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§ 1. Introduction

Let D be an open connected domain in R, n=2. If x is a multi-index, o=
(0, &gy +ovy ) €LY, the length of o, denoted by ||, is the integer >7 ; «; and D*=
(0/0x,)™ ... (0f0x,)*. A locally integrable function f on D has a weak derivative of order «

if there is a locally integrable function (denoted by D*f) such that

fvf<D“qo)dx=<—1)'“' fD<D°=f>¢dx

for all ¢ functions ¢ with compact support in D. For 1 <p < oo, k€N, LE(D) is the Sobolev

space of functions having weak derivatives of all orders «, |a| <k, and satisfying

ezm= = 1D*Nww < + oo

o<l <k
An extension operator on LE(D) is a bounded linear operator
A: LY(D)~ LRM = Lf

such that Af|p=/f for all fELYD). We say that D is an extension domain for Sobolev
spaces (E.D.S.) if whenever 1<p< oo, L€EN, there is an extension operator for L{(D).(3)

The following theorem is by now well known.

(!) N.8.F. grant MCS-7905036.
(2} We do not require A to be an extension operator also on LE(D) for m<k. In fact, the one
which will be constructed does not have that property.
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TrEOREM A (Calderén—Stein). Every Lipschitz domain is an E.D.S.
Theorem A was proved by A. P. Calderdn [2] in the case where 1 <p <co; E. M. Stein

[20] extended Calderén’s result to include the endpoints p=1, co. For earlier results, see
[13] and [17].

The purpose of this paper is to discuss to what extent Theorem A may be improved,
i.e., what geometric conditions can be imposed on a domain to guarantee that it will be
an E.D.S. We will introduce a class of domains, herein called (g, §) domains, every member
of which is an E.D.S. Lipschitz domains are contained in this class. Our condition is best
possible in the following sense: a finitely connected planar domain is an E.D.S. if and only
if it is an (e, 6) domain (Theorem 3). In a related paper [14], D. Jerison and C. Kening
show that a large number of potential-theoretic properties, heretofore known to be true
for Lipschitz domains, remain valid for (e, §) domains. In some sense then, (e, §) domains
are the worst domains whose classical function-theoretic properties are the same as those
of the Euclidean upper half spaces.

Our extension problem for Sobolev spaces is closely related to certain problems in the
theory of quasiconformal mappings. Let E(D) denote the space of functions having finite
Dirichlet energy, i.e., those functions f having weak derivatives of all orders o, |oc| =1,

and satisfying
”f”E(m:l IZ‘:I (D% fll oy < + oo

Since constant functions have zero energy, E(D) is actually a Banach space of functions
modulo constants. If ¢: D1 is K quasiconformal and f€ E(D’), then fog € E(D) and
Ifo@ll oy < K||f|| s Consequently, ¢ gives rise to an isomorphism between E(D) and
E(D’). A surface S in the Mébius space R* is said to be a quasisphere (when n=2, a quasi-
circle) if S is the image of the unit sphere 8"~'< R" under some globally quasiconformal
homeomorphism of R* onto R". Suppose now that S is & quasisphere and D, and D, are
the two components of 8°. Let ¢ be a (K) quasiconformal homeomorphisms of R" onto R”
such that §=¢(S"1). If f€ E(D,), define an extension Af of f on D, by

= 1{o{fi) =<

It is easy to check that AJ€ E(R"Y=E and |Af|z<2K||fl|zw,- Therefore, every domain
bounded by a quasisphere is an extension domain for the Dirichlet energy space (E.D.E.).
The following result of [11] indicates that this condition is essentially best possible in

dimension 2.
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THEOREM B (Gol'dshtein, Latfullin, Vodop’yanov). If D< R? is simply connected,
then D is an E.D.E. if and only if 0D, is a quasicircle.

One might naturally guess that an analogue of Theorem B holds for Sobolev spaces, though
clearly one cannot extend in that case by using the above quasiconformal reflection argu-
ment. Our Theorem 4 asserts that this guess is correct.

For a rectifiable arc y<R", let I(y) denote the Euclidean arclength of y. Let |z —y|
denote the Euclidean distance between wx, y€R", and let d(x)=inf,cpe |x —y| for z€D.
We say that D is an (¢, §) domain if whenever #, y€ D and [z —y| <0, there is a rectifiable
arc y< D joining « to y and satisfying

1
U< le—yl (1.
and

dz >l Ally =z

for all z on p. (1.2)
oy ’

Domains satisfying the (e, o) condition have been studied previously in {14] and [17]—
the definitions given in those papers appear to be slightly different, but are equivalent.
Fred Gehring [8] is presently writing an expository paper on these domains.

