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I n t r o d u c t i o n  

In this paper we present a new algorithm of resolution of singularities over fields of 

characteristic zero, making use of invariants that  come from Abhyankar's good point 

theory [Abl]. We also prove new properties on constructive (or algorithmic) desingular- 

ization. 

Let us explain what we mean by an algorithm of resolution. Consider a pair 

(X, W) where W is a regular variety over a base field k (of characteristic zero) not 

necessarily irreducible (i.e. W smooth over k), and XC_W is a closed non-empty sub- 

scheme. Call C the class of all such pairs (over different base fields k). Natural maps 

(~ - I (X) ,W1)  ~' ) (X,W)  arise within this class, for instance if ~: W1--,W is a smooth 

map over a fixed field k, or if ~: W1--*W arises from an arbitrary change of base field. 

Fix now a totally ordered set (I,  ~<) and suppose assigned, for each pair 7~= (X, W) 

of U, a function ~p: X--+I which is upper-semi-continuous and takes only finitely many 

values, say {~1, ,.., C~r}C--I. Let max~bp be the biggest ai and set 

Max ~bp = {s r c X [ ~bp (~r = max ~bp }. 

We first require that  the assigned function ~bp be such that  Max~bp (C_X) is regular and 

closed in W. 

Note first that  I is independent of 7)= (X, W). Roughly speaking, at each point 

{ c X ,  the value ~b~({) is to quantify how bad { is as a singular point, so now the worst 
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singularities define the closed and regular stratum Max r The property of r is that sin- 

gularities "improve" after blowing up Max r and that desingularization will be achieved 

by repeating this procedure. 

Let W, ~ W1 denote the monoidal transformation with center Maxr and set 

X1 (qW1) as the strict transform of X. The subscheme X1 is empty if and only 

if Maxr in which case red(X) (X with reduced structure) is regular; if not, 

Pl=(X1,  W1) is also a pair in C and the exceptional locus of ~ in W1 is a regular 

hypersurface, say H1. Now we want to assign a function to Pl, more generally: 

Fix P0=(X0, Wo) a pair in C, and suppose that for some index s~>0 we have defined 

blowing-ups 

W o  , ~1 W l  ~-~ . . .  , ~s W s  

in smooth closed centers CiCX~, pairs Pi=(Xi, Wi), Xi the strict transform of Xi-1, 

i=1, ..., s, and that functions 

r i = 0 , . . . , s - I ,  

have been assigned and Maxr i=0, ..., s -1 .  

(Als) (Requirement.) We require that the exceptional locus of Ws----*Wo be Es= 

{HI, ..., Hs}, a union of regular hypersurfaces having only normal crossings. 

(A2~) (Assignment.) If Xs r O, an assignment of a function Cp~ : X~ --~ (I, ~<), upper- 

semi-continuous and taking only finitely different values, such that Maxr (CX~) is 

regular and closed in W~ and has only normal crossings with E~. 

(B) For each pair (X0, W0) there is an index s>~0 so that MaxCp~ =X~. 

(C) With the setting of (B), if Xo is reduced, then X~ is regular (and has normal 

crossings with Es by (A2s)). 

The last condition (C) is that of a so-called "embedded" desingularization of X C_ W. 

Note that (AI~) is vacuous if s=0, and for s>0 guaranteed by (A2s_l). 

This is an algorithm of resolution (with values at (I, ~<)), namely an assignment 

with the conditions (A), (B) and (C). An algorithm was introduced in [V1] to give 

a constructive proof of desingularization, as opposed to the existential proof in [Hill. 

Constructive resolution allows us to avoid the web of inductive arguments in Hironaka's 

monumental work and also presents desingularization as an active tool rather than an 

existential result. The search of applications leads to the study of natural properties as: 

(P1) If (qo-l(X), W])---~(X,W) is defined by ~: W1---*W, either smooth or an ar- 

bitrary change of base field, then the desingularization of (p-l(X),  W~) defined by the 

algorithm is the fiber product (via ~) of that of (X, W). 

(P2) (Equivariance.) If a group acting on W induces an action on a pair (X, W), 

the action naturally lifts to the desingularization of the pair defined by the algorithm. 
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X (P3) For any (X, W), if I m ~ = { a l ,  ..., a ,}  then =Ui=x ~) 1(Oli) is a stratification 

of X, each stratum f - l ( a i )  being locally closed, regular and of pure dimension. 

Property (P3) is a consequence of: 

(P4) The regular and closed subschemes Max f~s (see (A2s)) are pure dimensional 

and dim Max ~ , ,  is given by the value max ~ .  

Properties (P4) and (P1) (for an arbitrary change of base field) were initially moti- 

vated by the study of stratification of families of schemes (e.g. Hilbert schemes) defined in 

terms of "algorithmic equiresolution", which we hope to address elsewhere (see also [E]). 

Our program of study of canonical properties grows from [V2]. There (P1) and (P2) 

were proved for the algorithm introduced in [V1] and examples were included to exemplify 

how the algorithm works (e.g. on the Whitney umbrella) and how group actions lift. We 

also refer to [V4] and particularly to [EV] for a simple introduction to constructive 

desingularization. In this work we present a new algorithm and we prove the properties 

mentioned above. In Remark 6.22 we show how new and old algorithms relate. Proofs 

are organized to show that  these properties hold for both algorithms. 

The old algorithm (in [V1], [V2], [V4]) relied on the two main "inductive invariants": 

w-ord, n (see Definition 4.20 and 6.17). These two invariants were the clue for the 

inductive argument on the dimension of the ambient space. Together with the two main 

inductive invariants, there was finally a third invariant involved in the first algorithm, 

which is simple, non-inductive, and only plays a role when the two main invariants are 

exhausted (see the monomial case in w 

Recently an important contribution with another approach to constructive desingu- 

larization has appeared in [BM2]. We also refer to [A J], [AW] and [BP] for short and 

nice non-constructive proofs of desingularization. 

Our new algorithm grows from a fourth invariant: Ab (see (6.18.1), (6.18.2)) which 

enables us to desingularize taking into account the notion of "good point" introduced 

by Abhyankar [Abl]. We refer to [V3] for examples which illustrate that,  in general, the 

new algorithm leads to desingularization in less steps (less monoidal transformations) 

than the old one. 

An important improvement of this presentation with respect to that in [VI] and IV2] 

is the notion of "assignment of chains and functions" introduced in Definition 6.3, which 

clarifies the global behavior of the algorithm, avoiding the notion of idealistic exponents. 

Algorithmic aspects of the proofs are developed in the second half of the last section (w 



112 S. E N C I N A S  AND O. V I L L A M A Y O R  

1. Basic objects.  Transformations 

1.1. Let Z be a Zariski space (i.e. a Noetherian topological space such that  each irre- 

ducible subset has a unique generic point, cf. [Ha, p. 93]), and (I, 4)  a totally ordered 

set. In what follows, a mapping f :  Z---*(I, 4) is said to be a function if and only if 

(1) f ( Z ) = { a l ,  ..., as}_CI ( f  takes only finitely many different values), 

(2) for each aCI the subset {~EZif(~)>~a} is closed in Z (i.e. f is upper-semi- 

continuous). 

In our context Z will be the underlying topological space of a scheme of finite type 

over a field ([Ha, p. 84]), hence a mapping will be a function if and only if both (1) 

and (2) hold locally at any point of Z. 

For f a function as above, we define 

�9 m a x f = m a x { a l ,  ..., as}, the maximal value achieved by f ,  

�9 Max f = {f C Z I f (f) = max f }, a closed subset of Z. 

Example. If FC_Z is closed and f E F ,  let cod~(F) denote the codimension of F in 

Z locally at f. The map - c o d :  F--*Z, - c o d ( f ) = ( - 1 ) c o d ~ ( F ) ,  is an important example 

of a function as defined above. Note that  the local dimension, say dim: F - + Z  is also a 

function. 

Definition 1.2. A basic object consists of data (W, (J, b), E) where 

(1) W is smooth and pure dimensional over a field k of characteristic zero ([Ha, 

p. 268]), 

(2) J is a coherent sheaf of ideals of Ow,  such that J ~ O  for all ~CW, 

(3) bEN, 

(4) E=(H1, ..., Hr} is a finite set of smooth hypersurfaces of W having only normal 

crossings. 

The dimension of (W, (J, b), E)  will be the dimension W and to each such basic 

object we assign a reduced closed subscheme of W: 

Sing(J, b) = {~ E W] u~(J) >~ b} 

where u~(J) denotes the order of J~ at the local regular ring Ow,~. 

1.3. There is an ideal describing the closed set Sing(J, b). If n is the dimension of 

the basic object, ft~v/k is locally free of rank n, and so is the dual sheaf Der(W/k). Define 

an operator A on coherent ideals in Ow by setting 

A(J)r162 V~EW. 

We claim that  Sing(J, b)=V(Ab-I(J)) (the closed subset defined by Ab-I(J)). This can 

be checked from the fact that,  if ~ is a closed point and Xl, ..., Xn is a regular system of 
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parameters of Ow,~, then 

A(J)~ = {f, Of/Oxi I f C g~, i = 1, ..., n}, (1.3.1) 

so L,~(A(J))=max{0, y e ( J ) - l } .  Note also that if J~ is generated by equations f l ,  ..., f~ 

then 

A(J)e  = (fj, Ofj/Oxi I J = 1, ..., r, i = 1, ..., n). (1.3.2) 

Definition 1.4. A center of a basic object (W, (J, b), E) will be a closed and smooth 

subscheme of Sing(J, b) which has normal crossings with E = { H 1 ,  ..., H~}. 

Let ~: W1---,W denote the monoidal transformation with center C, H~+I the excep- 

tional locus of ~ (a smooth hypersurface) and 

E 1  - -  { H ~ ,  ..., HIr}U{Hr+l} 

where H i is the strict transform of Hi. There is a unique coherent sheaf of ideals J1C Owl 
so that 

JOwl = JlI(Hr+l) b 

(I(H~+I) is the ideal defining H r + l = 9 - 1 ( C ) ) .  Now (W1, (J1, b), El )  is also a basic object 

and 

(W1, (J1, b), El) 

will be called the transformation of basic objects defined by the center C. 

1.5. Note that ~: W1--+W induces a proper map 

~: Sing(J1, b) --+ Sing(J, b) 

which is an isomorphism over Sing(J, b)\C. In particular, Sing(J1, b) contains the strict 

transform of Sing(J, b). 

1.6. Trivial basic objects. Note that if J=I (V)  where V is any smooth closed sub- 

scheme in W, then Sing(J, 1)=V,  and if 

p: (W1, (-/1,1), El)  --~ (W, (J, 1), E) 

is a transformation of basic objects with center C, then J1--I(V1) where V1 is the strict 

transform of V. (W, (J, 1), E) will be called a trivial basic object. So in this case the 

strict transform of Sing(J, b) is Sing(J1, b). 
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Definition 1.7. A resolution of a basic object (W, (J, b), E) will be a sequence of 

transformations 

(W, (J, b), E) = (W0, (J0, b), Eo) ~-- (W1, (J1, b), El) +--... ~-- (WN, (JN, b), EN) 

such that  Sing(JN, b)=o. 

1.8. Let (W, (Y, b), E) be a basic object and qo: W1--~W a smooth map (of pure 

relative dimension, [Ha, p. 268]). Set Jl=JOvr and 

E1 = {~v-1 (H1), ..., ~o-1 (Hr)}. 

Then (W1, (J1, b), El)  is also a basic object and 

Sing(J1, b) = : - 1  (Sing(J, b)). 

This setting (where ~ is smooth) will be denoted 

~: (Wl, (J1, b), E~) --~ (W, (g, b), E) 

and called the restriction defined by qo. Of particular interest is the case where qv is an 

open immersion or an 6tale morphism. 

1.9. Let c~: W'--~W be either a restriction or a change of the base field k (k as in 

Definition 1.2 (1) and W[ the fiber product): 

(W' , (J ' ,b) ,E')  < ~' 

ol 
(W, (J, b), E) < 

(wi, (Ji, b), 

1o' 

(1) If ~o is the transformation with center C, then qs' is the transformation with 

center c~-l(C) and a '  is a restriction (resp. a change of base field) (we agree that  a 

transformation on the empty center is the identity). 

(2) If ~ is a restriction then ~' is a restriction. 

In particular a resolution of (W, (J, b), E) induces a resolution of any restriction and 

of an arbitrary change of base field. 

2. T h e  m o n o m i a l  c a s e  

The interesting thing with the notion of resolution of basic objects, Definition 1.7, and 

its link to resolution of singularities will be clarified in the development. For the time 
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being let us say that the clue to constructive desingularization IV1] was to define an 

assignment: to each basic object B =  (W, (J, b), E) a smooth subscheme C(B)C_Sing(J, b) 

having normal crossings with E. Set 

B= (W, ( J,b),E) +--- (W1, ( JI,b),E1) =BI 

as the transformation with center C(t3). Now look at the transformation with cen- 

ter C(B1), so ultimately such an assignment induces over each basic object B a sequence 

of transformations (Definition 1.4): 

B +-- B1 +--- ... +-- B N  +-- . . . .  

We also require that for some X (set ~N:(WN, (JN, b), EN)), Sing(JN, b) be empty (as 

in Definition 1.7). 

Here we treat a very special case inspired by [Hil, p. 312]; but the treatment will 

illustrate the general strategy. Set 13=(W, (J, b), E), E={H1, ..., Hr}, and assume that 

J = I(H1) '~1 ... I(H,.) ~ ,  (2.0.1) 

ai: W--~Z>~0, a i (~ )=0  if ~ H i ,  and ai locally constant along points of Hi (i.e. constant 

on each irreducible component of Hi). In this case we call J~ a monomial basic object. 

First note that the singular locus can be expressed in terms of the exponents a l ,  ..., a~ 

and the hypersurfaces H1,..., Hr,  namely: 

Sing(J, b )=  {~EW I qil  , ...,ip, ai~(~) + . . .+aip  (~) ~>b, ~EHilN...rhHip}. 

