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1. I n t r o d u c t i o n  

We present several new results on isometric torus  actions on positively curved manifolds. 

The  s y m m e t r y  rank was in t roduced by Grove and Searle as one possible way to  measure 

the amount  of s y m m e t r y  of a Riemannian  manifold (M, 9). It  is defined as the rank of 

the isometry group, 

symrank( (M,  g)) = rank(Iso(M,  g)), 

or equivMently as the largest number  d such tha t  a d-dimensional  torus  acts effectively 

and isometrically on M. 

Grove and Searle [13] showed tha t  symrank((M,g))~< [ � 89  provided tha t  M 

is a compact  manifold of positive sectional curvature.  They  also studied the case of 

equali ty and showed tha t  this can only occur if the under lying manifold is diffeomorphic 

to C P  n, S ~, or to a lens space. 

Our  main  new tool is the following basic result. 

THEOREM 1. Let M n be a compact Riemannian manifold with positive sectional 

curvature. Suppose that N n - ~ C M  ~ is a compact totally geodesic embedded submanifold 

of codimension k. Then the inclusion map N~-k -+  M n is ( n - 2 k  + l )-connected. 

Recall tha t  a map  f :  N--+M between two manifolds is called h-connected,  if the 

induced map  7ri(f): 7ci(N)-+Tci(M) is an isomorphism for i < h  and an epimorphism for 

i=h.  If  f is an embedding,  this is equivalent to saying tha t  up to homotopy  M can be 

obtained from f ( N )  by a t taching cells of dimension ~>h+l .  It  is easy to find various 

examples where the conclusion of Theorem 1 is optimal.  For example the 24-dimensional 

The author is an Alfred P. Sloan Research Fellow and was partly supported by an NSF grant and 
a DFG fellowship. 



2 6 0  B. WILKING 

positively curved Wallach flag [24] M24:=F4/Spin(8) contains a totally geodesic 15- 

dimensional submanifold N15=Spin(9)/Spin(7) which is diffeomorphic to S 15. Since M 24 

is 7-connected but not 8-connected, the same holds for the inclusion map N15--+M 24. 

One can refine Theorem 1 if there are two totally geodesic submanifolds, or if there is an 

isometric group action fixing the submanifold, see Theorem 2.1. 

Theorem I can be viewed as a generalization of a theorem of Frankel [10] stating that  

the inclusion map of a compact  immersed minimal hypersurfaee N in a manifold of posi- 

tive Ricci curvature is I-connected. In the same paper  he also showed that  the inclusion 

map of a totally geodesic submanifold N in a positively curved manifold M is 1-connected 

provided that  2 d i m ( N ) > ~ d i m ( M ) .  Frankel obtained his results by showing that  the in- 

verse image of N in the universal cover is connected. Our proof relies on a very simple 

Morse theory argument in the space of all paths in M start ing and ending in N. The 

setup has been used in the literature before, and like in the proof of Frankel's theorem [9] 

the sectional curvature condition comes in via a Synge-type argument.  Theorem 1 can be 

generalized to positive k-Ricci curvature, see Remark  2.4. Upon composing the Poincar6 

duality of M with the one of N we will show that  the cohomology ring of M exhibits a 

certain periodicity, provided that  the codimension of N is small, see Lemma 2.2. 

Recall that  the fixed-point components of an isometry are totally geodesic submani- 

folds. Tha t  is why Theorem 1 turns out to be a very powerful tool in the analysis of 

group actions on positively curved manifolds. As a first application we prove 

THEOREM 2. Let M n be a simply-connected n-d imens ional  manifold of positive sec- 

tional curvature, n>~10, and let 

d~> �88  

Suppose that there is an effective isometric action of  a d-dimensional  torus T d on M ~. 

Then M ~ is homeomorphic  to H P  n/4 or to S ~, or M is homotopy equivalent to C P  ~/2. 

The theorem remains valid for n~<9 except for n = 7 .  For n~<6 this is just a conse- 

quence of the above-mentioned result of Grove and Searle [13]. Fang and Rong [8] showed 

that  the theorem remains valid for n = 8 ,  9. Their proof relies on Theorem 2.1 combined 

with a thorough study of the orbit space. For n = 7  the theorem is incorrect since the 

Aloft Wallach examples [1] as well as the Eschenburg examples [6] have symmetry  rank 3. 

Notice that  F4, the isometry group of C a P  2, has rank 4. Thus in dimension 16 the 

result is optimal. Similarly the isometry group of the 12-dimensional Wallach flag has 

rank 3. In dimension 13 the Berger space SU(5)/S1-Sp(2) [3] as well as the Baza~in  

examples [2] are positively curved manifolds with symmet ry  rank 4. 

The fact alone that  in Theorem 2 a large-dimensional torus acts on the manifold 

could potentially allow to strengthen its conclusion. A conjecture of Mann [18] asserts 
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that  an exotic sphere E ~ can not support  an effective smooth action of a d-dimensional 

torus with d ~ n + l .  Let M 2m be a compact  manifold that  is homotopy equivalent 

to C P  m, and suppose that  M 2"~ supports a nontrivial smooth Sl-action. The Petrie 

conjecture [20] asks whether the total  Pontrjagin class of M 2m is standard, i.e., whether 

it is given by (1+x2) re+l, where x c H 2 ( M ,  Z) is a generator. Dessai and Wilking [5] show 

that  the conclusion of the Petrie conjecture holds if M 2"~ supports an effective smooth 

action by a d-dimensional torus with d >  1 (m+1) .  More precisely, it is shown tha t  such 

an action is linear in the sense of Petrie [19]. 

In the proof of Theorem 2 we will only recover the cohomology ring of the manifold. 

The recovery of the homeomorphism type of H P  k is a consequence of the following 

topological rigidity result which we prove in w 

THEOREM 3. Let M 4k be a simply-connected compact manifold with the integral 

cohomology ring of H P  k. Suppose that a d-dimensional torus T d acts smoothly and 

effectively on M. Then d<~k+l and if d = k + l ,  then M is homeomorphic to H P  k. 

In view of the above-quoted theorem of Grove and Searle, it is natural  to ask whether 

one can recover the f lmdamental  group of a positively curved manifold with a large 

symmet ry  rank. This actually has been answered by Rong [21]. 

THEOREM 4 (Rong). I f  M s is a positively curved compact manifold supporting an 

effective isometric action of a d-dimensional torus with d ~  l n + 1 ,  then 7h (M)  is cyclic. 

Actually Rong only proved this under the slightly stronger assumption d ~> �88 (n+6) .  

As a very simple application of Theorem 2.1 we improve this result to the present version 

in w 

It  is easy to see that  for n--=3 mod 4 the (improved) lower bound for d is optimal. 

In fact let F he a noneyclic finite subgroup of S 3. Then there is a free action of F on 

S 4"~+3 such that  S p ( m + l )  acts by isometries on the quotient S 4 m + a / F .  

Grove (1991) proposed to classify manifolds of positive sectional curvature with a 

large isometry group. The charm of this proposal is tha t  everyone who starts  to work 

on this problem is himself in charge of what ' large' means and what classify means. One 

can relax the assumption if one gets new ideas. One potential  hope could be that  if 

one understands the obstructions for positively curved manifolds with a ' large' amount  

of symmetry,  one may get an idea for a general obstruction. However, the main hope 

of Grove's program is that  the process of relaxing the assumptions should lead toward 

constructing new examples. Of course, Theorem 2 fits very well in this context. Following 

Grove's proposal for finding examples one should t ry  and relax the condition further until 

one arrives at structure results for potential  new examples. The following theorem is a 

modest  a t t empt  in that  direction. 
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THEOREM 5. Let M n be a simply-connected n-dimensional manifold of positive sec- 

tional curvature, n~>6000, and let 

d~> ~ n + l .  

Suppose that there is an effective isometric action of a d-dimensional torus T d 

on M n. Then one of the following statements holds: 

(a) M is homotopy equivalent to S ~ or C P  ~/2. 

(b) M has the same integral cohomology ring as H P  n/4. 

(c) n - 2  rood 4 and with respect to any field F the cohomology ring of M is iso- 

morphic to H*(CPn/2 ,  F)  or H * ( S 2 •  

(d) n-=3 rood 4 and with respect to any field F the cohomology ring of M is either 

given by H*(Sn, F)  or by H * ( S 3 f H p  (n-3)/4, F).  

It  is interesting to notice tha t  any S3-bundle over H P (  ~-3)/4 has a cohomology ring 

satisfying (d), and any S2-bundle over H P  (~-2)/a has a cohomology ring satisfying (c). 

However, it is the author 's  belief that  it is a little premature  to look among S2-bundles 

over H P  '~ for positively curved metrics with a symmetry  rank as large as in Theorem 5. 

In fact it seems more likely that  a bet ter  understanding of the relations between the 

topology of the manifold and the topology of fixed-point sets could actually help to rule 

out possibilities (c) and (d). 

The fact that  we are only able to prove Theorem 5 in dimensions above 6000 is 

related to a problem in error-correcting code theory, see w The s ta tement  needed from 

the theory of error-correcting codes does not hold in low dimensions, it is however not 

clear whether 6000 is a good estimate, see also Remark  3.3. As a consequence in low 

dimensions the analogous assumption on the symmetry  rank does not ensure the existence 

of totally geodesic submanifolds of sufficiently small codimension. This in turn allows 

potentially different phenomena to occur. A typical problem is for example that  one can 

only recover the first third of the cohomology ring of a manifold, and that  one can not 

say much more. 

The rough idea for the proofs of Theorem 2 and Theorem 5 is as follows. Consider 

an involution in T d fixing a submanifold N C  M ~ of the smallest possible codimension k. 

Suppose that  k ~ - ( n + 3 ) .  Then by Theorem 1 the cohomology ring of N determines 

the cohomology ring of M. Since the torus acts on N, one may hope that  the induction 

hypothesis is satisfied for N, in which case one would be done. 

There are basically three major  problems that  can occur in this line of argument.  

The first problem is the induction start.  In the proof of Theorem 2 we first establish it in 

the first four dimensions, see w In the case of Theorem 5 we actually prove a slightly 

more general theorem for all dimensions involving an additional hypothesis, see w The 

additional hypothesis needed becomes redundant in large dimensions. 
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The second problem is that  the submanifold N may not satisfy the induction hy- 

pothesis. Under the hypothesis of Theorem 2 the second problem can essentially only 

occur if N has codimension 2 and is fixed by an Sl-subaction. In this case we can ac- 

tually use a result of Grove and SearIe [14] to conclude that  M is diffeomorphie to S ~ 

or C P  n/2. However, under the hypothesis of Theorem 5 this could for example happen 

if N has codimension 4 and is fixed by an SLsubaction.  This is the situation we analyze 

in w using w In w which has a more topological flavor, we study (Z/pZ)-act ions  with 

connected fixed-point sets. 

The third problem is tha t  the hypothesis on the symmetry  rank of M may not 

ensure a fixed-point set of codimension ~< �88 We resolve it by establishing first 

the existence of a fixed-point set of codimension <~�88 see w We then use the 

induction hypothesis and Theorem 1 to recover the cohomology of M up to dimension 

[�89 1 -1  with 1 l<,.gd. Namely we show tha t  M is either ([�89 or the 

cohomology ring tip to dimension [ �89  is given by the cohomology ring of C P  *~/2. 

It  is not so hard to reduce the problem to the case of a ( [ �89  manifold. 

Fit t ing precisely this situation we prove in w a topological result that  allows to recover 

the underlying manifold as a sphere, provided one has sufficiently good control over fixed- 

point sets. More precisely Theorem 4.1 says that  if in this situation the fixed-point set 

of any element of finite prime order p in T d is given by a (Z/pZ)-homology sphere then 

the underlying manifold is a homology sphere. 

Acknowledgement. I would like to thank Karsten Grove, Julius Shaneson and Wolf- 

gang Ziller for many useful discussions. I am also indebted to the referees for several 

useful comments.  

2. P r o o f  o f  t h e  c o n n e c t e d n e s s  l e m m a  

In this section we prove Theorem 1. As mentioned before we actually prove the following 

refinement. 

THEOREM 2.1. (Connectedness lemma.) Let M n be a compact Riemannian mani- 

fold with positive sectional curvature. 

(a) Suppose that N n - ~ c M n  is a compact totally geodesic embedded submanifold of 

codimension k. Then the inclusion map Nn-~-+ M n is ( n - 2 k  + l )-connected. If there is 

a Lie group G acting isometrically on M '~ and fixing N n-k pointwise, then the inclusion 

map is ( n - 2 k  + l +~(G) )-connected, where 5(G) is the dimension of the principal orbit. 

(b) Suppose that N~ -kl, N~ -k2 c M n are two compact totally geodesic embedded sub- 

manifolds, kl <,k2, kl +k2 <~n. Then the intersection N ~ - k I N N ~  -k2 is a totally geodesic 
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embedded submanifold as well, and the inclusion 

is ( n -  kl - k2) - connected. 

Part  (b) of Theorem 2.1 says in particular that  N ~ - k l n N ~  ~ k~ is not empty, which 

is exactly the content of Frankel's theorem. 