Condition (1.1) says that D is locally connected in some quantitative sense. Condition
(1.2) says there is a “tube” T, y< T'< D; the width of 7' at a point 2 is on the order of
min ([ —z|, |y —z|). It is clear that every Lipschitz domain is an (¢, d) domain for some
values of &, § >0. The boundary of an (g, §) domain can, however, be highly nonrectifiable
and, in general, no regularity condition on 8D, can be inferred from the (g, ) property.
The classical snowflake domain of conformal mapping theory has the property that every
subarc of the boundary is nonrectifiable; it can be checked by hand that the snowflake
domain is an (g, ) domain for some £>0. In fact the situation is even worse than this
example shows. Let H* denote & dimensional Hausdorff measure. If n —1 <o <n, one can
construct a domain D< R” such that D is an (e(«), o) domain and AU N D) >0 for all
open sets Y satistying UNOD=+=D. Such domains arise naturally in the theory of guasi-
conformal mappings. See for example [10] or [16], pages 104, 105.

Our first result is the following extension of Theorem A.

THEOREM 1. Suppose kEN and D is an (e, 8) domain. Then there is a bounded linear

extension operator Ay,
A LHD)~LE, 1<p<eco.

Furthermore, the norm of A, on LY(D) depends only on ¢, 8, p, k, and the dimension n.
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The Calderén—Stein operators of Theorem A do have some advantages over our opera-
tors Ay. Stein [20] constructs one extension operator which works for all p and k, while
our operators are different for different values of k. Calderdn’s operators [2] are different
for different values of &, but have the property that whenever f€L(D) has compact sup-
port in D, its extension vanishes identically outside of D. Our operators A, do not have
this property. On the other hand, a slight modification of our operator A, can be used to

extend functions in E(D). Our next result answers a question of Fred Gehring.

THEOREM 2. Every (e, o) domain is an E.D.E.

A celebrated theorem of Ahlfors [1] gives a simple geometric condition which charac-
terizes quasicircles. If I' is a Jordan curve in R? and z, y==c° are two distinct points on T',
the complement of {z, y} on I' consists of two disjoint arcs. The arc of smaller Euclidean
diameter is called the smaller arc—note that if I' passes through oo, one of the arcs has
infinite Buclidean diameter. The theorem of Ahlfors asserts that I' is a quasicirele if and

only if there is a constant M < + oo, independent of z, y, and such that
jx—z| < M|z—y| (1.3)

for all z on the smaller arc between « and y. The above Ahlfors conditions is connected to

the (g, §) condition via the following result (see [15] or [18]).

TurorREM C. Suppose 'cR? is a Jordan curve and suppose D, and D, are the two

simply connected domains complementary to I'. The following conditions are equivalent:
(i) T is a quasicircle.
(ii) Either D, or D, 1s an (g, ) domain for some £>0.

(iii) D, and D, are (¢, o) domains for some &> 0.

Our next two theorems show to what extent the (¢, §) condition is necessary to the

study of our problem and relate Theorem 1 to Theorem B.

THEOREM 3. I DSR2 is finitely connected, then D is an B.D.S. if and only if D ts

an (e, 8) domain for some values of ¢, 6> 0.

TuEOREM 4. If D<R? is bounded and finitely connected, then the following conditions
are equivalent:

(i) D is an E.DS.

(i) D isan E.D.E.

(iii) D s an (e, o) domain for some £>0.

(iv) 0D consists of a finite number of points and quasicircles.
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Theorem C shows that the two equivalent conditions of Theorem 3 are also equivalent
to a suitable local variant of condition (iv) in Theorem 4-—this will be discussed in a later
section. We also note that there is some evidence in the literature to hint at Theorem 4.
One of the classical examples of a domain which isnot an E.D.S.is D={(z, ) ER%: y > |z},
where «€(0, 1). (The Sobolev embedding theorem fails for L{*5(D).) 8D is also a classical
example of a Jordan curve which does not satisfy the Ahlfors conditions (1.3), i.e., is not a
quasicircle.

One cannot hope for exact analogues of Theorems 3 or 4 in dimensions »>3. There
are two general principles which indicate this. First of all, the simple connectivity property
is a much weaker condition in higher dimensions than it is in dimension 2; the failure of
the Schoenfliess theorem in R3 is but one example of this phenomenon. For this reason,
one might suspect there is a Jordan domain in R?® which is an E.D.S. but not an (¢, 6)
domain for any values of ¢, § >0. The second reason for doubting the existence of higher
dimensional analogues of Theorems 3 and 4 is that R" is highly rigid when »n >3. For this
reason there are very few quasiconformal mappings in R*, »>3, when compared to the
case of R2. As an example we cite the fact that every 1 quasiconformal mapping from the
unit ball of R? to R3 is the restriction of a Mobius transform. See [5], [7], [9], and [19] for
further discussions of this phenomenon. We state without proof the following resuilts.

