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w 1. htroduetion 

Let ~ be an open connected domain in R n, n ~2.  I f  a is a multi-index, a =  

(ai, ~2 ... . .  a~)EZ~, the length of a, denoted by [a I, is the integer Xj%~ ~ and D a =  

(~/~xl) ~" ... (~/~x~)~% A locMly integrable function / o n / 9  has a weak derivative of order 

if there is a locally integrable function (denoted by  D~ such tha t  

fv/( D:cf)dx = ( -  1) I~j f ( D : ' / ) c f d x  

for all C ~ functions ~ with compact support  in ~ .  For 1 < p  <~ co, k EN, L~(]O) is the Sobolev 

space of functions having weak derivatives of all orders zr I ~ I ~ k, and satisfying 

An extension operator on L~(D) is a bounded linear operator 

A: L~(D) -~ L~(R ~) -= L~ 

such tha t  A / I v =  / for a l l /EL~(V).  We say tha t  O is an extension domain for Sobolev 

spaces (E.D.S.) if whenever 1 ~<p~< c~, kEN, there is an extension operator for L~(O).(~) 

The following theorem is by now well known. 

(1) ~I.S.F. g r a n t  MCS-7905036. 
(2) W e  do n o t  requi re  A to  be  a n  e x t e n s i o n  opera to r  also ort L ~ ( ~ )  for  m < k .  In  fac t ,  t h e  one  

wh ich  will  be  c o n s t r u c t e d  does  n o t  h a v e  t h a t  p rope r ty .  
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T ~ . O R E ~  A (Calder6n-Stein). Every Lipschitz donwtin is an E.D.S. 

Theorem A was proved by A. P. Calder6n [2] in the case where 1 < p  < 0% E. M. Stein 

[20] extended Calder6n's result to include the endpoints p = l, oo. For earlier results, see 

[13] and [17]. 

The purpose of this paper is to discuss to' what extent Theorem A may be improved, 

i.e., what geometric conditions can be imposed on a domain to guarantee that  it will be 

an E.D.S. We will introduce a class of domains, herein called (s, (~) domains, every member 

of which is an E.D.S. Lipschitz domains are contained in this class. Our condition is best 

possible in the following sense: a finitely connected planar domain is an E.D.S. if and only 

if it is an (s, ($) domain (Theorem 3). In  a related paper [14], D. Jerison and C. Kening 

show that  a large number of potential-theoretic properties, heretofore known to be true 

for Lipschitz domains, remain valid for (e, (~) domains. In  some sense then, (s, ~) domains 

are the worst domains whose classical function-theoretic properties are the same as those 

of the Euclidean upper half spaces. 

Our extension problem for Sobolev spaces is closely related to certain problems in the 

theory of quasiconformal mappings. Let E(D) denote the space of functions having finite 

Dirichlet energy, i.e., those functions / having weak derivatives of all Orders ~, ]~[ = 1, 

and satisfying 

Iltll +,= liD=Ill,(.>< + oo. 
I~1 =1 

Since constant functions have zero energy, E(D) is actually a Banach space of functions 

modulo constants. If  F: D ~ '  is K quasiconformal and /EE(D' ) ,  then /oq~CE(D) and 

II/oq~llE(D)<Kll/]lE(,.). Consequently, ~ gives rise to an isomorphism between E(D) and 

E(O').  A surface S in the M6bius space R ~ is said to be a quasisphere (when n = 2, a quasi- 

circle) if S is the image of the unit sphere S n - l c R  ~ under some globally quasiconformal 

homeomorphism of R ~ onto R n. Suppose now that  S is a quasisphere and D1 and D2 are 

the two components of S c. Let F be a (K) quasiconformal homeomorphisms of R n onto R ~ 

such tha t  S=(~(sn-1). I f /EE(D1) ,  define an extension A / o f  1 on D2 by 

A/(x)= - ~ , x~D2. 

I t  is easy to check that  AICE(R n) ~ e  and IIAIII~<2KIIlII~+,. Therefore, every domain 

bounded by a quasisphere is an extension domain for the Dirichlet energy space (E.D.E.). 

The following result of [11] indicates that  this condition is essentially best possible in 

dimension 2. 
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T~EOREM B (Gol'dshtein, Latfullin, Vodop'yanov). I /  ~ c  R 2 is simply connected, 

then ~ is an E.D.E. i/ and only i] ~ ,  is a quasieircle. 

One might naturally guess that an analogue of Theorem B holds for Sobolev spaces, though 

clearly one cannot extend in that  case by using the above quasiconformal reflection argu- 

ment. Our Theorem 4 asserts that  this guess is correct. 

For a rectifiable arc y c R  n, let l(y) denote the Euclidean arclength of y. Let I x - y l  

denote the Euclidean distance between x, yER ~, and let d ( x ) = i n f y ~ ] x - y [  for x E ~ .  

We say that  ~ is an (s, (~) domain if whenever x, yE ~ and I x - y ]  <(~, there is a rectifiable 

arc ~ ~ joining x to y and satisfying 

and 

l(r)< [x-yl (1.1) 

d ( z ) > S , x - z , l l i y - z  I for a l l z o n ~ .  (1:2) 
Ix-yl 

Domains satisfying the (s, ~ )  condition have been studied previously in [14] and [17J-- 

the definitions given in those papers appear to be slightly different, but are equivalent. 

Fred Gehring [8] is presently writing an expository paper on these domains. 