Theorem 2.1 turns out to be a very powerful tool in the analysis of group actions on 

positively curved manifolds. In fact by combining the theorem with the following lemma, 

one sees that  a totally geodesic submanifold of low codimension in a positively curved 

manifold has immediate consequences for the cohomology ring. 

LEMMA 2.2. Let M ~ be a closed differentiable oriented manifold, and let N n-k  be 

an embedded compact oriented submanifold without boundary. Suppose that the inclusion 

~: N ~ - k - + M  ~ is ( n - k - l ) - c o n n e c t e d  and n - k - 2 l > O .  Let [N] E H n - k ( M ,  Z) be the im- 

age of the fundamental class of N in H . (M,  Z), and let eEHk(M,  Z) be its Poincard 

dual. Then the homomorphism 

Oe: Hi(M,  Z) -4 Hi+k(M, Z) 

is surjective for l< .~ i<n-k - I  and injective for l < i ~ n - k - l .  

Recall that  the pullback of e to Hk(N,  Z) is the Euler class of the normal bundle of 

N in M. Notice that  in the case of a simply-connected manifold M the submanifold N 

is simply-connected as well, and hence orientable. 

Remark 2.3. (a) Fang, Mendonqa and Rong [7] observed an analogy between The- 

orem 2.1 and similar theorems in algebraic geometry. They show that  a totally geodesic 

immersed submanifold of a simply-connected positively curved n-maafifold of codimen- 

sion less than 1 ~n is automatically embedded. All other theorems for totally geodesic 

submanifolds in that  paper could have been deduced from Theorem 2.1 by elementary 

topological means. However, in order to exhibit the analogy bet ter  they give proofs using 

the general framework set up in [11]. 

(b) It is interesting to notice that  Theorem 2.1 fails completely for manifolds with 

positive sectional curvature almost everywhere. In fact in [25] it was shown that  the 

projective tangent bundles P R T R P  ~, P c T C P  ~ and P H T H P  ~ of R P  ~, C P  ~ and H P  ~ 

admit metrics with positive sectional curvature on open and dense sets of points. Fur- 

thermore with respect to these metrics all natural inclusions remain totally geodesic era- 

beddings. However, the inclusion map P R T R P ' ~ - - > P a T R P  r~+l is only (n-1)-connected.  

Turning the problem around this feature partly explains the size of the set of points at 

which zero-curvature planes occur. 
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Proof of Theorem 2.1. (a) We essentially use the same setup as in [22]. Consider 

the space f~NM of piecewise smooth paths in M start ing and ending in N ~ k which are 

parameterized on the unit interval. As usual we define the energy of a pa th  c by 

1/01 E(c) = ~ tld(t)H2 dt. 

The set of paths having energy ~< C may be approximated by a finite-dimensional manifold 

of broken geodesics. Hence we can explore the topology of tha t  space using Morse theory. 

Notice that  N ~-k embeds naturally into f~NM as the set of point paths. Clearly 

N n - k = E  1(0). We claim that  the inclusion 

N n-k --+ f~NM 

is (n-- 2k)-connected. 

The critical points of the energy function are geodesics that  s tar t  and end perpen- 

dicularly to N. We can est imate the index of such a geodesic c from below as follows: 

Notice that  there are at least n - 2 k +  1 linearly independent normal parallel vector fields 

along e that  s tart  and end tangentially to N. Hence we deduce that  the index of c is at 

least n - 2 k + l .  Notice that  E is a Morse-Bot t  function in a neighborhood of E - l ( 0 ) .  

It  is then well known that  one can find a Morse-Bot t  function E ~ on f~NM (or more 

precisely on a finite-dimensional approximation of E - I ( [ 0 ,  C])) that  is C~-close  to E 

such that  E~=E in a neighborhood of E - l ( 0 )  and any critical point p E ~ N M \ N  of E ~ 

is nondegenerate and has index >~n-2k+l. 

By the usual Morse theory argument it follows that  up to homotopy f~NM can be 

obtained from N ~-k by attaching cells of dimension > / n - 2 k +  1. 

It  follows that  the inclusion N n - k ~ N M  is (n -2k) -connec ted .  Let D i be the 

closed disk with boundary OD i. Any map  

induces naturally a map 

(D i, OD i) --+ (M, N) 

(D ~-~, OD i-1 ) ~ (f~NM, N),  

and vice versa. Hence the relative homotopy group 7ri(M,N) satisfies I h ( M , N ) ~  
~ri I(~NM, N). Consequently, ~ri(M, N )  =0,  i=1 ,  ..., n - 2 k + l .  By the exact homotopy 

sequence for a pair it follows tha t  the inclusion map N---~M is ( n - 2 k + l ) - c o n n e c t e d .  

Suppose now that  a Lie group G acts isometrically on M leaving N pointwise fixed. 

In tha t  case we can improve the lower bound for the index of a critical point c to 

n-2k+l+5(G)  as follows. Roughly speaking we just lift the corresponding index esti- 

mate  from the Alexandrov space M/G to M. For practical reasons it is convenient to stick 
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with manifolds. Choose a fixed biinvariant metric (- ,- ) on G. Consider the diagonal free 

action of G on M x  G, and for A>0 put (M, gx) :=  (M, g) x (G, A( . ,-  )) /G where ga denotes 

the induced orbit metric. Clearly, the sectional curvature of (M, ga) is positive as well. 

I t  is elementary to check that  the geodesic c: [0, 1]--+ (M, g) is a geodesic of length lid(0)]lg 

with respect to the metric 9a as well. In fact (c(t),e)CMxG is a horizontal geodesic. 

Furthermore the index of cc~NM with respect to the metric g is equal to the index of 

c with respect to the metric g~. 

We consider first the case tha t  for some t, the isotropy group of c(t) is trivial. Let 

X is a piecewise smooth vector field along c with X(O)E T~(o)N, I 
W : =  X X(1)CTco)N ,X(t)• fo r tE [0 ,1 ]  J" 

Clearly dim(W)>~ n - 2 k +  1 +~(G). Another characterization of W can be given as follows. 

Let 0 = t 0 < . . . < t ~ = l  be precisely those times at which the point c(t) has a nontrivial 

isotropy group. A continuous vector field X along c with X (0) C To(0) N and X (1) C Tc(o) N 
is in W if and only if the following holds: the vector field X[(ti,ti+l) is horizontal with 

respect to the submersion pr: M\Sing--+(M\Sing)/G, and its projection pr,~ 
is a parallel vector field along the geodesic procl(t,t~+l). Here S i n g C M  denotes the set 

of all points which have a nontrivial isotropy group. Since the metric 9~ has the same 

horizontal distribution as the metric g, this characterization implies that  W does not 

depend on the choice of A for the underlying metric ga. 

Furthermore, it is easy to see that  IIx'(t)]]g~ converges monotonically to 0 as A-+0, 

XCW. The sectional curvature of the plane spanned by X(t) and ~(t) with respect to the 

metric gx increases as A--+0. Clearly this implies that  the index form of c corresponding 

to the metric gx is negative definite on W for A sufficiently small. Therefore index(c)/> 

d im(W) ~ > n - 2 k +  1+6(G). 

If c(t) has a n0ntrivial isotropy group for all t, then there is a subgroup H C G such 

that  c lies in a component  F of the fixed-point set Fix(H). Let k2 be the codimension 

of F in M. The codimension of N in F is then given by k - k 2 ,  and by induction on the 

dimension n we can assume that  the index of c is ~>n+k2 - 2 k + l + 5 ( K ) ,  where K denotes 

the normalizer of H in G and (~(K) is the dimension of a principal K-orbit in F. Evidently 

(~(K) ~>5(G)-k2. Hence the result follows. 

Next we want to prove s ta tement  (b). First notice that  N1N N2 is indeed a totally 

geodesic submanifold. I t  is however not clear that  NtNN2 is connected and that  all 

connected components have the same dimension. Consider the space ~N~,N2M of all 

paths start ing in N1 and ending in N2. Again it is not hard to check that  the energy 

function E is a Morse Bott  fimction in a neighborhood of E-X(O)=N1ON2. Similarly 

as above we can estimate the index of any critical point from below by n-k l - k2+l .  
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As above we use Morse theory to conclude that  the inclusion map 

N1AN2 -+ f~N1,N2M is (n-kx-k2)-connected. 

Notice that  the space f~N1,N2M fibers over N1 x 3/2 with homotopy fiber being the based 

loop space of M. 

We also consider the path space f~M, N2M of all paths starting in M and ending 

in N2. Since the inclusion NI--+ M is ( n - 2 k l  + 1)-connected, it follows that  the inclusion 

VtN~,N2M ~ftM, N~M is (n-  2kl + l)-connected. 
Combining the two statements we find that  the inclusion map NIAN2-+f~M, N2M is 

(n-- kl - k2)-connected. Clearly ftM, N2 M is canonically homotopy equivalent to N2, and 

thus the result follows. [] 

Remark 2.4. Notice that  the result carries over in parts to manifolds with positive 

/-Ricci curvature. In fact we only have to change the conclusion as follows: (a) the map 

is then (n-2k+2-l)-connected, and (b) the map is then (n-kx-k2+l-l)-connected. 
This is straightforward to check, as the only time where the lower curvature bound enters 

the proof is in the estimates of the indices of geodesics. 

2.1.  P r o o f  o f  L e m m a  2.2 

The lemma follows from the fact that  the map Ue: Hi(M, Z)-+Hi+k(M, Z) is the com- 

position of the four maps 

Hi(M, Z) ~ Hi(N, Z) --+ Hn-k-i(N, Z) --+ Hn-~-i(M, Z) --~ Hi+k(M, Z), 

w~--> L* w, x~-+ xN[N], y~--~ ~.y, zN[MJ ~ z, 

where the first map is the pullback, the second map is the Poincar5 duality of N, the 

third map is the push forward, and the last map is the Poincar6 duality of M. The 

second map and the last map are isomorphisms for all i. Since the inclusion N-+M is 

(n-k-l)-connected, the first map is an isomorphism for i < n - k - l ,  and it is injective 

for i=n-k-1 .  The third map is an isomorphism for l<i, and surjective for i=l. 

3. U p p e r  b o u n d s  on  e r r o r - c o r r e c t i n g  co d es  

Put  Z2 :=Z/2Z .  Consider the group Z~ ~ with the Hamming distance 

dist(a, b) = ord({ilai r bi}) for a, be  Z~. 
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A (binary) error-correcting code C of length n and distance b is a subset of Z~ such 

that dist(x, y)~>b for all z, yEC with xT@. The code is called linear if C is a subgroup 

of Z~. The number A(n, b) is defined as the optimal bound of the order of error-correcting 

codes of length n and distance b. 

In our applications later on C will be a linear code. In fact C will be obtained as 

follows. Consider a manifold of positive sectional curvature M ~ with an isometric action 

of an /-dimensional torus T 1. It is well known that if n is even, then T z has a fixed 

point, and if n is odd-dimensional, then T l has an isotropy group of codimension 1, see 

Lemma 6.1. Assume for simplicity that T z itself has a fixed point p, and consider the 

isotropy representation 

~: T z ~ O ( T ~ M " ) .  

If n is odd, then there is a 1-dimensional trivial subrepresentation, and the orthogonal 

complement of this 1-dimensional subspaee can be identified with C [~/2I such that 

induces a representation 

~5: T l --~ D C U ( [ l n ] )  C S O ( n -  1), 

where DCU([�89 is the maximal torus of diagonal matrices in U([�89 If n is even 

we can identify TpM itself with C In/2] such that 9 induces a representation ~ as above. 

In order to find fixed-point sets of low codimension, one proceeds as follows. Consider 

the group of involutions L c T  1 and H C D in T d and D, respectively. Notice that H can be 

canonically identified with Z[2 '~/21 written multiplicatively. Furthermore L~Z t. Of course 

t~ induces an embedding ~: L--+Z~ ~/2]. If for any involution tEL the fixed-point set Fix(t) 

has codimension />2k, then C:----Q(L) is an error-correcting code of length [in] and 

distance k. Therefore A([in],k)>/2 I. Vice versa if we can establish A([in],k-Fl) <2 l, 

then there must be a fixed-point set of eodimension ~<2k. 

Given an error-correcting code C of length n and distance b one can estimate its size 

as follows. The metric balls of distance less than �89 around each point in C are pairwise 

disjoint. On the other hand such a ball has 

i 0 

elements. This gives the well-known estimate 

A(n, b) 
2~ 

r l 2o 



TORUS ACTIONS AND POSITIVE CURVATURE 269 

see [17]. Often it is useful to consider a refinement of this estimate. A code CwCZ~ of 

length n and distance b is said to be of constant weight w if dist(x, 0 ) = w  for all x~Cw. 
In other words, Cw is a subset of the w-distance sphere around 0. The optimal bound 

on the order of C~o is denoted by A(n, b, w). One can use weighted codes to establish 

different estimates on A(n, b). Let C be again a code of length n and distance b. Consider 

around each point in C the distance sphere of radius w in Z~. It  is straightforward to 

Z ~ A(n, b, w) of these distance spheres. This check tha t  an element x E 2 lies in at most 

gives another well-known result, 

2n.A(n, b, w) 
A(n, b) <~ 

(;) 
The following proposition is based on this inequality combined with the estimate 

A(n,b,w)<~n+l for w < � 8 9  n2v/-n-sc~-2b). The author was not able to find the latter 

inequality in the literature, which is probably due to the fact that  he is not very familiar 

with it. 

