we have

xi—Ax,—B=0

and consequently p/z,. It follows that ¢=4 and
(20) i~ Ax,— B=0.

Consequently p/x,, and since 2z, +=x, is a square, we have p*/z,. Then it follows
from (11) that /32— A, and hence p//z,. Now (20) shows that p*/B, and if B+0,
we define b by p*//B. Then p*~%//z, by (20).

51, b<m+3. Then P22z, +x,, and (9) gives (v=-2)

Y1 2
p et g
@) (952‘5'71) R

Consequently 2c¢=b.

5.2. b=m-+3. Define d by p¥/j4 A*-27B%. 1f 2c¢<2m+3, (12) shows that
4c=d, and if 2¢>2m+3, (12) gives 2¢+2m+3=d. Hence 4c=d, if d<4m+6,
and 2¢=d—-2m—-3, if d>4m+6 (d=4m+6 is impossible).

53. b>m+3. Then p™t!/j2x +x, and (21) gives 2¢=m+3.

54. B=0. Since p*/x,, we cannot have
22— A=0;

consequently x,=0, and (21) gives 2c=m+ 3.

6. p°/4; ptB. Since p/z,, we have c=0.

7. p*/A4; PY//B, where 1<b=<4. As in case 5, p/x,. But since p/z, and p/B,
we have ¢>0, and then (11) shows that p?/z;. Consequently p°//a}— Az, — B and
2¢=0b.
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8. v3//4; v3/B. As in case 7, b/x, and p*/z;. But then p?/y,, and since
p¥//3ai — A, we find P72z, 4, and this is impossible.

9. p*/4; v3//B. As in case 7, P*/z;, but then p’//yi, and this is impossible.

It follows from theorem & that if 4 and B satisfy (19), and if « is an exceptional
point of order ¢>4, one of the three cases of theorem 4 can be applied to the point

u. We shall prove three lemmas which correspond to these cases:

Lemma 5. Let A and B satisfy (19), let N be the norm of b, let u be an ex-
ceptional point in S of order q=>4, and suppose that the first case of theorem 4 applies
to the point u. Then.

q=2"t=2@N+1)V2(m+1),

where t 18 an odd number Z2N +1 and
2< max (2N, V2 (m+1)).

Proof. We may use theorem 3. Since y,=0, the number s defined in this theorem
is a divisor of ¢, and we have

5<sZ2N+1.

Now suppose s< ¢ and define ¢ by P7//y;. Then s is an odd number, since other-
wise p°H1/yy, by (8), and this is impossible according to theorem 5.

Suppose pC*~Dr+diiy where d>0. If y,+0, it follows from theorem 5 that
p//ys, and hence, by (8), pH¥*=Dridd/jy,, If ys, + 0, we have P//yss, and (8) gives
passE=Dr+16d)jy o If ye,+0 (¥ 20), it is shown by induction that

v+l e v+l g,
p(ﬁl Fle—1)rert 4y

prtly?

but according to theorem 3 we have

(a1 g24ov 424,

p //'/’2v+1,i1’
and hence

2{r—4vt1g)// —
(22) P /,xsza z,.
Now Z,i1,” % is an integer mod P, and since ¢g>4, we have

8

2cEm+3
by theorem 5 and consequently

2r=m+1.
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But then (22) shows that
(23) 4122 (m+1).

q

It follows from (23) that S cannot contain an odd prime factor, and we may write

g=2%s.
If 1z2, we may take y=4—2 in (23) and find
22<V2(m+1),

and the lemma is proved.

Lemma 6. Let A and B satisfy (19), let u be an exceptional point in S of order

g>4, and suppose that the second case of theorem 4 applies to the point u. Then
qg=2"<4V3 m+1).
Proof. The formulas (17) may be used, and if 4/», we define
(24) S, =3[(*=1)k+5d];

then
S:,—48, -1 Bk+d)=—2d,

and we have p%//y,. We define ¢ by p//y,. If y,+=0, it follows from theorem 5 that
P//ys, and then (8) shows that pSet24/jy.. If y, =0, we have p°/jys and pSet10d/jy
If y,+0, it is shown by induction that

Syp1td (=11
p ,/w2v+l)

but then it follows from (17) that

1

= Brtd—1rtlyg
plz

)
[[Tgwr1— 2y,
and since z, 41—, is an integer mod p, we must have

411d<3k+d.
But
3k+d=8n=8m+8c=8m+4(m+3)=12(m+1),

and consequently

(25) £<3(m+1).
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It follows that ¢ is a power of 2, and if ¢=2%, we may take v=21—2 in (25)
and find
2<4V3(m+1).