Condition (1.1) says that  ~ is locally connected in some quantitative sense. Condition 

(1.2) says there is a "tube" T, y c  T c  D; the width of T at a point z is on the order of 

min ( I x - z l ,  [ y - z  I): I t  is clear that  every Lipschitz domain is an (s, d) domain for some 

values of e, d >0. The boundary of an (e, (~) domain can, however, be highly nonrectifiable 

and, in general, no regularity condition on ~ ,  can be inferred from the (e, (~) property. 

The classical snowflake domain of conformal mapping theory has the property that  every 

subarc of the boundary is nonrectifiable; it can be checked by hand that  the snowflake 

domain is an (e, c~) domain for some e>0.  In  fact the situation is even worse than this 

example shows. Let H a denote ~ dimensional Hausdorff measure. If n - 1  ~ <n,  one can 

construct a domain ~ c R  ~ such that  ~ is an (e(~), ~ )  domain and H~(~ N 00)  >0  for all 

open sets ~ satisfying ~ (1 ~ O .  Such domains arise naturally in the theory of quasi- 

conformal mappings. See for example [10] or [16], pages 104, 105. 

Our first result is the following extension of Theorem A. 

T~]~OREM 1. Suppose k E N  and ~ is an (s, ~) domain. Then there is a bounded linear 

extension operator Ak, 
Ak: L~(~)-~L~., l ~ < p ~ < ~ .  

Furthermore, the norm o/ Ak on L~(~) depends only on e, ~, p, k, and the dimension n. 



74 P . w .  JO~ES 

The Calderdn-Stein operators of Theorem A do have some advantages  over our opera- 

tors A~. Stein [20] constructs one extension operator which works for all p and It, while 

our operators are different for different values of It. Calderdn's operators [2] are different 

for different values of k, but  have the proper ty  tha t  w h e n e v e r / E L ~ ( ~ )  has compact  sup- 

por t  in ~ ,  its extension vanishes identically outside of ~0. Our operators Ak do not  have 

this property.  On the other  hand, a slight modification of our operator  Ak can be used to 

extend functions in E(~0). Our next  result answers a question of Fred Gehring. 

T~EOREM 2. Every (s, c~) domain is an E.D.E.  

A celebrated theorem of Ahlfors [1] gives a simple geometric condition which charac- 

terizes quasieireles. I f  F is a Jo rdan  curve in R 2 and x, y ~ o ~  are two distinct points on F, 

the complement  of {x, y} on F consists of two disjoint arcs. The arc of smaller Euclidean 

diameter  is called the smaller a r c - -no t e  t ha t  if F passes through 0% one of the arcs has 

infinite Eucl idean diameter.  The theorem of Ahlfors asserts t ha t  F is a quasicircle if and 

only if there is a constant  M <  + 0% independent  of x, y, and such tha t  

Ix- l <  lx-yl (1.3) 
for all z on the smaller arc between x and y. The above Ahlfors conditions is connected to 

the  (e, ~) condit ion via  the  following result  (see [15] or [18]). 

T~EOREM C. Suppose F ~ R  2 is a Jordan curve and suppose ~1 and ~2 are the two 

simply connected domains complementary to P. The ]ollowing conditions are equivalent: 

(i) F is a quasicirele. 

(ii) Either ~1 or ~2 is an (e, c~) domain /or  some e>O. 

(iii) ~1 and ~ are (e, oo) domains /or  some s > 0 .  

Our next  two theorems show to  wha t  extent  the  (s, 5) condition is necessary to  the 

s tudy  of our problem and relate Theorem 1 to Theorem B. 

THEOREM 3. 1] ~ c R  ~ is ]initely connected, then ~ is an E.D.S.  i / a n d  only i/ ~ is 

an (s, ~) domain /or  some values o/~, ~ > O. 

T ~ ~ o R ]~ M 4. I /  ~ c R ~ is bounded and/ in i te ly  connected, then the/ollowing conditions 

are equivalent: 

(i) ~ is an E.I) .S.  

(ii) ~ is an E.D.E .  

(iii) ~ is an (e, oo) domain /or  some s > 0 .  

(iv) ~ consists o / a / i n i t e  number o/points  and quasicircles. 
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Theorem C shows that  the two equivalent conditions of Theorem 3 are also equivalent 

to a suitable local variant of condition (iv) in Theorem 4--this will be discussed in a ]ater 

section. We also note that  there is some evidence in the literature to hint at Theorem 4. 

One of the classical examples of a domain which is not an E.D.S. is 9 = {(x, y) e R~: y > Ix ]~}, 

where a E (0, 1). (The Sobolev embedding theorem fails for L~+~(9).) S 9  is also a classical 

example of a Jordan curve which does not satisfy the Ahlfors conditions (1.3), i.e., is not a 

quasicircle. 

One cannot hope for exact analogues of Theorems 3 or 4 in dimensions n ~> 3. There 

are two general principles which indicate this. First of all, the simple connectivity property 

is a much weaker condition in higher dimensions than it is in dimension 2; the failure of 

the Schoenfliess theorem in R a is but one example of this phenomenon. For this reason, 

one might suspect there is a Jordan domain in R a which is an E.D.S. but not an (e, 5) 

domain for any values of e, 5 > 0. The second reason for doubting the existence of higher 

dimensional analogues of Theorems 3 and 4 is that  R" is highly rigid when n ~> 3. For this 

reason there are very few quasiconformal mappings in R", n ~>3, when compared to the 

case of R ~. As an example we cite the fact that  every 1 quasiconformal mapping from the 

unit ball of R a to R 3 is the restriction of a Mhbins transform. See [5], [7], [9], and [19] for 

further discussions of this phenomenon. We state without proof the following results. 