One can easily check that, locally at any point, Sing(J, b) is a union of irreducible com- 

ponents with normal crossings, and we wish to select one of them as a center of trans- 

formation. 

We define a function which depends on (J, b): 

F(B): Sing(J, b) ~ IM ---- Z • Q x iN N, 
(2.0.2) 

= ( - r l  

where IM is totally ordered with the usual lexicographic ordering. 

Define for ~cSing(J,  b): 

F I ( ~ )  = m i n { p  [ 3 i l ,  ...,ip, c~i~(~)-F...q-cei~(~) >~b, ~EHi~N...AHi,}, 

F2(~) = max { a i ' ( ~ ) §  (~) p =  F1 (~), a i l (~)+. . .+ai , (~)~> b, ~ e Hilm...AHip },  

r3( ) =max{( l, ..., = , }. 



116 S. ENCINAS AND O. VILLAMAYOR 

F1 (~) is the minimal codimension of the components of Sing(J, b) locally at ~. F2 (~)= b'/b, 

where b r is the maximum of v~(J), y being the generic point of a component of Sing(J, b) 

containing ~ and of codimension F1 (~). 

Set max F(B)= (-p ,  w, a) and n = d i m  W. One can check that, locally at ~, Max F(B) 

is one of the highest-dimensional components of Sing(J, b) (dimension n - p ) .  In partic- 

ular, if some c~i (~) ~> b then p= 1 and Max F is a hypersurface at ~. 

In general, Max F(B) is a union of connected components of the pure dimensional 

and regular scheme Hi~ M... M H~, where a =  (il, ..., ip, 0,...) (recall that  max F = ( -p ,  w, _a)). 

Note that MaxF has normal crossings with E. Setting MaxF(B) as center of the 

transformation 

B = (W, (J, b), E) ~--/~ = (W1, (dl, b), El)  

we naturally obtain an expression 

J1 = I (H;)  ~ ... I(H~r)~I(H~+I) ~+~ (2.0.3) 

by setting for ~IEH~ mapping to ~EHi, a i (~l)=ai(~) ,  and if ~ICH~+I: 

Olr+l (~1) : (c%(~)+. . .+c~ (~))-b = (w-  1)b. 

So/31 is monomial, F(/31) can be defined as above and one can check that  maxF(B)>  

maxF(B1) and that  repeating this construction again and again, we finally come to a 

resolution of the basic object B (Definition 1.7). 

3. The good points 

Suppose now that  the ideal J is not necessarily monomial but that  there exists a 3 .1 .  

monomial part together with another factor, say 

J = I(H1) ~1 ... I ( H T ) ~ A .  (3.1.1) 

A point ~ESing(J, b) is called exceptional and good if 

v~(I(gl)  ~1 ... I (HT)~,4)  < b (3.1.2) 

where Oi(~) denotes the remainder of ~/(~) modulo b for any point ~. Clearly ~i is locally 

constant. 

If all points in Sing(J, b) are exceptional and good, one can check that,  locally at ~, 

Sing(J,b) = Sing(I(H1)~l(~)...I(H~) ~(~), b) = U Hi. 
~(~)>~b 
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Let r(B):Sing(J,b)-~IM be the function defined in (2.0.2) applied now only to the 

monomial part of J in the expression (3.1.1). So F(B) is defined by neglecting the 

non-monomial part .4. 

If any point is exceptional and good then F I (~ )=I  at any point ~cSing(J, b) and 

Max F is a union of components of a hypersurface Hi. In particular, Max F is a hyper- 

surface. The transformation with center Max F is an isomorphism on W, but the trans- 

form of B=(W, (J,b),E) is BI=(W1, (JI,b),E1) where 

,]1 =I(H1)C~z-..17(Hi1-1)a'z-lI(Hil) ",I(H%+1)%+I...I(H~)~`4, (3 .1 .3)  

m a x r = ( - 1 ,  w, (il, 0, ...)) and a~ =b(w- 1). Again, all points of Sing(J1, b) are excep- 

tional and good, and it is easy to check that  the sequence of transformations 

~ e-'- ~1 <--"-" +'- ~ N ,  

defined by the functions F(Bi) as in the monomial case, is a resolution of the basic object/3 

(Definition 1.7) obtained by monoidal transformations, all centers being hypersurfaces 

(so that  all Wi=W in this case). 

3.2. Within the setting of (3.1.1) we present a slightly more general situation which 

is particularly good. Define a point ~ c Sing(J, b) to be locally good if either ~ is exceptional 

and good ((3.1.2)), or the point is locally monomial, namely if 

.4r = Ow,r (3.2.1) 

If each point ~eSing(J,b) is locally good, then Sing(J,b)=Sing(I(H1)~l... I(HT) c'~, b). 
Now we neglect .4 in (3.1.1) and define F as in w in terms of I(H1) ~1 ... I(Hr) ~. In this 

case, the sequence of transformations consists first in some monoidal transformations at 

hypersurfaces, say N steps, and then WN=W and JN=I(H1)al... I(HT)~.4 ((3.1.2)). 

Now all points of Sing(JN, b) are locally monomial ((3.2.1)) and then again the procedure 

in w defined in terms of F, extends the sequence of transformations to define a resolution. 

This shows that  the function in w defines a unique resolution of B in case all points 

of Sing(./, b) are locally good. 

Remark 3.3. (1) MaxF is locally defined as an intersection of hypersurfaces in E, 
hence Max F has normal crossings with E (with the union of hypersurfaces in E). 

(2) If Max F is a hypersurface, then Max F is a union of components of some HilE E. 

Assume that  M a x F = H i  I and fix notation as in Definition 1.4; then W=W1, H '=~  and 

H r + l = H i l  . In particular, we must replace il by r + l  in (3.1.3). 
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4. Codimens ion  and  basic objects 

4.1. Set W=Speck[X1,...,Xn] and let JC_k[Xl,...,Xn] be a homogeneous ideal gen- 

erated by homogeneous elements of degree b. Under these conditions we claim that 

Sing(J, b) is a linear variety. 

In fact, recall that Sing(J, b)=V(Ab-I(J)) (1.3), Euler's formula for homogeneous 

polynomials 
, &  Of 

by = x ,  
i = 1  

(k being of characteristic zero) asserts that Ab-I(J) is generated by homogeneous ele- 

ments of degree one. 

4.2. Let R be a regular local ring with maximal ideal m. If J is an ideal of R, v(J) 

denotes the order of J. If JCm b (i.e. ~(d)>~b) then we denote by Inb J the initial part 

of degree b of J in the graded polynomial ring Gr(R): 

Inb J = J +mb+l/mb+l C mb/m b+l C Gr(R) = (~ mn/m n+l. 
n~>0 

If v(J)=b, then Inb J is generated by homogeneous polynomials of degree b. 

Definition 4.3. Let ~ be a closed point of Sing(d, b). We define T(~)=r(J, b)(~) to 

be the codimension of the linear variety Sing(Inb dr, b) in Spec(Gr(Ow, f)). 

Note that T(~)~>0 and that r(~)=O if and only if ~ ( J ) > b .  

4.4. It follows easily from (1.3.1) that at a closed point ~ESing(J, b), 

A~r~Ow.r (Inb Jr) = In1 (A~71 (J)~) 

as ideals in Gr(Ow,~). In particular, in case v~(d)=b, r=r (~)>O and there exists a 

regular system of parameters xl, ..., xn of Ow,~ such that 

Ab-l(J)~ = (xl, ...,x~->+I (4.4.1) 

where I Cm~. 

LEMMA 4.5 (Giraud). Consider a transformation of basic objects: 

(W, (J, b), E)(  ~ (W1, (J1, b), El) 

with center CCSing(J, b) and denote by H the exceptional divisor (Definition 1.4). 
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Then for all iC{0, ..., b}, Ab-i(J)Ow~ CI(H)i  and 

1 
I ( H )  ~ A b - i ( g )  C A b l i ( J 1 )  (C_ Ow~) .  

Proof. If i=b, A ~  A~ and the claim is trivial. We argue by decreas- 

ing induction on i, so assume that the inclusion holds for some i>0. Let ~'EH be any 

closed point, ~=~(~') and choose xEOw,~ such that I(H)~=(x). 

It suffices to show that for generators f of Ab-(i-~)(J), f / x  ~-~ CAb-(~-~)(J~). If f c  

Ab-i(J) (cAb-(i-1)(J))  then the assertion follows by induction. Therefore, by (1.3.1), 

it suffices to treat the case f=D(g) ,  for gEAb-i(J)~ and DCDer(W/k)~. By induction 

we have 
1 g c Ab-i(J)~ C Ab-i(J1)~, (C Ab-(i-1)(J1)~,). 

Set D'=xD.  It can be checked that D' is a derivation (with no poles) locally at ~'EW', 
so D'(g/x i) e A  b-(i-1) (J1)~'. Finally 

and hence 

xi--1 

belongs to A b-(i-1)(J1)~,. 

COROLLARY 4.6. Let (W, (J,b),E) be a basic object and assume that there is a 

closed regular subscheme Z C W  such that I (Z )CAb- I (J ) .  

For any transformation ( W, ( J, b ), E) ~-- ( W1, ( J1, b ), El), 

I(Z1) c Ab- (J d 

where Z1 is the strict transform of Z. 

This follows from the property of transformations of trivial objects (1.6) together 

with Lemma 4.5 applied for i=1. 

Remark. Note that I(Z)_cAb-I(J)  implies v~(J)=b for all baSing(J, b) ((1.3.1)); in 

particular, in this setting it also follows that v~l(J~)=b for ~lCSing(J~, b). 

COROLLARY 4.7. Let ~ be a closed point in Sing(J, b) and assume v~(J)=b. 

(1) /f  {xl, ...,x~} are as in 4.4, after restriction to a suitable neighborhood of ~, we 

may assume: 

V=Y( (x l , . . . , x~ ) )  is closed and regular, and I (V )CAb- I ( J ) .  (4.7.1) 

f D(g) D , (g .~+iD(x )  g 
2; 1 ~ \ X ~ ] X ~ 
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In particular, Sing(J, b) C_V and cod~(Sing(J, b)) ~>~-=~-(~), where cod~ denotes the codi- 

mension in W, locally at ~ as in the example in 1.1. 

(2) Set (W, (J, b), E)( ~ (W1, (J1, b), E~) a transformation (Definition 1.4) and ~IE 
Sing(Jl ,b) such that ~(~1)=~. Then v~l(J1)=b and ~-(~)~<T(~I). If furthermore the 
setting is as in (1), then Sing(J~,b)C_V~, where V1 is the strict transform of V. 

(3) For any transformation ( W, ( J, b), E)~--( W1, ( J1, b ), El)  and for any point ~IEW1 
mapping to ~cSing(J ,  b): 

b-- ~,~(J) ~ ~'~(J1). 

Proof. (1) is clear since Ab- I ( J )  is coherent and Sing(J,b)=V(Ab-l(J)) (1.3). 
(2) follows from Corollary 4.6, and (3) from the fact tha t  II~I(Ab-I(J1))~y~I(I(V1))~I 
(see Corollary 4.6). 

COROLLARY 4.8. For ~cSing(J ,b)  as in Corollary 4.7 and T=T(~): 

(1) cod~(Sing(J,b))=~- if and only if Ab-l(J)~=(Xl,. . . ,x~) (in the setting of (1) 

of Corollary 4.7, if and only if Sing(J, b)=V) .  
(2) Fix a transformation (W, (J, b), E), ~ (W1, (J1, b), El) (Definition 1.4) and ~le 

Sing(J1, b) so that ~(~1)=~. Then cod~l(Sing(J1 , b))=T if and only if cod~(Sing(J, b))=T. 

Proof. Replacing W by a suitable open neighborhood of ~ we may assume that  the 
setting is as in (4.7.1), where in addition V is irreducible, so 

(i) Sing(J, b)CY, 

(ii) Sing(J1, b)C_V1, 
where V1 is the strict transform of V, both irreducible, smooth and of pure codimen- 
sion T. 

(1) is a simple consequence of (i). 
(2) We shall prove that  equality holds at (i) if and only if it holds at (ii). 
If cod~(Sing(J, b))=7 then Sing(J, b)=Y (by (i)). 1.5 asserts that  the strict trans- 

form of Sing(J, b), namely V1, is contained in Sing(J1, b), which together with (ii) implies 

that  Sing(J1, b)=V1, so cod~l(Sing(J1 , b))=z. 
Conversely, if cod~l(Sing(J1 , b))=T, then Sing(J1, b)=V1 (by (ii)), which maps sur- 

jectively to Y. Since ~(Sing(J1, b))C_Sing(J,b) (1.5), it follows that  S ing(J ,b)=Y,  so 
cod~ (Sing(J, b)) =7-. 

4.9. Let ~: (W', (J ' ,b),  E')---+(W, (J,b), E) be either a restriction of basic objects 

(1.8) or an arbitrary change of the base field k (Definition 1.2 (1)), and ~' a closed 
point in Sing(J',  b ) = ~ - i  (Sing(J, b)) mapping to ~eSing(J ,  b). Then cod~(Sing(J, b))= 
code, (Sing(J', b)). A regular system of parameters at Ow,~, say Xl,...,Xn, can be ex- 

tended to a regular system of parameters xl ,  ..., xn, Xn+l, ..., Xm at Ow,,~,. 
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If J~=(f l ,  ..., Jr} then J~, = (fl, ..., fr} and Of~/Oxj=O i f j>n .  It follows from (1.3.2) 
that 

A Zl(j)vw, = 

In particular, the setting of (4.4.1) is preserved (for the same T) and so is Corollary 4.7 (1) 
and Corollary 4.8 (1). 

PROPOSITION 4.10. Fix e>~O and let (W, (J ,b ) ,E)  be a basic object such that 

T(J,b)(~)>~e (Definition 4.3) at any closed point ~cSing(J,b). Note that we have 

cod~(Sing(J, b))>~e at any ~ (Corollary 4.7 (1)). 
Set F ( c) = { ~ e Sing ( J, b) [ cod~(Sing(J, b))=e} (possibly empty). Then: 

(1) F (~) is smooth of pure codimension e and is open and closed in Sing(J, b) (i.e. 

a union of connected components). 