Lemma 7. Let A and B satisfy (19), let u be an exceptional point in 2 of order
g >4, and suppose that the third case of theorem 4 applies to the point w. Then

g=3.22<3V6(m+1).
Proof. The formulas (18) may be used, and if 3/», we define
(26) T,=3[(*— 1) n+d];
then

T2,,—4T,.—n= ‘d,

and we have pTs//y;. Define ¢ by p°//y;. If y3+0, it follows from theorem 5 that
p//ys, and then (8) shows that pTs+¢//ye. If ys=+0, we have p°//y, and hence pTut54//y, ..
If y,00 +0 (¥20), it is shown by induction that

Typt1t (@ —1)d
p { Pov+1s

but then it follows from (18) that
PO D g 1 = 24,
and since Z,,11—; is an integer mod P, we must have

4Hld<n.
But *
2n=2m+2c=3(m+1),

and consequently
(27) 4*2<6 (m+1).

According to theorem 4, ¢ is divisible by 3, but it follows from (27) that }¢
is a power of 2, and if ¢=3.2%, where 122, we may take y=2-—2 in (27) and find

2t< V6 (m+1).

If the lemmas 5, 6 and 7 are combined, we get the following result:

Theorem 6. Let Q be an algebraic field, and let p be a prime ideal in K, which
divides 2. Let A and B be integers mod P in S which satisfy (1), and suppose
8+~ 533807.
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b72;
if p*/ A, then p*#B;
if b™//B, then p[A.
Finally let N be the norm of p, and suppose that there is an exceptional point of order

g in S2 on the curve (2). Put
q=2}~ ¢

where 120 and t is an odd number =1. Then
t<2N+1;
2'< max 2N, 4V3(m+1));
gs max 2N+1, 3V6(m+1)), if t=3;
¢= @N+1)V2@m+1), if t=5.

The limit of ¢ given by this theorem depends on £ only. If Q=K (1), we have
g=2"<8, or ¢=3.2"<6, or ¢=5.22<10.

6. In the following sections we shall suppose
(28) p74; p/|B.

Theorem 5 cannot be extended to this case, but in the sections 6-8 {(cxcept in lemma 8)

we shall suppose

(29) Ye/ly,, if ¢ is defined by p//y,,

and then theorem 4 can be applied. In the first case a limit of ¢ is found in the
following way:

Lemma 8. Let A and B satisfy (28), and let u be an exceptional point in S of
order ¢>4. Then

iy, and bt=,, if y,+0.

If y,+0 and z,+=x,, the numbers

¥ty
T, —x;

are integers mod p, and at least one of them is not diwvisible by .

Proof. If y,+0, we replace v by v« in (11), and since 2z, + 22, is an integer
mod b, it is seen that p™/32;,—A. But then ptx,, p™/2}— Az, and pm/[yl.
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Now we put y=2 in (9), and since p7x,, the number

Y2+
Te— X
is an integer mod ), which is not divisible by p. Since p/y, and p/y,, it follows
that p/x, — ;.
But (9) may be written in the following way:
+y;\?
(30) (%’"—j) =22, + (Xy—1—2;) + 2,,
and if y=+0 and p/z,—;—x, the right member is not divisible by p, and hence
p/x,—xl. Here we may take v=2,3, ...,¢—2, if ¢ is odd, and »=2,3, ..., }¢—1,
if ¢ is even.
If ¢ is odd, it follows from (30) that
(31) y“+yl
z,—x,
is not divisible by b for v=2, 3, ..., ¢—2. If ¢ is even, the number (31) is not di-
visible by p for »=2,3, ..., 3 ¢—1, and since

Tg—v=x, and y;—,= — Y,
the number
Y~
9 I~ N
(32) %z,

is not divisible by b for v=4¢+1, 3¢+2, ..., ¢—2. It follows that at least one of
the numbers (31) and (32) is not divisible by b, if »,+0 and 2,%+x,, and the lemma
is proved.