(1) There is a Jordan E.D.S. in R a which is not an (e, 5) domain for any values of ~, 5 > 0. 

(2) There is a domain 9 1 = R  a such that  91 and 9 2 = ( 9 1 )  ~ are homeomorphie to 

balls, 9~ and 92 are (e, ~ )  domains, and a91 is homeomorphic to S 2 but not a quasisphere. 

Here E ~ denotes the interior of a set E. The second example can be obtained by modi- 

fying the construction in [6]. We note, however, that  if 9~=(91)  ~ and Sg l  is a quasi- 

sphere, then 91 and 9~ are both (~, oo) domains for some ~>0. See [15] or [18]. 

The method of proof we present for Theorem 1 is as follows. We ex tend/EL~(9)  to 

(9c) ~ by selecting appropriate polynomials for all small Whitney cubes in (~c)~ these 

polynomials are then pieced together using the standard partition of unity functions. This 

idea goes back to Whitney's seminal paper [23], and is the same one used to prove the 

classical extension theorems for Lipschitz spaces. A good reference for this is [20], Chapter 

VI. For some applications of this method to the theory of Sobolev spaces see e.g. [3] and 

[4]. To pick the polynomial for a particular Whitney cube Q= (9c) ~ we first reflect Q to a 

certain Whitney cube Q*= 9 .  This reflection technique was introduced in a recent paper 

of the author [15] and is closely related to quasiconformal reflection. For /EL~(9) we then 

select the polynomial P =P(Q*) of degree k - 1 which satisfies 

fo D ~ ( / - P ) d x = O ,  0~<1~1~</c- 1, 
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and  cont inue this  po lynomia l  onto  Q. I t  is t hen  shown t h a t  the  osci l lat ion of A k / o v e r  Q 

is well control led  b y  the  osci l lat ion of / near  Q*; th is  is where our  ma in  difficult ies lie. Be- 

fore out l in ing the  contents  of the  following sections we warn  the  reader  t h a t  Theorem 1 

will be p roved  on ly  for the  case where rad ius  (~)>~ 1. F o r  the  usual  reasons,  the  norms  

of the  opera to rs  Ak on L~(~)  will  t end  to  co if e, (~, p ,  k r ema in  f ixed and  rad ius  ( ~ )  t ends  

to  zero, unless we renorm our  Sobolev spaces so t h a t  po lynomia ls  of degree ]c - 1 have  norm 

zero in L~(~)  whenever  rad ius  ( ~ )  < 1. Since the  modif ica t ions  needed are unp leasan t  bu t  

rout ine,  we do no t  p resen t  t hem here. 

I n  sect ion 2 we record several  l emmas  necessary  to  the  proof  of Theorems 1-4. The 

reflect ion techn ique  Q-+Q* is also discussed there.  F o r  the  usual  technica l  reasons we 

need to  know t h a t  funct ions  C ~~ on R ~ are dense in L~(~), 1 4 p  < c o  To ma in t a in  the  flow 

of ideas,  this  chore is pos tponed  unt i l  sect ion 4. I n  sect ion 3 we cons t ruc t  the  opera tors  

Ak of Theorem 1 and  prove  (modulo the  results  of sect ion 4) t h e y  are  bounded  on L~(~) .  

Theorem 2 is p roved  in sect ion 5. I n  sect ion 6 we cons t ruc t  a coun te r -example  which 

proves  the  converse d i rec t ion  of Theorem B. This coun te r -example  is then  used to finish 

off the  proofs of Theorems 3 and  4. W e  also discuss the  connect ion be tween the  equiva len t  

condi t ions  of Theorem 3 and  condi t ion (iv) of Theorem 4. 

The  au tho r  is gra teful  to  F r e d  Gehring for hav ing  suggested the  problem t r ea t ed  in 

Theorem 2 and  for several  useful comments .  The au thor  also t hanks  J e r r y  Bona,  Alber to  

Calderdn,  and  J i m  Douglas  for var ious  discussions and  suggestions.  

w 2. Some l e m m a s  

I n  this  sect ion we collect several  l emmas  necessary  to  the  proof  of Theorems 1-4. 

W e  denote  b y  V the  vec to r  (~/~x~, ~/~x,, . . . . .  ~/~x~) and  for m E Z +  we denote  b y  V m the  

vec tor  of all  possible ruth order  differentials .  Throughou t  the  paper ,  C denotes  var ious  

cons tan t s  depending  only  on e, ~, p ,  It, and  the  d imension n, and  C(~,/5 . . . .  ) denotes  var ious  

cons tan ts  which also depend  on ~, fl . . . . .  These cons tan ts  m a y  differ even in the  same 

s t r ing  of es t imates .  Our f irst  l emma  follows f rom the  fac t  t h a t  a n y  two norms on a f ini te  

d imensional  Banach  space are  equivalent .  Since this  l emma  will be used so often, we will 

no t  s t a t e  i t  every  t ime  i t  is invoked.  

L E ~ M A  2.1. Suppose Q is a cube and E, F~_Q are two measurable subsets satis/ying 

[ E I ,  I F ]  >~Y]QI /or some y > o .  I / P  is a polynomial o/degree m then 

whenever 1 <~ p <~ ~ .  
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If  Q ~ R "  is a cube, let l(Q) denote the edgelength of Q. We say tha t  two cubes touch if 

a face of one cube is contained in a face of the other. Our next  lemma is a variant  of the 

classical Poincar~-Sobolev lemma. 