(1) There is a Jordan E.D.S. in R3 which is not an (g, §) domain for any values of &,6 > 0.

(2) There is a domain D; <R3 such that D, and D2=('Di)° are homeomorphic to
balls, D, and D, are (¢, o°) domains, and 8D, is homeomorphic to S2 but not a guasisphere.

Here E° denotes the interior of a set E. The second example can be obtained by modi-
fying the construction in [6]. We note, however, that if D,—(D§)° and 8D, is a quasi-
sphere, then D, and D, are both (g, o) domains for some £>>0. See [15] or [18].

The method of proof we present for Theorem 1 is as follows. We extend f€LE(D) to
(D°)° by selecting appropriate polynomials for all small Whitney cubes in (D°)°; these
polynomials are then pieced together using the standard partition of unity functions. This
idea goes back to Whitney’s seminal paper [23], and is the same one used to prove the
classical extension theorems for Lipschitz spaces. A good reference for this is [20], Chapter
VI. For some applications of this method to the theory of Sobolev spaces see e.g. [3] and
[4]. To pick the polynomial for a particular Whitney cube Q< (DF)°, we first reflect Q to a
certain Whitney cube @*< D. This reflection technique was introduced in a recent paper
of the author [15] and is closely related to quasiconformal reflection. For f€EL}(D) we then
select the polynomial P =P(Q*) of degree & —1 which satisfies

f D¥f—P)dz=0, O0<|a|<k—1,
Q*
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and continue this polynomial onto @. It is then shown that the oscillation of A,f over @
is well controlled by the oscillation of f near @*; this is where our main difficulties lie. Be-
fore outlining the contents of the following sections we warn the reader that Theorem 1
will be proved only for the case where radius (D)>1. For the usual reasons, the norms
of the operators A, on LL(D) will tend to o© if ¢, 8, p, k remain fixed and radius (D) tends
to zero, unless we renorm our Sobolev spaces so that polynomials of degree & —1 have norm
zero in LE('D) whenever radius (D) <1. Since the modifications needed are unpleasant but
routine, we do not present them here.

In section 2 we record several lemmas necessary to the proof of Theorems 1-4. The
reflection technique @—@* is also discussed there. For the usual technical reasons we
need to know that functions €* on R" are dense in LE(D), 1 <p < oo, To maintain the flow
of ideas, this chore is postponed until section 4. In section 3 we construct the operators
A, of Theorem 1 and prove (modulo the results of section 4) they are bounded on L{(D).
Theorem 2 is proved in section 5. In section 6 we construct a counter-example which
proves the converse direction of Theorem B. This counter-example is then used to finish
off the proofs of Theorems 3 and 4. We also discuss the connection between the equivalent
conditions of Theorem 3 and condition (iv) of Theorem 4.

The author is grateful to Fred Gehring for having suggested the problem treated in
Theorem 2 and for several useful comments. The author also thanks Jerry Bona, Alberto

Calderén, and Jim Douglas for various discussions and suggestions.

§ 2. Seme lemmas

In this section we collect several lemmas necessary to the proof of Theorems 1-4.
We denote by V the vector (8/dx,, 0/0w,, ..., 8/6x,) and for m€Z+ we denote by V™ the
vector of all possible mth order differentials. Throughout the paper, C' denotes various
constants depending only on ¢, §, p, k, and the dimension #, and C(e, §, ...) denotes various
constants which also depend on «, f, .... These constants may differ even in the same
string of estimates. Our first lemma follows from the fact that any two norms on a finite
dimensional Banach space are equivalent. Since this lemma will be used so often, we will

not state it every time it is invoked.

Lemma 2.1. Suppose @ is a cube and E, FSQ are two measurable subsets satisfying

|E|, |F|=2y|Q| for somey>0. If Pis a polynomial of degree m then

|1Pll ey < Cys m) | Pl oy
whenever 1 <p < oo,
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If Q<=R™ is a cube, let }(Q) denote the edgelength of Q. We say that two cubes touch if
a face of one cube is contained in a face of the other. Our next lemma is a variant of the

classical Poincaré—Sobolev lemma.

Lrmma 2.2. Suppose @y and Q, are two touching cubes satisfying %él(Ql)/l(Qz) <4. If
f €O satisfies
f D*fde=0, 0<|a|<m,
QUQ:

then

! . Illr@uuen < Clm) UQY™ V™ fllzneuvan
whenever 1 <p< oo,

For the rest of sections 2—4 we fix an (g, §) domain with radius (D) > 1. We also assume
that § <1 since that is the only estimate we will use. Our next lemma says that A,f will

be defined almost everywhere as soon as it is defined on (D).