Theorem 7. Let A and B satisfy (28), let. N be the norm of D, let u be an ex-
ceptional point in S of order q>4, let y, satisfy (29), and suppose that the first case
of theorem 4 applies to the point u. Then

c<2m, and g=2"t<2m (2N +1),
where A20 and t i3 an odd number <2 N +1.

Proof. Theorem 3 may be used, and since y,=0, the number s defined in this
theorem is a divisor of g¢.

Now suppose s$<gq. If y,, +0, we define a natural number d, by

ve-1)rid
(33) AL T
9 — 533807 Acta Mathematica. 91. Imprimé le 10 juin 1954,
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Since

Vs

Xy =&y = — —
Y2

we have P?7//x, —x,, and then it follows from lemma 8 that
(34) c<2r,

and hence ¢<2m and r<m.
If 2#*1s is not divisible by ¢, we have y,,,+0, and (8) gives

(35) perda=idly,, .
If d,;1<4d,, it follows from (35) that

PTGy, £,
and hence, by lemma 8,
(36) petdvi1=4d, )y, —m,.
But according to (33) and theorem 3 we also have
(37) WOy, - 2,
and from (34), (36) and (37) it is seen that

d1=2d,+2r—c22d,.

Now dyz1, and consequently d,;1=2""!. If v is replaced by »+1 in (37), we find

(38) PHl<d,  Sr<m.

It follows that g is a power of 2, and if
g=2%s,
where 122, we may put »=4—2 in (£8) and find
22 < 2m.

7. If (29) is satisfied, and if the second case of theorem 4 appliés to the point

%, a limit of g is found in the following way:

Theorem 8. Let A and B satisfy (28), let u be an exceptional point in S of order
q>4, let y, satisfy (29), and suppose that the second case of theorem 4 applies to the

point u. Then
g=2"<8m.
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Proof. Suppose p°//y, (»=0,1, ..., % x=1). The formulas (17) may be used,
8, is defined by (24), and pS¢/y,. If x=2, (8) gives p5+2d//yy: if x =3, we must
have pSut10d//y . and so on. Generally we find

Sppt1t+ 347711

)
b d//w2v+1 (r=sx+1),

and hence

1 v_
(39) p [kl d]//xzv -z,  (wSx+1).

Now p°/y,ty,, and since y,.+0, it follows from (39) and lemma 8 that

12¢<3k—(4*—-1)d=8n—4*d=8m+8c—4"d,
and hence
(40) c<2m—4"14,

But z,.+1—2, is an integer mod p, and consequently, by (39),

4 d<3k+d=8n<8(3m—4*1d)
or

(41) 4 1<m.

Since (41) gives a limit of x, we may suppose p**!/y.i1 or PFy i1
First suppose p°**//y,..1, where h>0. Then }*/[y,+11y,, and since y,.+1+0, (39)
and lemma 8 give
12¢=3k— (4*H —1)d=8n—d*+14d
or

(42) c=2m—4*d.

Now (8) gives

S roti{e*—1)d+a
p z //w2x+2’

and then, by (42),
Pt d-2hjp oz

If y,.42+0, we find

psz,ﬁq,+ i (6.a%—2)d+2n

PRy e, [Pox+s

and

pc—3.4"d—4h//x2”+3 —2,.
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If Ypuir*t0 (v21), it is shown by induction that

Sptvirt (220 =13 (x4 2)] a4+ 27~ 1a
//w2x+v+1

and
(43) prt @V h g~y
Since x.+s+1— 2y is an integer mod p, it follows from (43) and (42) that

2h+4*d)<ct+4*d=2m,
and hence

(44) 2 (1+44<2m.