LEMMA 2.2. Suppose Q1 and Q2 are two touching cubes satis/ying ~ <~l(Q1)/l(Q~) <~ 4. I /  

/ E C ~ satisfies 

f~ D~/dx=O, o < l o r  
1DO2 

then 

whenever 1 <~ p 4 r 

For the rest of sections 2-4 we fix an (e, ~) domain with radius (~)  >~ 1. We also assume 

tha t  (~ ~< 1 since tha t  is the only estimate we will use. Our next  lemma says tha t  Ak/wi l l  

be defined almost everywhere as soon as it is deiined on (D~)o. 

LEMMA 2.3. [0~l  =0.  

Proo/. Fix xoE0~ and y E D, Let  Q be a cube centered at  x o and satisfying l(Q)<~ 

�89 Let  x E ~ s~tisfy ( x - x  o f<~ ~l(Q) ~nd let y be the curve guaranteed by (1.I) and 

(1.2). I f  zEy satisfies ] x - z  I =~/(Q) then d(z) >~(s/lOO)l(Q). Therefore I ~ n Q] >~Cs~]QI, and 

by  Lebesgue's theorem on differentiation of the indefinite integral, 10~] =0.  

Let  ~ be an open set in R n. Then ~ admits a Whitney decomposition, ~ = U k Sk. 

Each Sk is a closed dyadic cube and 

and 

1~< dist (Sk'0~)~<4~nn, for all k, (2.1) 
~(s~) 

s ;  n s ;  = o if j ~ k, (2.2) 

1</(S~)~<4 if SjNSk=~O. (2.3) 

See [20], chapter VI  for a construction of the Whitney decomposition. Let  {S~} = W 1 and 

{Qj}=W 2 be the Whitney decompositions of O and (De) ~ respectively. Put  W3= 

{Qj e W~: l(Qj)• s~/16n}. For each Q3 e W a we now pick a reflected cube Q~ = S k e W 1. 

and 

L~,MMA 2,4. I /QjE Wa, there is SkE W 1 satis/ying 

1 <~ l(Sk) <~ 4 
l(Qj) 

dist (Qj, Sk) <~ Cl(Qj). 
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Proo/. By (2.1) there is x0G~ satisfying dist (xo, Q~)<~5~nl(Q~). Let y 0 e D  satisfy 

I% -Y01 = (8n/s)l(Q~). Then by (1.1) and (1.2) there is z 0 G ~ satisfying d(zo) >~ (e/2) ] x 0 - Y0 ] = 

4nl(Q~) and [xo-Zol <(1/t)]x0-Y0] =(8n/e~)l(Q~). If  SoeW ~ contains z0, then by  (2.1), 

l(So) >~l(Q~). Let S~e W~ satisfy l(S~)>~l(Q~) and minimize dist (Q~, S~). Then 

dist (Qj, Sk) < 5]/nl(Qj) + 8n l(Q~) 

and by (2.3), 1 <~l(S~)/l(Q~) <4. 

For each Q ~  W~ fix a cube S ~  W~ satisfying the conclusions of Lemma 2.4, and 

call S~=Q~. There may  be more than  one way to pick Q~ for a given Q~Wa.  The next  

three lemmas tell us tha t  no mat ter  how we pick the cubes Q*, the correspondence Q~-->Q* 

looks roughly like quasiconformal reflection. The proofs of these lemmas are almost im- 

mediate. 

LEM~[A 2.5. I/QjE Wz and $1, S~E W 1 satis/y the conclusions o/Lemma 2.4, then 

dist (S~, $2) < Cl(Qj). 

L~M~A 2.6. I] SuC W~ there are at most C cubes Q~E W a such that Q* =Sa. 

L~MMA 2.7. I /Qj ,  Qk E Wa and Qj ~ Qk ~ O ,  then 

dist (Q~, Q*) < Cl(Qj). 

The following figure illustrates the correspondence Q~-~Q*. Qo and Q1 are in W a and 

Q0 ~ QI~ :O.  On the other hand, Q~ N Q~ = O. The property we will use repeatedly is not 

just tha t  dist (Qo, Q~)~Cl(Qo), but tha t  0(Q*, Q~)<C, where ~ is the (hyperbolic) metric 

on ~ induced by (~n=l dx~)/(d(z)) 2. See [15] for a discussion of the hyperbolic metric on 

(~, c~) domains. 

Suppose Q1, Q2 ..... Qm are cubes such tha t  Qj and Q J+l touch and �88 ~< l(Qj)/l(Qj+l)• 4 

for all j, 1 < j < m - 1 .  We say then tha t  {Q1, Q~ .... .  Qm) is a chain connecting Q1 to Q,n, and 

define the length of tha t  chain to be the integer m. 

L ~ M ~ A 2.8. I /Q  j, Qk e W 3 and Qj ~ Qk ~: 0,  there is a chain F j. ~ = (Q* = S~, S~ ..... Sm= Q~ } 

o/cubes in W1, connecting Q* to Q* and with m < C. 