PROPOSITION 3.1. Suppose that n and b are positive integers with b< �89 Let w be 

1 ( n - ~ ) + l  Then the smallest integer less than ~ 

n - - w  w 

3 1 (n-w  a +~log 2 ( n ) + ~ l o g  2\  w ] + 2 "  

Pro@ Put  w 0 = w - 1 .  We plan to prove A(n,b, wo)<<.n+l. Let S c Z ~  be a subset 

of elements with dist(x, 0)=w0 for all xES  and dist(x, y)~>b for xCy, x, yCS. Therefore 

each element x = (x 1,..., x,,)E S has precisely w entries which are 1, and the other elements 

are 0. Unlike before we use here the additive notation of Z2. Consider a , / 3>0  with 

wa2+(n-wo)/32=1 and the map f :  S--+S n 1, x~-+(al, ..., an), where ai=a if x i = l ,  and 

a i = - / 3  if x i=0 .  Notice tha t  the inner product  between two elements f (x) ,  f(y) in R n 

satisfies 

( f (x) ,  f(y)} ~< ( n - w o -  �89 (wo-  �89 2 (1) 

for all x, yES with xT@. If the right-hand side of this inequality is negative, then the 

1 Tha t  implies that  the order angle between any two elements in f (S)  is larger than ~zr. 

of S is bounded by n + l .  Notice that  we can choose a,/3 such that  the right-hand side 

of (1) is negative if and only if the discrindnant is positive, 

0 < b 2 - 4 ( n  - w 0 - 1 b ) ( w 0 - 1 b )  = 2nb-4nwo+4W~, 
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which is equivalent to 

Thus 

A(~, b) < 

(n- 4~-2~b). wo<~ 

2hA(n, b, Wo) 2 ~ ( n + l ) ( n - w + l )  
<. 

Applying the Stirling formula for w)2 ,  n ) 9  gives 

A(~, b) < 2 n. n~ 2Z%-~. ~ .  V~2~(~-~). (,~-w) '~-~ 
W 2 V / 2 ~  n n 

• e1 /12(n-1)+1/12(w-1)+1/12(n-w- l )  

<.n3/2 2n ( ~ _ ) ~ - l / 2 . - ~ - w , ~ - w §  - -  [%-=) 

If w = l  or n<9 one can check the inequality by more direct means, but in this range 

the inequality is useless anyway. 

The following corollary is all we need from the theory of error-correcting codes for 

the remainder of the paper. 

COROLLARY 3.2. Let 0: Td-+O(n) be a representation of a d-dimensional torus. 

(a) I f  d>~ ~n and n~>6000, then there is an involution cE T d such that the multiplicity 

of the cigenvalue - 1  in, g(~) is at most 7 n .  

(b) I f  n = n 0 - 2 k  with 2 k ~ 4 n 0  and d~>max{~n0+12, ~n0-1}, then there is an 

involution ~ET d such that the multiplicity of the eigenvalue 1 in O(L) is at least 1 ~no. 
1 (c) I f  d~>max{~n+12, gn}, then there is an involution ~eT d such that the multi- 

plicity of the eigenvalue - 1  in ~(~) is at most ~ 5 n .  

(d) Suppose that n~>ll, nr  and d > ~ � 8 8 1 8 9  Then there is an invo- 

lution ~ET d such that the multiplicity of the eigenvalue - 1  in ~(L) is at most ~(5n+13).  

Proof. Of course we may assume that there is no involution in the kernel of ~. 

Therefore n>~ 2d. 

(a) Put m:=[ ln ] .  Let b be the smallest integer ~ 4 m + 1 .  In particular b > 7 m .  

As explained at the beginning of this section it suffices to show A(m,  b)<2 "~/3 ~2 n/6 <~2 g. 

~ ( m - , / ~ 2 - 2 , ~ b ) + X .  Thus w~> l m ( 2 - V ~ ) .  Let w be the smallest integer less than 

Since the right-hand side in the inequality of Proposition 3.1 is decreasing in w, we obtain 

log~ (A(m, b)) < 0.325973 m +  3 log2 (m) +2.6074. 
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The right-hand side is less than 1 1 gm<<.gn for m~>2700. 

(b) Put  k0:= [~n0] .  So k<~ko. It suffices to consider the ease of k=ko. Other- 

wise just consider an (n0-2k0)-dimensional invariant subspace and apply the special 

statement k=ko to the induced representation on this subspace. 

Notice that n = n o - 2 [ S n o  ] implies n<~no-~no+2 and n o )  24 i7 ( n - 2 ) .  Therefore 

d >~ max {-~n0 + 12, tgn0 - 1} ~> m a x { ~  ( n -  2) + 12, ~ ( n -  2 ) -  1}. 

Furthermore it suffices to find an involution ~ E T d such that the multiplicity of the eigen- 
1 value - 1 is at most n -  5 no ~> ~ n. Put  m = [�89 Let b be the smallest integer ~< ~ m +  1. 

As explained at the beginning of this section it suffices to show A(m, b) < 2 d. 
Let w be the smallest integer less than �89 ( m - v / r n  2 - 2 m b ) + 1 .  Thus we have w~> 

�89  Since the right-hand side in the inequality of Proposition 3.1 is de- 

creasing in w, we obtain 

log 2 (A (m, b)) < 0.321774 m + ~ log 2 (m) + 2.6. 

The right-hand side is less than 4 ( n - 2 ) - 1  for m~>91, while for rn~<90 it is less than 

--a ( n - 2 ) + 1 2 .  17 

(c) is proved similarly. 

(d) Put  m :=  [�89 Notice that  d/> �89 1). Let b be the smallest integer ~< ~ r n +  aa 

In particular b>~ ~ ( 5 m + 7 ) .  As before it suffices to show A(m, b)< 2 a. 
Put  h:= [ �89 >1 ~ (5m-25) .  Notice that h>~ ~ r n  for m~>25. Furthermore 

2 "~ 15.2 m 
A(m, b) <<. <~ - - .  

By the Stirling formula, 

log2(A(m,b)) ~< m 1+ log 2 + log 2 
m 

+ log2 (e) 1 ( ~ _  1 + ml---~_ 1 + m_-~_  1 )  

+51og2[ llog (m/ 
~< 0.4335 m -  0.64 + �89 log 2 (m), 

which is ~<�89 for m~>25. For rn~<24 one can use tables on bounds of error- 

correcting codes to get the desired result, see [17]. In some instances one has to use the 

fact that the codes are linear. [] 
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Remark 3.3: In the literature estimates of the quantity 

R(5) := lira sup ! log2(A( , [Sn])) 

for 5~ (0, �89 are called asymptot ic  bounds of A(n, d). The best known bound for R(g) 

is due to McEliece, Rodemich, Rumsey and Welch [16]. Their est imate relies on linear 

programming and on some inequalities involving Krantchouk and Hahn polynomials. 

One can use their method in order to get estimates for A(n, d). In fact this only requires 

to do the bookkeeping in a few rather  elementary estimates. It  is conceivable that  one 

could lower the bound 6000 in Theorem 5 with this approach. 

4. A recogni t ion  th eo rem for the  sphere 

Let p be a prime number and put  as before Z p : = Z / p Z .  A well-known theorem of Smith 

says that  for a Zp-homology sphere any diffeomorphism of order p has either an empty  

fixed-point set or the fixed-point set is also a Zp-homology sphere, see [4, Chapter  III ,  

Theorem 5.1]. The following theorem says tha t  under very special circumstances one can 

conclude the other way around: if the topology of the singular set of a torus action is 

sufficiently simple, then the manifold has to be a sphere. 

THEOREM 4.1. Let M "~ be a compact ( [ �89  manifold. Suppose that a 

d-dimensional torus T d acts smoothly and effectively on M. Furthermore we assume that 

either d~>2k+2 or  T d has a fixed point and d>~2k- l+n-2[ �89  Finally, we assume 

for any element (TCT d o f  prime order p that the fixed-point set Fix(a)  is either empty 

or Fix(a)  is a Zp-homology sphere. 

Then M is a homology sphere. 

It  should be understood that  Fix(a)  being a homology sphere implies that  Fix(a)  

is connected unless it consists of two isolated points. It  is crucial for the proof tha t  the 

range of the unknown Betti  numbers of M is smaller than  the dimension of the torus. 

Proof. It  is convenient to fix a Riemannian metric on M invariant under the action 

of T d. We first reduce the problem to the case where T d has a fixed point. So assume 

d~>2k+2. Notice first that  the torus can not act freely on M ". Otherwise N : = M n / T  d 

would be a compact  (n -d ) -d imens iona l  manifold. Since M is highly connected, it follows 

that  the Betti  numbers of N satisfy 

b2i(N,Q)=b2i(BTd, Q ) = ( i + ~  for2i<~[�89 

b2i+l(N,Q)=b2i+l(BTd, Q)=O for 2 i + 1 ~  [ � 89  
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Finally if h=[�89 is even, then 

( � 8 9  
bh(N,Q)>~ \ d-1  " 

Since [ � 8 9 1 8 9  this is a contradiction to the Poinca% duality of N. 

Hence T d acts not freely. Let o ' E T  d be an element of prime order for which its 

fixed-point set Fix(a)  is not empty. Since Fix(a)  is a homology sphere, it follows tha t  

T d has a fixed point if n is even or that  T d has a circle orbit if n is odd. In the latter 

case we pass from T d to a subtorus of codimension 1 with a nonempty fixed-point set. 

Subsequently we can and do assume that  d>~ 2 k - 1  +n-2  [ ln]  and T d has a fixed point. 

For a connected subgroup H C T d we consider the space M x H E H. Notice that  this 

space fibers over the classifying space B H. Furthermore since the action of H on M has 

a fixed point, the fibration has a section. Hence the induced homomorphism 

~: Hi(BH, Zp) --+ Hi(Mx H EH, Zp) (2) 

is injeetive. Since M is ( [ �89  L is an isomorphism for i<~[�89 
Next we plan to show that  c is an isomorphism for i = n - 2 ,  n - 1 .  Consider all 

elements h l , . . . , h iEH of order p. By hypothesis the fixed-point set Fi of hi is a Zp- 

homology sphere. Put  
1 

f : = U F i .  
i --1 

Notice that  the intersection FilA...AFiq is given by the fixed-point set of the group 

{h2,...,hiq} with respect to the induced action of H on Fil. By a theorem of Smith 

I~i~N ... AFiq is a Zp-homology sphere as well. 

Let xoEF be a fixed point of H, and let Br(xo) be a ball of radius r around x0, 

where r is less than the injeetivity radius of the compact  manifold M. Notice that  the 

induced action of H on B~.(x0) is linear. 

Put  Fq=F\(Br(xo)AF).  Notice tha t  F ~ is a finite union of Zp-homology disks, 

and that  any subfamily of those disks intersect in a homology disk as well. From the 

Mayer-Vietoris sequence it follows that  Hi(F ~, Z p ) = 0  for i>0 .  

Let A be a closed neighborhood of F ~ in M \ B r ( x 0 )  such that  the inclusion F~-+A 
is a homotopy equivalence and such that  the boundary 0.4 is a topological embedded 

submanifold. By construction H* (OA, Zp) ~ H *  (S n- l ,  Zp). 

Using Mayer-Vietoris we find that  the natural  map  

Hi(MxHEH, Zp) --~ Hi((M\A) xHEH, Zp) 

is an isomorphism for i<~n-1. 
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For any point x in M\(AUBr(xo)) the isotropy group of x has no p-torsion. 

This implies for any H-invariant submanifold BC_M\(AUBr(xo)) that  BxHEH has 

finite Zp-homology. In fact H~(BxHEH, Zp)=0  for i > n - d i m ( H ) - l .  

Using Mayer-Vietoris we deduce that  

H i ( ( M \ A ) x . E H ,  Zp))--~Hi(Br(xo)xHEH,ZB)~-Hi(BH,Zp) (3) 

is an isomorphism for i>n. Notice that  A has the Zp-homology of a point. Using 

Mayer Vietoris it follows that  Hi(M\A ,  Zp)=0 for i~> [ l ( n + l ) ]  +k.  From this it fol- 

lows easily that  H* ((M \ A ) •  H E H, Zp) is injective as a B H-module in dimensions above 

[ l ( n + l ) ] + k ,  i.e., for i>~[l(n+l)]+k, xEHi ( (M\A) •  Zp), yEH*(BH, Zp) tile 

quantity L(y)Ux only vanishes if y = 0  or x=O. Therefore the map from (3) has to be an 

isomorphism for i~> [ �89 +k.  Hence bi(BH, Zp)=bi(MxHEH, Zp) for i=n-1 ,  n -2 .  

Consequently the monomorphism ~ in equation (2) is an isomorphism for i=n-2 ,  n -1 .  

Next we choose a chain of connected subgroups {e} = H0 C H 1C... C H d = Td such that  

Hi/Hi 1~S l. We claim that  the map 

~j: Hi(BHj, Zp) -+ Hi(M•162 Zp) (4) 

is an isomorphism for [ � 89  +k-j<~i<~n-1. 