(44) gives a limit of »+», and since x¥ =1, it is seen that

ot x+1 4
T < < —-m.
“9) =T+em=5"

Consequently ¢ is a power of 2, and if ¢g=2" (123), we may take v=1—x—2 in
(45) and find

g=2*< —m.

Next suppose p‘“"//yz,‘ﬂ, where % >0. Then pc"'//yz,“ +y,, and since y,x+1+0,
lemma 8 gives (compare (39))
12(c—h)=3k— 4+ —1)d=8n—4~1d
or
(46) c—3h=2m—4*d,
and (40) shows that
(47) hs4x1d.

Now (8) gives
8 rott(4%-1)d-a
p pt2 //¢2x+27
and then, by (46),

p°‘4”‘i+"//x2,,+2 — .
Now k<4*d by (47), and if y,+2+0, it follows that

c—4%d+h p‘s'2~+3“ (5.4%—2)d—3h

p

[ Yax+e, [[Pgx+3
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and
PSSy
If y,.+»+0, it is shown by induction that
S ppyp1+ [22¥Hv=1_3 (¢x42)]a—(2"~1) &
p T [Wgxtv+1
and

pc—4n (2v—1) d+(2V+1_3)h//x2”+,+1 —x,.

Hence
2041 (22%=1d _py<c—3h+4*d=2m,

or, if (47) is used,
22xtr=l <9,

Consequently ¢ is a power of 2, and since »¥ =1, it is seen that
(48) 2%ty < 2 m.
If g=2* (A=3), we may take v=1—%—2 in (48) and find
g=2"<8m.
Finally suppose y,.+1=0. Then g=2**% and (41) gives
g=22<8Vm.
8. If (29) is satisfied, and if the third case of theorem 4 applies to the point u,

a limit of ¢ is found in the following way:

Lemma 9. Let A and B satisfy (28), let u be an exceptional point in 2 of order
g>6, let y, satisfy (29), and suppose that the third case of theorem 4 applies to the
point w. If

pc+1 /.'/3,
we have

m=23 and ¢=38.2"<4m,

Proof. It follows from theorem 4 that g is divisible by 3, and a natural number
h may be defined by p°**//y;. Now y°//ys *y,, and since (18) gives
pt =92y -,
it follows from lemma 8 that
3c=2(n—d)
or
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(49) c=2(m—d).

If T, is defined by (26), we have pT3//ys and pTetd+h/jy. But then pe—2@+h//x, — g
and if y,+0, it follows that pe—2U@+»)[y. pTut3d+2h/ly, . and pe-2Gd+2h)//p, — g If
Y50+ 0, it may be shown by induction that

1+ @ti-1)atera

T 24

p st /1/)3,21’4-1
and

pc—2(2”'.*'1—-1)d—2"+1 h//x3.2v+1 — .
Hence

2+t (2d+h)<c+2d,

or, by (49),
(50) 3.2+ < 2m,

It follows that 4 ¢ is a power of 2, and if ¢=3.2" (122), we may take y=1—2 in

(50) and find
g=32"<4m.

Lemma 10. Let A and B satisfy (28), let N be the norm of b, let u be an ex-
ceptional point in Q of order q>86, let y, satisfy (29), and suppose that the third case
of theorem 4 applies to the point w. If

pcfy:h
we have
qg=2"3t=6m (2N +1),
where t is an odd number =2N +1.
If c£2m, we have
q=3.2"<6m.

Proof. By theorem 4, ¢ is divisible by 3. A natural number % is defined by

p°~*/]y;, and the numbers 7, are defined by (26). Now p°~*//y;+y,, and hence, by

(18) and lemma 8:
c—h= § (n_d))
or

(51) c—3h=2(m—d).
Since p°/y, *y,, (18) and lemma 8 also give

cZ3(2n+4d),
or
c<2m+d,
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and hence, by (51),
(52) h<d.