Proo/. Let y be the arc connecting Q* and Q* satisfying (1.1) and (1.2). Let  F =  

(S~ e W~: S~ N y ~ ) .  By Lemma 2.7, dist (Q~, Q~)<~ Cl(Qj). Since l(Q~), l(Q*)>~ ~;l(Qj), condi- 

tion (1.2) assures tha t  d(z)~Cl(Qj) for all z on ~. Since l(~)<CI(Qj) there are at  most C 

cubes in F. A suitable subset of F now provides the chain Fj,k whose existence was claimed. 
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w 3. The extension operators 

Fix kEN and a value of p, l~<p~<~.  In  this section we construct the operator Ak 

and prove (modulo the results of section 4) tha t  it is bounded on L~(~). For each Qj E W3 

build qvj E C~(R ~) such tha t  q0j is supported on (17/16) Qj, 0 ~< ~vj ~< 1, ~Qj~ w~ ~Vj ~= 1 on U r w~ Qj, 

and 
ID~cfj] <~ C(l~[)l(Qj) -I~l for all j and ~. 

Here 2Q denotes the cube concentric with Q, with sides parallel to the axes, and with length 

l(~Q) =2l(Q). Note tha t  any point lies in the support of at most C functions ~j. F ix /ELf( / ) ) .  

For a set S c  ~ of positive measure, let P(S) be the (unique) polynomial in xl, x2, ..., x~ 

of degree k -  1 satisfying 

fs D~(/ -P(S) )dx=O,  0 ~ < l ~ l < k -  1. 

We say tha t  P(S) is the polynomial/itted to S. For Qj E W3, let Pj  =P(Q*) be the polynomial 

fitted to Q*. The operator Ak is defined by  setting 

Qie w3 

on (~c)~ Notice that  Ak is linear and its definition does not depend on the value of p. By 

Lemma 2.3, Ak/ is defined almost everywhere on R ~. We first show tha t  HAk/[[L~((D0)o ~< 
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clIIIIL~,,~. That of course does not prove Theorem 1, but the rest of the proof consists 

only of verifying some technical details. 

LEMMA 3.1. Let F={S~ ,  S 2 . . . . .  Sin} be a chain of cubes in  W 1. Then if 0<~ Ifil <~k, 

Proof. We first pause to notice that the quantity to be estimated is zero if ] f l ]=k.  

By Lemmas 2.1 and 2.2, 
m-1 

IIDZ(P(Sx) - P(Sm))IIL,(s~) < ~ tlDZ(P(S~) -- P(S~+l))llz~'(s~) 
r 1 

m - 1  

<-< C(m) y. IID,~(p(sr) - P(S:+:))II:,,:~> 
r - 1  

m-1  

< C(m) Y {IIDB(P(S~) - P(Sr U S~+~))ll~,,x~) 
r - 1  

+ [IDZ(P(Sr+~)- P(Sr (J Sr+l))llr,(S~+p} 
m--1 

< c ( ~ ) 2  {llJ(/--P(Sr))l[~,;~,)+ IID'~(/-P(Sr+I))IIz_,,:s.+,) 
r - 1  

+ IIDP(/-P(S r U Sr ~I))]IZ';S~US~+~)} 
m--1 

r - 1  

In the above estimates we have repeatedly made use of property (2.3) of the Whitney 

decomposition. 

For each Qj, QkE W3 such that Qj N Qk=~O, fix a chain Fj.k as in Lemma 2.8 and let 

By Lemma 2.8, 

and 

F(Qj)= U F:.~. 
Qke W3 

Qff3Qk:~O 

II Z zoF,.~ll~o~C for an Q,e w~ (a.1) 
Qk ~ W3 

QjCI Qk:~ ,~J 

Q1 e Wa 

LE~MA 3.2. I / Q o E W 3  and O <  Io~ I <~k, then 

]ID=&/IIL,~.) < ~IID=/IIL,,o *) § CZ(Qo)~-~qlv~/ll~,(uF(~.)). 

Proof.  On Qo, Ak/ has the form ~Q.e w~ Pj ~j and ~QjE W3 ~j--~ 1 on Qo" Consequently, 

II D= Z Pj Vjl]Z~(Qo)~< ]]D~'PoII~,(Qo)+ II D= Y ( P o  - Pj)%][zp(Q.) = I + II. 
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By Lemma 2.2, 

Now write 
D~ Z (Po-Pr  ~ ~ C~.z(D~-~%)(DZ(Po-Pr 

To bound II  we need only bound the expression [[(D~-~j)(DB(Po-Pj))[I~,~Oo). There are 

at most C cubes Qj E Wa such that  ~j ~ 0 on Q0 and for these Qr Qj N Qo#O and l(Qj) >~ �88 
Consequently, [ D:-P~% I ~< Cl(Qo)-I~-al if qj ~ 0 on Qo. For these indices 7" we thus obtain the 

estimate 
[l(D~-aq~) (DZ(Po - P~))ll~,<~.)< Cl(Qo)-'~-"llDa(Po- P~)II~(Qo, 

< Cl( Qo)- I~-,,11 De (Po - P~)11.(~: ,  

< Ct(Qo)-~"-~*l(Q~)~-*aqlv~/ll~,,o~.. ,) 

The penultimate inequality above follows from Lemmas 2.8 and 3.1. Summing on ?" and 

invoking (3.1) we obtain the estimate 

LEMMA 3.3. I/Qo E W2~ Wa and 0<~ i~l <~k, then 

QoNQj:# ~ 

Proo/. If ~0j ~ 0 on Q0, then Q0 f/Qj=~O and l(Qj)>~ �88 Consequently, on Qo 

we have 
ID~Ak/I =] Y~ ~ C~.z(D~-~%)(DPPj)] 

Qie W3 fl~<~ 
QonQ 7. 