(2) Suppose that F (e) has normal crossings with E and set 

(W, (J, b), E) ~ (W1, (J1, b), El) 

as the transformation with center F (~) . Then F (~) ={~eSing(J1, b)[ cod~(Sing(J1, b))=e} 
is empty (i.e. cod(Sing(Jl,b))>e at any point) and Sing(Jl,b) can be identified with 

Sing(J, b) \F  (~) . 

Proof. (1) Note that at any closed point ~ e F  (~), Ab- l (J )~=(xx ,  ..., xc} in (4.4.1), 
so Sing(J ,b)=F(~)=V=V((x l , . . . , x~) )  locally at ~, which shows that F (~) is open 
in Sing(J, b). From Corollary 4.7 (1), it also follows that, if F(~)~O, F (~) consists of 
points of Sing(J, b) of maximal dimension, and therefore F (~) is closed by the example 
in 1.1. 

(2) With the setting and notation as in the proof of Corollary 4.8, here Sing(J, b)= 
F(~)=V and therefore Sing(Jx,b)=V1 (strict transform of V). Since the center is V, 
Vl(=Sing(J1, 5))=0. 

We summarize the previous results as follows: 

COROLLARY 4.11. Let ~ be a closed point in Sing(J,b) such that v~(J)=b. Set e 

such that T(~)~>e>0. There is a restriction to an open neighborhood of ~, 

(W', (J', b), E') -~ (W, (J, b), E), 

and there is a smooth closed subscheme V c of W '  such that: 

(1) ~ c V  ~ and V ~ has pure codimension e. 

(2) I ( V e ) C A b - I ( J  ') (so Sing(J',b)C_Ve). 

(3) T(~')~>e and cod~,(Sing(J', b))>~e for any ~'eSing(J', b). 
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(4) Any sequence of transformations 

( W t, ( J', b), E') ,--- (W;, ( J~, b), E~ ) ~ ... ~-- (W'N, ( J'u, b), E'N) 

induces a sequence of transformations of trivial basic objects (1.6), 

(W', (I(V~), 1), E') ~ (W;, (I(V~), 1), E~) ~ ... *- (W~, (I(V~v), 1), E~v), 

with each Vi ~ the strict transform of Via_i, and for each index i, 

I(y?) c Ab-l( g,, b); 

in particular, Sing(J' ,  b) c_ V~ ~ =Sing(I(V/C), 1) and cod~, (Sing(J~, b)) >~e. 

4.12. Set R=k[[Zl,..., Z~, Xi,..., X,]] and R=R/(Za,... ,  Zr ... , Xn] ]. Let u 

denote the order in R and 0 the order in R. If fER,  we denote f-~ the class of f in/~. 

One can check that  

u(f)>~b r 12 ~OZ l~'---...OZe~" ff~) >.b-i, i = 0 , . . . , b - 1 ,  i l+.. .+ie=i.  

In fact, setting f=~-~aaz a, aaEk[[X1,...,Xn]], a=(c~i,...,c~n), Io~l=cq+...+e~n, the 

equivalence can be rephrased as 

u(f)>~b r O(a,~)~>b-lc~l Vc~, I,~l<b. 

COROLLARY 4.13. Let (W,(J,b),E) be a basic object and V (CW) be a regular 
subvariety of codimension e. If ~ E V then 

vw,~(J)(~)~b r vv,~(Ai(J)Ov)>~b-i, i=O,.. . ,b-1, 

where uw,~ (resp. vy,~) denotes the order at the local ring Ow,~ (resp. at Ov,~). 

Definition 4.14. Let B=(W, (J,b),E) be a basic object such that b=max{v~(J)[ 

~ESing(J, b)}. Let V c be a smooth closed subscheme of codimension e and assume that  

I(YC)C_Ab-i(J) (so Sing(J, b)CV~). We define the coefficient ideal of/3 on V~: 

b--1 

C( J) = Z ( Ai( J) )b'/(b-i)OV ~. 
i = 0  

It follows from Corollary 4.13 that  Sing(J,b)=Sing(C(J),b!). Note that  C(J )~=0  if 

and only if Sing(J,b)=V ~ locally at ~. In particular, if F(~)=O then C(J)~r for any 

~, so (V ~, (C(J), b!), 0) is a basic object and Sing(J, b)=Sing(C(J), b!) (CV ~) as closed 

subsets in W. 
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PROPOSITION 4.15. Let (Wo, ( Jo, b), Eo) be a basic object and V~ be a smooth closed 

subscheme of pure codimension e such that: 

(1) I(V~)C_Ab-I(J) as in Definition 4.14; note that in that case T(~)>~e for any 

~ �9  Sing(J, b). 

(2) V~ has normal crossings with Eo and V f  ~ H  for any H � 9  

Assume that F (~) is empty (see Proposition 4.10) and set the basic object as 

(Vo ~, (C(Jo), b!), Eo), where Y , o = { H n V ~ I H e E o } .  

Any sequence of transformations of basic objects, 

(Wo, (Jo, b), Eo) ~-- (Wx, (Jx, b), Ex) ~-- ... ~-- (W~, (J~, b), E~), 

induces a sequence of transformations with the same center, 

(Vo e, (C(Jo), b!), Eo) e- (y~ e, (C(Jo)l ,  b!), E~) +--... +-- (Vs, (C(Jo)s, b!), Es), 

and Sing(J~, b)=Sing(C(Jo)~, b!) (CV~CW~).  

Proof. Let HkCWk be the exceptional hypersurface corresponding to the transfor- 

mation ( Wk-1, ( Jk-1, b ), Ek-1) ~--- ( Wk, ( gk , b ) , Ek ) . 

We set for k>0,  

1 
[Ab-+( Jo)]k -- i(Hk)~ [Ab-i( g~ ' 

so that  
b -1  

C(Jo)k = F_, [Ab-'(do)]['/'Ov: 
i=0  

We begin by formulating a claim, say: 

Claim(s). For any index k=0 ,  ..., s: 

(1) [Ab- (d0)]k C_ 
(2) At any closed point ~k �9 b!) there is a regular system of parameters 

Zk,1, ..., Zk,e,  Xk ,1 ,  ..., X k , n _  e s u c h  that:  
(a) I(V:)~k =(zk,1, ..., zk,~). 

(b) Setting Rk=OWk,~k, /~k=Ov~,~k, there is a set of generators (f~x)} of JkRk, 

f()') = E a(x) Za  ()') ' k,~ k, ak, ~ �9 k [[X]] = Rk, 

so that  

for all a with lal<b. 

(a(~,)) b!/(b-I~l) �9 C(Jo)kRk (4.15.1) 
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Before we proceed with the proof of our claim, let us point out that if (1) holds then 

C( Jo)k C C(Jk) and in particular, 

(Sing(Jk, b) --) Sing( C ( Jk ) , b! ) C Sing( C ( Jo ) k, b! ). 

On the other hand, if (2) holds at any ~k �9 Sing(C(J0)k, b!), it follows from (4.15.1) that 

~k �9 Sing(Jk, b), so 

Sing(C(J0)k, b!) C Sing(Jk, b). 

As for Claim(0), (1) is trivial and (2) follows from the fact that "~(~)6Ab-I~l(Jo)T~o if 

I-I<b. 
We now assume Claim(s) and consider a sequence of transformations of length s +  1. 

Since [Ab-i(Jo)]~ cAb- i ( J~) ,  we have 

1 [Ab-i(J0)]~ C 1 [Ab-i(Jo)]~+l -- I(H~+I) ~ _ ](Hs+l)~ i Ab-i(J~) C Ab-i(J~+l). 

See Lemma 4.5 for the last inclusion. 

Let ~+leSing(C(J0)~+l ,  b!) be a closed point, ~ 6 Sing(C(J0)~, b!) the image in W~. 

After a finite extension of the base field and a linear change involving only the vari- 

ables x~,j in R~, we may assume at R~+I =(3w~+~,r a regular system of parameters 

Z s + l , 1 ,  .--, Z s + l , e ,  X s + l , 1 ,  . . . ,  Xs+l,n--e with 

I ( H s + l ) ~ + l  = <Zs+I , I> ,  

/ ( V : + l ) ~ s + l  = <Zs+ l , 1 , - . . ,  Zs+l,e>, 

and define 

X s + l , ]  ~ X s , 1 ,  

Zs+l, j = Zs,j /Xs,1 , 

f ( • )  f(~) 
+1 - -  b - -  E , (A)  Z a Xs, 1 c~ ~s+l,c~ s + l  

so that  a (~) --a(;~)/x b-lal In particular, sq-l,c~-- s,c~! s,1 " 

(a~)~,~) b'/(b-l~l) �9 C(go)s+ll~+l. 

This proves Claim(s+ 1) and Proposition 4.15. 

Definition 4.16. Let (W, (J,b),E) be a basic object and assume that T(J,b)([)~e 
for any ~cSing(g, b). Define 

ord~ (J, b): Sing(J, b) --* Qu{ec} ,  

ord~(J, b)(~)=o~ if and only if cod~(Sing(J, b))=e. If cod~(Sing(J, b))>e,  setting V ~ in 

a suitable open restriction so that I (V ~) C_ A b- 1 ( j )  (Corollary 4.11), and C (J)  COvr as 

in Definition 4.14, then 

ord~(J, b)(~) -- v((C(J)) �9 O 
b! 

where v( denotes the order at Oy~,~. 
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PROPOSITION 4.17. The function defined above (Definition 4.16) is independent of 

the choice of V ~. 

Proof. The statement is clear if ord~(J, b) ( ( )=ec ,  so assume that cod~(Sing(J, b)) >e  

and, after suitable open restriction, that furthermore F (~) =O.  

Since ordr b) is clearly a function as in 1.1, it suffices to assume that ~ESing(J, b) 

is a closed point. Multiplying by A~: W 0 = W x A ~ ,  Vo~=V~xA~, Jo=JOwo,  we get a 

restriction 

(W, (J, b), E) ~-- (Wo, (Jo, b), Eo), 

so I(V(~)cAb-I(Jo) (4.9) and C(Jo)=C(J)Ov~.  
Set ~0=(~, 0), Lo={~} • A 1. If b'=yr then v~, (C(Jo))=b' for any ~'eL0 (4.9). 

Consider the transformation with center ~0, say 

(Wo, (J0, b), E) ~ (W1, (31, b), El) .  

Let H1 be the exceptional divisor, L1 the strict transform of L0, V~ the strict transform 

of Vo ~ and ~I=L1NH1. Set (V~, (C(Jo)l, b!), El )  as the transform of (V0% (C(Jo), b!), 2~) 
and (V[, (,41, b'), El)  as the transform of (V~, (C(Jo), b'), 0).  Note that the order of A1 

at points in  L l \ { ~ l }  is b t, so v~ l ( ,A1)=b '  (see C o r o l l a r y  4.7 (3)) ,  a n d  

C(Jo) 1 = I(H1)b'-b!.A1 

where I~ I=HlnV~.  Note that  b'-b! is the highest power of I(H1) that one can factor 

out. 

Suppose that we have defined inductively ( Wk, ( Jk, b ), Ek ), Lk , V~ , Hk, Hk = Hk N Vf~ , 
.AkC_Ov{ and ~k=LkNHk such  t h a t  

C(3o)k = I(Hk)k(b'-b!)Ak, b'= ~'r (Ak)" 

Consider the transformation with center at ~k : ( Wk , ( Jk , b ) , Ek ) ~-- ( Wk + 1, ( Jk + 1, b ), Ek + 1 ). 
Let Hk+l be the exceptional divisor, Lk+l be the strict transform of Lk, Vk~+l be the strict 

transform of V~ and ~k+ l=Lk+lnHk+l  (closed point). Set (Vg~+I, (C(Jo)k+l, b!), F,k+l) 
e y e as the transform of (V~, (C(Jo)k, b!),Ek) and ( k+l, (.Ak+l, b'), J~k+l) as the transform 

V~ ~ of ( k, (.Ak, b'), E'k). By Corollary 4.7 (3), u~(Ak+l )=b '  and 

C(Jo)k+l = I(/~k+l)(k+l)(b'--b!)Ak+l. 

In this way, for any natural number N we have defined a sequence of transformations 

(Wo, (Jo, b), Eo) ,--- ... ~-- (WN, (Jg,  b), EN) 
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and cod~N (Sing(tiN , b))>~e+l; in particular, the local codimension in W N is 

cod~, (Sing(Jg, b) NHN) ~ eq- 1. 

Now it is clear by Proposition 4.15 that 

cod~N (Sing(JN, b) NHN) = eq- 1 r cod~N (Sing(C(J0)N, b!) NHN) = 1 

N(b'-b!) >1 b! 

where the second codimension is considered in V~. Moreover, in this case, 

Sing(JN, b)GHN = HN 

(4.17.1) 

is a permissible center. 

Suppose N(b'-b!)>~b! and set Co =Sing(JN, b)NHN. Consider (WN, (JN, b), EN) 
(W~, (J~,b),E~) as the transformation with center Co, and let H~ be the exceptional 

- - !  ! ! e  - -  

divisor. Note that this transformation in V~ is the identity map, H 1 = H  1NV 1 =HN, 

and it is therefore clear that 

C( J~ ) = I( H~)N(b'-b!)-b! Atl, 

codf,(Sing(J~,b)NH~)=e+l r N(b'-b!)-b!>~b!. (4.17.2) 

We can iterate this process of transformations (isomorphisms in V~) at centers of codi- 

mension e + l  exactly 1N times, for 

where the brackets denote the integer part. 