Now (8) gives pTst¢=%//ye and then p°~2¢+h//x,—x,. Here the exponent is <c
by (52), and if y,= 0, it follows that pe=2d+h/ [y, pTut3W=h)/y, and pe=0d+5h/ [z, — 2,

If y,,,+0 (v=0), it is shown by induction that
T, i1+ @T1-1) (-1
p 32 o /[s ov+1
and
pe2 (2 +t1-1)d+(2*t2-3) h//xmv+1 -,
If h<d, it follows that

P22 (d—h)<c+2d—3h=2m,

and it is seen that ¢=3.2* (1=2), where
(53) 2 < 2m.

If h=d, (51) gives c=2m+d, and if y,,,+0 (v=0), we have p>™//y, ... If ¢>12,
it follows that one of the three cases of theorem 4 can be applied to the point 3%,

since we have p2™//y; and p2™//y,. Now p2™[xg—x, and p*™/z,— 2, and consequently

p2™ [z, — x5, but if u is replaced by 3u in (4), it is seen that

y3 (3 w)
54 L — = — T
( ) (] 3 wé (3 u)
and since y,(3u)= —2y;, it follows that p¥™/y,(3u). Thus the second case of

theorem 4 does not apply to the point 3.

If the first case applies, theorem 7 gives
¢g=2"3t=Z6m(2N+1),

where ¢ is an odd number <2 N +1.

If the third case applies, (54) shows that p2™t!/x,—zs, but (4) also gives

and hence pT**+!/y,. Consequently p>™fxz,—z,, and if ¢=+18, it follows from lemma 8
that p?™+y,. Hence we may replace » by 3u in the proof of lemma 10, and there
will be two numbers A’ and d’, which correspond to % and d. But since ™17y,
it is seen that A’ <d’, and then ¢=9.2%, where, by (53),

24 < 2m.
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Lemma 11. Let A and B satisfy (28), let u be an exceptional point in 8§ of order
g>6, let y, satisfy (29), and suppose that the third case of theorem 4 applies to the

point w. If

pﬂ//ya’
we have
mz2 and ¢q=3.2"<6m.

Proof. Suppose /[y, (#=0, 1, ..., #; 22 0). Then (8) gives 7o/ /yg, pTut3d//y,,
and finally

Ty pt1+d (@ F1-1)a
p [[¥s pe+1-

Hence pi(=#d)//y

lemma 8 gives

s~ 21 (»=0,1, ..., 2x+1). But p"/ymniyl, and since gy, 0,

cZ%(n—4%d)
and hence

(55) ¢ =2 (m—4%d).

Now @, 11— 2; is an integer mod p, and consequently (by (55))

4t dn 3m—2.4%d

(56) m>=2 and 4*'' -2 2m.

Since (56) gives a limit of %, we may suppose p* "1,/?/3.2“1 OF D/ Yy i1
First suppose P°'*//y, i1, where h>0. Then p//y, jx 11 £ y;, and since yy yu41+0,
lemma 8 gives
c=%(n—4*t1d)

(57) c=2(m—4t1d).
Now (8) gives

ott (axt2_1)d+n

Ty gnt
P 3.2% //W3.2x+21

and then, by (57),

pc—2.4"+1 4=2R/ [ eta — Ty
If y, put+20, it follows that

—o.axt1 g
pemzatla=2hyiy o,
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Ty oni3td (10.4%F1-1) a12
P //93.2x+3
and
_gantlg_yg
pc 6.4 h//x3.2,¢+3 — .

If y,oni»+0 (»=1), it is shown by induction that

T3.2x+v+l+ [2x+v+2_y (22%+3 1)) drov—1p
p //'/)3,2u+v+1
and
r—22x+3 (2v 1) d—-2v 1
pe ( ) //x3,2n+v+l — .
Hence

20 (2243 d + h) S e+ 22434 =2m,
and since % and d are natural numbers, it follows that

v (22% +3 oy ]) =2m.
Consequently
2x+ 1 2

(58) o H’S 22x *’3";”1 m == (:)m,

and }q must be a power of 2. If ¢=3.2* (1:2), we may take y=A—x—2 in (58)

and find

8
1o O
24 < 9 m.

Next suppose P~ *//y, )1, where A >0. Then p°=*//y, .11y, and since y, i1+ 0,

lemma 8 gives

c—-h=%(n—4*"14d)
or
(59) c—3h=2(m—4*"4q),
and (55) shows that
(60) h=2.4%d.