< C E 2 [DZP, I. 
Q1r Wa fl~ce 

QoNQi~ ~ 

If Qo n Qj=~f~, then by Lemma 2.2, 

[[D~Pj[[Zy;Qo) <~ C[[DBPjl}~(Q~, 

< CllDZ/ll~(~ z, + CIIDB(/- PJ)IIL~,~,, 

< ClIDP/IIL,r + cIIv'/ll.(~t> 
because l(Q*) ~< 1. Summing on ?" and/~, the lemma is proved. 

6 - 812901 Acta  mathematica 147. I m p r i m 6  le 11 D e c e m b r 6  1981 
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A simple geometric argument shows 

II ~ ~ z~IIL~<o. (3.4) 
Qj~ W~W~ Q]zE W8 

Oin Ok �9 

Combining Lemmas 3.2 and 3.3 with (3.2) and (3.4) we obtain the following 

e ~ o ~ o s , ~ o N  3.4. IIA~lll~=,~o,~ <~Clllll~:,~,. 
We now show that  Akl has weak derivatives of all orders ~, 0 ~ [~1 < k. By the result 

of section 4 we may assume I is the restriction to D of a function /EC~176 n) satisfying 

IID=tII~<M, o<.< I~l <k,  for some wlue  of M <  ~ .  Since leVI =0,  it is sufficient to show 

that  whenever 0~<1~1 < k - l ,  (D~I)Z-~+(D'AJ)Z(v~). is Lipschitz. For then A~les 
and by Proposition 3.4, IIAkIIIL~<<.CllllIL~(m. Fix a multi-index ~, 0~<1~ ] < k - l ,  and 

write 
D~Akl = ( D~ I) X5 + (D~Ak/) Zr 

LE~MA 3.5. D~Ak[ is Lipschitz. 

Proo/. Fix r, l<~r<~n, and set e/Ox~D~=D ~. Then by hypothesis, IID'IIIL~m,<~M. 
After setting 1o = ~ ,  Lemmas 3.2 and 3.3 yield [[ D'A~/HL~((v~ CM. Since ~ is closed 

and (~c) ~ is open, the lemma will be proved once we know that  D~Ak[ is continuous. To 

this end, let 
1 [" 

gJ -~ ~ JQ|; D I dx, for Qj e W3. 

I t  is sufficient to show that  for Qj E W3, 

IID~A~/--g~IILOO(%)~O as l(Qj)-~O. 

By the estimate for term I I  in the proof of Lemma 3.2, 

k 

whenever Qj E W 3. Consequently, 

<cll D~'P, -g ,  ll~(o;, + Ct(QJ)k-'~'IIV~/IIL~,o~(o,,, 

<~ cz(oj)HVD~lll~oo(o;, + cz(oj)'-~qlv~l]l~| 

< CMI(Qj)-, 0 as l(Qj)-+ O. 

(3.5) 

The proof of Theorem 1 is now complete, modulo the results of section 4. 
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w 4. Approximation by C ~ functions 

Fix ~ >0, keZ+, a value of p, 1 < p <  c~, a n d / e L ~ ( ~ ) .  In this section we construct 

geCC~(lt ~) such that  [[[-gI[~.~,v)<-~-C~ and [D~g[ <M,  0 4  [~[ <k,  for some value of M. 

If ~ is a Lipschitz domain, an easy convolution argument (see [20], chapter VI) can be 

used to produce g. In  (~, 5) domains this argument fails rather badly; we use here a poly- 

nomial approximation scheme similar to that  of section 3. 

Let  ~ =2 -r be a small number whose value will be fixed later, and let {R~} = R be the 

collection of all dyadic cubes R satisfying l(R)=~ and R ~  ~ .  Put  ~ '={R~6R:  R ~ S e  

for some SeE W~, l(se)>~ (32na/e)~}. For Rje  R' let /~  (resp. ~ )  be the cube concentric 

with R~, with sides parallel to the axes, and with length l(~)=(500na/s~)O (resp. l (~t )= 

(1 O00na/e)O). Conditions (1.1) and (1.2) show ~)~ [Jn.~n,/~ if ~ is small enough. 

L E ~  4.1. I/  R~,ReeR'  and R ~ e ~ f D ,  then there is a chain G~.e= 

{g~ = RI, t~ ..... .l?m = Re} o/cubes in R connecting R~ to Re, and with m ~ C. 

Prod/. Let 7 be an arc connecting Rj to R e and satisfying (1.1) and (1.2). Fix a point 

z on Y; without loss of generality we may assume dist (z, Rj) ~<dist (z, Re). If  dist (z, Rj) 

32no/e, then 

d(z)>~ 32nSo 3 2 n ~  32n~ 

If dist(z, Rj)>32nQ/e, then by (1.2), d(z)>~e.(32n~/e).�89 Thus, if S k e W  1 and 

Se N ~ ~ ~, l( se) >~ Q. A suitable subset of { R ~ E R: R8 C See W1, S e fl ~ ~ O }  provides us with 

a chain G~, e connecting Rj to R e. Condition (1.1) and the estimate dist (Rj, Re)~ 

(2 O00n4/s2)~ assure that  the length of Gj.~ can be bounded by C. 