Equations (4.17.1) and (4.17.2) show that the number 1g depends on the codimension 

of the singular locus and not on the choice of V t  Finally note that 

b' IN [N(b'-b!)/b!] 
ordr b)(~)- 1 = ~ - 1  = g--.oolim ~-  = g--.~lim N (4.17.3) 

4.18. In the particular case of e=0 (V~--W) the map defined in Definition 4.16 is 

ordo(J, b)(~) - v~(J) 
b 

4.19. Let (W, (J, b), E) be a basic object such that 7-(~)~>e for any ~CSing(J, b). Let 

(W, (J, b), E)<---(W1, (J1, b), El) be a transformation with center C, and let HI denote 
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the exceptional divisor. Let ~ESing(J, b), V e and C ( J ) C O y  e be as in Definition 4.14 (in 

a suitable neighborhood). Set V~ as the strict transform of V ~. Recall that  the number 

ord~(J, b) does not depend on the choice of V e, and by Proposition 4.15 that  

Sing(J, b) = Sing(C(J), b!) (C Yr Sing(J1, b) = Sing(C(J)l ,  b!) (C VI~). 

Define b': W1--+Z~>0 as follows: if ~IEWI\H1, set b'(~l)=O, and for ~lEH1 with image 

say ~cC,  set b'(~l)=~c,(C(J)) ,  the order of the ideal C(J)  at the generic point of the 

unique irreducible Component C' of C which contains ~. 

Note that  

C(J ) I  = I(H1)b'-b!A1 

where H1 = H I  AV~ and b' ()b!) is a locally constant function on Hi.  The exponent which 

appears in this expression above divided by b! is independent of V ~, since 

b'((1) -b! = ord~ (g, b)(C') - 1. 
b! 

On the other hand, if ~lESing(J1, b) then 

ordr b'( ( l ) -b!  u~(,A1) 
b! t- b ~  

We now attach a new map w-ord~ (-/1, b) to the transformation, setting w-ord~ (J1, b)(~1)= 

Vr 

Definition 4.20. Let (W0, (J0, b), E0) be a basic object such that  T(J, b)(~)>>-e, V~E 

Sing(J, b). Given a sequence of transformations, with centers Ci, i=0,  ..., k -  1, 

(W0, (do, b), E0) +-- (W1, (J1, b), El)  ~- ... ~-- (Wk, (Jk, b), Ek), 

we define a map w-ordr b): Sing(Jk, b)--~Q by induction on k. 

If k=0,  define w-ord~(J0, b)--ord~(J0, b) (Definition 4.16). Suppose for k>0  the 

existence of maps 

w-ord~(Jr, b):Sing(Jr, b)--~Q, r = 0 , . . . , k - i ,  

and assume, for any point ~cSing(J0, b), the choice of a regular variety V0 ~ of codimen- 

sion e, as in Corollary 4.11; assume also expressions of the form 

C(Jo)k-1 = I(H1) ~1 ... I(Hk--1)~k-lJlk--1 

where Vg~l is the strict transform of Vo ~ and the exponents a l ,  ..., ctk-1 are locally con- 

stant functions on Hi independent of the choice of V ~. 
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For the index k we have the following expression in Ov2 (with V~ the strict transform 

of 

C(Jo)k -- I(-H~' ) ... I(Hk-1)~k-'I(Hk)~kAk 

where C~k is a locally constant function on Hk; for ~cHk set 

(~k(~) _-- orde(Jk-1, b)(C')- 1 (4.20.1) 
/~k(~) --- b! 

where C' is the unique component of Ck-1 which contains the image of ~ in Wk-1. 
Now we define for each Hi a function ~ :  Wk---~Q, Z~(~)=~(~)/b!, so for any ~C 

Sing(Jk, b), 

w-ord~(Jk, b ) ( ~ ) -  u~(.Ak) =ord~(Jk,b)(~)- ~ b! 
b! 

=ord~(Jk,b)(~)- ~ ~(~). 
(4.20.2) 

Note that the definition of the map w-ord~(Jk, b) depends only on the map ord~(Jk, b) 

and the given sequence of transformations. 

Remark 4.21. The maps ord~ and w-ord~ are functions as in 1.1, and if 

(W, (J, b), E) ~-- (W', (J',  b), E')  

is a restriction (1.8) or arises from an arbitrary change of the base field k in Defini- 

tion 1.2 (1), and ~'ESing(g', b) maps to ~eSing(J,  b), then ord~(J, b)(~)=ord(J ' ,  b)(~') 

and the same holds for w-ord~. 

PROPOSITION 4.22. Let (W, (J, b), E) be a basic object such that T(J, b)(~)~e, V~C 
Sing(J, b). Consider the sequence of transformations 

(W, (J, b), E) = (Wo, (J0, b), E0) ~-- (W1, (J~, b), E~) ~--... ~-- (Wk, (Jk, b), Ek) 

and the function w-orde(Jk,b):Sing(Jk, b)-~Q. A smooth closed subscheme Ck of 
Sing(Jk, b) having normal crossings with Ek defines an enlargement of the sequence of 
transformations 

(W0, (J0, b), E0) ~-- (W1, (J1, b), E~) ~--... 

... ~-- (Wk, (Jk, b),Ek)(~k+l (Wk+l, (Jk+l,b),Ek+l). 

If w-ord~(Jk, b) is locally constant along Ck (constant on each irreducible component) 
then 

w-ord~(Jk, b)(~(~)) ~> w-ord~(Jk+l, b)(~) ~/~ E Sing(Jk+l, b). 
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Proof. To study the inequality we may assume that  ~(~)ECk, and after suitable 

open restriction, that  Ck is irreducible with generic point y. We assume here that  

w-ord~(Jk, b)(~(~))=w-ord~(Jk, b)(y)=b"/b!. It can be checked that: 

(1) u~(~)(Ak)=,y (Ak) = b". 

(2) The basic object (Vk~+l, (Ak+l, b"), Ek+l) is the transform of (V~, (Ak, b"), Ea) 

at the permissible center Ck. 

Finally the inequality follows from Corollary 4.7 (3). 

5. Idea l i s t ic  c losed sets  

Definition 5.1. Let W be smooth of pure dimension n over a field k of characteristic 

zero, and E={H1,  ..., H~} a finite set of smooth hypersurfaces of W having only normal 

crossings. A weak idealistic closed set is 

(W, F, E, {U (~) ~ W}ic1, {(j(0,  bi)}icI) 

where 

(1) 
(2) 

(3) 

(4) 

I is a finite set, 

F is a closed subset of W, 

for each iEI,  a~: U (~) --~W is smooth a n d  W=Uici Imai ,  

if E (i) ={a ( l (H)  l g e E ,  a~ - l (H)#o}  then for each i e I ,  (V (~), (J(~), b~), E (i)) is 

a basic object and 

a~ -1 (F) = Sing(J (i), bi). 

Weak idealistic closed sets will be denoted by gothic letters, 

(5.1.1) 

~[ = (W, F, E, {U (i) ~ W}ieI,  {(j(i), bi) }ieI), 

and F will be called the singular locus of 5, 

Sing(J)  = F. 

We say that  ~ is an n-dimensional weak idealistic closed set if in addition dim U (i) = 

dim W = n  for any i, in which case the ai  are open immersions or ~tale morphisms. 

5.2. If o~: W'---~W is either a restriction (1.8) or a change of the base field k, then ~[ 

induces by fiber products a weak idealistic closed set ~' on W' (see 1.9) denoted 

which we shall call a restriction of ~ when ~ is smooth. 
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5.3. Let C be a closed smooth subscheme of W having normal crossings with 

E={Hz , . . . ,Hr} .  Set ~:W1---*W as the monoidal transformation with center C. We 

can argue as in 1.9 to show that, by taking fiber products, there is a finite covering 

{~i: U~O--*W1}iE, of W1 by smooth morphisms, and basic objects (U~ 0, (j~i), bi), E~ 0) 

(transforms of original basic objects) for each index of the same finite set I.  

However it is not clear, and in general not true, that  there exists a closed set F1C_W1 

such that  

/~i-1 (F1) = Sing(J~ i>, bi). 

Definition 5.4. A closed smooth center C_CF=Sing(3) having normal crossings with 

E is said to be permissible if the latter condition holds. In such case the morphism ~--~1 

is called a transformation of weak idealistic sets, where 

= (Wl, F1, El, 

Definition 5.5. An n-dimensional weak idealistic closed set ~ is said to be an n- 

dimensional idealistic closed set if, in addition, for any sequence 

. . .  e----  ~ k  , 

with each ~i either a restriction or a transformation at a permissible center, then any 

closed and smooth subscheme of Sing(3k) having normal crossings with Ek is permissible. 

5.6. Any n-dimensional basic object (W, (J, b), E) defines naturally an n-dimensional 

idealistic closed set. 

A finite open covering {U(0} of W (or an &ale covering) defines by restrictions of 

(W, (J, b), E) (1.8) also a structure of idealistic closed set where, naturally, F=Sing(J ,  b). 

Other examples will show up in Theorem 6.6. 

Definition 5.7. Let ~ be an n-dimensional idealistic closed set. A resolution of ~ is 

a sequence of transformations 

~=~0 ~1 31 <~2 ... < ~  3k 

such that  Sing(~k) is empty. 

5.8. Let ~ and ~' be two idealistic closed sets on the same regular scheme W. ~ is 

defined in terms of E (hypersurfaces with normal crossings) and ~' in terms of E' .  

Assume that  Sing(3')_CSing(~) and suppose that  if C is any smooth closed subscheme 

of Sing(~') having normal crossings with E' then C has normal crossings with E (for 

instance, if E = O  or E=E').  
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It is clear that  any transformation 

3'§ 

induces a transformation 

3 ~ 3 i ,  

and the same holds for restrictions or change of base field (1.9). 

Definition 5.9. Given 3 and 3' as above, we shall say that  3 ' C 3  if the following 

properties hold: 

(1) Sing(3') CSing(3). 

(2) Any sequence of transformations and restrictions over 3', say 

3! : I ! 
30 ~ - . . .  ~ -  3k, 

induces a sequence over 3, say 

3=3o ~ - . . .  § 

so that  Sing(3~)C_Sing(3~), i=0 , . . . ,k ,  and furthermore, if CCSing(3~) is closed and 

regular and has normal crossings with E L then C has also normal crossings with Ek. 

Example 5.10. Let (W, (J, b), E) be a basic object, and V~E_W a closed and smooth 

subscheme of codimension e. Assume I (V ~) CA b-1 (J). Setting 3' and 3 as the idealistic 

closed sets defined by the basic objects (W, (J, b), E) and (W, (I(Y~), 1), E), then 3 'C3 .  

Definition 5.11. Set 3, 3', W, E and E '  as in 5.8. We say that  3 is equivalent to 3' 

(3~3') if 3C_3', 3'C_3 and E:E'. 

Example 5.12. (1) The basic objects (W, (J, b), E) and (W, (j2, 2b), E) define equiv- 

alent idealistic closed sets. 

(2) Fix 3 an idealistic closed set and notation as in Definition 5.1. If for each iEI 
there is a finite set Ii and smooth morphisms 

~<j: U(<J)--* U (~), j E Ii, 

such that  U (i) = Ujeh Im ~i,j, then 

3' = (W, F, E, {U (i'j) ~~ > W}ieI,jcz~, {(J(i'J), bi)}) 

is an idealistic closed set equivalent to 3. 
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Remark 5.13. (1) Set W, E=E'  and ~ '  as in Definition 5.11. Then Sing(~)= 

Sing(3') in W and if 

3 = 3o ' - . . -  ' -  3k 

is a resolution of ~ (Definition 5.7), it induces naturally a resolution 

and equalities 

Sing(~i) =Sing(3~), i = 0 ,  1,...,k. (5.13.1) 

(2) Let ~< ~ 3'  be a restriction of 3 (resp. a change of base field). Then a resolution 

of ~ ,  

~=~o ' - - . . - ~ - ~ k ,  

induces (by pullback) a resolution of ~', 

and restrictions (resp. changes of base field) a i : ~ - - ~ i  inducing morphisms 

c~: Sing(3~) --~ Sing(~i). (5.13.2) 

Definition 5.14. An n-dimensional idealistic closed set ~ (Definition 5.5) is said to 

be of codimension ~e if for each iEI  there is a closed smooth subscheme Ve'iC_U (~) of 

pure codimension e, such that: 

(1) I (Y e#) C A b~-I (j(i)) (in particular, Sing(J(0,54) C_ Ye,i). 
(2) At any ~ESing(J(0,b~) there is a regular system of parameters xl,...,Xd of 

Ou(%r with the following conditions: 

(a) I(V~'i)r ..., xe). 
(b) If E~i)={HeE(i) ] ~ e H }  then for any HeE~ i) there exists an index iH>e so 

that I(H)~=(xi~). 
Also if 3 is a weak idealistic closed set (Definition 5.1), we say that 3 has codimension 

~>e if these conditions hold for ~. 

Note that to any basic object (U(~),(J(i),bi),E (i)) we associate a basic object 

(Y~, i, (C(J(O), bi!), ~,(i)) such that Sing(J(0, bi)=Sing(C(J(i)), b~!), and this equality 

holds after any sequence of transformations (see Proposition 4.15). 
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Example 5.15. (1) Let 9 be an idealistic closed set. Then 9 is of codimension ~>0 

(V~,/=U(/)). In fact, for e=0 all conditions in Definition 5.14 are vacuous. 

(2) Let (W, (J, b), E) be a basic object where E = O ,  and let e>0.  If 7 ( J  (I), bi)(~)~e, 
V~ESing(J(i),bi), then Corollary 4.11 asserts that  there is a finite set I and an open 

covering {U(~)}/ei so that  the restrictions of (W, (J, b), E) to the different U (i) define a 

structure of n-dimensional idealistic closed set of codimension ~>e. 

