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Introduction

In a series of papers during the last several years, ([1], [2], and references therein),
one of us has developed a theory of the solutions of linear differential equations as
analytic functionals of the coefficient functions. In the present paper, we consider a
more general situation in which the differential equation is not restricted to be linear
and use different methods. Even in the linear case, the results are a little different.

The method is to establish an implicit function theorem for analytic functions
on one complex Banach space to another, and then apply this theorem to the differ-
ential equation.

Implicit functional equations in abstract spaces have been studied by various
authors!, and from various points of view. Since we restrict ourselves to the analytic
case, it seemed appropriate to develop a theorem by generalizing the classical method
of series expansions and dominating functions. A result similar to our theorem of
Section 1 was given without proof by Michal and Clifford [3].

In the second section the implicit function theorem is used to study the solution
of the differential equation dy/dr=f(t,y) as a functional of the function f. Here 7
is a real variable while y may range over a subset of a complex Banach space.

In particular the theory will include systems of ordinary differential equations and

certain types of partial differential equations.

1. Implicit Functions

In the present section we shall make use of the abstract differential calculus

and of the theory of analytic functions in complex Banach spaces.? In particular

1 See, e. g. HILDEBRANDT and GRAVES [11].
? For a summary of these theories in complex Banach spaces see HILLE [6], chap. 4. For real
as well as complex Banach spaces see MicrAL [1, 8]. MicwarL and MarTIN [9], MarTIN (10].
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we use the notation df (¥y; k) for the Gateaux differential }im A {f (g + AR) — ()}
—0

of the function f(x) on one complex Banach space E, to another E, and the notation
d" f(xg; by, ..., hn) for the Gateaux differential of the nth order at z=x, with incre-
ments ky,...,h,. It is of importance to observe that these “‘Gateaux differentials”
are indeed Fréchet differentials® for the analytic f(x) and that the homogeneity of

degree one in each increment is with respect to complex number multipliers.

Lemma 1. Let E,, E, be complex Banach spaces and let f(x) be analytic for
the sphere ||z]|<p of E; with values in , and suppose that || f(z) || = M for ||| <p.

Then, given £>0, there exists a positive integer n, such that

dnf(a;xhxl""yxn) (M+£
UL < el e
for all n>n, and all x,,2,,...,%, in E,. Hence, if m, is the modulus of
n—l’ d"f(0; 2,2, ..., 2,), the series > m,A" converges for 0 <1<p/e.
. nel

Proof. Put
@1 ) =1 1w+ L 2y),
and in general,
(P(Cp Cor-on Cn)=F(lymy + Laag+ - + {n 2n).
Then
" @Gy, - Cn)

dnf(e;xlxz’mx")=3é',6{2...64',,

k=1,...n,

’
{p=0

and @(L,,...Cn) is analytic for ||z HS% and |{{x|<1. Let I denote the unit circle
in the complex plane. Then

(a_‘P_W_C;_,Ez,---Cj)) _ 1 f¢(T1’Czs- -&n)
40

3{1 27!’!/ Tl dTl’

(62‘}0 (C1s Cas - Cn))
08,00,

and, by induction,

ff?’(fpfzyé'a, e Cn_)_d_'tltit_z
T

£:=0, {i=0 (23‘“) 2

n
e e,

1 J‘ f(p(rl,12,...,1n)d11d12...dtn'
2ni)” ) " T 2
r

a*{(0; 2y, x,, .. 2n) = 13T
.

3 See Frtcaer [7].
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Now for |lax||<o/n, k=1,2,...n and |7c|=1,k=1,...n we have “szkxklls
=1
< kZIH zx||<o. Hence || @ (ty, Ta, ... Ta) || < M. It follows that ||d" f(0; 2y, %p, ... 2a) || S M

when ||z: ||<o/n, k=1,...,n. Now, for any z,,...x, in E; with || #0, put

v Q . , _
xk__'n”xk “ T» SO that ”xk ” Q/’n- We have
d"f@; 1, ...20) || < M,
and hence

n Mnn : n
T [ PN EY I EA A

is homogeneous in each z,. Now by Stirling’s formula,

nl=(l+e.)V2anntte™, where £,~>0 as n—>oo.

Hence, given e¢>0 there exists a positive integer n, such that

M
S A B EN

d" f(0; Zy, Ty, - . Xn)
n!

for n>ny and all 2;,2,,...2, in E,.