For each Rj e R' let Pj  be the polynomial fitted to R s. These polynomials P~ are not 

in general the same as those of section 3. Also construct functions ~vjeC~~ n) sup- 

ported on Rj and satisfying 0<~j~<l,  0~<~Rj~n,~0j~<l , ~Rj~n.~0j---1 on [JR~-~n' Rj, and 

~Rj~R.I/)~kl <C( l~ l )0  -I~l for all ~. Let  go=~Ri~wPjq~j. The function go will approxi- 

mate / near ~ .  

LEM•A 4.2. I/  RjE •' and 0<~ [~1 <~Ic, then 

Prod/. The lemma follows from Lemma 2.1, the triangle inequality and Lemma 2.2. 
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Iln=(Po- P~)ll~,(~o)< c0~-'~'llvffll,(o~..,). 
Proo/. The lemma fo]lows from Lemma 4.1 and the estimate on term I I  in Lemma 3.2. 

For ~>0 let ~ = { ~ e ~ : a ( x ) < ~ } .  ~ix a value of ~e(0, ] ) s o  that [[/[l~;(~\~, <n. 
Let vEC~176 n) satisfy 0~<V~<I , V - 1  on ~ ,V--=0  on R ~ ,  and [D=v[ ~<C([~[)s -i~l 

for all ~. Let  ~EC~~ ~) be supported on {][xl[ <1} and satisfy ~ d x = l .  For t>0 ,  set 

~t(x) = t-n~(x/t), and let / * ~t denote the convolution of / with ~t. Now fix a value of t E (0, s/2) 
so tha t  

Let gl=gO(l-~f)=(~R~e~,Plq)~)(l-y)) and ]et g2=(/-x-~t)y). Then gl, g26C~(l{  n) and by 
~emma 4.2 there is a number ~ < ~ such that I D~g,I < M ,  0 <~ I ~1 <~ ~, ~ = 1, ~" ~o show 

I I l - (~,§ we need only show that for every ~, 0 4  I~1 <~,  IID~(I-(~,+ 
a~))ll,.,(~o,) < cv, because 

Fix ~, 0 ~< [a[ ~< k, and write 

D=(/- (gz + g~)) = ~ C=. p(D=-P~) (DP(/- ] ~e ~t)) + ~ C~,z(D=-B(1 - F)) (DB(/- gl)). 

I t  is only necessary to check tha t  all elements on the right-hand side of the above equality 

have small L ~ norm on ~ / ) ~ .  Since [D~-ZVI <~Cs -i~-~i, the manner in which we have 

picked t yields 

We now handle the other terms in (4.1). Notice tha t  (1-V)Z~ is supported in ] 0 ~  

and D~(1 -V)  is supported in ~ / 2 ~  ~s  whenever ~ # 0. The triangle inequality and Lemmas 

4.1-4.3 applied to the function (1 -V)(D~(/-gl)) yield 

(4.3) 

as soon as ~ is small enough with respect to s. Now fix a multi-index fl, 0 <fl < a, f l #~ .  For 

RoE ~ ' ,  R 0 Q {~/2~O~}~=O,  write 

IDP(/- gl)]< [DZ(/- Po) l+ ]D B ~ ( P o -  PJ) ~j[. 
R i e R" 
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Combining Lemmas 2.2, 4.1, and 4.3 with the estimate (3.3), we obtain 

II (D~'-'~( 1 - ~ ' ) ) ( D P ( / -  g,))II.(,,\,,,)= II (D'~- '~( 1 - " ~ ) ) ( D P ( / -  g~))ll.(.,~\,,,> 
< Cs-'~'-"IID'~(I- 

< c~-~-~ce~-~qlv~/ll.(.\.o.)<~. (4.4) 

as soon as @ is small enough with respect to s. To obtain the inequalities (4.3) and (4.4) 

we have used the fact tha t  when R0, RjE R', R 0 N { D ~ D ~ } ~ ,  Ro N Rj=4=O, we then have 

(3 Go. i~  ~ ~2~, if @ is small enough. Fix a value of @ > 0  so tha t  estimates (4.3) and (4.4) 

hold. By (4.2)-(4.4) we then obtain 

P~ o P o ~ , ~ , o ~  4.4. I I I-(g~ +g2)}]~,)< c,7. 

The above proposition completes the proof of Theorem 1 for the case where 1 ~</9 < ~ .  

For the case where p = c~ we need the usual weak approximation o f / E L ~ ( D )  (see [29], 

page 188). The argument of this section produces for each U>0  a function g~C~176 ~) 

satisfying [[]--g[[LO~_~(V)~ a n d  [[g[[~T(v)<C[[/[[o~(m. This is sufficient for o u r  purposes. 

w 5. Proot of Theorem 2 

Suppose tha t  for all pairs of points zl, z2E D there is an arc ~ joining z 1 to z 2 and such 

tha t  

I~-yll=,:-=~l>~ i,j=2,2, i~i ,  

for all pairs of points x, y, xEy, yE ~ .  With a little bit of work one can see that  then 

is an (fl, c~) domain for some ~? =~(s )>0 .  Conversely, if ~ is an (s, ~) domain, then (5.1) 

holds for some s = s(U) > 0. This observation is due to Olli Martio. The advantage of Martio's 

definition is tha t  the estimate in (5.1) is invariant under M6bius transformations. In  

proving Theorem 2 we may  therefore assume tha t  ~ is unbounded. A look at the estimates 

of section 4 shows that  C~176 n) functions are dense in E(~) .  For each cube Qj~ W~ select a 

reflected cube Q~ as in section 2. Since ~ is unbounded, Lemmas 2.4-2.8 remain valid if 

we replace W3 by  W2 in their statements. For /E E ( 9 )  and Qj E We, let Pj  be the constant 

given by 

fo; ( / -  Pj) dx = O. 