By hypothesis the statement is true for j : 0 ,  and we have just seen that  it is true for 

i=n-2 ,  n - I  and arbitrary j .  Suppose, on the contrary, that  the statement is false for 

some (j, i). We may assume that  j > 0  is as small as possible and that  i < n - 2  is as large 

as possible. Using the Gysin sequence of the fibration $1-+ M • Hj 1E Hi-1--+M • Hj E Hj 
we deduce that  the statement is false for (j, i+2)  as well a contradiction. 

Applying the above claim for H = T  d, we see that  

L: Hi( BT  d, Zp) -+ Hi( M xHj ET  d, Zp) 

1 (1~ 1 is an isomorphism for [7 -1 ) ]  +k-d<.i<.n-1.  Since M is ( [ 7 ( n - 1 ) ] - k ) - c o n n e e t e d ,  

it follows that  ~ is an isomorphism for i~< [�89 - k .  In summary ~ is an isomorphism for 

i<~n-1, but that  proves that  M is (n-1)-connected.  [] 

5. Cycl ic  group act ions  wi th  c o n n e c t e d  f ixed-point  sets 

THEOREM 5.1. Let (M~,g) be a simply-connected compact Riemannian manifold of 

positive sectional curvature, and let p be a prime. Suppose that the cyclic group Zp acts 

on M ~ by isometr'ies, and assume that the fixed-point set N is a connected submanifold 

of codimension k. Then 

Hi(M,  Z p ) = 0  for k<. i< .n-2k+l .  

For the proof we need the following lemma. 
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LEMMA 5.2. Let Zp and M ~ be as in Theorem 5.1. Consider the Borel construction 

M x zpEZp. The natural map Hi ( M x z~ EZp, Z p ) - + H i ( M ,  Zp) is surjective for i << n -  2k 

and for i>~2k-1. 

Proof. Throughout  the proof we use cohomology with Zp-coefficients. The inclusion 

map N--+M is ( n - 2 k + l ) - c o n n e c t e d ,  see Theorem 2.1. The same holds for the map  

N x zp E Zp -+ M x z,  E Zp. Thus H i ( M x zp E Zp) -+ H i ( N x z~ E Zp) is an isomorphism for 

i<~n-2k. Clearly N x z p E Z p = N X B Z p .  Combining these statements we see that  the 

map H i ( M x z E Z p ) - + H i ( N )  is smjective for i<<.n-2k. Finally this implies the lemma 

for i <. n -  2k. 

Consider a tubular  neighborhood U of N, and put M ' : = M \ U .  Notice that  

H i ( M ~ ) = 0  for i>>.2k-1. Using the exact cohomology sequence of the pair ( M , M  t) we 

see that  the natural  map Hi(M, M ~)-+H i (M) is surjective for i~> 2 k - 1 .  The result fol- 

lows now from the fact that  the natural  map  H i ( M x z ~ E Z w  M ' x z E Z p ) - + H i ( M ,  M')  

is surjective for all i, which can be easily deduced from the excision theorem. [] 

Proof of Theorem 5.1. Throughout  the proof we use cohomology with Zp-coeffi- 

cients. Notice that  Lemma 2.2 remains valid for Zp-coetficients We may assume that  

k ~< �89 ( n +  1). Consider the Borel construction M x z .  EZp  and the fibration 

M --+ M x z p E Z p  --+ BZp. 

Recall that  all Betti  nmnbers of BZp are equal to one. Combining Lemma 5.2 with the 

spectral  sequence of this fibration we see tha t  the Betti  numbers of M x zpEZp satisfy 

b (M• hi(M)+ hi(M) 
i<~n 2k i>max{n-2k ,2k-2}  

for j>n .  On the other hand it is well known that  this number is equal to the total  

Betti  number of F ix (Zp)=N,  see [4]. If  k~<l (n+2) ,  then this shows b(M)<<.b(N). It  is 

apparent  from Lemma 2.2 that  this can only occur if e=0,  and this in turn implies the 

theorem. If �88 �89  then 

hi(M)+  bi(M) >2 hi(M)=2 

Since equality must hold, we find b i ( M ) = 0  for � 89  In particular we 

find bk (M)= 0 .  As before, the theorem is now a consequence of Lemma 2.2. [] 

COROLLARY 5.3. Let M n be a compact manifold of positive sectional curvature. 

Suppose that S 1 acts effectively on M by isometrics. Suppose that the fixed-point set F 



276 B. \~'ILKING 

of S 1 has codimension k ~ < l ( n + l ) .  Moreover we assume that F is connected and that G 

acts freely on M \ F .  Then Hi (M n, Z ) = 0  for i = k - 1 ,  ..., n - 2 k + 2 .  

If we assume in addition that k ~ � 8 8  and that there is a totally geodesic sub- 

manifold N2 of codimension ~ � 8 9  intersecting N transversely, then M is a ho- 

mology sphere. 

Proof. Note tha t  every cyclic subgroup of prime order p in S 1 has F as its fixed- 

point set. Applying Theorem 5.1 gives Hk(M, Z ) = 0 .  By Theorem 2.1 the inclusion map  

F-+M is ( n -2k+2) -connec t ed ,  and the result follows from Lemma 2.2. 

In order to prove the addendum put n-k2=dim(N2).  We consider first the case 

of k2~k. Note that  N2AN--+N2 is (n-k2-k)-connected and d i m ( N 2 ~ N ) = n - k 2 - k .  

By Lemma 2.2 there is a cohomology class eEHk(Nu,Z) that  gives a period in the 

cohomology ring of N2. The pullback ~*e of e to Hk(N2AN, Z) is the Euler class of the 

normal bundle of N2 A N in N. The normal bundle of N2 A N in N is the pullback bundle 

of the normal bundle of N in M. The latter has a vanishing Euler class, as Hk(N, Z ) = 0 .  

Thus F e = 0 .  Since the inclusion map N2nN-~N2 is (n-k2-k)-connected, this implies 

e=0.  Hence N2 is a homology sphere. Since the inclusion map N2--+M is ( k - 2 ) -  

connected, it follows that  Hi(M, Z ) = 0  for i<~n-2k+2. 

If k2 < k, the inclusion map N2 A N--+ N is ( n -  k2 - k)-connected and dim (N2 A N )  = 

n - k 2 - k .  Similarly as above it follows from Lemma 2.2 that  N has a k2-periodic coho- 

mology ring. On the other hand we know that  H*(N,Z)=O for i = k - 1 , . . . , n - 2 k + l .  

Thus N is a homology sphere, and so is M. [] 

6. P r o o f  o f  T h e o r e m  2 

Our proof is by induction on the dimension n>~9, but as mentioned in the introduction 

the case of dimension 9 is due to Fang and Rong. For convenience we include a different 

proof for the case of dimension 9, since it is important  for the induction start.  I t  is also 

a first nice application of Theorem 2.1 and Theorem 4.1. 

Before treat ing the special cases we will say a few words about  the setup. Based on 

a lemma of Berger [3], Grove and Searle [13] proved the following lemma. 

LEMMA 6.1. Suppose that a torus T d acts effectively on a positively curved mani- 

fold M n. If the dimension n is even, then T d has a fixed point. If the dimension is odd, 

then there is a circle orbit. 

Notice that  at a circle orbit the isotropy group is (d-1)-dimensional .  Therefore in 

odd dimensions a suitable subtorus of codimension 1 has a fixed point. Corollary 3.2 (d) 
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guarantees involutions with fixed-point sets of codimension ~ ~6 (5n+13) for n~> 11 and 

n r  

Throughout  this section let (M, g) and T d be as in Theorem 2. We may assume that  

d = s y m r a n k ( M ,  g). We fix an involution ~0cT d such that  the fixed-point set Fix(s0) has 

a component No of minimal codimension. 

The torus T d acts on No. The minimality of the codimension implies that  t he  kernel 

of tha t  action is at most 1-dimensional. Therefore 

symrank(N0) ~> d -  1 

with equality only if No is fixed by a circle subaction S1cT d. 
We claim that  we can always assume codim(No)~>4. Suppose codim(N0)=2.  If  No 

is fixed by a subaction of a circle S I c T  d, then M is fixed-point homogeneous, i.e., the 

circle is acting on the unit normal sphere of its fixed-point set. By Grove and Searle [13] 

that  implies that  the simply-connected manifold M is diffeomorphic to S ~ or C P  n/2. 

If  No is not fixed by a circle, then symrank(N0)~>d~> �88  If n = 9 ,  10, then No has 

maximal  symmetry  rank and is diffeomorphic to a sphere or a complex projective space. 

If n~>11, then it follows that  No satisfies the induction hypothesis, and we conclude 

that  No has the cohomology ring of C P  (n-2)/2 or S n-2. Since the inclusion No-+M is 

(n-3) -connected ,  M has the corresponding cohomology ring. 

Therefore we have eod im(N0) )4 .  

6.1.  P r o o f  o f  T h e o r e m  2 in d i m e n s i o n s  9, 10, 11 a n d  12 

T 4 on M 9. Because symrank(N0)~>3, it follows that  d im(N0)=5  and No is fixed by a 

circle subaction. Thus the inclusion map  No-+M 9 is 3-connected. Therefore No is a 

positively curved simply-connected manifold of maximal  symmetry  rank. By Grove and 

Searle No is diffeomorphic to S 5. Consequently M 9 is 3-connected. 

By Lemma 6.1 there is a subtorus of codimension 1, T3C T a, that  has a fixed point q0, 

and we may assume qoEN 5. In order to recognize M 9 as a sphere we plan to apply 

Theorem 4.1 to M 9 equipped with the T3-subaction. 

It  suffices to prove tha t  for any element s c T  3 of prime order p the fixed-point set 

Fix(s) is a homotopy sphere. We first want to show that  Fix(s) is connected. Suppose 

that  there is a component FCFix(s) with qo~F. Choose a point qlEF that  lies on a 

circle orbit. The isotropy group of the T3-action at ql is 2-dimensional. In particular 

it contains three involutions. It  is now easy to see that  one of these involutions sl has a 

5-dimensional fixed-point component  N 5 with qlEN1. Notice that  N1 is diffeomorphic 

to a sphere, too. 
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By a theorem of Smith it follows that  Fix(tiN1) is a Zp-homology sphere. In partic- 

ular, NINFix(L) is connected, and hence qo~N1. In other words the fixed-point set of O 

is not connected either, and we might as well assume that  ~=~1 and F=N1. By Frankel 

N1 and No intersect. That  implies that  Fix(~]N0) is disconnected a contradiction. 

It remains to check that  the connected set F=F ix (c )  is a homotopy sphere. If 

d i m ( F ) = 5 ,  then this follows as for No. If d im (F )=3 ,  then the action of T 4 on F has 

2-dimensional kernel. Thus there is an involution with a 5-dimensional fixed-point set 

N25 such that  FcN~.  Since N~ is a homotopy sphere and F--+N 5 is 2-connected, it 

follows that  F is a homotopy sphere, too. 

T 4 on M 1~ Since symrank(N0)~>3, it follows that  No is 6-dimensional and fixed 

by a circle subaction S I c T  4. Furthermore it is easy to see that  the nonexistence of 

fixed-point sets of codimension 2 implies that  Fix(T 4) consists of isolated points. 

The inclusion map N6o--+M 1~ is 4-connected, and, in particular, N06 is simply- 

connected. Since No has maximal symmetry rank, it is either diffeomorphic to C P  3 

o r  8 6 . 

If N 6 is a sphere, then it follows that  M 1~ is 4-connected. Notice that  bh(M 1~ Q) 

is even. Thus bh(M 1~ Q ) r  would imply that  the Euler characteristic x ( M  1~ is non- 

positive. On the other hand by Lefschetz x(M)=x(Fix(T4)) a contradiction. 

In the case of N06~Cp 3 we can argue as follows: If the even number b5(M 1~ Q) 

is not zero, then x(M)<~4=x(N~). It is easy to find another manifold N2 G fixed by a 

different Sl-action. By Theorem 2.1 the intersection N26 N N06 is connected. In particular, 

x(N6NN~)<4. But that  implies that  T 4 has at least one fixed point outside of N06, and 

thus x ( M ) = x ( F i x ( T 4 ) )  >4  = x ( N 6 ) - - a  contradiction. 

Notice that  the natural map H * (M 1~ Z ) - + H * ( N  6, Z) is smjective, as its image 

contains the generator of H * ( N  6, Z). So the even cohomology groups of M 1~ coincide 

with the cohomology groups of C P  5. Since the Euler characteristics are equal, we con- 

clude that  the odd-dimensional cohomology groups of M 1~ coincide with the cohomology 

groups of C P  5 as well. But this shows that  the natural map Hi(M 1~ Z)--+Hi(N 6, Z) is 

an isomorphism for i~<6. This determines the ring structure of H*(M 1~ Z). 

T 4 on M n.  The first step is to show that  M is 3-connected. Suppose, on the 

contrary, that  M is not 3-connected. 