Now (8) gives
T, purotd (#¥12-1)a—n
p o Ys.ox+2
and then, by (59),
_ 1
pe 2.4%F d+h//x3_2x+2—x1-

But h<2.4*ttd by (60), and if Y3 ox+2F 0, it follows that
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— +1
pc 2.4% d+h//y3.2x+2,

Ty 3t d (10.44F 1) d-34
p = //¢3,2%+3

and

_ x+1 ,
pc 6.4 d+5h//x3‘2”+3 — 2.

If y,ou+»+0 (vx21), it is shown by induction that

T, iy ilt [22n+v+2_§ (22"+3+1)]d—(2"-1)h
P 3.2 //w3'2x+v+l

and

*)0_227:4-3 (2"—1) d+(2"+1—3) h//x3_2;¢+y+1 _ x1.
Hence

Qv+l (4"“d—h)§c+22"+3d—-3h=2m,
or, if (60) is used,

22x+v+2 < 2m.

It follows that
(61) 24 < pom,

and }q¢ must be a power of 2. If ¢=32% (1:2), we may take y=1—3x%~2 in (61)
and find
22 < 2m.

Finally suppose y,,.:1=0. Then ¢=3.2%*% and (56) gives

2 YYD e §
24229V 2m < 2m,
since m:z 2.

If the lemmas 9, 10 and 11 are combined, we get the following result:

Theorem 9. Let A and B satisfy (28), let N be the norm of p, let u be an ex-
ceptional point in S of order q>4, let y, satisfy (29), and suppose that the third case
of theorem 4 applies to the point u. Then

q=2"3t<6m (2N +1),

where t is an odd number <2 N +1.

9. Now we combine the theorems 7, 8 and 9 in the following way:

Theorem 10. Let A and B satisfy (28), let N be the norm of D, let u be an ex-
ceptional point in K of order ¢ >4, and let y, satisfy (29). Then
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g=2"t<6m (2N +1),

where t is an odd number <3 (2N +1).

10. In this section (29) will be replaced by the following condition:

(62) Y lys Yy ya+0; p°/ys
Then we may prove the following lemma:

Lemma 12. Let A and B satisfy (28), let u be an exceptional point in  of order
g>4, let y, and y, satisfy (62), and define the numbers h and U, by

(63) PRy
(64) U=3vr-Dh+ 0 —1)m (rz=1).

Then c=h+2m, and we have
PO/,
for v=1,2,3, 4.

Proof. Since p//y,ty, and y,+0, lemma 8 gives p°//x, —x,. But p°t™//y,, and
hence, by (4), p*¢*+2m//y,. By (8) and the definition of 2, we have pr+3€+m/jy, and
consequently p*+2m/iz, —z,.

Now P°/ys+y, and y,+0, and hence p°/z, —z,. But then we must have (by (4))
pRhe8letm /iy and (4) gives p2A+2m/x, — x5, Hence ¢ =h+2m, since x, — 23 = (¥, — ;) —
— (23— %,), and the lemma is proved.

It is easy to verify that the numbers U, defined by (64) satisfy the following
relations:

Ui+ U1 —2U,=h+2m;

Usy +Uy=2(U,-1+ Uy1) + (v — 1) h+ 2 m;
Uzos1=2(U,+U, 1) +vh+2m;

Uz, —4U,—U,=(v—1)h,

(65)

and now a sort of induction is possible:

Lemma 13. Let A and B satisfy (28), let u be an exceptional point in S of order
q>4, let y, and y, satisfy (62), let h and U, be defined by (63) and (64), and suppose

(66) Y/y,, if v, @)=1

(67) O/, (v=1, 2, ..., t—1); pUt/y,
where 4<t<q.
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Then pth+8m(4 43— 27 B2 if t is odd, and pe-DA+8m[4 43— 27 B® if ¢ is even.
If pUstl/yy, we have (t, q)>1 and

q
=2<2m,
¢ 9

and if pUtfjy, but pUts1f ey, we have (t, ¢)>1 and

4 _oip <om@N+1),

()]

where t; is an odd number <2 N+ 1.