5.16. Let 9 be an n-dimensional idealistic closed set of codimension >~e. Condition 

(1) of Definition 5.14 implies that  ~-(g(i),bi)(~)>~e for each ~ESing(g(i),b/), i c I .  In 

particular, functions 

ord~ (J  (/), b/): Sing(J (/) , b/) -+ O u  {oc} 

are defined so that  whenever ~ic Sing(J (/), bi) and ~j E Sing(g(J), bj), i , jCI ,  map to the 

same point (cSing(9)  then ord~(J (i), bi)(~i)=ord~(J(J), b#)(~j) (see Definition 4.16). We 

say that  the functions ordr hi) patch so as to define a function Sing(9)--*QU{cc}, 

namely: 

LEMMA 5.17. With the setting as above, where 9 is an n-dimensional idealistic 
closed set of codimension >~e, the different functions 

ord~(J(/)'b): Sing(J (/), b/) -~ Qu{co},  i e I,  

patch and define a function (1.1) 

ord~(9): Sing(9) --~ Qu{c~}. 

Proof. This follows from formula (4.17.3), where the value of the function is ex- 

pressed in terms of the codimension of the singular locus. 

5.18. One can check that  if 9 is an n-dimensional idealistic closed set and 9~--91 is a 

transformation, then naturally 91 is an n-dimensional idealistic closed set. Furthermore, 

if 9 has codimension ~>e then 91 has also codimension ~>e. The same holds for restrictions 

or change of base fields (5.2). 

A sequence of transformations 

9=90 ~ : ~  ~. . .  ~ k  

induces for each iE I  (Definition 5.1) a sequence of transformations of basic objects, 

( U(i), ( j(i), hi), E (i)) = (U0 (i) , ( J(o i) , bi), 17,(o i) ) ~- (U~ i) , ( J~i), bi), E~ i) ) +-... 
(/) 

, ( 4  , b /) ,  
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and we have attached functions in Definition 4.20 to such a sequence, say 

w-ord~(J~ ~), bi): Sing(d (i), bi) --* 1 ZU{oo} C Qu{c~}, (5.18.1) 
bi! 

and for each hypersurface Hj c E (i) a function 
(~) 

~(~). rr(i)__, n fl(i) (~  _ ak,j (~) 
t " k , j ' ' k  "~, k , jk  J bi! 

(see (4.20.1) and (4.20.2)). 

COROLLARY 5.19. Let ~ be an n-dimensional idealistic closed set of codimension >~e, 

fix a sequence of transformations 

i~=~0 *--51 *-..-~-iY~ 

and set for s=O, ..., k, ~ =(W~, F~, E~, {U(i)---*Ws},el, {(d (i), b~)}~er) as in Definition 5.1. 

The functions w-orde(J~ i), b~) (5.18) patch and define a function 

w-ord~(~k): Sing(~k) --~ Qu{oc}, 

and w-ordr For each HjEEk,  the functions f4(i) (5.18) patch to define ~'k,j 

functions 

flj(;~k): wk -~ q 

which are locally constant along HjEEk (see Lemma 5.17 and formulas (4.20.1) and 

(4.20.2). 

COROLLARY 5.20. Let q~ and ~' be equivalent idealistic closed sets (Definition 5.11) 

of codimension ~e. Then 

ordr (~) = ordr (~1), 

and given a sequence of transformations 

~ = ~ 0  *-...  ~-~k, 
~ ' = ~  ~-... ~ - ~  

as in Definition 5.11, we have 

and for each Hj EEk, 

w-orde(~k)=w-ordr 

(;~) = ~ (;~). 

This follows directly from (4.17.3), (4.20.1) and (4.20.2). 

Remark 5.21. It is clear from Corollary 4.7 and Corollary 4.11 that if ~ is an ideal- 
istic closed set of codimension >~e, then cod~ F>~e (codimension of F in W locally at ~) 

at any point ~ E F. 
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THEOREM 5.22. Let g: be an idealistic closed set of codimension >~e. Set F~= 

{~CSing(g:) I cod r Sing(g:) =e}.  

(1) ~ E F  ~ if and only if ord~(g:)(~)=c<). 

(2) F e is an open and closed set in Sing(g:) (it is a union of connected components). 

(3) F ~ is smooth of pure codimension e and has normal crossings with E.  

(4) Let g:~ be a transformation and set F~={~ESing(g:l) icodr 

Then F~ is the strict transform of F e. In particular, if the center of the transformation 

is C = F  ~ then F~ is empty and Sing(g:1) can be identified with Sing(g:)\F% 

Proof. (1) follows from Definition 4.16; (2) from Proposition 4.10; (3) from Defini- 

tion 5.14 (2); and finally, (4) follows from Corollary 4.8. 

6. A l g o r i t h m s  o f  r e s o l u t i o n  

The proof of desingularization of an embedded variety X C  W is closely related to that of 

principalization of ideals: given a sheaf of ideals in a regular variety, say I C O w ,  define 

a morphism of regular varieties W e - W  ~ so that F = I ( g w ,  is locally principal and V ( F )  

(algebraic subset defined by F)  is a union of hypersurfaces having only normal crossings. 

In fact, both results undergo the same general scheme of proof. The following 

development will state both problems in a unified frame. 

Definition 6.1. Let an algebraic class ~ be a class of objects Ob(G) and arrows 

g: +"- g: l ,  g:, g:l C Ob(G), 

called transformations, subject to the following conditions: 

(1) To each g:EOb(~) there is an assigned scheme Sing(g:). 

(2) A transformation g:< ~' g:l can be identified with a closed and regular subscheme 

C~, of Sing(g:), called the center of ~, and each such transformation induces a morphism 

of schemes 

q3: Sing(g:1) --~ Sing(g:) 

which in terms defines an isomorphism 

Sing(g:1) \@--1 (Cqo) ~ Sing(g:) \C~.  

Example 6.2. (1) Define S by setting XE Ob(S)  if and only if X is a scheme which 

is separated and locally finite over some field of characteristic zero. Define Sing(X) as 

the singular locus with reduced structure, and a transformation 

X + - - X  1 
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to be a monoidal transformation on a closed regular subscheme C~CSing(X). 

(2) Let C be the class of idealistic closed sets (Definition 5.5), with Sing(E) as in 

Definition 5.1 and transformations as in Definition 5.4. 

(3) We can define :D by setting ~6Ob(:D) where ~ = ( W , I )  consists of a non-zero 

sheaf of ideals ICOw,  W a regular variety, and 

Sing(E) = { ~ 6 W[ I~ C Ow,~ is not (locally) principal}, 

and if C is closed and regular in S ing(~)cW,  it defines the monoidal transformation 

W+-W'. Then set ~ - ~ '  where ~ ' = ( W ' ,  I'), I '=IOw,.  

Definition 6.3. Let G be an algebraic class and (I, ~<) be a totally ordered set. An 

assignment of chains and functions from ~ to (I, ~<) will be a set 

CF(G, I) 

where an element consists of data, say 

~ 0 ~ - - . . . '  ~k, ~ i �9  

s  gi=gi(~i):Sing(~i)--* I, i = 0 , . . . , k ,  

each gi being a function (1.1) and each ~i a transformation in the algebraic class G. 

A sequence of transformations in G together with functions as in (6.3.1) will be called 

a chain of length k. We require that  the set CF(G, I) satisfy the following properties: 

(A0) For each ~6Ob(G) there is a unique chain of length zero with ~0=~,  say 

s = ~ ~0, 

t go: Sing(~:o) --* I. 

(Bk) For each chain s of length k ((6.3.1)) there is a set C(s and each element 

of this set is a closed and regular subscheme in Max gk. This set C(s will be called 

the criterion of choice of the centers for the given chain. 

(Ck) For each chain s of length k ((6.3.1)) and for each C6C(s there are a 

transformation ~k ~--~k+l and an enlargement of s to 

{~0 ~1 ...,~k ~k ~k+l ~k+l, ~ i eOb(6 ) ,  
s = (6.3.2) 

gi: Sing(~i) --~ I ,  i=O,. . . ,k ,k+l,  

with go, ...,gk as in (6.3.1), and 

gk(~k+l(~)) />gk+l(~) V~6 Sing(~k+l) (6.3.3) 

with equality if ~k+l (~) ~ C~k+l, ~k+l: Sing(~k+l)--~Sing(~) as in Definition 6.1. 

(D) Any chain of length k + l  arises from one of length k as in (Ck). 
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Remark 6.4. From the definition above one deduces easily that  for any chain of 

length k as in (6.3.1): 

gj(~j+l(~)) /~ g j + l ( ~ )  ~i/~E Sing(~j+l), j =0 ,  1, ..., k - l ,  

and, in particular, 

max g0 7> max gl >~... >~ max gk. 

Example 6.5. Set $ as in Example 6.2 (1), and I = N  N ordered lexicographically. 

One can adapt the Hilbert-Samuel function so as to define, for each XcOb(S) ,  

H(X):  Sing(X) --* (I, ~<) 

as an upper-semi-continuous function (1.1). So (A0) holds. 

Condition (D) says that  chains are to be constructed by induction on the length. Set 

the criterion of choice (Bk) as CEC(f~k) if and only if C is closed, regular and contained 

in Maxgk, and set gk=H(Xk) .  

Fix a chain i:k. For any j ,  M a x g j = M a x H ( X j )  is known as the Hilbert-Samuel 

stratum of the scheme Xj .  Now, CEC(f~j) if and only if C is permissible in the sense of 

Hironaka ([Hi2, p. 71]), and the inequalities (6.3.3) are known as Bennett 's theorem [Ben]. 

So this defines an assignment of chains and functions from 8 to N N, say 7-~(S, NN). 

THEOREM 6.6 (Aroca [Hi2, Theorem 1, p. 100], [G2, Theorem 3.12]; see also [G3, 

p. 233] for characteristic p). Let S be the algebraic class and 7-{(S, N N) the assignment 

of chains and functions defined above (Example 6.5). Fix XEOb($)  and assume that X 

is a closed subscheme of W,  where W is smooth and of pure dimension n over a field 

of characteristic zero. There exists an n-dimensional idealistic closed set ~ such that: 

I f  f~k ET-/(S, N N) is a chain over X ,  say 

{ X o ~ - . . . + - X k ,  X i E O b ( S ) , X o = X ,  

s  H(Xi ) :S ing(Xi ) - -*N N, i = 0 , . . . , k ,  

with maxH(X0) . . . . .  max H ( Xk  ) , then there is a sequence of transformations (Defini- 

tion 5.4) 

~ = ~ 0  ~ ... +- -~k 

such that Sing(~i )=MaxH(Xi) ,  i=0, . . . ,  k. And if we consider an enlargement of the 

chain s 

{ X o ~ . . . + - X k ~ X k + I ,  Xi E Ob(S), 

/:k+~ = H(X~): Sing(X~) --, N N, i : O, ..., k, k +  1, 
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and the corresponding sequence of transformations 

~=~0~---...~----~k~--~k+l, 

then either 

maxH(Xk) >maxH(Xk+l) and Sing(~k+l) = 0  

o r  

maxH(Xk) = maxH(Xk+l) and Sing(~k+l) = M a x H ( X k + l ) .  

Definition 6.7. Fix an algebraic class G and a totally ordered set (I, 4). An algo- 
rithm of resolution of G with values at I will be an assignment of chains and functions 

CF(G, I) (Definition 6.3) with the following properties: 

(1) For any chain of length k ((6.3.1)), say 

{~:0 ~~ ~Pk ' --.' ~k, ~ z � 9  
/ :k-- 

f~: Sing(~i) --~ I, i=O,...,k, 

we have C(s  (Bk in Definition 6.3), and in (6.3.2) either Sing(~k)=O or 

max fk >max  fk+l. In particular, this means that  Max fk is regular and the criterion of 

choices (Bk) reduces to Max ft .  
This already says that,  fixing ~EOb(~),  if there is a chain of length k so that ~=~0 

then the chain is unique and max fo > . . ->max fk. 
(2) For each ~EOb(G) there is an index k and a chain of length k such that  ~=~0 

and Sing(~k) is empty. 

Note that  the chain in (2) is a resolution of ~ (Definition 5.7) which is uniquely 

determined. 

6.8. Let C be as in Example 6.2 (2), and let C(n) consist of those ~EOb(C) which 

are n-dimensional idealistic closed sets (Definition 5.5). Given ~EOb(C(n)) and a trans- 

formation ~ - ~ 1  in C, it is clear that  also ~lCOb(C(n)). So C(n) is also an algebraic 

class. 

In the same way we can define for $ as in Example 6.2 (1) the subclass 8(n)  of 

schemes which admit a closed embedding in a smooth n-dimensional W (smooth over 

some field k of characteristic zero). 

An algorithm of resolution of C(n) with values at (In, ~<) together with Theorem 6.6 

would provide for any XEOb(,_q(n)) a unique sequence of transformations 

X = X o ~ - X I ~ - . . . ~ - X k  
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on centers C~ C MaxH(X~) (the Hilbert-Samuel stratum) such that  

max H(Xo) . . . . .  max H(Xk-1)  > max H(Xk)  in N N. 

A result of Hironaka [Hi2, p. 71] states that  if 

Xo ~ XI  +-- ... +-- Xn +-- ... 

is a sequence of monoidal transformations at centers Ci contained in the Samuel s t ra tum 

of X~, then for some index m, 

m a x H ( X m ) = m a x H ( X ~ , )  Vm'>~ra. 

One can finally check that  an algorithm of resolution on ,9(n) can be defined with 

values at NN•  In, ordered lexicographically, which essentially means that  an algorithm of 

desingularization can be achieved from an algorithm of resolution of C(n). Furthermore, 

one can also check that  an algorithm of principalization of ideals (Example 6.2 (3)) will 

also follow from an algorithm of resolution of g(n). 

If ~EOb(g(n) )  is actually an idealistic closed set of codimension ~>e (Definition 5.14) 

and 3+-31 is a transformation in C(n), then 31 is also of codimension >~e. So set C(n, e) 

as the algebraic class consisting of those objects, and naturally 

C(n, n) C C(n, n - l )  G ... C C(n, 1) C C(n, O) = C(n). 

Since both desingularization and principalization follow from an algorithm of resolution 

of g(n),  our main goal is to define I,~ and an algorithm of resolution on g(n). But we 

will first argue by decreasing induction on e, defining totally ordered sets (In,~, ~<) and an 

algorithm of resolution on g(n, e), and finally setting In=In,o. This inductive procedure 

will be clarified in the proof of Theorem 6.13. 