If m, is the modulus of l d"/(@ Ty, Xy, ... X,) then clearly mnsﬁl +£(—) for
20 \Q
n>n, Hence if 0<A<p/e,

n
mnl"SM+£ (l_e) ,  where 0<§f< 1.
Vemn \0 0

Hence Y m, A" converges.

Lemma 2. Let E,, E, and E, be complex Banach spaces and let x € E,, y€ E,,
Let f(r,y) be analytic for ||z|[<p, ||y||<eo, with values in E,;, and suppose that
|| f(z,9)|| is bounded for ||z||<p, ||¥||<e. Then if m,, is the modulus of the multi-

linear function

(7+k) d’*"/(@ 0; 2y, g ... 25, Yy, Yoo -+ Yi)s

the seriesl kzom,,, X u* converges for |A|<p/e, |u|<p/e.

Proof. Put
z=( ), zl=VzIF+yI’ o) =} 9.
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Then ¢(z) is analytic in the sphere ||z||<p of the space E;E,. By Lemma 1 we
have, for n>n,,
Mgt |n|- ezl

o"V2xn

@021 295 0y 21)
n!

(1.1) ’ d
Now,
do(0;2)=df:(0,0;,)+df, (0,0;y1)
20 (0; 21, 20) = A2 f22 (0, 05 21, 7)) +d f2y (0, 05 24, Y5)
+d% f2y (0,05 20 1) + 8713 (0,05 91, 9)
A (0; 21, 25, 23) = A foza (0, 05 Ty, To, T3) + A% fary (0, 05 2, 25, Y3)
+ & foay (0, 05 2y, %3, Yo) + d° fayy (0, 05 21, Y2, ¥5)
@ fazy (0,05 2g, T3, Y1) + & fauy (0, 05 22, Y1, ¥3)
+d fryy (0,05 5 91, ¥2) + & fuuy (0, 05 91, Y2, ¥s)
o052, za)= 2 2 di (0,05 Tuy e Tuyy Yrs -5 Y1)

t4j=n

where k,,..., k% ranges over all subsets of ¢ members of the integers 1,2,3,...,n,

while [, ..., is the complementary set to k;,..., k.
Recalling that ||z]|=V| z|*+| y|? using the inequality (1.1) and putting

xt+1:$z+2="‘=$n:0 and .1/1:?/2:"':?/‘:0 we have

1 n
“;L'dlz'.flll(o) O;xla xzy ooy Ty ?/t+1, yi+2,"- ) yn)

M+s
= Vann Nz fall el -l l
for n>mn, so that
n
m,,S(J‘f+8)e, +j=n
o"V2nn

Hence if 0<A<p/e and 0<u<p/e,
i s
gy A < M+e (le) (,l_tf)
V2n(z+7) e

and > my Ay’ converges, since 0< 1—: <1 and 0<%%<1.
e
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Lemma 3. Let E, and E, be (real or complex) Banach spaces. If F(z,y)=

oo
= 2> hxlx,...x,y,...y), where Ry (x;,...%;, ¥y,...yx) is a multilinear function, sym-
i

metric in the 2’s and in the y’s on E{ES to E, and hy (y)=0 and if the moduli
myx of by satisfy > my, 1’0" < oo for some r>0 and p>0, then there exists a unique
analytic solution of the equation y= F (x,y) in the neighborhood of =0, such that
y=0 when z=0.

Proof. First we exhibit a formal solution, and then prove convergence. In the
equation
(1.2) Y=TF (2, y) = ho (&) + hgg (x, 2) + by (2, Y) + P (9, y)

+ hgo (%, @, @) + Ry (%, 2, Y) + s (%, ¥, Y) + o (¥, ¥, Y)
4o,

substitute the generalized power series y= fl k. (x), where k,(x) is a homogeneous
polynomial on £, to E, which remains to g:; determined, and equate the resulting
homogeneous polynomials of like degree. We have
ky () = hyq (x),
ko () = hyg (2, @) + hyy (2, &y (@) + Figp (B (), K, (),
ks () = hyy (2, , 2) + hyy (2, 2, Ky (%)) 1 Py (2, &y (), Ky (2))