Proof. If ¢t is odd, it follows from (4) and (65a) that p*+2™/x;_1y—z, and
pht2miy, o —x,, and hence p*+27/z,_; —xy ¢_1). But (8) and (65 d) give pt¢-Dht2m/y, \ ;)
and then (12) shows that p'#+8m/4 43— 27 B2 if the point « is replaced by } (¢t —1) u.
If t is even, we replace ¢ by ¢—1. This proves the first part of the lemma.

To prove the second part we first suppose (¢, ¢)=1. Then p*+2™/y, and y,+0,
and hence, by lemma 8, p*+?"/z,—z,. If we take »=t in (65a), it follows that
pUe+1/y1. But we know that PA+27/y _o—z, (by (4), (65a) and (67)), and hence
P2y — 2 o, Now we take »=t—1 in (7a) and (65 b} and find pVzt—2-¢=9h/yy, o
and then (8) gives p2h+2m/y, . Thus p*+2m/y, 1+ 1y, and pA12mtlfy, | — g, and con-
sequently pUt//yr.

Next suppose (¢, ¢)>1. If t<g but pUtt!/y,, we define a natural number d by
pletd/ly, Then prt2mid/y | —z, but p*+27//x, —z,, and hence P*+2m//x, | — 2z, and
(4) gives plir1=*/fy . Consequently p*m~2¢/[z,—2,, and if y=+0, it follows that
pEm=2d/ly, . But pS™/4 A%~ 27 B? and if u is replaced by fu in (12), it is seen that
pim=4d//x),— 2, and hence p2™4//xo,~x. If yg,+0, it follows that p2™=4¢//ys, but
then we replace « by 2¢w% in (12) and find p>™—84//z,, — x5, and hence p2™—84//xy —x,.

If y»,+0, it is shown by induction that
(68) pzm—2"+2d/,/x2v+lt — .

It follows that the order of the point ¢{u is a power of 2, and if it is equal to 2%
where 122, we may take y=1—2 in (68) and find

24 < 2m,

q .
{t, 9)

Obviously the order of the point tu is
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If pUt//y, but pUt+ifyy, we define a natural number e by pUt+1=¢//y, ;. Then
pht2m=e/ix, —x,, and since P*+2m/y,—z,, it follows that p*+2m—¢//z;—z,. But then
(4) gives pUt+2=h=¢//yy o and consequently p2™*¢//x, 1 —x;. But since (t+1, g)=1, we
have y41+0 and P°/y+1, and then lemma 8 shows that e=A.

Now suppose e>h. Since p*+2m//x,_; —x,, we have P*+2™//z, 1 —x,_;, and then
{7 a) gives

pU2e=C=Dh=2¢ [y,

Consequently g +0 and p2*+2m—2¢//y, and this is impossible by lemma 8, since we
know that pr+2m—¢/g —a,.

Consequently e=h and p?™//x,— z;. If y,+0, it follows that p2™//y, and pU2:=4/ [y,
Since 12™/[zy 11—y, (7b) gives pU2e—1—¢=DH/ [y, | and pU2e+1=CEtDA/jy,, , and con-
sequently p2™//ze;—=,. If y2,+0, it follows that p*>™//ys,, and theorem 4 can be applied
to the point tu. Now P3™//y,(tu), and since p2™/xs,—z, we have p8™/y; (tu), and
consequently the second case of theorem 4 is impossible. If the first case applies,
theorem 7 gives

7
U}

where ¢, is an odd number <2 N +1. If the third case applies, we have p8™+1/y; (tu),

=24, <2m (2N +1),

and since p®7//y, (tu) and

_ e (tu)py (tw)

T3t — X =
i (tw)

, if g (tu)=+=0,
x3¢— 2 is not divisible by p2™. If y3,+0, it follows that p?™ 73, and then lemma
10 gives
9 _qox
—— =3.2'<6m.
(t, 9)