Lemma 23. [0D] =0.

Proof. Fix 2,€8D and y€D. Let Q be a cube centered at x, and satisfying 1(Q) <
e —y|. Let 2€ D satisfy |z —a,| <3UQ) and let p be the curve guaranteed by (1.1) and
(1.2). If z€y satisfies |z —z| =3UQ) then d(z) > (£/100)1(Q). Therefore | DN Q| =C"|Q|, and
by Lebesgue’s theorem on differentiation of the indefinite integral, |0D| =0.

Let Q be an open set in R”. Then O admits a Whitney decomposition, Q= U S,.
Each 8, is a closed dyadic cube and

1<M<4V%, for all k, (2.1)
1(Se)
8 NSp=0 it j=k, (2.2)
and
1 U8, .
=< < ; ) 2,
AT 4 it §N8,=D (2.3)

See [20], chapter VI for a construction of the Whitney decomposition. Let {8} =W, and
{Q}=W, be the Whitney decompositions of D and (D)°, respectively. Put W,=
{Q,€ W, I(Q;) <&d/16n}. For each Q,€ W, we now pick a reflected cube Qf =S, €EW,.

Lemwma 24. If Q,€W,, there ts 8, €W, safisfying

(Se)
K&,

dist (@5, S;) < CUQy).

o~

1< <y

and
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Proof. By (2.1) there is z,€D satisfying dist (z,, Q;) <5Vnl(Q,). Let y,€D satisfy
{20 —o| = (8n/e) (Q;). Then by (1.1) and (1.2) there is 2, € D satisfying d(z,) = (¢/2) |2 —yo| =
dnl(Q,) and |z —zo| (L) |2 —yo| = (8n/e?)UQ,)). Tf S, €W, contains z,, then by (2.1),
[(8o) ZUQ;). Let S,EW, satisfy I(S,) =1(Q,) and minimize dist (@, S;). Then

dist (@) 5 <5Vnl(@) + >3 @)
and by (2.3), 1 <U(S,)/UQ;) <4.

For each Q,€W, fix a cube 8,€W, satisfying the conclusions of Lemma 2.4, and
call 8;,=Q;. There may be more than one way to pick @ for a given ;€ W,. The next
three lemmas tell us that no matter how we pick the cubes @}, the correspondence Q;—~Qf
looks roughly like quasiconformal reflection. The proofs of these lemmas are almost im-

mediate.
Lremma 2.5. If Q,€ W5 and S,, S, € W, satisfy the conclusions of Lemma 2.4, then
dist (8;, 8,) < OUQ;).
LeMMA 2.6. If S, €W, there are at most C cubes @;€ W such that Qf =58;.
Lemma 2.7. If Q;, Q. €W, and Q,; N Q.=+D, then
dist (@, QF) < CUQ,).

The following figure illustrates the correspondence @,—@Q;. @, and @, are in W, and
Qo N @y==D. On the other hand, Qg N Q% = . The property we will use repeatedly is not
just that dist (Qq, Q1) <CUQ,), but that o(Q5, @F) <C, where g is the (hyperbolic) metric
on D induced by (37.; da?)/(d(z))2. See [15] for a discussion of the hyperbolic metric on
(e, o) domains.

Suppose @, Qs, ..., @, are cubes such that ¢, and Q,,; touch and } <UQ;)/HQ,.,) <4
for all j, 1<j<m—1. We say then that {Q,, Q,, ..., @,} is a chain connecting @, to @),,, and
define the length of that chain to be the integer m.

LeMMA 2.8. If Q,, Q€ Wy and Q,N Q,+D, thereisachain F; = {QF =51, 84, ... Sm=Qi }
of cubes in W,, connecting Qf to Qr and with m<0.

Proof. Let ¥ be the arc connecting @f and @ satisfying (1.1) and (1.2). Let F=
{8, €Wy 8, Ny=+D}. By Lemma 2.7, dist (Qf, @%) < CUQ,). Since UQ}), UQx) > 11(Q;), condi-
tion (1.2) assures that d(z)>Cl@;) for all z on . Since I(y) <Cl(@,) there are at most ¢

cubes in F. A suitable subset of F now provides the chain F; , whose existence was claimed.
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§ 3. The extension operators

Fix k€N and a value of p, 1 <p<oo. In this section we construct the operator A,
and prove (modulo the results of section 4) that it is bounded on L{(D). For each @;€ W,
build ¢ ;€ O*(R") such that ¢, is supported on (17/16)Q;, 0 <¢; <1, o cw, ;=1 on U g,ew, @

and

| Do, | < O(JaDUQR)™™  forall j and a.