+ hog (ky (%), by (%), By () + Ry (2, Ky (2)) + 2 gy (k) (2), Ky (),
(1.3) ky(x) = hyy (2, x, T, ) + by (2, , 2, Ky (2)) 4 Py (2, 2, Ky (), Ky ()
T hyg (2, ky (), ky (), ky (2)) + hog (Ry (), Ky (%), oy (2), &y ()
4 hgy (x, 2, iy (X)) + 2R, (2, by (), Koy (X)) + Bhgy (ky (), &y (2), Ky (2))
+hyy (2, k3'(@)) + 2hoy (y (2), Ky (2)) + hog (ke (2), Ky (2)),

Symbolically, we may write relations (1.3) as

k1 = hyo,

ky=hog+hyy by + by ki

ky=hgg+ hoy ky+ hyg k5 + hog kS + hyy by + 2By Ky Ky,
(1.4) ky=hgg+hgy by + hog k2 + g K + hoy kb + by, Ky
+2hyaky kg + Bhog kK3 kgt hyy kg + 2hog ky kg

+ oy K3,
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where (hnn ba, Ba, k- ko) T =hmn (2, %, ... 2, kg, (), ke, (%), ... Ko, (z)) i3 a homogeneous
polynomial of degree N=m+a, + -+ +a, in x. Putting &= z|, n=|y|, we see
that the series
(1.5) @ (&, 17)=m10§+m2052+mu§17+m02172

+ g £ + Mgy E2 7+ gy E7 + Mgy 7y

+ P

dominates (1.2). By hypothesis, this series converges for 0S&<r, 0<y<p. Eq. (1.5)

has a unique analytic solution for 7 in terms of &, and the coefficients in the series

n= 2 s &" for this solution may be determined by substituting the series in Eq. (1.5).

n=1
These coefficients are determined successively by the equations
€1 = My
- 2
Cy = Mgy + My, €; + My, 1,
(1.6) | €3 =g+ Mgy €3+ Mgy €T+ Mgy €} 4 My 0y + 2mgy €5 €,
€y = Myp + Mgy €y -+ Mgy €5 + My €} + My €} 4 Mgy €3 +2myp ¢p €y

2 2
+ 3 Mgy Cf Cg + Myq €5+ 2 Mgy €4 Cg + My €3,

which are of the same form as Eq. (1.4).

Since || hy||=my, it follows that | k,||<cs, where | k|| is the modulus of
o0

hy(x,y) and ||k, | that of k,(x). Hence, since for some a>0, > c,&" converges for
1

[£]<a, then 2k,.(x) converges for ||z||<a«. Thus y= ? k. (z) is the unique analytic
solution of equation y=F (z,y) in the neighborhood of x=0, satisfying the condition
y(0)=0.

Theorem 1. Let E,, E, and E; be complex Banach spaces and let f(x,y) be
analytic in a region R, R, where R, < E,, R, <E, If the equation

(L.7) Ha, yy=10

has a solution at z=uz, y=y, where z,€R,, y,€R,, and if the differential
dy [ (xg, ¥o; 6y) is a solvable linear function of dy then there exists a sphere S
around the point z, in the space E; and an analytic function ¢(z) on 8 to E, such
that y =@ () is the unique analytic solution of Eq. (1.7) on 8 such that y,=¢(x,).
This solution ¢ (x) may be calculated recursively by the method of Formula (1.3) in
the proof of Lemma 3.
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Proof. For convenience, we may assume that =0, y,=0. Expanding the left
member of (1.7) we obtain

=4

(1.8) P () + poy (¥} + > 2 pyEy) =0,
k=% 145k
where
. 1 {+1 B
i (z, y)—(i_*_?_)!dz,y/(ﬁ,&,x, Zyeo T Yy Y)

is a polynomial of degree ¢ in # and § in y, and where in particular py, (y) =dy f (0, 0; y)
is a solvable linear function of y. Hence Eq. (1.8) may be rewritten in the form

y=0(x, y)= — pot (Pro (@) — 0.02 > pal (s, y)
k=2 i+vj=k
or

(1.9) y=hm(x)+’+}z>lhi1(x, Ty X Yy Yy

where poi' denotes the inverse of py and where

1 .
by (2, Tos oo Th, Yy Yo oo ¥5) = D1 [(;W dH0,0; % ... 3, Yy, ...y,-)} .
It is sufficient to show the existence of a unique analytic solution of Eq. (1.9). By
hypothesis, the left member of (1.8) and hence the right member of (1.9) is bounded
and convergent in the neighborhood of (0, 0), say for || 2||<«, || y|| £ «. By Lemma 2,

> mysd ' converges, for
fil<afe, |ul<afe,

where my; is the modulus of ky(z,... 2%, ¥, ... ).
Hence by Lemma 3, there is a unique analytic solution of Eq. (1.9) which

reduces to f for x=20, and the theorem is proved.