Consider a point q0 whose isotropy group Hqo has dimension ~> 3. It is straightforward 

to check that  there are at least two totally geodesic submanifolds N1, N2 of codimension 4 

fixed by involutions/~1, l"2 C Hqo- 
Since the inclusion map N~--+M is 4-connected, N[  is not a sphere. By Grove and 

Searle that  implies symrank(N~)~<3. Hence we can find a 1-dimensional subgroup of T 4 
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that  fixes Ni. Therefore the inclusion map N i - + M  is 5-connected. 

Furthermore it is clear that  N [  does not have totally geodesic submanifolds of eodi- 

mansion 2 either. In particular it follows that  2/1 and N2 intersect transversely. Thus 

NT1ANg-+N~ is 3-connected. In particular, N71~N7 z is a simply-connected 3-manifold 

and hence a homotopy sphere. It follows that  N1 7 is 2-connected. Let F be a field. Since 

the inclusion N~A N~-+N1 7 is 3-connected, it follows that  b3 (N1 7, F)  ~< 1. By Poiuear6 

duality b4(N~,F)=b3(N~, F)~<I and b5(N17, F ) = 0 .  Since the inclusion NT1--+M 11 is 5- 

connected, this leaves only two possibilities for the total Betti  number b(M 11, F),  namely 

b(M, F)  is either 2 or 6. 

Since N1 and N2 are fixed by circles and do not have totally geodesic submanifolds 

of codimension 2, we deduce that  [-[q0 is connected, dim([-lqo ) = 3  and the fixed-point set 

[-[qo through q0 is the circle T4*q0 . The isotropy representation of [-[q0 induces a complex 

structure on the normal space/Jp(T4*q0)  of the circle T4*q0 . We can identify up(T4.q0) 

with C 5 such that  the image of the isotropy representation is generated by 

a(z)=(z,z , l , l ,1) ,  b(z)=(1,1, z,z, 1), c(z)=(z , l , z , l , z ) ,  

zES 1, where a(z), b(z), c(z) represent diagonal matrices in U(5). 

We identify Hq0 with the image in U(5), and we may assume that  a(S 1) fixes N1 7 and 

b(S 1) fixes N~. Let N~ be the component of the fixed-point set of c(S 1) through q0. 

Notice that  symrank(N 2) =3. By Grove and Searle N 5 is equivariantly diffeomorphic 

to a lens space or a sphere. 

Next we claim that  N 5 is simply-connected. Suppose not. Let p be a prime number 

that  divides the order of the fundamental group of N 5. The total Betti  number of N~ is 

6 with respect to Zp-COefficients. 

Notice that  the fixed-point set of c(Zp) has N 2 as a component as well. By a theorem 

of Floyd the total Betti  number of the fixed-point set of c(Zp) is bounded by b(M, Zp), 

see [4, Chapter III, Theorem 4.1]. Hence b(M, Zp)=6 and the fixed-point set of c(Zp) is 

equal to N 2. 

Let N4 5 be the component of the fixed-point set of d(z)=b(z)c(z)= (z, 1, 1, Y., z). The 

intersection N2;3N~ has a 3-dimensional component B, and the inclusion B--+N 5 is 2- 

connected, i=3 ,  4. In particular, the fundamental groups of N 2 and N 5 are isomorphic. 

The manifold N 2 is diffeomorphic to a lens space, too. The group c(Zp) fixes the 

3-manifold B. Since the action is linear and p divides the order of the fundamental group 

of N 2, it follows that  the fixed-point set of c(Zp)lN 2 has precisely one more component, 

a circle N 1. The circle N 1 is not fixed by c(S1), and therefore N 1 is not contained in N3 5. 

Hence Fix(c(Zp)) has at least two components - -a  contradiction. 
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Therefore Na 5 is simply-connected and diffeomorphic to a sphere. We plan to prove 

that  the fixed-point set of a(S 1) has no components other than  N1 r and that  a(S 1) acts 

freely on MXI\N [. 
Suppose, on the contrary, that  the fixed-point set of the cyclic group a(Zp) has a 

second component B for some prime number p. Choose a point q2 c B such tha t  the 

isotropy g r o u p  Hq2 has dimension 3. Since all arguments from above apply equally with 

q0 replaced by q2, there is an element ~C Hqe such that  the component  F of the fixed-point 

set of L through q2 is diffeomorphic to 8 5. By Frankel F and N1 r intersect. Hence the 

fixed-point set of a(Zp)lF has at least two odd-dimensional components. On the other 

hand F is diffeomorphic to S S - - a  contradiction. 

Therefore the fixed-point set of a(S 1) is N/ ,  and a(S 1) acts freely on Mll\N[. By 

Corollary 5.3 we get Hi(M, Z ) = 0  for i = 3 , 4  a contradiction. 

Thus we have proved that  M 11 is 3-connected. Of course we can still prove the 

existence of a totally geodesic submanifold N/ .  Since the inclusion m a p  N71--+M 11 is 4- 

connected, it follows that  N1 r is a homotopy sphere, and hence M 11 is 4-connected. If  we 

can choose N1 r such tha t  it is fixed by a circle subaction, then the inclusion map N 7 + M  11 

is 5-connected, and we are done. Thus we may may assume tha t  symrank(Ni r )=4  for 

any possible choice of N1 r. 

Next we claim that  for any element LET 4 of prime order p the fixed-point set Fix(~) 

is either empty  or given by a homotopy sphere. Because of Theorem 4.1 this finishes the 

proof. 

Let us first check that  each component N of Fix(L) is a homotopy sphere. Suppose 

first that  d i m ( N ) = 5 .  If N is contained in a totally geodesic 7-manifold, then clearly N 

is a sphere. Thus we may assume that  the kernel of the action of T 4 on  N 5 is isomorphic 

to S 1. Thus N 5 is diffeomorphic to a lens space by Grove and Searle. It  is easy to see 

that  there is totally geodesic 7-manifold N2 r (fixed by an involution) that  intersects N 

in a 3-dimensional manifold. Clearly, the intersection NrA N has the same fundamental  

group as N. On the other hand N2 r is equivariantly diffeomorphic to S r, and hence 

N2rnN is diffeomorphic to S a. 

If d i m ( N ) = 3 ,  then N is contained in a totally geodesic submanifold of dimension 5 

or 7. In either case N is a homotopy sphere. 

In order to prove that  Fix(L) is connected we can argue as follows. Otherwise we can 

choose two points ql, q2 in different components of Fix(~) such tha t  the corresponding 

isotropy groups H1 and H2 have dimension at least 3. Choose an involution aEHINH2 

such that  the component F of Fix(a)  through ql has dimension at least 5. Since F is a 

homotopy sphere the fixed-point set of Lit, is connected. Hence q2~F. In other words we 

may assume ~=a.  By Prankel FNNrl is not empty, and clearly the intersection contains 
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a circle orbit. Therefore q1cN71 without loss of generality. Switching the roles of ql 

and q2 shows tha t  we also may assume q2EN~. But this is a contradiction as N~AFix(~) 

is connected. 

T 4 on M 12. By Corollary 3.2 we have codim(N0)=4.  Consider a fixed point qoENo. 

There is a 2-dimensional subtorus T 2 c T  4 that  acts trivially on the normal bundle of 

N0 s at q0. It  is now easy to find an involution clET 2 such that  the q0-component N1 of 

FiX(tl) has codimension 4. 

By construction the intersection N2 :=N0 8 N N1 s is 4-dimensional. 

Clearly T 4 can not act trivially on N 4. Thus N 4 has a Killing field, and by Hsiang 

and Kleiner [15] N 4 is homeomorphic to 8 4 or C P  2. Since the inclusion map N2 4--+N g is 

4-connected, it follows that  N g has the eohomology ring of a compact symmetric  space 

of rank 1. 

If we can find an N g that  is fixed pointwise by a subgroup S I c T  4, then the inclusion 

Ns--+M 12 is 6-connected. Clearly this implies that  M 12 has the cohomology ring of a 

compact  symmetric  space of rank 1, too. 

If we can find no such N g, then T 4 acts with finite kernel on N g, and by Grove and 

Searle [13] N g is either diffeomorphic to S s or to C P  4. Furthermore it follows that  T 4 

has only isolated fixed points. 

The inclusion Ns--+M 12 is 5-connected. 

Thus the odd-dimensional homology and eohomology groups of M 12 are 0. By the 

universal coefficient theorem the cohomology groups are torsion-free. Therefore it suffices 

to show that  b6(M, Q)=b2(M,  q ) .  

We argue by contradiction: If b 6 ( M , Q ) > b 2 ( M , Q ) ,  then clearly x(M)~>3. Thus 

there are at least three fixed points of T 4. We claim that  for any three fixed points of 

T 4 we can find a fixed-point component N s containing the three fixed points. 

Let ql, q2, q3 be three different fixed points of T 4. We consider the subgroup 

(Z2)4CT 4 and the direct stun of the three isotropy representations in Tq~M. This is 

a 36-dimensional vector space. Since (Z2) 4 is contained in a torus, the irreducible sub- 

representations come in equivalent pairs. Thus we may think of this representation as 

an 18-dimensional complex representation. 

Z~ has only fifteen nontrivial representations. So it follows that  at least two of 

the eighteen subrepresentations are equivalent. We choose such a subrepresentation and 

consider its kernel Z~. Z~ has now 1 8 - I  nontrivial subrepresentations and l trivial 

subrepresentations (1 ~> 2). If 1 ~<3 we can find at least three nontrivial subrepresentations 

that  are pairwise equivalent. If  l <~ 10 we can find at least two such subrepresentations. 

We consider the kernel Z~ of the pairwise equivalent subrepresentations. The repre- 

sentation of Z~ consists of k trivial and 1 8 - k  nontrivial subrepresentations, k ~> 5. If k = 5, 
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then at least five of the nontrivial subrepresentations are equivalent. If k~<8, then at least 

four of the nontrivial subrepresentations are equivalent. If k~< 10, then at least three of 

the nontrivial subrepresentations are equivalent. We consider the kernel of these pairwise 

equivalent subrepresentations. It has at least ten trivial subrepresentations. Consider 

now the fixed-point set of the nontrivial element in the kernel. Let Nq~ be the connected 

component containing qi. Clearly dim(Nql) + dim(Nq2) + dim(Nq3) ~> 20. Furthermore 

dim(Nq~)~<8. Thus after reordering we have dim(Nql)=8 and dim(Nq2),dim(Nq3)~>4. 

By Frankel's theorem Nq~ and Nq2 intersect. Thus Nq~=Nq~, and similarly Nq~=Nq3. 

Since Nql contains three fixed points of T 4, it can not be a sphere. Thus as explained 

before it has to be diffeomorphic to C P  4. Since T a acts almost effectively on Nq~, we 

can find a totally geodesic 4-manifold N423~CP 2 containing all three fixed points. 

Notice that  N1423 contains precisely three fixed points. 

We now give two different estimates for the number of these submanifolds containing 
1 a given point qa. First this number is at least ~ ( x ( M ) - I ) ( x ( M ) - 2 ) .  

On the other hand such a manifold is determined by its tangent space at ql, and 

1 6.5 possibilities. there are only 7. 

Thus we have proved x(M)~<7 and hence b6(M)=b2(M)=l. 

6.2.  P r o o f  o f  T h e o r e m  2 in d i m e n s i o n s  a b o v e  12 

There are two different arguments for the induction step. The first is 

LEMMA 6.2. Suppose that we have proved Theorem 2 in all dimensions less than n. 

Let M ~, T d be as in Theorem 2. If there is an element ~ETd\e such that the fixed-point 

set has codimension ~ �88  then the conclusion of Theorem 2 holds for M as well. 

Proof. This is almost a direct consequence of Theorem 2.1. Let F be the component 

of Fix(~) of codimension ~< �88 (n+3) .  We may assume that  d im(F)  is maximal. If F has 

codimension 2 and is fixed by a circle, then we are done by Grove and Searle [14]. If not, 

then symrank(F)~> �88 Thus the cohomology ring of F is isomorphic to the 

cohomology of a compact symmetric space of rank 1. Since the inclusion map F--+M is 

[ ln]-connected,  the same holds for M. [] 

Using the theory of error-correcting codes it is not hard to see that the hypothesis 

on the existence of a fixed-point set of low codimension can actually be removed from 

Lemma 6.2 for almost all dimensions n, since in those dimensions it follows from the 

assumption on the symmetry rank. However, for the other dimensions one needs ad- 

ditional arguments, and here it is where Theorem 4.1 is crucial. In fact this approach 

works uniformly in all dimensions. 
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LEMMA 6.3. Suppose that we have proved Theorem 2 in all dimensions less than n. 

Let M n, T d be as in Theorem 2. If  there is an element ~ETa\e such that the fixed-point 

set has codimension ~<~6(5n+13), then the conclusion of Theorem 2 holds for M as 

well. 

By Corollary 3.2, the condition on the existence of a fixed-point set of codimension 

<~ 1 ( 5 n + 1 3 )  is implied by the other assumptions, unless possibly n=15.  For n = 1 5  the 

existence is also implied by the other conditions, but unlike in the other dimensions the 

argument  is of global nature. We will t reat  the case of n = 1 5  at the end of this section 

in a separate lemma. This finishes the proof of Theorem 2. 