Here A@) denotes the cube concentric with ¢, with sides parallel to the axes, and with length
1(2Q) =2Q). Note that any point lies in the support of at most € functions ¢;. Fix f EL{(D).
For a set S D of positive measure, let P(8) be the (unique) polynomial in z,, z,, ..., z,

of degree k—1 satisfying

fD“(f—P(S))dx=0, 0<|a|<k—1.

We say that P(S) is the polynomial fitted to S. For Q;€ W, let P;=P();) be the polynomial
titted to @;". The operator A, is defined by setting
Avf= 2 Py
Qi€ Ws
on (D). Notice that A, is linear and its definition does not depend on the value of p. By
Lemma 2.3, A,f is defined almost everywhere on R™. We first show that ||Af||

<
o) =
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|l f”L’,L(D)' That of course does not prove Theorem 1, but the rest of the proof consists

only of verifying some technical details.
Lewma 3.1. Let F={8,, 8,, ..., 8,,} be a chain of cubes in W,. Then if 0< || <k,
DA (P(8y) = PS)[zncsy < Clm) U8 P V*fl| o

Proof. We first pause to notice that the quantity to be estimated is zero if |f| =
By Lemmas 2.1 and 2.2,

1A~ PSllnss < 3, 1DPPLS) = PSyahims,

<0(m) 2 IDAP(S,) — P(S,.1))les,

m—1

Z {IDA(P(S,) = P(S, U Srsa))llos,y
+ | DAP(S, 1) = P(S, U Sr1))ives,, o}
)" (DA~ Py + 108~ P, s, o
+ |DA(f~ P(S, U 1)) |ois,us, . )

m—1
m) ;zl US, Y PNV || ois, 0,4 < C(m) US)F P VE || ocu -

In the above estimates we have repeatedly made use of property (2.3) of the Whitney
decomposition.

For each @;, @, € W, such that @, N Q.=+, fix a chain F, , as in Lemma 2.8 and let

F(Qj) = U Fuc
QreWs
@;NQy+0
By Lemma 2.8,
I > umlle<C forall Q€ W, (3.1)
QreWws
QUNQk+
and
I > Zureplle<C. (3.2)
Qje Wa

Lemma 3.2. If Q€ W3 and 0< || <k, then

1D* A fllirian < CID* sty + UG V¥l acwrann-
Proof. On @y, Ayf has the form ¢ .cw, P;p; and Jgew, ¢, =1 on @, Consequently,

”D 2P %”LP\QO)\”D POHLP(Qo)"'”D 2. (P, %”LP\Qn) I+1IL
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By Lemma 2.2,
I< C”D“Po”w(ob < C”Daf”mo:) + OHD"‘(f - Po)”u'(@:)

< O|| D% ]| ot -+ CUQY W VF | ooty
Now write
D* 3 (Py—P)g;= > 3 Cop(D*Po)(DF(Py—P;)).

Qe Ws Qe Wy af

To bound II we need only bound the expression ||(Dx~8gp;) (DA(Py—P;))| 1p@y- There are
at most C cubes ;€ W such that ¢;= 0 on ¢, and for these @,, @; N Qy==D and (@) = 1 U(Q,).
Consequently, | De—fg,| <CUQ,)™'*#'if @, 0 on Q,. For these indices j we thus obtain the

estimate

[(D*P ;) (DA(Py~ P)lrian < CUQe) " [ DA (Py — P))|oca0
< CUQe) ™" | DA (P — Pl ocaty
< Ol(Qo)_]a_ﬁlZ(Qs)k_muka”mum,,)
< OUQ* V¥ | ocu -

The penultimate inequality above follows from Lemmas 2.8 and 3.1. Summing on j and

invoking (3.1) we obtain the estimate
1< CUQYY ™[ V¥ fll zocu rean»
LeEMMA 3.3. If Q€ W\ W, and 0<|a| <k, then

[D*Awfllpan < € ZW UV lan + 2 1D? fllman}-
Qo?\z)j;z pe=

Proof. If ;£ 0 on @, then Q, N Q,=+D and 1(Q;) > 11(Q,) =>&6/64n. Consequently, on ¢,

we have
|D*Afl=] 3 3 Co gD Pg)(DP))]

Q€ Wy f<a
QoNQy

<C X 2 |DP
Q/EW; pse
QNAj+

If Q, N Q,;=D, then by Lemma 2.2,

| D2P | o0 < C|DAP Mercats
< C”Dﬁf”me}‘) + C|| DA(f - PJ‘)”L”(Q}’)
< O D? || soap + ClIVE I zoeaty

because [()]) <1. Summing on j and g, the lemma is proved.