6.9. We shall construct an algorithm of resolution on C(n) (values at I,~) (Defini- 

tion 6.7) with the following additional properties: 

(1) Compatibility with equivalence: Note that  if 3 and 3 '  are equivalent (Defini- 

tion 5.11), then a resolution of one induces a resolution of the other (Definition 5.7). 

With the setting as in Remark 5.13 (1) we will show that  the assigned functions are 

equal, namely 

fk (3k) = fk (3~), 

as functions on S ing(3k)=Sing(~)  ((5.13.1)). In particular, both 3 and 3 '  undergo the 

same resolution via the algorithm (see Definition 6.7 (1)). 
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(2) The center Max f k  (Definition 6.7) is of pure dimension and its codimension 

in Wk (notation as in Definition 5.1) is given by the value m a x f k .  

(3) Fix ~EOb(C(n))  and a: ~'--~:, an 6tale restriction or a change of base field. Fix 

notation as in Remark 15.3 (2). We will show that 

= 

for ai: Sing(~)-*Sing(~i)  as in (5.13.2). In particular, the algorithmic resolution of ~t 

is obtained from that of 5. 

Note that both C(n), C(n, e) and also S ( n )  (6.8) are closed by 6tale restriction and 

by arbitrary change of base field. 

6.10. Consider a set with two elements {G, B} (G=good, B=bad)  ordered by G < B .  

Given totally ordered sets (I1, ~<), (/2, ~<), we shall always consider (I~ x/2,  ~<) to be 

ordered lexicographically and set 

Pr l : I l  x I2 --~ I1, Pr 2 : I l  X I2 ---* I ~ 

as the usual projections. An element a of (I, 4)  will be denoted by c~(I) if a>j3  for 

any f lEI,  j3#a.  If such an element exists, it is clearly unique. If not we will sometimes 

enlarge I to IU{c~(I)}  so as to add such an element. 

6.11. Claim(n,  e). There is an ordered set (i~, ~<) with c~([~)Ei~, and an assignment 

of chains and functions (Definition 6.3) 

CF(C(n , e ) , I~ )  

where I~={G, B} x[~, with the following conditions and properties: 

(1) For any ~CC(n ,  e) let 

~ ~?~0, 
L0 = 

L go: Sing(~o) --~ I~ 

be the assigned chain of length zero ((A0) in Definition 6.3). Then 

(a) pr 1 (g~ (~) )=B for any ~ e S i n g ( J ) = F  (i.e. the first coordinate of g~ is always B), 

(b) g~(~)=(B, oc([e)) if and only if ~ e F  (~) (F  ( ~ ) = { ~ e F [ c o d ~ ( F ) = e }  as in Theo- 

rem 5.22). 

Note that (B,c~(i~)) is the biggest element of Ie (here c~(I~)=(B,c~(_f~))), so 

M a x g ~ = F  (~) if F(~)~O. 

(2) If F (e) is not empty then C(s The criterion of choice of centers for 

chains of length zero ((B0) in Definition 6.3) reduces to F (r if it is not empty. 
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(3) Let t:k be a chain of length k in CF(C(n, e), I~). Assume that  either k=0  and 

F(r or that  k>0  and p h ( m a x g ~ ) = B .  Set i0 as the smallest index such that  

~ = = maxg~ (maxgio_l >) maxgi o ... 

(see Remark 6.4). Consider the chain s the truncation of t:k at level io: 

Z:io=~R0'~l . . . '~  Rio, Ri~Ob(g), 
g~: Sing(Ri) -~ I, i = 0, ..., i0. 

Note that  p r l (maxg~)=B for j = 0 ,  ..., k by Remark 6.4, and that  maxg~<(B,  co(-fe)) by 

(1) and (2) above and (4) of Theorem 5.22. We require: 

Case k=io. There is an idealistic closed set R~o of codimension ~>e+l (with RioC 

Ob(C(n, e+ l ) ) )  and R~o_CRi o (so any sequence of transformations and restrictions over 

R~o induces the same sequence over Rio (Definition 5.9)) such that: 

�9 Sing(R~o ) = Max g~o (Rio). 
�9 CcC(g~o) if and only if C is a permissible center for R~o (Definition 5.4). 

Case io<k. Note that  if i0=0 then F ~ = O  by (1) and (2), otherwise maxg~= 

(B, c<~(_f~))>maxg~>maxg~. So we define the chain t:~ o as above and consider R(,o as in 

the case k=io. 

Now we require that  there be a sequence of k - i o  transformations over R~o: 

~ k :  R0 < "'" < 

such that: 

�9 Sing(R})=Maxg~, j=io, . . . ,k .  

Rio  < "'" < R k  

T T 
R'  ~ . . .  < R ;  ~o 

�9 C c C ( s  ((Cj) in Definition 6.3) if and only if C is a permissible center for R} 

(Definition 5.4), where Lj is the truncation of s at level j ,  and j=io,  ..., k. 

Induction. Set 

Z:k+l: Ro < Rio < "'" < R k  < Rk-}-i 

T T T 
R'  < -'- < R'  R'  

Zo k < k + l  

where R~o (of codimension ~>e+l) is as in the case io<k and s is an enlargement of 

s defined by a choice of a permissible center CEC(f~k). Then either 

maxg~ >maxg~+ 1 and S ing(~+l )  = 0  
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o r  

e e = Slng(~k+l)" max 9k = max 9k+l and Max 9~:+1 " ' 

(4) 
(a) 

pr l (maxg~)=G,  

mark 3.3 (1)). 

( b )  i f  

~ 0  , - -  . . .  +-- ~k +-- ~k+l 

is the unique enlargement defined in (4)(a) above, then either Sing(~k+l)=O or max g~ > 

maxg~+ 1 (in which case p r l (maxg~+l )=G ). 

(c) The case Sing(~k+l)=O holds for some k after finitely many transformations. 

(5) Given 

~o ~ - . . .  ~ - ~  ~ - . . .  , 

an infinite sequence in C(n, e), such that  for any k, 

~o ~ - . . .  ~ -  ~k 

is as in (6.3.1) for some chain in CF(C(n, e), Ie), then there is an index s such that  

max g~ = max gs+l : .... 

Note that  for an infinite sequence as above p r l (maxg~)=B for all r~>l, by (4)(c). 

(6) (a) If ~ and ~' are equivalent in C(n, e) (Definition 5.11), then any chain s in 

CF(C(n, e), Ir with ~0=~  induces a chain s with ~ = ~ '  so that  Sing(~i)=Sing(~)  

((5.13.1)) and 

g~( ) = g i k  i), i=O,... ,k, 

as functions on S ing(~)=Sing(~) .  

(b) If p r l (maxg~)=G then the centers Ck=Maxg~ are of pure dimension and the 

codimension is determined by the value max g~. 

(c) If ~' is an 6tale restriction of ~ or if ~' is obtained from ~ by a change of the 

base field, then any chain/:k in CF(C(n, e), Ir with ~ 0 = ~  induces, by 6tale restriction 
! e ! e or change of base field, a chain s in CF(C(n, e), Ie) with ~ = ~ '  and gk(~k):gk(~k)OO~k 

(ak as in (5.13.2)). 

6.12. Proof of Claim(n,n). Set [n={oo} so In={G,B}•  as in 6.11. For any 

~EOb(C(n, n)), Sing(~) is either empty or Sing(R)=F (n) consists of finitely many closed 

points. 

If k > l  and prl(maxg~)=G then: 

Maxg~ is regular and C(s (see (Ck) in Definition 6.3). So if 

there is a unique choice of center in (Bk) in Definition 6.3 (see Re- 
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We set g~(~)=(B,  c~) for any ~EF(n)=Sing(3) .  Now m a x g ~ = ( B ,  c~) and M a x g ~ =  

Sing(3). We declare Max g~ ' to be the unique center as our criterion (C(f-.o)={Max g~}), 

and set 

3 0  <-'-- 31  

as the transformation at such a center. Theorem 5.22 asserts that Sing(31) is empty. 

Clearly all conditions of Claim(n, n) are fulfilled. Furthermore, what we obtain is 

an algorithm of resolution of the algebraic class C(n, n), as defined in Definition 6.7, that 

clearly fulfills all properties of 6.9. 

We shall address Claim(n, e) for e<n in 6.14. The following theorem is to show how 

an algorithm of resolution of C(n, e), e<~n, can be achieved from Claim(n, e). Recall that 

we are ultimately interested in an algorithm of resolution of C(n, 0)=C(n)  (6.8). 

THEOREM 6.13. Fix (n, e) and assume the following two hypotheses: 

(H1) The existence of an algorithm of resolution on C(n,e+l) with values at an 

ordered set An,~+l (Definition 6.7) and such that the properties in 6.9 hold. 

(H2) The existence of I~ so that Claim(n, e) holds. 

Then there is an algorithm of resolution of C(n, e), with values at An,~, satisfying 

the properties of 6.9, where 

A~,~ = I~ • (An,o+1 u { ~ } ) .  

We shall organize the proof of Theorem 6.13 as follows: 

Step 1. We attach to each 3EOb(C(n,  e)) a unique sequence 

3 = 3 0  ~--31 ~--... ~--3k (6.13.1) 

such that 

Sing(3k) = ~. (6.13.2) 

This sequence (6.13.1) will he constructed in such a way that there is a chain of functions 

in CF(C(n, e), I~) associated to (6.13.1). 

Step 2. We define functions 

fe:Sing(3i)--+ An,e, i - -0 , . . . ,k ,  

so that, for all 3EOb(C(n,  e)), the sequence (6.13.1) together with these functions f~ 

define an algorithm of resolution (Definition 6.7). 

Step 3. We show that the algorithm of resolution constructed in Steps 1 and 2 fulfills 

the properties of 6.9, 
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Step 
Step 
Step 

tion 6.7). 

Step 1. Fix ~EOb(C(n, e)). If F(~)CSing(~) is not empty, set 

as noted in 6.11 (2): the transformation with center F (~). 

Suppose that  (6.13.1) has been defined so as to induce a chain of functions of length 

k in CF(~'(n,e),I~). If k=0  and F(~)r this is done by 6.11(2). So we are left with 

two possibilities: 

(1) Either k--0 and F(~)=O or k>0  and Pr l (maxg~)=B.  

(2) prl(max g~) =G.  

(1) If either k=0  and F (r or k>0  and pr l (maxg~)=B,  set i0 as in 6.11 (3). 

Now we can assume that  the sequence 

of 6.11(3)(c) consists of the first steps of the resolution of ~oEOb(C(n ,e+ l ) ) .  This 

assumption can be made because we are constructing (6.13.1) inductively on k and we 

also assume that  there is an algorithm of resolution of C(n, e + l )  with values at An,~+l. 

Set now the next transformation of (6.13.1) by choosing Ck to be the center assigned 

in S ing(~)  by the algorithm of the resolution mentioned above. 

(2) If prl(maxg~)=G , then set Ck=Maxg~ and apply 6.11 (4)(c) to come to the 

case Sing(~k) =O. 

Note that  the hypotheses (H1) and (H2) together with (3) and (5) of 6.11 assert that  

Pr l (maxg~)=G will hold for some k big enough. Finally Step 1 follows from 6.11 (4). In 

this way we attach to each ~EOb(C(n, e)) a unique sequence (6.13.1) in CF(C(n, e), I~) 

so that  Sing(~k)=O ((6.13.2)). 

Step 2. 

2.1. First we define the functions f~ only along the closed sets Maxg~. 

2.2. We define f~ as a function on all Sing(~i). 

2.3. We show that  the functions fi define an algorithm of resolution (Defini- 

Step 2.1. (1) If i=0  and C0=F(r (case F(~)#O), then set for ~ E M a x g ~ = F  (~) 

(see 6.11 (1)): 

f~(~) = (g~(~), cc(An,~+l)) = (max g~), oc(An,.+l)) E An,.. 

(2) If either i=0  and F (e) =O or i > 0  and p r l (maxg~)=B , then set for ~EMaxg~: 

f~(~) _ (g~ (~), f~+l (~)) _-- (max g~, f~+l (~)) E A~,~ 
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where f~+l: Sing(~)--~An,~+l are the functions given by the algorithm of resolution for 

~EC(n,e+l) as in 6.11 (3). 

(3) If p r l (maxg~)=G , then set 

f~(~) = (g~(~), ~(An,e+l))  = (maxg~, c~(An,e+l)), ~ �9 Maxg~. 

One can easily check that all 

f~: Max g~--* An: ,  i = 0 , . . . , k - I ,  (6.13.3) 

are as in 1.1. 

Step 2.2. In this step we extend (6.13.3) to define 

f~: Sing(~i)--~ An: ,  i = 0 , . . . , k - 1 .  

Recall that ~ ~--~i+l in (6.13.1) is defined as a transformation with center CiCMaxg~C_ 
Sing(~i); in fact, the construction in Step 1 was done so that (6.13.1) induces a chain in 

C(n, e), so the inclusion is given by (Bk) in Definition 6.3. Since Sing(~k) is empty, it is 

clear that  Sing(~k-1)=Ck-1 (Definition 6.1); in particular, 

f~- l :  Sing(~k-1) ~ hn,~ 

is already defined. Assume, by decreasing induction, that 

f~: Sing(~i)--~ A,~,~, i=l,l+l,...,k-1, 

are defined as functions (1.1), and 

f~(~i+l(~)) ~> f~+l(~) V~ �9 Sing(~)  

with equality if ~i+l(~)r  Define now 

f~-l: Sing(~t_l) --* An,~ 

by setting: 

(a) For ~ �9  f~-l(~) as in Step 2.1. 

(b) For ~�9 we have ~ C l - 1  and one can identify ~ with 

~'�9 set 

f/e__1 (~) = f/e(~,). 
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Now we check that: 

(1) ff_l(@t(())~>f/(() for any (eSing(~t) .  

(2) f[-1 is upper-semi-continuous (1.1). 