Proof of Lemma 6.3. By the previous lemma we may assume that  there are no 

elements in T a fixing a totally geodesic submanifold of codimension ~ �88 (n+3) .  Further- 

more n ~ 13 and thus there are no fixed-point sets of codimension 4. Thus the s ta tement  

of the lemma is only nontrivial if n~17 .  Let No be the fixed-point component of ~ of 

eodimension ~ ~ (5n+13).  We may assume that  No has minimal codimension among all 

fixed-point sets of involutions. 

Consider a component N of Fix(a)  for some a c T  d. Suppose that  N is maximal,  i.e., 

N is not contained in a component  N~CFix(cr t) with d i m ( N t ) > N .  Then the symmetry  

rank of N is at least d -  1~ gn.1 Furthermore the intersection N n  No has symmetry  rank 

) l n - 1 .  Therefore d i m ( N N N o ) ) � 8 9  with equality only if NANo is fixed by a 2- 

torus. Because of codim(N),  codim(N0)~6,  Theorem 2.1 implies that  the inclusion maps 

NNNo-+N and NNNo-+No are 2-connected. Since M and No are simply-connected, 

the same holds for N. 

Since the eodimension of N is larger than 4, we have 

symrank(N)  > l d i m ( N ) +  1. (5) 

Thus N has the homotopy type of S k or C P  k/2 N can not be homeomorphic to H P  k/4, 

since we have the strict inequality in (5). 

Notice tha t  the previous discussion applies in particular to N=No. If No is a ho- 

motopy sphere, then we can argue as follows. Notice first that  M is /-connected with 

l ~ n - 2 k + l ~ ( 3 n - 5 ) .  

By Theorem 4.1 it suffices to prove that  for any element crcT d of prime order p, the 

fixed-point set Fix(a)  is either empty or a Zv-homology sphere. In the odd-dimensional 

case one has to pass from T d to a subtorus of codimension 1 with a nonempty fixed-point 

set in order to satisfy the hypothesis of Theorem 4.1. 

We first prove that  any component  N of Fix(a)  is a Zp-homology sphere. Suppose, 

on the contrary, that  N is a counterexample of minimal codimension. If there is a group 
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Z2pcT d that  fixes N pointwise, then N is strictly contained in a component F of a fixed- 

point set of some other element in Zp2-{0}. Since d i m ( F ) > d i m ( N ) ,  it follows that  F 

is a Zp-homology sphere. By a theorem of Smith Fix(GIF ) is a Zp-homology sphere as 

well. Since N is a connected component of Fix(~lF), it has to be a Zp-homology sphere 

as well. 

Thus we may assume that  N is not fixed by a group Z 2. Tha t  implies symrank(N) >~ 

d - 1 .  As before it follows that  N is homotopy equivalent to a sphere or a complex 

projective space. In order to rule out the latter, notice that  the inclusion NANo-+N is 

h-connected with h = ' n -  codim (No) - codim (N) >~ 4. 

The manifold NNNo is a component of the fixed-point set of Fix(GINo). Since No 

is a homotopy sphere, NNNo is a Zp-homology sphere. Hence N can not be a complex 

projective space. 

Next we prove that  Fix(a) is connected, unless Fix(G) consists of two isolated points. 

We first argue for n odd. Suppose that Fix(a) has at least two connected components. 

Then we can find two points ql and q2 in the different components N1 and N2 of Fix(a) 

such that  their isotropy groups Hql and Hq2 have dimensions at least d - 1 .  

Clearly we can choose an element a~EHq~fflHq~ of order p such that  Fix(a  ~) con- 

tains N1, and the component F1 of Fix(G ~) with qlffF1 has dimension at least 

2(dim(Hq, AHq~)-l)+l ~> �89 

Since F1 is a Zp-homology sphere, the set Fix(GIF1) is a homology sphere as well, 

and hence Fix(aIF1)=N1. In particular q2~F1. Hence Fix(a ' )  is not connected either, 

and we might as well assume G'=a .  

By Prankel the manifolds F1 and No intersect. Clearly the intersection FlC3No 
contains a circle orbit of T d as well. Thus we may assume qlENo. Switching the roles 

of ql and q2 in the above argument shows that  we also may assume q2 E No. But that  

proves that CrlN o has two odd-dimensional componen t s - - a  contradiction since No is a 

homotopy sphere. 

In even dimensions we can argue as follows: Since all connected components of 

Fix(a) are homology spheres and x ( F i x ( G ) ) = x ( M ) ,  it suffices to prove x ( M ) = 2 .  For 

that  it suffices to show that  Fix(~)=N0. Suppose that  qEFix( t ) \N0 is a fixed point of T d. 

It is easy to find an involution ~' such that  the connected component F of Fix(N' )  

through q has dimension greater than ~n.1 We have seen that  F is a Z2-homology sphere. 

On the other hand FnNo has positive dimension by Frankel. That  shows that Fix(~lF ) 

is not a Z2-homology sphere, a contradiction. 

Finally we have to consider the case of No being homotopy equivalent to C P  ('~-k)/2. 
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Then  H2(M,  Z ) = Z .  There  is a principal Sl -bundle  

S 1 - +  B n + l  __} M n 

whose Euler class is the genera tor  of H2(M,  Z),  where B n+l is a compact  manifold. 

There  is a torus act ion T d+l o n  B n + l  and a homomorph i sm T d + l - - + T  d such tha t  the 

project ion pr: B '~+1 - + M  n becomes equivariant.  

Clearly fixed-point sets in B n+l are preimages of fixed-point sets in M n. Hence 

inclusion maps  of fixed-point sets of low codimension are highly connected;  more pre- 

cisely, for a submanifold of codimension k the inclusion map  is ( n + l - 2 k ) - c o n n e c t e d .  

Furthermore,  Franke] 's theorem holds in B "+1 for fixed-point sets, as it holds for their 

images in M s. Using all this it is easy to  see tha t  the proof  carries over to B n+l. Thus  

B ~+1 is a homotopy  sphere, and M s is a homotopy  C P  n/2. [] 

T 5 on M 15. 

LEMMA 6.4. Let M 15 be a 15-manifold of positive sectional curvature. Suppose 

that a 5-dimensional torus T 5 acts isometrically and effectively on M 15. Then there is 

an involution T 5 with a fixed-point set of eodimension <<.4. 

Proof. If  the torus  act ion has a fixed point  or a nonisolated circle orbit, then the 

s ta tement  is trivial. If  there is an involution LET 5 such tha t  Fix(~) has a 5-dimensional 

component  N 5, then  we can argue as follows. The  act ion of T 5 on N has kernel of 

dimension at least 2. Hence we find another  involution a E T h \ { ~ }  fixing N pointwise. 

It  is now clear tha t  either cr or cr-L has a fixed-point component  of  codimension ~<4. 

Suppose, on the contrary,  t ha t  there is no involution with a fixed-point set of codi- 

mension ~<4. It  is easy to see tha t  any circle orbit  must  be contained in a total ly  geodesic 

submanifold N 9 fixed by an involution ~1. The  manifold N 9 has s y m m e t r y  rank ~>4, and 

thus N 9 is homeomorphic  to a sphere. 

It  is also clear tha t  there must  be another  involution L2, fixing a 7-manifold N r tha t  

intersects N 9 transversely. Fur thermore  there is a thi rd  manifold N 9 intersecting N r 

in a 5-manifold B 5. It  follows tha t  rq(N~)=rrl (Bh)=rq(Ng)=rcl (M)=O.  Thus  N r is 

s imply-connected,  and it is easy to  see tha t  symrank(NT)~>4. Hence N r is a sphere as 

well. 

Notice tha t  the intersection N91NNr 2 is connected by Theorem 2.1. Fur thermore  

S~ : = N g N  N2 r is 1-dimensional, and thus it is necessarily given by a circle orbit. Since N1 

and N2 are spheres, there must  be four more circle orbits S1, ..., S]  in N1 9 apar t  f rom S~. 

Fur thermore  there are another  three circle orbits in S1,.. . ,  Sr 1 in N r.  

The  act ion of T d on S~ can be na tura l ly  identified with a 1-dimensional complex 

representat ion in C. The  sum of all those representat ions is a representat ion Q of T 5 
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in C s. By Corollary 3.2 there must be an involution L such that  L)(L) has 1 as a (complex) 

eigenvalue with multiplicity at least 6. Translating back gives that  ~ fixes at least six of 

the circle orbits pointwise. 

Suppose for a moment that  all these circle orbits are contained in the same connected 

component F of Fix(c). Clearly we may assume s y m r a n k ( F ) ) 4 ,  otherwise we can find 

a larger fixed-point set containing F. Since dim(F)~<9, Theorem 2 implies that  F is a 

sphere, and hence it has at most 1 ( d i m ( F ) +  1) circle orbits. 

It follows that  there are two different connected components F1 and F2 of Fix(~) 

intersecting N1 and N2, respectively. 

The fixed-point sets Fix(~lN~)=Ni n Fix(~) are necessarily homology spheres, and in 

particular they are connected. Hence Fix(c)NNi=FiNNi and ~ does not fix the circle 

orbit S~=N~NN~. Since F~NN~ is empty, Frankel's theorem implies dim(F2)~<5. As 

shown above, the case of d im(F2)=5 can not occur, and thus dim(F2)~<3. Therefore F2 

contains at most two circle orbits. 

This shows that  F1NN~ contains each of the circle orbits S 1, . . . ,S] .  Hence 

dim(N~AF~)=7.  Since F~nN~ is empty, Frankel's theorem implies that  dim(F1)~<7. 

Consequently F1cN~. But then ~~ has a fixed-point set of codimension 2 - - a  contra- 

diction. [] 

7. Totally geodesic submanifolds 

LEMMA 7.1. Let M n be a simply-connected n-manifold, and let N n k be a submanifold 

such that the inclusion map Nn-k -+M is (n-k)-connected. If k divides n, then M n 

has the integral cohomology ring of a compact symmetric space of rank 1. If k divides 

n - 1 ,  then N is a homology sphere. 

The proof is a simple cohomology computation. In fact one just uses Lemma 2.2 to 

show that  the integral cohomology ring of the manifold is generated by one element. By 

Adams that  implies the desired result. 

The following lemma is a simple application of Theorem 2.1 and Lemma 2.2. 

LEMMA 7.2. Suppose that the positively curved manifold M n has two totally geodesic 

submanifolds N~ -kl and N~ ks. Assume that kl~<�88 and that N2 is homotopy 

equivalent to a sphere or a complex projective space. If the inclusion map of N2 --+ M is 

(kl+l)-connected, then M is homotopy equivalent to a sphere or a complex projective 

space as well. 

Now we are ready to show 
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PROPOSITION 7.3. Suppose that M n is a compact simply-connected n-manifold of 

positive sectional curvature. 

(a) I f  n is odd and M n contains one totally geodesic complete submanifold N of 

codimension 2, then M n is homeomorphic to a sphere. 

(b) I f  n is even and M ~ contains a totally geodesic complete submanifold N of 

codimension 2 and one totally geodesic submanifold N ~ of codimension less than 1 ~n with 

N ' ~  N, then M ~ is homotopy equivalent to a sphere or to C P  ~/2. 

(c) Suppose that n - O  mod 4 or n=-i mod 4, n~>13. I f  M contains one totally 

geodesic submanifold N1 of codimension 4 and one totally geodesic submanifold N2 of 
1 codimension ~ ~ n - 3 ,  such that N1 and N2 intersect transversely, then M has the coho- 

mology ring of a symmetric space of rank 1. 

Proof. (a) By Theorem 2.1 the inclusion map N n - 2 - ~ M  '~ is (n-3)-connected.  Com- 

bining Lemma 2.2 with HI(M,  Z ) ~ H n - X ( M ,  Z ) ~ 0  we see that  M is a homology sphere. 

(b) Whether  or not N and N ~ intersect transversely Theorem 2.1 (b) or (a) implies 

that  N N N ' ~ N '  is dim(NNN~)-connected. By Lemma 7.1 this shows that  N '  is homo- 

topy equivalent to a sphere or a complex projective space. Theorem 2.1 implies that  M 

has the corresponding homotopy type. 

(c) We only treat the harder case n--0 mod 4. Notice that  the inclusion map 

N2--+M is 7-connected. By Theorem 2.1 the inclusion N2ANI-+N2 is dim(N2NN1)- 

connected. Let eEH4(M,  Z) be the Poinca% dual of the image of the fundamental class 

of ?/1 in H~_4(M, Z). Since e pulls back to the Euler class of the normal bundle of 

N~ in M, the pullback e to H4(N2AN1,  Z) is the Euler class of the normal bundle of 

N2 N Nx in N2. This consideration shows that  the pullback of e to N2 gives a period in 

the cohomology ring of N2 in sense of Lemma 2.2. 

Since the cohomology rings of M and N2 coincide up to dimension 7, we deduce that  

Ue: H~(M, Z)-+H~+4(M, Z) is an isomorphism for 0 < i ~ 7  and surjective for i=0 .  

Since N I - + M  is (n-7)-connected ,  the above map is actually an isomorphism for 

0 < i < n - 7 .  It is easy to deduce from this that  all odd cohomology groups of M vanish. 

Furthermore M is a homology sphere unless H4(M,  Z ) ~ Z .  