6 — 812901 Acta mathematica 147. Imprimé le 11 Decembré 1981
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A simple geometric argument shows

I > 2 Zailem<c. (34)
QEeWNWy  Qpe W,
QUNQx+ J

Combining Lemmas 3.2 and 3.3 with (3.2) and (3.4) we obtain the following

PROPOSITION 3.4. ]]A,,f"L:((DG),,) <O\l 2oy

We now show that A,f has weak derivatives of all orders «, 0 < |x| <k. By the result
of section 4 we may assume [ is the restriction to D of a function f€C®(R") satisfying
| Dl o <M, 0< || <k, for some value of M <oo. Since |8D| =0, it is sufficient to show
that whenever 0<|a|<k—1, (D*)X5+(D*Af) X is Lipschitz. For then A,f€Lf
and by Proposition 3.4, ||A.f|] 2 <Clfll

write

2oy Fix a multi-index a, 0<|a|<k-1, and
K

D*Ayf = (D*f) X5+ (D*Arf) Xoeye-
Lemma 3.5. D*A,f is Lipschitz.

Proof. Fix r, 1<r<mn, and set ¢/0x,D*=D". Then by hypothesis, || D?f||cw <M.
After setting p=oco, Lemmas 3.2 and 3.3 yield || D”Af||zopeyy <CM. Since D is closed
and (D°)° is open, the lemma will be proved once we know that D*A,f is continuous. To
this end, let

g;= r(;_ﬂ fQ; D*fdx, for Q,EW,.
It is sufficient to show that for Q,€W,,
| D*Arf—gillieey—=0 as U@y)—0. (3.5)
By the estimate for term II in the proof of Lemma 3.2,

(1% % (P~ P @illzocap < CUQ)Y V¥ | soocumean

whenever ;€ W,. Consequently,
HD"‘Akf - 91“L°°<0,~> < “DaP i 9'5“L°°<Q,-> + HD“ 2 (Py—Py) (PkuL“’(Qp
< C|[D*P; — g,ll sy + CURY || VE fllzoocurapm

< CUQNIVD*fll o0l + CURY | VE fll soorw reayn
<CMUQ;)—~0 as I(@)—0.

The proof of Theorem 1 is now complete, modulo the results of section 4.
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§ 4. Approximation by C* functions

Fix >0, k€Z_, a value of p, 1 <p<oo, and fELYD). In this section we construct
g€O°(R™ such that [[f—g“L%D)<C17 and |D*g| <M, 0<|«|<k, for some value of M.
If D is a Lipschitz domain, an easy convolution argument (see [20], chapter VI) can be
used to produce g. In (&, 6) domains this argument fails rather badly; we use here a poly-
nomial approximation scheme similar to that of section 3.

Let 0=2"" be a small number whose value will be fixed later, and let {R;} = R be the
collection of all dyadic cubes R satisfying (R)=p and R<=D. Put R ={R,€ER: R;= 8,
for some S, €W,, I(S,) > (32n%/¢)p}. For R,€R’ let R; (resp. f‘i‘,) be the cube concentric
with R;, with sides parallel to the axes, and with length I E,) =(500n%/e?)p (resp. l(I:{',) =
(1 000n#/e)g). Conditions (1.1) and (1.2) show D< Uger R, if g is small enough.

Lemma 4.1. If R, RER and R,NR,+D, then there is a chain G, =
{B;=R,, R,, ..., R,=R,} of cubes in R connecting R, to R,, and with m<C.

Proof. Let v be an arc connecting R; to R, and satisfying (1.1} and (1.2). Fix a point
z on y; without loss of generality we may assume dist (z, B;) <dist (2, £). If dist (2, B;) <
32ngp/e, then

() > 32nfp  32mp S 32np
& € e

If dist (z, B))>32npfe, then by (1.2), d(z)>¢-(32np/e)-3=16np. Thus, if S,€W, and
8 Ny==D, I(S;) Zp. A suitable subset of {R € R: R, =S, €W,, § Ny+D} provides us with
a chain G, connecting R; to R,. Condition (1.1) and the estimate dist (R, B,)<
(2 000n%/2%)p assure that the length of G, ; can be bounded by C.

For each R,€ R’ let P; be the polynomial fitted to R;. These polynomials P, are not
in general the same as those of section 3. Also construct functions ¢;€C®(R") sup-
ported on ji,- and satisfying 0<@;<1, 0<Tpcp ¢;<1, Spep @;=1 on Uger B;, and
Swew | D] <C(|a])o™™ for all . Let gy=2g.cx Pyp; The function g, will approxi-
mate f near oD.