(3) M a x f [ _ l = C z _ l  and max f[_l  > max f / .  

(1) By construction of f/e_ 1 it suffices to check the inequality only if ~I (~)EG-1.  

Since the first coordinates of f~ (~) and f[_ 1 (~t (~)) are defined by g~ (~) and g~_ 1(93t (()), 

we may also reduce to the case g~(()=g~_l(~l(())  ((6.3.3)). Since now we assume 

~l (~) E G - l ,  6.11 (4) (b) asserts that this equality can only hold if pr 1 (max g~) = B. But 

then the second coordinates (see (2) in Step 2.1 and Definition 6.7 (1)): 

f e + l  ~ e + l  
1 - 1  (6.13.4) 

by the assumption (HI) of Theorem 6.13. 

(2) Fix ~ESing(~l-1) and ~'C {~}: ~' is a specialization of ~. Since the coordinates 

involved in the definition of flY-1 fulfill the conditions of 1.1, it suffices to show that 

f [ -  1 (~ ' ) )  f [ -  1 (~)" If ~'~ Max g~_ 1, both ~ and ~' can be identified with points in Sing(El) 

and the assertion is clear. If ~'EMaxg~_ 1 then the inequality follows from (6.13.3). 

(3) is a case by case treatment. If p r l (maxg l_ l )=G,  the inequality follows from 

(4)(b) in 6.11. If p r l (max g z_ l )=B  then it follows from (6.13.4). 

Step 2.3. The assertion grows now from the construction and properties (3), (4) and 

(5) in 6.11. 

Step 3. This now follows from our definition of ]~; in fact, it follows from part 

(6)(a), (6)(5) and (6)(c) of 6.11 together with the assumption (H1) in Theorem 6.13. 

This proves Theorem 6.13. 

6.14. Proof of Claim(n, e) (6.11). Claim(n, n) was proved in 6.12. We shall prove 

Claim(n, e) for e<n. Recall that for e=n we defined in={oc}  (6.12). Set now, for e<n, 

= x (zu{ I))uIM 

where U denotes the disjoint union, ordered so that if ~ c ( Q u { o e } ) x ( Z u { o ~ } )  and 

aEIM then ~>c~, where IM denotes the totally ordered set defined in (2.0.2). 

Set Ir We shall define now an assignment of chains and functions 

CF(C(n, e), I~) as in 6.11. In particular, functions 

Sing( d 
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will be defined, and we shall call Ab~=prlog ~ (first coordinate) and gir176 ~ (second 

coordinate): 

Abi: Sing(~)  --~ {G, B}, 

gi. Sing(;~i) ~ I~. 

The first coordinate will indicate where the second coordinate lies, namely for ~ �9 Sing(~i), 

~0~(~) �9 (qt2{cc}) x (ZU{cc}) r Abi(~) = B ,  

and therefore g~ E IM if and only if Abi(~)=G. Recall that B > G  and that I~ is ordered 

lexicographically. In particular, (B, (c~, cx~)) is the biggest element of I~. 

Our task in this proof is twofold: on the one hand to define the assignment on I~ as 

above (i.e. defining chains of length k and proving the conditions in Definition 6.3), on 

the other hand to show that these chains of length k fulfill the conditions of 6.11. All 

this will be carried out by induction on k. 

We organize the proof of 6.11 by dividing it into the following steps: 

Step 1. We begin by defining chains of length zero (of what is to be CF(C(n, e), I~)) 

by setting (A0) and (B0) ((Bk) for k=0)  in Definition 6.3, and showing that conditions 

(1) and (2) of 6.11 hold. 

Step 2. We prove condition (6) of 6.11 for chains of length zero. 

Step 3. Assume, inductively on k, the definition of chains and functions of length k: 

'o ~ - - - -  "= -  ;~k, 
s = (6.14.1) 

g~: Sing(~)--~ I~, i =0, . . . ,  k, 

so that the inequalities of Remark 6.4 hold, and with conditions (1), (2) and (6) of 6.11. 

At this step we also introduce some additional hypotheses, (Clk), (C2k), (C3k), (C4e), 

and prove that (C10), (C2o), (C30) and (C4o) hold for chains of length zero. This will 

allow us to continue the development with the assumption that also (Clk), (C2e), (C3k) 

and (C4k) hold for chains/:k of length k~>0. 

Step 4. Under the assumption of an enlargement /:k+l o f / :k  by a transformation 

on a center C c C ( s  we define the function 

g~+l: Sing(~k+l) -~ I~ 

and the criterion of choice of c e n t e r s  C(•k- t -1)  s o  that  (Clk+l),  (C2k+1), (C3k+1) and 

(C4k+1) also hold. Finally we check that we have defined an assignment of chains 
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and functions (Definition 6.3) which, in addition, satisfies hypotheses (C1), (C2), (C3) 

and (C4). 

Step 5. We prove that  the assignment of chains and functions satisfies conditions 

(1), (2) and (6) of 6.11. 

Step 6. We prove that  condition (3) of 6.11 holds. 

Step 7. Finally we prove conditions (4) and (5) of 6.11. 

Step 1. Fix Ie defined as above. Set now for each 3EOb(C(n, e)), 

g~(3) = g~: Sing(3) --* Ie = {B, G} • Ab0(~) = B, 

g~(~) = (B, w-ord~(3)(~), n~(3)(~)) 

for w-ord~(3) defined (for 3=30)  as w-orde(3o)=ord~(30) in Corollary 5.19. Set 

co if w-ord~(3)(~) = c~, 

n0(3)(~)= # { H c E  I~EH} ifw-ord~(3)(~)<oo, 

(w-ord~(3)(~),n0(3)(~))E(QU{cc})U(ZU{c~})C_[~. Now we set (B0) (Definition 6.3), 

namely we fix the criterion of choice of centers C(Z:0): 

6.15. It follows easily from the definition that g~(3) is a function as defined in 1.1. 

Moreover, Theorem 5.22 asserts that ~cF (e) if and only if g~(3)(~)--(B, cc, cc). In 

particular, F (~) # O if and only if max g8 (3) = (B, oc, oc), in which case Max g8 (3) = F (~). 

Let {30, 
/20 = gS: Sing(3o) --~ Ie 

be a chain of length zero. If F ~ r  O then we agree to set C(/20)= {Max g8 }- If F e =  ~ then 

we set C~C(~.o) if and only if 6' is a permissible center for 3o (Definition 5.4) contained 

in Maxg~(30 ). In this way chains of length zero are defined as in Definition 6.3, and 

conditions (1) and (2) of 6.11 hold. 

Step 2. Condition (6)(a) follows from the first assertion in Corollary 5.20 and from 

the fact that  E=E' in our notion of equivalence (Definition 5.11). Condition (6)(c) 

follows from the formula (4.17.3) which, in turn, is invariant by restrictions or change of 

base field. Condition (6)(b) is vacuous for chains of length zero, since pr l (maxgS)=B.  

Step 3. Now we assume the definition of chains and functions of length k, say 12k 

((6.3.1)), together with a criterion of choice of centers (Bk), such that the inequalities of 

Remark 6.4 and the conditions (1), (2) and (6) of 6.11 hold. 

6.16. Fix an index j ,  0 E j  ~<k, and assume 3j locally defined by (fT! i) (i) , v ,  

(notation as in 5.18), which we simply denote by (Uj, (Jj, b), Ej). 
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Recall that  in Definition 4.20 and 3.1 we have established the following expressions 

of products of ideals: 

C(Jj) = I(H1) ~j(1)... I(Hj)aAJ).Aj, 
red(C(Jj)) = I(H1) ~j (1) ... I(Hj)~J (J).Aj 

(6.16.1) 

in a regular subscheme of codimension e in Wj, for j = 0, ..., k (as (i) the remainder modulo 

b! of as(i) as in 3.1). 

For ~k�9 let ~j�9 denote the image of ~k, j=O,...,k. Since the 

inequalities of Remark 6.4 hold by the assumption on k, we also know that  

g;- - l (~j - -1)  ~g3(~j), A b j - I ( ~ j - 1 )  ~> A b j ( ~ j ) .  

6.17. We will also assume for 0 ~<j ~ k the following definitions and conditions linking 

the functions g~ (~j): 

(Clj)  If A b j - I ( ~ j _ I ) = B  then w-orde(~j_l)(~j-1) ~>w-ord~(~j)(~j). 

We now define Ej (~j) C Ej inductively: 

(Do) Eo (~o)={HeEol~oEEo}. 
(D j) 

{ {HeEj I ~j �9 H} if w-orde(~j-1)(~j-1)> w-orde(~j)(~j), 

Ej(~y) = {H�9 ~y � 9  if w-ord~(~j_l)(~3_l) =w-ord~(~j)(~j) 

where [Ej_ l(~j_l)]y denotes the strict transform of hypersurfaces in ES_ 1 (~j-1). 

Finally set 

nj(~j) = # ( E j ) .  

Remark. In our development it will be enough to understand the behavior of the 

function nj along closed points in Maxw-ord~(~j). Note that  (Clj)  implies that  

max w-orde(~O) >I .../> max w-orde(~j). 

Set i~ as follows: 

�9 If maxw-ord~(~0)=maxw-ord~(~j) then i~=0. 

�9 If maxw-ord~(~0)>maxw-orde(~j) then set i~ so that  

max w-ord~ ~i~--i  ) max w-ord~ ~i~ = max w-orde ~j. 
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Finally set E~: cE3 as the hypersurfaces of Ej which are strict transforms of hyper- 

surfaces in Ei,~, and note that for ~j ~ Max w-ord~ (~:s): 

E~(~j) = {He E; [ ~ e H}. 

(C2j) If Abj(~j)=G then ~j is a locally good point of (C(Jj),b!) (3.2), C(Jj) as 
in (6.16.I). 

(ca~) 
[ (Abj(~j), (w-ord~(~j)(~j),n~(~j))) if Abj(r = B, 

[ (ADj (is), F(~/)) if Abj (~j) = G 

for F as in (2.0.2). Note that F(~j) is welt defined if Abj(~j)=G by (C2); in fact, F is 

defined for locally good points (3.2). 

(C4j) If prl(maxg~)=G then C(s 
Condition (C10) is vacuous, Step 1 asserts that for j = 0  (C3o) holds, where only the 

first line applies (Ab0(~)=B). Conditions (C20) and (C4o) are also vacuous. 

6.18. Step 4. Now we will define the function g~r and the criterion of choice of 

centers C(s under the assumption of an enlargement of the chain f-.k to a chain 

/:k+l obtained by a transformation on a center Ck ~C(s 
e _ _  r Case A. prl(maxgk)--B. We want to define a value gk+l(~k+l) for ~k+leSing(~'k+l). 

As CkC_Maxg~ then (C3k) and Proposition 4.22 will guarantee that 

w-ord~ (~k+ 1) (~k +, ) ~< w-ord~ (~k) ((k)- 

In fact, w-ord~(~k) is actual}y constant along Ck. We define now n~+l as in (Dk+l) 

(6.17). 
Recall from Remark 6.4 that maxg~)...~>maxg~. Let i0 be the smallest index such 

that 
m e maXg~o_ 1 > axgio . . . . .  maxg~. 

Now set Abk+l((k+l) as follows: 

(1) If 
w-ordr (~k)(~k) > w-ordr (;~k+l)(~k+l ) 

or if 

w-ord~(i~k)(~k) =w-ordr and nk(~k) >nk+l(~k+l), 

then 

Abk+l (~k+l) 

-- f B if ~k+l E Sing(red(C(J)k+l), b!) and w-orde(~k+l)(~k+l) ~ 0, 

G if ~+1 r Sing(red(C(J)k.~), b!) or w-orde(~'k+l)(~k+l) = 0. 

(6.18.1) 



G O O D  P O I N T S  A N D  C O N S T R U C T I V E  R E S O L U T I O N  O F  S I N G U L A R I T I E S  151 

(2) If w-ord~(~k)(~k)=w-ord~(~k+l)(~k+l) and nk(~k)=nk+l(~k+l) then 

Abk+l(~k+l) = 

B if ~k+lESing([red(C(Jio))]k+l,b!) and w-orde(~k+l)(~k+l)~0, (6.18.2) 

G if ~k+l ~ Sing([red(C(Jio))]k+l, b!) or w-orde(~k+l)(~k+l) = 0 

where (Vk~+l, ([red(C(Jio))]k+l,b!),Ek+l) here is the transform of the basic object 

(Vi~o,(red(C(Jio)),b!),O) (red(C(Ji0)) and Vi~=Y ~ as in (6.16.1)). It should be noted 

that  if ~k+l ~ Sing([red(C(Jio))]k+l, b!) then ~k+l is a locally good point of (C(Jk+l), b!) 
(3.2); in fact, 

Sing( [red ( C ( Jk+ l ) ) ], b!) C_ Sing( [red ( C ( Jio) ) ]k + l , b! ) 

and points of Sing(V(Jk+l), b!)\Sing([red(C(Jk+l))], b!) are good ((3.1.2)). So condition 

(C2k+1) holds. Condition (Clk+l) is guaranteed by Proposition 4.22. We now define 

g~+l as in (C3k+1), and finally condition (C4k+1) is vacuous within this case. 
e ~ e We can now check (6.3.3), namely that  gk (~k)~'gk+l (~k+l), with equality if ~k ~Ck. 

This reduces to the following cases: 

�9 Abk (~k) = Abk+ 1 (~k+~) = B, in which case the inequality follows from 

w-orde (~k) (~k) >~ w-orde (~k+l)(~k+l) 

and our definition of nk (~k) and nk+l (~k+l)- 
�9 Abk(~k)=Abk+l(~k+l)=G, in which case g~(~k)=g~+l(~k). In fact, since CkC 

Maxg~ and we are within Case A, we have ~k~Ck. 
Now we define the criterion of choice of centers (Bk+l): C(/:k+l) (notation as in 

Definition 6.3). 

�9 If P r l (maxg~+l )=B then CEC(s if and only if C is a closed smooth sub- 

scheme of Maxg~+l, permissible for ~k+l. 