2. Differential Equations

Consider the differential equation

d
(2.1) g%=/(r, ¥

subject to the initial condition y=y, for v=7, Here T is a real variable on

|T—1,|<a, while y and f(r,y) are elements of a complex Banach space B. We

assume that f(,y) is continuous in the pair (r,y) for [z—7,{<a and ||y - l|<b,

that there exists a positive number M such that [[f(z,y)[[S M for |T—7,{<q,
6 — 543807. Acta mathematica. 91. Imprimé le 14 mai 1954
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|ly—w,||<b, and that for each 7, f(r,y) is an analytic function of y for ||y —y, || <b.
Then if 0<fg<b, f(r,y) satisfies a Lipschitz condition

”f(T: yl)_f(f:?/z)HSN”%_yz”

for all 7 in |t—7,|<a and all y,, y, in the sphere ||y —y,||<p.
For, it C is the unit circle in the complex plane, then by Cauchy’s integral

formula?

5f(z, 53 )= —— V(T"ijak)da,
¢

21

for ly—woll<p, l2ll<b-p.
Hence ||0f(r, 45 MII<H for [t=nol=a, lly-yli<p IA]|<b-p.
Since 8f(r,y; h) is homogeneous in kb of degree one, it follows that [|8f (v, y; A) || <
SN R for |t—15|Za, ||y—vy,ll<pB, where szvé”_ﬂ.
1
Now f(T,92) =1 (. 90) = [0 (1,91 + 2 (Y2 =) %=~ 9)dA for all y, and gy, in
[}
ly—woll<pB. Tt follows that
@y~ f IS Ny, |l

for all y,,y, in the sphere ||y—y,| <8

Thus, all the hypotheses of a known existence theorem ([6], p. 95) for differential
equations are satisfied. It follows that Eq. (2.1) has a unique continuous solution
y =7 (t) satisfying the initial conditions y =y, for T=1,, and defined for |1—1,|<a,
where o-Zmin (e, 8/M).

Also,
(2.2) 3@ —wll=sMa<p for |z-7|<a

We use the following notations : I is the interval |t—1,|<a, S the sphere
ly—yo||<pB of the Banach space B, while X will denote the space of all functions
z=2x(t,2) on IS to B which are continuous in the pair (t, z), bounded, and analytic

in z for each 7. With the norm defined by
l|z||=sup {||z(z,2)|ls; T€l, z€8},

X is evidently a normed (complex) vector space. It is also complete, since if

|| Zmn —2x||>0 as m and = tend to infinity, then the sequence of functions z, (t,2)

1 See [8], p. 74.
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converges uniformly to a limiting function ,(r,2) which is continuous and bounded
on I8. By the generalized convergence theorem of Weierstrass (see A. E. Taylor, [4])
it follows that z,(t,z) is also analytic in z for each T €I, and for z€S. Hence X
is a complex Banach space.

Let Y be the complex Banach space of all continuous functions on I to B with
the norm || y||= max {||y(z)]|; veI}.

Putting

(2.3) G, y)=y+ [x(0,y(0)do,

we shall be concerned with the equation
(24) y=G = y),

where G (z,y) is defined on XK to Y, and where K is the sphere ||y—y,||<p in
the space Y. It follows from inequality (2.2) that §e€ K. It is clear that G (x,y) is
single valued and well defined for x € X, y € K, and that G (z, y) is locally bounded
in the region XK. For if z, is any given element of X and if ||z —z,|<y and
y € K then

6@ nll=llyoll+ (2]l +») e

G (x,y) is Gateaux differentiable at each point of the region X K. For if (z,v)
and (z+h, y+ k) are points of this region we have
G@+ah,y+ak)—Gzy) _ fx_[cj_,y(a)+lk(0)]—g[o,y(o)]d_o
A B A

To

+ [hlo,y(0)+Ak(0)]do

(2.5)
T 1
= [do[dz[o,y(0)+AvEk(e); k(o)) dv
0

To

+ [hlo,y(0)+1k(0)]do.
Put K
a=2etih g i=0Ey) fax[a,yw);k(a)]da— fh[a,yw)]da.