Lemma 42. If Rj€ER and 0< || <k, then
1 D*Pyll oty < CILD* Al oceyy + Co* || V¥ f llzocap-

Proof. The lemma follows from Lemma 2.1, the triangle inequality and Lemma 2.2.
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Lemma 43. If Ry, R,€ R, ByN R+, and 0< |«| <k, then
[ D*(Py— P))||ecaey < OQk—lal||ka||LP<an.,-)-

Proof. The lemma follows from Lemma 4.1 and the estimate on term II in Lemma 3.2,

For >0 let D,={x€D:d(x)<s}. Fix a value of s€(0, 1) so that “f“Li(v\v%)<77'
Let y€C°(R") satisfy 0<yy<1, p=1 on D, p=0 on R"\ Dp, and | D*p| <C(|x|)s™™
for all a. Let {€C0=(R") be supported on {||x|| <1} and satisfy (gsdz=1. For ¢>0, set
{x) =t="C(x[t), and let f x {; denote the convolution of { with {;. Now fix a value of £ € (0, 5/2)

so that
1f = £l 2 g0, <",

Let g, =go(1 =) =G rer P;¢;) (1 —y) and let g,=(f%{)yp. Then g,, g,€C°(R") and by
Lemma 4.2 there is a number M <o such that | D*g;| <M, 0<|«| <k, j=1, 2. To show
||f~(gl+gz)||LZ(m<C17, we need only show that for every o, 0<|a| <k, || D=(f— (g, +

gg))” raonpy < 01, because
1 D(f — (g1 + g2)) o0, = 1 D*(f — g2l eoy < 7.
Fix a, 0< || <k, and write

D*(f— (g9, +¢2) = ﬂg Co s(D* Py) (DH(f— f% L))+ 3 Co, g(D* (1~ ) (DA(f — g))-

pse

It is only necessary to check that all elements on the right-hand side of the above equality
have small L? norm on D\ D,. Since | D*~fy| <Cs *7#l, the manner in which we have

picked ¢ yields
I ﬂg | D=~y | DA(f — % &) || ocwrop < O 4.2)

We now handle the other terms in (4.1). Notice that (1 —y)yyp is supported in D\ D,
and D*(1 —y) is supported in D2\ D, whenever « = 0. The triangle inequality and Lemmas
4.14.3 applied to the function (1—y)(D*(f—g,)) yield

11 =) (D*(f — g)) | socommy < CID* Hl ocono, + ClID*f N
+ Co* (| V* || Lopgomn < O, (4.3)

as soon as ¢ is small enough with respect to s. Now fix a multi-index 8, 0 <f<«, f=a. For

Ey€R', ByN{Ds2\ D} 4D, write

| D2(f = g) | <|DA(f - P) | + lDﬂng (Po—P)) ¢y]-
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Combining Lemmas 2.2, 4.1, and 4.3 with the estimate (3.3), we obtain

D21~ ) DA = g)lrooy = [|(D*#(1 = ) (D?(f = ) lp, 00
< Os_loﬁﬂIHDﬂ(f - gl)'lL”(Ds/2\Ds)
< Cs 1 gV fll copgy < 7 (44)

as soon as g is small enough with respect to s. To obtain the inequalities (4.3) and (4.4)
we have used the fact that when Ry, R,€ R', Ryn {D\ D,}+7, Eo n I:B,-:(:Q, we then have
U Gy, ;< D\ Dy, if ¢ is small enough. Fix a value of p >0 so that estimates (4.3) and (4.4)
hold. By (4.2)-(4.4) we then obtain

ProrosITION 4.4. ||[f (9 +92)”Li<v> <O7.

The above proposition completes the proof of Theorem 1 for the case where 1 <<p <oo,
For the case where p=co we need the usual weak approximation of fELT(D) (see [29],
page 188). The argument of this section produces for each #>0 a function g€C*(R")

satistying ”f“g“LZ‘i <7 and "g”L;'O(mgO”f”L?(v)' This is sufficient for our purposes.