If the torsion-free group H 2 (M, Z) vanishes, then it is easy to see that  H*(M, Z) 

H * ( H P  n/4, Z). 

Otherwise one can use Poinca% duality to show that  e = x U y  for x, yEH 2 (M,  Z). 

It is easy to see that  then Ux: Hi(M,  Z)-+Hi+2(M,  Z) is an isomorphism, i=0 ,  ..., n - 2 .  

Thus H*(M, Z ) ~ H * ( C P  n/2, Z). [] 

PROPOSITION 7.4. Suppose that n - 2 , 3  rood 4. Let M n be a simply-connected n- 

manifold of positive sectional curvature. Let N n 4 be the fixed-point component of an 
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isometry 5. Finally assume that Nn-4-+ M is (n-4)-connected. Then there are only the 

following possibilities for the cohomology ring of M. 

(a) n = 4 m + 3  and with respect to any field F we either have H*(M, F ) ~ H * ( S  ~, F)  

or H*(M, F ) ~ H * ( H P ' ~  x S 3, F).  

(b) n = 4 m + 2  and with respect to any field F either H*(M, F ) ~ H * ( C P  re+l, F)  or 

H*(M,F)~H*(HP '~xS2 ,  F). 

(c) n = 4 m + 2  and M is a homology sphere. 

(d) n = 4 m + 2  and the isometry c has finite order I. If the characteristic of a field 

F is 0 or if it divides l, then H*(M,F)~H*(Sn ,  F). For a general field we either have 

H * ( M , F ) ~ H * ( S ~ , F )  or the Betti numbers with respect to F are given as b i ( M , F ) = l  

/f i=--2,0 mod 4 and b i ( M , F ) = 2  /f i=3  rood 4. 

Notice that  the possibility (d) can not occur if N n-4 is fixed pointwise by an isometric 

circle action. 

Proof. Notice that  Lemma 2.2 remains true if we replace the coefficient ring Z by 

the field F. 

If n = 4 m + 3 ,  then it follows that  O=Hi(M,F)  for i = 1 ,5 , . . . , 4 m+ 1  and for i =  

2, . . . ,4m+2. Furthermore we get that  the map We: H~ F)--+H4(M, F) is surjective. 

If H 4 (M, F)  = 0, then we conclude that M is a homology sphere with respect to F. Other- 

wise we find that  F ~ H i ( M ,  F) for i=0,  4, ..., 4m and for i=3, ..., 4m+3.  More precisely 

we get H*(M,F)~--H*(HP'~xS3, F). 

It remains to consider the case of n = 4 m + 2 .  Since ~ acts trivially on the cohomology 

of N and thereby trivially on the cohomology of M, the Lefschetz theorem implies that  

the Euler characteristic of M is given by x(Fix(~)). By Frankel Fix(~) can apart from 

N only have components of dimension 0 and 2. Thus all other components, if any, have 

positive Euler characteristic. 

Therefore we get ) t (N)<.x(M).  On the other hand we know that  M and N have a 

4-periodic cohomology ring, and hence 

x ( M ) - x ( N )  = -b l (M,  F)+b2 (M, F ) - b 3 ( M ,  F)+ba(M,  F). 

As before, the map Oe:H~  is surjective. If e=0,  then Lemma 2.2 

implies that  M is an F-homology sphere. Thus we may assume b4(M, F)=b2(M,  F ) = I .  

Furthermore we know that  bl (M, F ) = 0 .  Finally Poincar~ duality implies that  b3(M, F) 

is even unless possibly if F has characteristic 2. Since the parity of 0 ~ < ) / ( M ) - x ( N ) =  

b2(M, F ) - b 3 ( M ,  F)+b4(M, F)  is independent of the field, it follows that  b3(M, F) is 

even with respect to any field. Hence b3(M, F)C{0, 2}. If b3(M, F ) = 0  with respect to 

any field, then it is easy to see that  (b) is satisfied. 
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So we may assume that  b a ( M , F ) = 2  for some field F. Then x ( M ) = 2 .  Thus if 

b a ( M , F ' ) = 0  with respect to a different field F',  then we must necessarily have 

b2(M,F')=bn(M,F')=O. Hence M is an F'-homology sphere. If ~ has infinite order, 

then we obtain an isometric Sl-action on M fixing N pointwise. It is straightforward 

to check that  the SLaction on M \ N  is free. Thus Corollary 5.3 implies that  M is an 

integral homology sphere a contradiction. 

Thus ~ has finite order I. Similarly Theorem 5.1 implies that  the characteristic of F 

does not divide 1. [] 

PROPOSITION 7.5. Let M n be a simply-connected compact manifold of positive sec- 

tional curvature. Suppose that N~ -kl and N~ -k2 are two totally geodesic submanifolds 

intersecting transversely. Finally assume that k i l l ( n + 3 ) ,  2k2+kl <~n and that kl is 

odd. Then for all iE{1, . . . , n - l }  and xEHi(M~,Z)  we have 2x=0.  

Proof. The inclusion map NI--+M is ( n - 2 k l + l ) - c o n n e c t e d ,  and by Lemma 2.2 

there is a class eEHk~(M, Z)~Hkl(N1,  Z) such that  Ue: Hi(M, Z)--+Hi+k(M, Z) is an 

isomorphism for i=k, ..., n -2k .  The pullback of e to Hk~(N1, Z) is the Euler class of 

the normal bundle of N1 in M. Since the codimension is odd, 2e=0. That  proves the 

statement for i=k, ..., n - k .  

Next consider Na=N1NN2 and put na:=dim(Na)=n-k l -k2 .  If kl<<.k2, then the 

inclusion map Na-+N2 is n3-connected. Similarly as above we get 2.Hi(N2, Z ) = 0  for 

i = l , . . . , n - k 2 - 1 .  Since the inclusion map N2-+M is /q-connected, that  finishes the 

argument. 

If kl>k2, then the inclusion map Na--+N1 is n3-connected. By Lemma 2.2, 

H*(NI ,Z )  has k2 as a period. But this finishes the proof since we already established 

the desired result for H~(N~, Z)-=H~(M, Z) with i=kl ,  ..., r~--2kl. [] 

8. P r o o f  o f  T h e o r e m  5 

Theorem 5 follows from Corollary 3.2 combined with the following proposition. 

PROPOSITION 8.1. Let M n be a simply-connected compact manifold of positive sec- 

tional curvature, and let T a be a d-dimensional torus acting effectively and isometrically 

on M n with d~>max{~n+14, ~ n + l } .  Suppose that there is one involution ~ET a fixing a 

submanifold N of codimension k<~ ~ n .  Then the cohomology ring of M is given by one 

of the possibilities described in Theorem 5. 

Pro@ We argue by induction on the dimension. First notice that  the proposition is 

an immediate consequence of Theorem 2 for n~<108. Therefore assume n~>109 without 
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loss of generality. We may assume tha t  t is chosen such that  it maximizes the dimension 

of N. In particular symrank(N)  ~>d- 1. 

We consider first the case of s y m r a n k ( N ) < m a x { l d i m ( N ) + 1 4 ,  ~ d i m ( N ) + l } .  Then 

N is fixed by a circle, and cod im(N)c{2 ,4 ,6} .  If codim(N)=2, then M is fixed- 

point homogeneous, and the result follows from Grove and Searle [13]. In the case 

of c o d i m ( N ) = 4 ,  it is easy to find an involution L2 such that  Fix(c) has a component  N2 

of dimension n2>~�89 intersecting N transversely. The inclusion map N2AN--+N2 is 

(n2-4)-connected.  By Proposit ion 7.4 and Lemma 7.1, N2 has one of the cohomology 

rings described in Theorem 5. Up to dimension 8 the cohomology rings of N2 and M are 

equal. Since the inclusion map N~-4--+M'~ is (n -7) -connec ted ,  the result now follows 

from Lemma 2.2. 

In the case of codim(N) =6,  we can find similarly an involution fixing a submanifold 

N2 of dimension n2 ~> i n  + 6 intersecting N transversely. The inclusion map N2 A N--~ N2 

is (n2-6)-connected.  Let e e H 6 ( M ,  Z) be the Poinca% dual of in.([N])eHn_6(M, Z). 

We claim that  the map Ue: Hi(M, Z)--+Hi+6(M, Z) is an isomorphism for 0 < i < n - 7 ,  

an epimorphism for i=0 ,  and a monomorphism for i=n-6. In fact, for 5 < i < n - 1 2  

this is a consequence of Lemma 2.2 as Nn-6--+M is ( n - l l ) - c o n n e c t e d .  For 0 < i < 7  

we can make use of the fact that  the cohomology groups of N2 and M coincide up to 

dimension 12, and once again the s tatement  follows from Lemma 2.2 and the fact that  

N2AN--+N2 is d im(N2NN)-connected.  For n-7<i<~n-6, the s ta tement  then follows 

fi'om Poinca% duality and the fact tha t  one can prove in dimension less than  ~nl the 

analogous s tatement  for the cap product he:  Hi(M, Z)--~Hi_6(M, Z). 

If n - 0  mod 6, then Poinca% duality implies that  H*(M,  Z) is generated by one 

element, and it follows tha t  M is homotopy equivalent to a sphere or a complex projective 

space. If n - 1  rood 6, it follows that  H6(M,Z)~Hn-I(M,Z)=O, and thus M is a 

homology sphere. 

Otherwise the argument is a little more subtle: Choose a maximal collection of 

involutions b=o-1, . . . ,  O" 1 such tha t  Fix(hi) has a component  N-i of codimension 6 and 

N1, ..., N1 intersect pairwise transversely. 

Put  B=NIN... NN1. Clearly dim(B)=n-61. In particular l<  1 gn<.d-1. We choose 

a point pCB such that  the isotropy group Hp has dimension ~>d-1. 

We can choose an involution t l+lCHp\(Cl,  ..., tl) such that  the following holds: 

The multiplicity m~+~ of the eigenvalue - 1  in c~+i.l%(B) is as small as possible. I t  is 

easy to check that  k~<�89 and that  k~<�89 if d im(B)>80 .  Notice 

that  we can replace ct+l by any element in el+l" (ci, ..., @ without changing m~z+ ~ . Hence 

we may choose tl+l such that  the multiplicity of the eigenvalue - 1  in tl+l.[,~(B) is at 

most �89 



T O R U S  A C T I O N S  AND P O S I T I V E  C U R V A T U R E  291 

By assumption I~>1, and thus the component Nl+l of Fix(~l) with pENI+I has 

dimension nz+l~>�89 The inclusion map NI+I--~M is 7-connected. Suppose for 

a moment that  Nl+l does not intersect one Ni transversely for i~l suitable. Then 

Nl+lnN~ has codimension 4 in Nl+l. It follows that  N~+INNi--+M is 7-connected, too. 

Consider next the product Ll+l" Ci and the component IV[+ 1 of Fix(Ll+l-ci) with p~Nl+l. 
Clearly N[+ 1 contains NI+IAN~ as a submanifold of codimension 2. In odd dimensions 

it follows that  N[+ 1 and Nz+lnNi are homology spheres. That  implies that  M is 6- 

connected, and hence M is a homology sphere, too. In even dimensions, we can make 

use of the additional information that  H 6 (M, Z)~-H 6 (Nt+l M N~, Z) is cyclic or 0, to see 

that  Nl+l A Ni is homotopy equivalent to a sphere or a complex projective space. Clearly 

it follows that  M has the corresponding homotopy type. 

Thus we may assume that  Nl+l intersects all submanifolds N1, ..., N1 transversely. 

By assumption this implies codim(Nt+l) >6. Furthermore, symrank(Nl+l) >~d- 1. Thus 

symrank(Nl+l) ~> max{ ~ dim(Nz + 1) + 14, ~ dim(Nt + 1) + 1 }. Furthermore the fixed-point 

set of ~lNz+l has codimension 6. From the induction hypothesis it follows that  Nl+l has 

one of the cohomology rings described in Theorem 5. In odd dimensions it follows that  

H6(M, Z)=0 ,  and hence we are done. In even dimensions, it follows that  the generator 

eEH6(M, Z) can be expressed as e=xUy where xEH2(M, Z) and ycH4(M, Z). It is 

easy to check that  this implies that  M has the cohomology ring of a sphere or a complex 

projective space. 

Thus we may assume that  symrank(N) ~> max{ ~ d i m ( N ) +  14, ~ d i m ( N ) +  1}. Next 

we consider the case of c o d i m ( N ) 4  �88 (n+3) .  The cohomology ring of N determines the 

cohomology ring of M, and hence it suffices to prove that  N has one of the cohomology 

rings described in Theorem 5. If there is a fixed-point set in N of codimension ~< ~4 ( n -  k), 

this follows from the induction hypothesis. Thus we may assume that  such a fixed- 

point set does not exist. By Corollary 3.2 we can find an involution a E T  d such that  a 
1 component N2cN of Fix(aiN) has dimension ~>~n. We choose the involution cr such 

that  the dimension of N2 is as large as possible, and put k2:=n-l~-dim(N2). 
The inclusion map N2-+M is (k+l)-connected.  By Lemma 7.2 it suffices to prove 

that  N2 has the cohomology ring of S '~ or C P  ~/2 .  By Theorem 2, we may assume 
1 symrank(N2) < ~dim(N2)+l .  Since dim(N) -d im(N2)=k2  > �88 (n-k) and 

symrank(N2) ) m a x { ~ d i m ( N ) + 1 3 ,  ~dim(N)},  

it follows that  n-k)96 .  Because of 

symrank(N2) i> ~n-  1 

we also may assume that  k+k2 ~ �89 and k2>2k. 
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By Corollary 3.2 there is an involution a ~ such that  Fix(a/)  has a component 

N3 of dimension ~>~dim(N2). The inclusion map N2--+N3 is h-connected with h>~ 

~dim(N2)+l~>k+l .  By Lemma 7.2 it suffices to prove that  N3 is homotopy equivalent 

to a sphere or a complex projective space. Without  loss of generality or' is chosen such 

that  the dimension of Na is as large as possible. Then symrank(N3)i> s y m r a n k ( N ) - 2 .  