Let  {~0j} be the usual partition of unity on (De) ~ and put  

A/= ~ Pj ~oj 



86 P . w .  J o ~ s s  

on (~)c)~. Then if 1 <~r<n, Lemmas  2.8 and 3.1 yield 

~xA/ ~'(~~ = X (P0-P~)~-~Wj ~-<oo) 

CZ(Qo) -~ ~ liP0- PJll~-<~0, 
Qj e W2 

QoNQ]=~.CJJ 

Consequently, [IA++II:<<~,o>o)~cII/ll:+>. The a rgument  of section 3 shows t h a t  

is a weak derivative o f / .  Theorem 2 is proved. 

w 6. Quasicircles 

I n  this section we prove Theorems 3 and 4. To do this we first give an  al ternative 

proof of Theorem B. To this end, fix a hounded J o r d a n  curve F which is no t  a quasicircle, 

and let ~ be the domain interior to F. Let  M be a large positive integer. Since F is not  a 

quasicircle, we can find points zl, z2, za, z 4 on F such tha t  z 3 and z 4 lie on different com- 

ponents  of r ~ { z  1, z2} and such tha t  ]z 1 - z  4 [ > ~ l z l -  z31 = eMIZl- Z~ 1. Then F ~  {z 1, z2, z 8, za} 

is divided into four disjoint open arcs z ~ ,  zsz~"'~, z~'4, z~'~l, and we m a y  assume wi thout  loss 

of generali ty t ha t  these arcs are given by  the counter-clockwise orientation on F. Let  

be a conformal mapping  from O to the uni t  disk, A. The map ~ indices a homeomorphism 

from F onto T. Let  ~(zj)=wj,  1 ~<j<4, and let 11 =wl~'~a, 12 = w~'~,  I s =w~'~ 4, 14 =w~'~ 1 he 

the four disjoint open arcs of T \ { w l ,  w~, w s, w4} thus obtained. Let  I~ be an arc of smallest 

Eucl idean arclength among the collection {11, Is, 13, 14}. We m a y  assume I j  = 11; the other  

three cases are handled in exactly the same fashion. Let  11 denote the open arc of T having 

the same center as 11 and length ]11 [ = 31 I11" Then by  assumption, i 1 N 13 = O. Therefore 

there is a funct ion 3EC~~ ~) such tha t  0~<3~<1, 3 - -1  on 11, 3 - 0  on 13, and 

ll311 < ) loo. 

Let  /=Toq~ on ~ .  Then II/HE(~) ~< 100 and 

]]/]] L~<v) ~< ~1j2 radius (D) + 100. 
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Suppose now t h a t  F is an  extension of ] to  R 2 and  suppose F E E.  B y  its construction,  

F--- 1 on z~3 and  F-= 0 on ~ .  I f  [ Zl - z~ I < r < I zl - za I, the  circle { [ z - zll = r} intersects 

bo th  the  arcs z l z  z and z~z a. Consequently,  

f ~  I VF(z~ + re '~ [2rdO >~ ~ , 

for a lmost  every  such r. Since I zl  - z 3 ] = eMIzl - z 21, we obta in  

f:?:z ll~ll2 >t I v r ( z l  § re'~ dO dr  >~ M .  

B y  s tandard  patching arguments ,  there  i s / E L ~ ( O )  such t h a t  no extension of / to R 2 lies 

in E.  An applicat ion of the  R iemann  mapp ing  theorem now completes  our proof of Theo- 

rem B. 

To complete the  proof of Theorem 4, notice t h a t  the implicat ions (iii) ~ (iv) ~ (iii) ~ (i), 

(ii) follow f rom Theorems C and 1. The  counterexample  of this section can be easily modified 

to show t h a t  if condition (iv) fails, conditions (i) and (ii) also fail s imultaneously.  

The  proof of Theorem 3 is similar. Suppose ~ is f ini tely connected and  suppose fur ther  

t h a t  ~ is not  an  (s, 8) domain  for any  values of s, 8 > 0 .  B y  Theorem 4 we m a y  assume 

is unbounded.  Since ~ is conformally  equivalent  to  the  uni t  disk minus  a finite n u m b e r  of 

points  and  disks; our me thod  of proof  shows we m a y  assume t h a t  ~D consists of a finite 

n u m b e r  of bounded J o r d a n  curves plus a (possibly infinite) n u m b e r  of unbounded  J o r d a n  

curves. Call the  collection of all bounda ry  curves {F j}. F ix  a value of ~ > 0. B y  Theorem C 

one of the  following conditions mus t  fail: 

(A) E v e r y  bounded  Fj  satisfies condition (1.3) for M = 1/8. 

(B) I f  l~j and  F k are dist inct  unbounded  curves, then  dist (F j, Fk) >~c~. 

(C) I f  zl, z 2 e r  j ( r j  unbounded)  and [z l - z2 [  ~<~, then  d iam (?j) < (1/8)[z~-z~[,  where 

? t  is the  smaller arc between z 1 and  z 2. 

I n  each of the  above cases, the  counterexample  of this section can be localized b y  

using smooth  cut-off functions to show t h a t  ~ is not  an E.D.S.  
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