To
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Then from (2.5), A=A,+ A, where

T 1
A= ‘I'daj—{éx[a,y(a)+/1vk(a); k(o)) —9dx[o,y(0); k(o)]}dv

Tq 0

A= [{hl0,y(0)+Ak(0)]—hlo,y(0)]} do.

We must show that A—0 in the space ¥ as A—0. Now the norm of the integrand
of the second integral is a continuous function of (¢,4) on I A, where A is an
interval around zero. Hence the integrand of the second integral tends to zero
uniformly with respect to ¢ when 1—0, and the second integral A, tends to zero in
the space ¥, as A—>0.

Since the range of the function y(¢) is a compact subset of the open sphere
Sc< B, the distance of the subset from the boundary of § is a positive number 4.
Choose w such that 0<w<d/|| k|| where | k| is the norm in the space ¥. Then
y(0)+ok(a)eS for all o€l and all complex numbers g with |o|<w.

We may rewrite A; as

T 1 1
(2.6) A1=lfdofdvjv62x[a,y(a)+l,uvk(a);lc(a)]d,u.
0

T 0
Now by the generalized Cauchy integral formula, if we select C as a circle with

center at the origin and radius c;, and take |l|<§,

(.7) Balo,y+Auvk; K= f zlo,yrGuvt Ok,

Ca
The integrand is well defined, since |Au» + ¢| < |A| + || < @ so that
ylo)+ (Auv+ ) k(o)eS. It follows from (2.7) that

|8z [0, y+Aiuvk; k]||<8w | 2|

Hence, by (2.6), ||A,||[<8w ?|A|«]|l|, so that A;—~0 in the space ¥ as A—0.
Therefore G (z,y) is Gateaux differentiable and locally bounded, and hence analytic

in K, with its differential given by

(2.8) dG(z,y; b, k)= [bz[0,y(0); k(o)]lda+ [hlo,y(0)]do.

To
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Putting F(z,y)=G(z,y)—y, Eq. (2.4) may be written in the form F (x,y)=0. The
differential d F, (x, y; k) takes the form

dF,=dGy(x,y; k) —k

= féx[a,y(a); k(g)ldo—k (7).

We put z=1(7, y). '

Then since §(z) is the solution of Eq. (2.1) with the initial value of y, we
have F (&, ) =0.

The differential dF, (x,y; k) is a solvable linear function of % if the linear
integral equation

1

(2.9) k(r)— [dz[o, §(0); k(o)ldo=2(v)
has a continuous solution k(v) defined for |v—1,|<a« for every continuous z(r) on
I to B. It follows by using the Cauchy integral formula as before that there exists
a constant x>0 such that

(2.10) |6z (o, §(0); || <u |l %l

for all o€l and all ke B. Hence it is easily shown that the abstract Volterra
integral equation (2.9) has a unique continuous solution,

Thus all the hypotheses of the implicit function Theorem 1 are satisfied, and we
conclude that Eq. (2.4) has a solution y=¢ () analytic in z in the neighborhood of

Z=f(r,y). Thus we have proved the following result:
Theorem 2. Under the restrictions and definitions given above, the solution y (z) of
the differential equation

dy
ez y

with y(1,) =Yy considered as a function of the right hand side x(t,z) € X with values
in Y, is an analytic function of x in the neighborhood of Z= f(x, 2).

Corollary. If f(z,) is a polynomial in y, and continuous in 7 for |7—17,|<a
then all the hypotheses on f(t,y) will be satisfied for an arbitrary sphere ||y —y, || <b,
so Theorem 2 will hold.

Proof. Is follows from a result of Kerner! that f(r,y) is continuous in the pair

(r, y) and that if v varies in a sufficiently small neighborhood, ||f(r, %)|| is bounded

1 See [5], p. 548.
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for ||y—y,||<b where b is any positive number. By an application of the Heine
Borel theorem to the interval | 7—7,| <a, there exists an M >0 such that||f (v,y||<M
for all 7 in the interval |7 —17,|<a and all y in the sphere ||y —y,||<b, Thus all
the hypotheses are satisfied.

Another important special case of Theorem 2 is that of a system of » numerical
differential equations. Since in this case the space B is a finite dimensional space
of n complex variables, the hypothesis of the boundedness of the norm [|f(z,y)| is

redundant providing the numbers ¢ and b are finite.

By taking B to be a function space, it is also possible to include certain types

of partial differential equations under Theorem 2.

California Institute of Technology and the
University of Southern California
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