�9 If prl(maxg~+l)=G then C(s 

Case B. pr l (maxg~)=G.  By (C2k) all the points of Sing(~k) are locally good points 

of (C(Jk), b!) (3.2). (C4k) asserts that  there is only one choice of center, namely Ck---- 

Maxg~, so all the points of Sing(~k+l) will also be locally good points of (C(Jk+l), b!). 
Now, for ~k+lCSing(~k+l), we set Abk+l(~k+l)=G and 

g~+l (~k) -- (Abk+l (~kl), F(~k+l)), 

F as in (2.0.2). 

We fix now the criterion of choice of centers to be C(~k+l)={Maxg~+l}. (Clk+l) 

is vacuous and (C2k+1), (C3k+1) and (C4k+1) will hold. 
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We can finally check that  we have defined an assignment of chains and functions 

(Definition 6.3) satisfying, in addition, conditions (C1), (C2), (C3) and (C4) introduced 

in 6.17�9 

Step 5. Conditions (1) and (2) of 6�9 only apply to chains of length zero and 

they were shown to hold for this assignment in Step 1. Condition (6)(a) follows from 

Corollary 5�9 and (6)(c) follows from formulas (4.20.1), (4.20.2), (4.17.3) and the fact 

that  they are all invariant by restrictions or arbitrary change of base field�9 

Note finally from (2�9149 that  the codimension of MaxF  is given by the first coordi- 

nate of maxF,  so (6)(b) follows from (C2) and (C3). 

Step 6. Let Lk be a chain of length k ((6�9 and set the index i0 as in 6.11 (3). 

Step 6�9149 We consider the case k = 0  and F e = O ,  and construct a weak idealistic 

closed set ~ as in condition (3) of 6.11. 

Step 6�9149 Here we consider k > 0  and P r l ( m a x g ~ ) = B  and construct a weak idealistic 

closed set ~o  as in condition (3) of 6�9 

Step 6�9149 We show that  ~0 is in fact an idealistic closed set. 

First of all we need a previous lemma: 

LEMMA 6.19�9 Let W be a regular algebraic variety over k, and let V be a regular 

subvariety of W of codimension T at a closed point ~ c V .  

There exists an dtale neighborhood U of ~, e: (U,~)---~(W,~), so that U admits a 

retraction on e - I (V). 

Let xl , . . . ,  xn be a regular system of parameters of Ow,~ such that  I (V)~ = (xl,  ..., x~). 

We can define a morphism f :  W-+A~ replacing W by an open neighborhood of ~ by 

setting f # ( X i ) = x i  for i - -1 , . . . ,n ,  where A~=Spec(k[X1, . . . ,Xn]) .  So we may assume, 

after suitable restriction, that  f is an ~tale neighborhood of (A~, 0) and the subvariety 
�9 n n - T  V = f  -1 ({XI=0,  ..., X~ =0}).  Let r. A k --~A k be the natural retraction. The morphism 

f '  =ro( f ]v ) :  V--* A~ -~ 

is ~tale. Consider now the fiber product U': 

W ~of> A~_ ~ 

U' r >V. 

Let i: V--+W denote the inclusion and note that  f ' = ( r o f ) o i .  Since U' is a fiber product, 

i induces a section of r ' ,  and we identify e -1 (V) with the image of such a section�9 Finally 

note that  the section defines a retraction�9 
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6.20. A retraction of W on V(C_W) will allow us to lift an ideal I(C_Ov) to, say 

i(yOw). 
Step 6.1. Now suppose that  k=0,  that  F ~ is empty, and set maxg~)=(B, w, a). Note 

that  w c Q ) l  and a E Z ) 0 .  Locally at any closed point ~EMaxg~) there is an open 

set U (/), so that  ~0 is defined (after restriction) by a basic object (U (i), (j(i), bi), E(i)); 

there is also a regular variety of codimension e, say Vr (i) (Definition 5.14), and a 

coefficient ideal C(J (i)) in Oy~ (Definition 4.14). 

Note that  u~(C(J(i)))=wbi!cZ)O. At step k=0,  wbi!~bi!)l ,  so there exists a 

regular system of parameters Yr ..., Yn of OVe ,( such that  

Ye+l e Awbi!-l(c(j(i))) 

(see 4.4). Denote by C(J(~)) the ideal obtained by lifting C(J (~)) to U (~) , or more exactly, 

to an ~tale neighborhood defined in terms of a retraction on V ~ (Lemma 6.19), and set 

yjcOw,~ by lifting ~jE�9 
Denote b~=wbi!. Now define at a suitable neighborhood of the closed point ~ the 

sheaf of ideals B~ i) so that  

= , ...,x~')+c(g(*))e+(x~ [ I (H)e = (x d,  ( e H e E  (~)) (6.20.1) 

where xl,  ..., Xn is a regular system of parameters of (.gv(o,~ as in Definition 5.14. 

6.21. Let us note that: 

(1) Iny~+~ is linearly independent of Inx~, ...,Inx~ in Gr(Ow,~) (4.4). 

(2) (Xl, . . .  , Xe, Ye+l) C/~b:--l(~o(i)). 

(3) Sing(B0, b~)=Max g~)(5) (after restriction of Max q~(~) to a suitable open neigh- 

borhood of ~). 

These three conditions hold at an ~tale neighborhood. In particular, there is a weak 

idealistic closed set, ~ ,  such that: 

�9 ~ is locally defined by the basic objects (g  (i), (B(0 i), b~), O) (Definition 5.1). 

�9 From the definition of g~ in Step 1, it can be checked that  Sing(~)=Maxg~)(~).  

�9 ~ is of codimension >~e+l by 6.21, and E~=~. 
If CcC(s then CC Sing(~)  and has normal crossings with E~=g. Conversely, if 

CC_ Sing(~)  then C has normal crossings with Eo. In fact, locally at any closed point 

~cC,  C is contained in the intersection NhcHEEo H. So if ~0~--~1 is the transforma- 

tion with center CcC(s then C is permissible for ~ .  Set ~,v 1Err(i), \~l[l'~(i), u'i], hth ~1!~1~ as the 

transform of (U (i), rB (i) b '~ E'~ B~ i) o , i~, o~- can be written as 
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where 2(1 and ,1:'~ are the transform of the first and the third term of the sum, respec- 

tively, in the formula (6.20.1). One can check that  either maxg~>maxg~,  in which case 

Sing(B~ i), b~) = g ,  or max g~ = m a x  g~, in which case Sing(B~ i), b~) = Max g~ N U} i). 

Step 6.2. Suppose k>0  and maxg~=(B, w, a). Recall that  i0 is defined in terms of 

k as in 6.11 (3). Locally at any closed point (EMaxg~,  io<~j<~k, ~j is defined by a basic 

object (Uj, (Jj, b), Ej). Set b'=wb! and note that  b ' E Z ) 0  but w can be smaller than 1. 

Set also b"=b'b!. 

Case k=io. Recall that  gi~o =(Ab~o,~0i~o) and that  formula (6.18.1) applies for Abio. 

We define at a suitable neighborhood of a closed point ~ E Max g~o the sheaf of ideals Bio: 

,, . - -  .b /b "C'J ..b/b~ 
. . . . . . .  

= (-~o)r +( ( ~o))~ (6.21.1) 

+(x~" l I(H)r = (xi), H e  E(o(())+re~d(C(Jio))~ ''/b' 

where Xl, ..., x~ is a regular system of parameters of OV, o,~ as in Definition 5.14, .Aio and 

red(C(Jio)) are as in (6.16.1), and E/~(~) as in (Dio) (6.17). Note that  #(E/~(~)) is 

constant (and equal to a) along a neighborhood of ~=~{o in Max gi~o . We now want to 

define a structure of an idealistic closed set of codimension ) e + l  (in the setting of Defi- 

nition 5.14) in terms of (6.21.1). So first set ~i~C Sing(~i~) as the image of ~io C Sing(~i o), 

where i~ is as in the remark in 6.17, so maxw-ordi;  . . . . .  maxw-ordi  o. Locally at ~i; we 
l , l l may argue as in Step 6.1 to find a regular system of parameters x~, ..., xe, Y~+I, ..., Yn so 

that  -' y~+l~Ab'- l ( .A~) where -~ denotes the image of y~+~ in OV~o,~ Ye+l 

Applying Corollary 4.6 to the induced sequence 

b'), o )  b'), 

(recall that  u~,~(JI4;) . . . . .  U~,o(~4io)=b'), and setting I(V')=(y'e+l)CAb'-l(.Ai'o), we may 

assume that  there is a regular system of parameters {xl, ..., xe, Ye+l, ..., Yn} locally at (io 

so that  xl, ..., x~, Y~+I are strict transforms of x~, ...,x~,y~+ 1 . ~  ~ Setting Ej- as in the remark 

in 6.17 and E f = E j \ E ~ ,  we may also assume that: 

�9 ~e+lEAb'- l(Aio ). 

�9 If (ioegeE?o then I(HnVi~o)~,o=(y~z) for some sH>e+l.  
Now we argue as in Step 6.1 (6.21) to check that  there is a weak idealistic closed set 

;~o such that: 

�9 ~o  is locally defined by the basic object (Ui o , (B~ o , b"), E~o), where now E~o=E ~ . 

�9 Sing(~o) = Max g~o. 

�9 ~o  is of codimension ~>e+l and E~o=E~. 
�9 CEC(s if and only if C is permissible for ~o" 
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Case io<k. In this case formula (6.18.2) applies for Abk, where gk--(Abk,gk). For 

io<.j<.k, maxg~=(B,w,a). If (Uj,(Bj,b"),Ej) is the transform of (Uio,(Bio,b"),E~o) 
and ~ �9 Max g~, then 

i i  - I I  I ~ i i  
b . . . .  ,x~ )+(JIj)~ +([C(Jio)]j)~ 

+ (xb" I I(H)~ = (x~), H e E j  (~))+ re"-d([C(Ji0)]5 )~"lb! 
(6.21.2) 

where Xl, . . . ,  Xn is a regular system of parameters of Ov~,~ as in Definition 5.14. The 

same argument as in Case k=io applies to show that  # ( E j ( ~ ) ) = a  for any point of 

Maxg~ (D(j) in 6.17). It is easy to check that  Sing(13j,b")=Maxg~nUj, so that  the 

different basic objects (Uj, (Bj, b"), Ej) define a weak idealistic closed set ~:} such that  

Sing(~})=Maxg~. In fact, ~} is the transform of ~:~o. As in the case above, we argue as 

in the previous case to see that  CEC(F~j) if and only if C is a permissible center for ~:~ 

(Definition 5.4). 

Induction. If we consider an enlargement to a chain of length k + l  by a choice of a 

center CkcC(Ek), then formula (6.21.2) holds for j=k+l  to define ~:~+1 such that  

maxg~ >maxg~+ 1 r S i n g ( ~ + l ) = 0 ,  

maxg~=maxg~+  1 ~ S i n g ( ~ + l ) = M a x g ~ +  1. 

Step 6.3. We have shown that  formula (6.21.2) and the equalities Sing(~:})=l~.ax g~ 

hold after transformations. It can be checked that  these equalities are preserved also 

by restrictions. We conclude that  ~:~o is, in fact, an idealistic closed set of codimension 

>~e+l. 

Step 7. Condition 6.11 (4) follows from the definition of g~ given in (C3j) and the 

process defined in w167 2 and 3. Condition (5) of 6.11 reduces to the case prl(maxg~v)=B 

for all N by (4)(b) and (4)(c) of 6.11. Note that the definition of maxg~ is in terms 

of the functions w-orde and n. Note that  w-orde takes values in Z/m for some m big 

enough; in fact, the index i in (5.18.1) will range in the finite set I (Definition 5.1 (1)). 

On the other hand, n takes values between 0, 1, ..., dim W. So maxg~v cannot improve 

(decrease) infinitely many times; in particular, maxgN=maxgN+l . . . .  for some N big 

enough in the sequence in 6.11 (5). This proves condition (5) of 6.11. 

Remark 6.22. Setting Ab0(~)=B, V~ESing(~0) (see Step 1 of 6.14), and 

{ ~  ifw-ordr 

Ab(~k) = if w-ord~(~k) = 0 
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(see Step 4 of 6.14), we recover the algorithm introduced in [V1]. In such case the first 

coordinate of g~ is G if and only if C(J)k is monomial in Oy~ ((2.0.1)), and if the first 

coordinate is B then the last term of the sum should be neglected in (6.21.1) and (6.21.2). 

6.23. Equivariance. Let ~ be an idealistic closed set of dimension n (Definition 5.5), 

and set W and E={H1,  ..., Hr} as in Definition 5.1. In what follows we will consider 

an isomorphism O: W---~W (not necessarily of k-varieties) with the additional condition 

that  O(Hi )=Hi  for any hypersurface Hi EE. Such an isomorphism defines naturally a 

restriction of ~ (5.2), say ~o, now with the same W and the same E={H1, ..., Hr}. We 

shall say that O acts on the idealistic closed set ~ if in addition ~ is equivalent to ~o 

(Definition 5.11). 

Fix W, E and O as before. If O ( X ) = X ,  where X is a subvariety of W, then 

one can easily check that  O acts on the n-dimensional idealistic closed set ~ defined in 

Theorem 6.6. 

The combination of properties (1) and (3) in 6.9 says that, setting 

= (wj ,  Fj,  Ej,  W hi)}) l j j I i C I ,  

as the transforms of ~=~o defined in terms of the resolution, then: 

(1) For any ~jCSing(~j), O(~j)ESing(~j) (Definition 5.11). 

(2) f(~)(~j)=f(~j)(O(~j)) (6.9 (3)). 

(3) f(~j)(~j)----f(~j)(O(~j)) (6.9 (1)). 

Finally (3) implies that 

(4) O(Max f(~j))=Max f(~j), 
which asserts that  any such 0 will lift to the resolution of ;~ (i.e. will act on each ~ ) ,  

and ultimately that  the embedded desingularization defined by the the algorithm is 

equivariant. 
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