By construction the fixed-point sets of the involutions traiN and a.a~lx have dimension 

at most dim(N2). Hence 

d im(N2)-d im(N3)  ~> l ( d i m ( N ) - d i m ( N 2 ) ) .  

In summary we can say that  symrank(Na) ) -~ ( n -  k ) -  1 and dim(N2) < ~ ( n -  k). Be- 

cause of n>64  we obtain symrank(N3)> �88 By Theorem 2, N3 is homotopy 

equivalent to a sphere or a complex projective space. 

It remains to consider the case of c o d i m ( N ) = k >  �88 A first step is to show 

that  N is homotopy equivalent to S n-k o r  CP (n-k)~2. By Corollary 3.2, there is an 

1 The inclu- involution 52 such that  Fix(~21x2) has a component N2 of dimension ~>~n. 

sion map N2--+M is (k+l)-connected.  Since the dimensions Fix(~2) and Fix(~.c2) are 

at most dim(N),  it follows that  d im(N)-dim(N2)~> gk.1 Again without loss of gener- 

ality symrank(N2)~>symrank(M)- l ,  and hence symrank(N2)> �88 Thus N2 

is homotopy equivalent to a sphere or a complex projective space. If N2 is a homotopy 

sphere, then M is (k+l)-connected.  Since the inclusion map N•-k--+M is ( n - 2 k + l ) -  

connected, we can use Lemma 2.2 to see that  M is actually (n -2k+ l ) - connec t ed .  This 

implies that N is (n-2k)-connected,  and hence N is a homotopy sphere. If N2 is a 

complex projective space, one can consider the Sl-bundle S 1--+Pn+I--+M, whose Euler 

class is the generator of H 2 (M, Z). Repeating the argument for p n + l  shows that  p~+l  is 

( n -2k+ l ) - connec t ed .  That  in turn shows that  N is homotopy equivalent to a complex 

projective space. 

In order to show that  M has the corresponding homotopy type we distinguish again 

between two cases. Suppose first that N is a homotopy sphere. 

We claim that  for any element aET d of prime order p the fixed-point set of a is 

either empty or given by a Zp-homology sphere. We first want to prove that  each com- 

ponent F of Fix(a) is a Zp-homology sphere. We argue by induction on codim(F).  If 

codim(F) < ~n, then tile inclusion map F - + M  is ( n -  2 codim(F) + 1)-connected. From 

Lemma 2.2 we get additional information on the cohomology ring of M. Combining with 

tile fact that M is ( [ h n ]  +1)-connected, this implies that  M is an integral homology 

sphere, and hence F is a homotopy sphere, too. 
If 1 �9 1 ~n~<cod~m(F) E 5n, the fact that  the inclusion map F - + M  is ( n - 2  c o d i m ( F ) +  1)- 

connected implies that  F is h-connected with h~> l d i m ( F ) .  This also implies that  F is 

a homotopy sphere. 
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If �89 A n  then the inclusion m a p  FAN-+F is h-connected, with h =  12 ' 

dim(F)-k>ldim(F). The intersection FAN is a component of the fixed-point set of 

Fix(alN). Since N is a homotopy sphere and cr is of order p, it follows that  F ix(a lN)= 

F A N is a Zp-homology sphere. That  implies that  F is a Zv-homology sphere as well. 

If F is fixed by a group 2 d ZpCT ~ then F is contained in a Zp-homology sphere F. 

Thus F=Fix(crly, ) is a Zp-homology sphere as well. 

If F is not fixed by a group Z2pCT d and c o d i m ( F ) ) h n ,  then symrank(F)~>~n> 

�88  and d i m ( F ) ) � 8 9  By Theorem 2 the universal cover of F is a homotopy 

sphere, and by Theorem 4 the fundamental group of M is cyclic. Since the inclusion map 

F A N-+  F is [ 1  (n + 23)]-connected, and F N N is a Zp-homology sphere, it follows that  

the first [ ~  (n-1) ] -homology groups of F are zero with respect to Zp. That  implies that 

the cyclic fundamental group of F has order prime to F, and hence F is a Zp-homology 

sphere as well. 

In order to show that the fixed-point set Fix(a) is connected unless it consists of 

two isolated points, one can argue as in the proof of Lemma 6.3. 

By Theorem 4.1 it follows that  M is a homology sphere. 

In the case that  N is homotopy equivalent to a complex projective space one lifts 

the discussion as before to the total space of an Sl-bundle over M whose Euler class is 

a generator of H2(M, Z). [] 

9. P r o o f  o f  T h e o r e m  4 

We argue by induction on n. As mentioned in the introduction it suffices to treat  the case 

of n - 3  rood 4. For n = 3  the theorem is a consequence of Grove and Searle [13]. Suppose 

that  n = 4 r n + 3  with m~>l. As before we consider a point qoEM sitting on a circle orbit 

of the isometric action of the torus TaCIso(M,g) .  In the (d-1)-dimensional  isotropy 

group at q0 we choose an involution c such that  the q0-component N of Fix(c) has the 

largest possible dimension. Then symrank(N)~>d- l~>m+ 1. From Grove and Searle it 

follows that  dim(N)~>�89 and equality can only occur if N is fixed pointwise by 

an isometric circle action. By Theorem 2.1 (a) the inclusion map N--+M is 1-connected, 

and hence it suffices to prove that  the flmdamental group of N is cyclic. 

If symrank(N)~>�89 then this follows from the induction hypothesis. 

Otherwise we have cod im(N)=2 ,  and N is fixed by an Sl-subaction. Thus M is fixed- 

point homogeneous, and by Grove and Searle [13] M is diffeomorphic to a lens space. 
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10. P r o o f  o f  T h e o r e m  3 

LEiVIMA 10.1. Let M 41 be a compact manifold whose Z2-eohomology ring is isomorphic to 

the Z2-cohomology ring of H P  l. Suppose that a d-dimensional torus T d acts effectively 

and smoothly on M 4l. Then d~ l+  l, and if equality holds, then there is an SLsubaction 

fixing a submanifold N of codimension 4. Furthermore N is a Z2-cohomology H P  l-1. 

Proof. We argue by induction on k. Suppose that we have proved the statement for 

k ' E l - 1 .  Since M has nonzero Euler characteristic, it follows that  "]-d has a fixed point. 

If l = l ,  then the estimate dE2 follows from the fact that  the isotropy representation at 

p is faithful. Furthermore if d = 2  we can clearly find an Sl-subaction with an isolated 

fixed point. For 1 ~>3 we can find an involution fixing a connected submanifold N of 

codimension less than 21. We may assume that the involution is chosen such that N has 

minimal eodimension. It follows from [4, Chapter VII, Theorem 3.1] that the fixed-point 

set of that  involution has the Z2-cohomology ring of a quaternionic space. Since the 

codimension of N is minimal, it follows that the induced action of T d on N has at most 

a 1-dimensional kernel. The induction hypothesis implies that d~  k + 1 and that equality 

can only hold if N is fixed by an Sl-subaction. 

I f / = 2  we can argue as follows. By [4, Chapter VII, Theorem 3.1] it is not possible 

to find an involution whose fixed-point set has codimension 2 or 6. Using this it is easy to 

see that there is an involution with an isolated fixed point. By Bredon the fixed-point set 

of such an involution has precisely one more component N, and N has the Z2-homology 

of S 4. The result now follows as above. [] 

Theorem 3 now is an immediate consequence of Lemma 10.1 and the following 

lemma. 

LEMMA 10.2. Let M 41 be a simply-connected manifold whose integral cohomology 

ring is isomorphic to the cohomology ring of H P  1. Suppose that there is an effective 

smooth Sl-action on M fixing a submanifold N of codimension 4. Assume furthermore 

that N has a Z2-cohomology of H P  t-1. Then M is homeomorphic to H P  1. 

Proof. In the presence of an invariant positively curved metric one can actually give 

a slightly simpler proof since in that case it is known that N is simply-connected. We 

argue again by induction on I. There is nothing to prove for l = l .  Since M has the 

integral cohomology ring of HPI ,  we can use [4, Chapter VII, Theorem 5.1] to see that a 

generator Ha(M, Z) restricts to a generator of H4(N, Z) and H*(N, Z ) ~ H * ( H P  1-1, Z). 

Let B,.(N) be a tubular neighborhood of N and put M ' = M \ B , . ( N ) .  Using the 

Mayer Vietoris sequence it is easy to see that  M'  is acyclic, i.e., Hi(M ', Z ) = 0  for i>0 .  

Using Bredon it easy to see that the action of S 1 on M '  is semifree. In fact for any 
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element aES 1 of prime order p the fixed-point set Fix(c) has no component of codimension 

less than 4. Thus N is a component of Fix(@ Furthermore any other component 

of Fix(c) has the Zp-cohomology of a quaternionic or complex projective space, and 

x ( F i x ( ~ ) \ N ) = I .  This shows that  there is precisely one fixed point of S 1 in M', and 

S 1 acts freely away from that  fixed point. Notice that  the Sl-action induces a complex 

structure on the normal bundle of N. Therefore the structure group reduces to U(2). 

Consider the induced (U(2)/SU(2))-bundle. Since N is homologically 2-connected, this 

circle bundle is trivial. Hence the structure group reduces further to SU(2)~S 3. In 

other words the unit normal bundle u l (N )  is a principal S3-bundle. Furthermore the 

Sa-action on z/l(N) may be viewed as an extension of the given SLaction. Consider 

the classifying map f :  N--+HP ~'-1 c H P  ~ of the principal SU-bundle. Since the Euler 

class in H4(N, Z ) ~ H 4 ( M ,  Z) is the Poincar6 dual of the image of the fundamental class 

of N in H41-4(M, Z), it follows that  the Euler class of the normal bundle represents a 

generator of H4(N, Z). Hence f induces an isomorphism on eohomology. 

Next we claim that  f pulls the Pontrjagin classes of H P  n-1 back to the Pontrjagin 

classes of N. Let pEM ~ be the unique fixed point of S 1, and let Br(p) be a small ball 

around p. Notice that  S 1 acts freely on the integral homology sphere S : = M  ~ \B,. (p). The 

inclusion maps of each of the two boundary components OM '~- u 1 (N) and 0t3,. (p)-~ TdM 
induce isomorphisms on cohomology. The same holds for the boundary components 

of SIS 1. Combining with the fact that S 1 acts on OB~(p)~T~M by the natural linear 

Hopf action we conclude that  the total Pontrjagin class of zf l (N)/S 1 is given by (1+x2) 2t 

where xEH2(ul(N)/S 1) is a generator. Notice t h a t / j l ( N ) / S 1  is an S2-bundle over N. In 

particular, the natural projection induces an isomorphism on eohomology in dimensions 

divisible by 4. Furthermore it follows that  the Pontrjagin classes of N pull back to 

the Pontrjagin classes of the horizontal distribution of the projection pr: tA(N) /S  1--+N. 

It is easy to see that  the Euler class of the vertical distribution is twice a generator of 

H2(u~(N)/S1). That  implies that  the total Pontrjagin class of the vertical distribution 

is given by 1+4x  2. Consequently the total Pontrjagin class of the horizontal distribution 

is given by 

(1 +4x2)-1  (1 +x2)2z E H*(t/I(N)/S 1, Z) ~ H * ( C P  2/-1, Z). 

This determines the total Poiitrjagin class of N. Since we can do the same computation 

for H P  ~ 1 it follows that  f pulls the Pontrjagin classes of H P  n-1 back to the Pontrjagin 

classes of N. 

The pullback of the normal bundle of H P ' ~ - I c  H P  n is the normal bundle of NcM.  
Thus we can extend f to a map 

(J~r(N)~ O~r (N))  ---> (~r  (Hpn-1)~  OSr(npn-1)). 
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Since H P n \ B r ( H P  n - l )  is contractible it follows that  we can extend f further to a map 

f :  M - + H P %  Clearly / induces an isomorphism on cohomology, and since M is simply- 

connected, f is a homotopy equivalence by Whitehead. Furthermore,  it is easy to see 

that  f maps the first l -  1 Pontrjagin classes of H P  z onto the first l -  1 Pontrjagin classes 

of M. Because of Hirzebruch's signature formula the same holds for the / th class. By 

Sullivan's classification [23] f is homotopic to a homeomorphism. [] 
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