§ 5. Proof of Theorem 2

Suppose that for all pairs of points z;, z,€ D there is an arc y joining 2; to z, and such
that

lx_yllz1”zzl> .. ..
Sl 4,§=2,2, Q=7
Ix—zé||y~z,-| ! !

for all pairs of points , y, x€y, y€ D¢. With a little bit of work one can see that then D
is an (1, c©) domain for some % =%(g) >0. Conversely, if D is an (e, o) domain, then (5.1)
holds for some ¢ =¢&(#) > 0. This observation is due to Olli Martio. The advantage of Martio’s
definition is that the estimate in (5.1) is invariant under Méobius transformations. In
proving Theorem 2 we may therefore assume that D is unbounded. A look at the estimates
of section 4 shows that 0°(R") functions are dense in E(D). For each cube @,€ W, select a
reflected cube @} as in section 2. Since D is unbounded, Lemmas 2.4-2.8 remain valid if
we replace W3 by W, in their statements. For f€ E(D) and @Q,€ W,, let P; be the constant
given by

f*(f—Pj)dx=O.
Qj

Let {p,} be the usual partition of unity on (D°)° and put

Af =2 P;p;
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on (D). Then if 1 <r<n, Lemmas 2.8 and 3.1 yield

9
oz, P;

2 s

o,

=“Z (Po—P))

L7 Qo) L™(Qo)

<CUQy)™* QZ 1Po = Pyllincan

2

7
QN+

< CURY) UVl murcan-

Consequently, {|Af||zwe < C||f|| zw>- The argument of section 3 shows that

)1 )

is a weak derivative of f. Theorem 2 is proved.

§ 6. Quasicircles

In this section we prove Theorems 3 and 4. To do this we first give an alternative
proof of Theorem B. To this end, fix a hounded Jordan curve I' which is not a quasicircle,
and let D be the domain interior to I". Let M be a large positive integer. Since I' is not a
quasicircle, we can find points 2y, 2, 25, 2, on I' such that z; and z, lie on different com-
ponents of I'\ {z,, 2,} and such that |2; —z,| > |2, — 25| =€" |2 —2,|. Then I'\ {2y, 2,, 23, 23}
is divided into four disjoint open arcs 2,25, 452, 752y, %221, and we may assume without loss
of generality that these arcs are given by the counter-clockwise orientation on I'. Let ¢
be a conformal mapping from D to the unit disk, A. The map @ indices a homeomorphism
from I' onto 7. Let ¢(z;) =w;, 1 <j<4, and let I, =] thy, I, =1, Wy, L5 =105 0, 1, =1, w, be
the four disjoint open arcs of T\ {w;, w,, w,, w,} thus obtained. Let I; be an arc of smallest
Euclidean arclength among the collection {I,, I,, I3, I,}. We may assume I;=I; the other
three cases are handled in exactly the same fashion. Let I; denote the open arc of 7' having
the same center as I, and length |I;| =3|I;|. Then by assumption, I, N I,=@. Therefore
there is a function 7€ C*(R?) such that 0<7<1, =1 on I;, 7=0 on I,, and

7| 2y < 100.
Let f=7vop on D. Then ||f]| z5, <100 and

“f”z,f(v) < 7"? radius (D) +100.
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Suppose now that F is an extension of f to R? and suppose F € E. By its construction,
F=1on 43z, and F=0 on £z, If |2, —2,| <r<|z;—2z], the circle {|z—2,| =r} intersects

both the arcs 4;2; and %2,. Consequently,

1
7"

27
f |VF (2 +re) [>rdf >
0

for almost every such r. Since |z, —2;] =€ |2, —2,|, We obtain

eM|21—22

| pr2n
etz [ (iR e prasars o
lea—2e] 0

By standard patching arguments, there is f€L5(D) such that no extension of f to R? lies
in E. An application of the Riemann mapping theorem now completes our proof of Theo-
rem B.

To complete the proof of Theorem 4, notice that the implications (iii) = (iv) = (iii) = (i),
(ii) follow from Theorems C and 1. The counterexample of this section can be easily modified
to show that if condition (iv) fails, conditions (i) and (ii) also fail simultaneously.

The proof of Theorem 3 is similar. Suppose D is finitely connected and suppose further
that D is not an (g, §) domain for any values of ¢, 6 >0. By Theorem 4 we may assume D
is unbounded. Since D is conformally equivalent to the unit disk minus & finite number of
points and disks; our method of proof shows we may assume that 8D consists of a finite
number of bounded Jordan curves plus a (possibly infinite) number of unbounded Jordan
curves. Call the collection of all boundary curves {I';}. Fix a value of §>0. By Theorem C

one of the following conditions must fail:

(A) Every bounded I'; satisfies condition (1.3) for M =1/4.
(B) If I'; and 1, are distinct unbounded curves, then dist (I';, I';) = 6.
(C) If 2, 2,€L"; (T'; unbounded) and |z, —z,| <9, then diam (y;) <(1/0)|2, —2,|, Where

y; is the smaller arc between z, and z,.

In each of the above cases, the counterexample of this section can be localized by

using smooth cut-off functions to show that D is not an E.D.S.
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