It follows from lemma 13 that if (¢, ¢)=1, ¢ may be replaced by ¢+1 in (67).
Now we take ¢ in (67) as large as possible (f<q). Then it follows from lemma 13
that (4, ¢)>1 and

q

t 9

where ¢, is an odd number <2N+1. Since pUs/[y, for »<4, y,+0 and }°/y,, the
proof of lemma 13 shows that pUs/y,, and hence ¢=5. But then lemma 13 gives

=2 <2m@2N+1),

p3+8m/4 43— 27 B,

and we have the following result:
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Theorem 11. Let A and B satisfy (28), let w be an exceptional point in Q of order
q>4, let y, and y, satisfy (62), suppose

/o if =1,
and define R by

(69) pZmtRii4 43— 97 B2
Then R=6m+5, and
g=24,<2m2N+1)(R—6m+1),

where t, is an odd number <(2N+1)(R—6m).

11. Now a limit of the order of an exceptional point in € may be found in
the following way, if 4 and B satisfy (28). We suppose that there is an exceptional
point in £ of order ¢>4, and we choose u in such a way that (66) is satisfied, if
¢ is defined by p//y,.

Suppose g+ 8. If p//y,, or if p°*1/y, and p°/y,, a limit of ¢ is given by theorem 10
or theorem 11. Otherwise y°#y, or p°7y,, and then it follows from (66) that ¢ is even.
Consequently the order of the point 2u is 4g¢, and the order of the point 4 u is
}q or }gq, according as ¢ is divisible by 4 or not. In any case there is a point of
order ¢ or }gq, whose ordinate is not divisible by p°, and we can choose among
the points 2vu, where (v, $¢)=1, or among the points 4yu, where (v, $¢q)=1, a

point «’, whose order ¢’ and ordinate y' satisfy
¢ =%q or =}g p/ly, where ¢'<c; vy, if (v, ¢)=1.

Here y, denotes the ordinate of the point vu'.
If ¢ >4 and 8, and if neither theorem 10 nor theorem 11 can be applied to

the point u’, ¢ must be even, and we can choose a point %'', whose order is
q'=%q or =}¢q,
and whose ordinate y" satisfies
vy < by, i (v, ') =1.
Since the ordinate of an exceptional point is an integer mod b, this process will

finally come to an end. Thus we find a point %), whose order is

1
g = P where r<x<2r.
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If ¥ is the ordinate of w(”, we also have

p*"/y", where ¢ <c—r,

and if ¢”>4 and =8, one of the theorems 10 and 11 can be applied to the
point ",
Now 2¢”=m by lemma 8, and consequently 27r<2c—m. We define R by (69)

and then have the following cases:

1. R<2m. Then c<m by (12) and hence 2r<m, and since theorem 11 cannot

be applied to the point », we have by theorem 10:
¢V =2t=6m (2N +1),
where ¢ is an odd number =3 (2N +1).

2. 2m=R<=6m-+4. Then 2¢<R by (12) and hence 2r<R—m, and theorem
10 gives
g =2t<6m(2N+1),

where ¢ is an odd number =3(2N +1).

3. R=z6m+5. We have 2¢ <R by (12) and hence 27 < R —m, and the theorems

10 and 11 give
gN=2"1<2m(2N+1)(R—6m+1),

where ¢ is an odd number = (2N +1)(R—6m).
Thus we get the following result:

Theorem 12. Let Q be an algebraic field, and let p be a prime tdeal in S, which
divides 2. Let A and B be integers mod p in Q which satisfy (1), and suppose

™2
prA4; pm/[B; pimtR/i4 A3 — 27 B,

Finally let N be the norm of p, and suppose that there is an exceptional point of order
q n Q on the curve (2). Then we have the following cases:

1. R<2m. Then
g=2*t<64-"Dlpy (2N +1),

where A=0 and t is an odd number =3 (2N +1).
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2, 2m=R=6m+4. Then
g=2" <644 E-mlpym (2 N4 1),

where A=0 and t is an odd number =3 (2N -+1).
3. Rz6m+5. Then

=21 =2.4Em O N +1) (R—6m+1),

where =0 and t is an odd number = (2N +1)(RE—6m).
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