
A classification of  Busemann G-surfaces 
which possess  convex  functions 

by  

NOBUHIRO INNAMI 

University of Tsukuba, Sakura-mura Ibaraki, Japan 

1. Introduction 

A flmction q0 defined on a complete  Riemannian manifold M without boundary is said to 

be convex if q0 is a one variable convex function on each arc-length parametrized 

geodesic. ~v is locally Lipschitz cont inuous and hence continuous on M. It is a natural 

question to ask to what extent  the existence of  a convex function on M implies 

restrictions to the topology of  M. In a recent  work [4], the topology of  M with locally 

nonconstant  convex  functions has been studied in detail. One of  their results gives a 

classification theorem of  2-dimensional complete Riemannian manifolds which admit 

locally nonconstant  convex functions: they are diffeomorphic to either a plane, a 

cylinder, or an open M6bius strip. 

A classical result  of  Cohn-Vossen [3] states that a complete noncompact  Rieman- 

nian 2-dimensional manifolds with nonnegative Gaussian curvature is homeomorphic  to 

a plane, a cylinder,  or an open M6bius strip. Moreover ,  Cheeger-Gromoll  have proved 

in [2] that if a complete  noncompact  Riemannian manifold has nonnegative sectional 

curvature,  then every  Busemann function on it is convex (and locally nonconstant).  

H. Busemann generalized Cohn-Vossen 's  result in [1] pp. 292-294, proving that a 

noncompact  G-surface with finite connectivi ty and zero excess whose angular measure 

is uniform at :r is topologically a plane, a cylinder,  or a M6bius strip. 

Now,  the purpose of the present  paper  is to prove the following: 

THEOREM 3.13. Let  R be a noncompact  2-dimensional G-space. I f  R admits a 

locally nonconstant  convex function,  then R is homeomorphic  to either a plane, a 

cylinder S I •  or an open MObius strip. 

It should be noted that in the proof  of  the above result there is no analogy with the 

Riemannian case. This is because every  point of  a G-space R does not in general have 
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convex balls around it. And, hence,  for every  closed convex set C of  a G-space R and 

for every  point x E R - C  which is sufficiently close to C, we cannot  conclude the 

uniqueness of a segment which connects  x to a point on C, and whose length realizes 

the distance between x and C. It should also be noted that a convex function on a G- 

space R is in general not necessari ly continuous. But in the case where d im R=2 ,  R is a 

topological manifold and every  convex function on it is locally Lipschitz continuous. 

In w 2 we shall give the definition and some basic notions for G-spaces which are 

used in this paper.  They  are found in the book of H. Busemann,  [l]. In w 3 we shall 

discuss G-surfaces which possess locally nonconstant  convex functions. 

The author  would like to express his hearty thanks to Professor K, Shiohama for 

his advice, encouragement  and careful reading of  the original manuscript.  

2. G-spaces 

Let  R be a metric space and let pq denote  the distance between points p and q on 

R. Let  (pqr) denote  that p, q and r are mutually distinct and pq+qr=pr; let S(p, ~) 

denote  the set {q; qp<Q}, which is called the (open) sphere with center  p and radius 0. 

The axioms for a G-space R are: 

(1) The space is a symmetric  metric space with distance pq=qp. 
(2) The space is finitely compact ,  i.e., a bounded infinite set has at least one 

accumulation point. 

(3) The space is (Menger) convex,  i.e., for given two distinct points p and r, a 

point q with (pqr) exists. 

(4) To e v e r y  point x of  the space there corresponds 0x>0 such that for any two 

distinct points p and q in S(x, Ox) a point r with (pqr) exists. (Axiom of local prolonga- 

tion.) 

(5) If  (pqrl), (pqr2) and qrl=qr2, then rl=r2. (Axiom of uniqueness of prolonga- 

tion.) 

The axioms insure the existence of a (continuous) curve connecting two given 

points p and q whose length is equal to the distance between them, and this curve is 

called a segment and denoted by T(p, q). If an r with (pqr) exists, then the segment 

T(p, q) is unique. If p, q E S(r, O) for some r in R, then T(p, q)cS(r, 20). Let  0(P) be the 

least upper bound of  those 0x which satisfy Axiom (4). Then either Q(p) = ~ for all p or 

0 < ~ ( p ) < ~  and Iq(p)-Q(q)]<~pq, which implies the continuity of the function ~ on R. 
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A geodesic g is a certain class of mappings of the real line into R which is locally a 

segment, i.e., g has a representat ion x(3), - ~  < 3 <  ~ ,  such that for every  30 there exists 

an e0:o)>0 s u c h  that x(~0x(~2)=l~'~-r21 for 13o-3il<--,e(30), i=1,  2, and for another  

representat ion y(3), - ~ < 3 < ~ ,  there exist c t = + l ,  t iER  which satisfy that 

x(~)=y(a3+fl) for all 3. If  a representat ion of  a geodesic is a globally isometric map of R 

into R, or of  a plane c i rc le  into R, then we call it a straight line or a great circle, 

respectively.  In the proof  of  our  results the following properties of  geodesics will be 

often used. 

(2.1) If  y(r),a<~r<~fl, a<f l ,  represents  a segment in a G-space, then there is a 

unique representat ion x(r), - ~ < 3 < ~ ,  of  a geodesic such  that x(z)=y(r)  for  a<~3~fl. 
(2.2) If xv(z), - ~ < r < ~ ,  represents  a geodesic, v = l , 2  . . . . .  and the sequence 

{xv(ro)} is bounded,  then {x~(r)) contains a subsequence {xz(r)} which converges 

(uniformly in every  bounded set of R) to a representat ion x(r), - o 0 < r < o o ,  of a 

geodesic. 

(2.3) A class of  homotopic  closed curves through p which is not contractible 

contains a geodesic loop (a piece of  a geodesic) with endpoint p. 

We shall use the notion of  dimension in the sense defined by Menger and Urysohn.  

(2.4) A G-space of  dimension 2 is a topological manifold. S(p, O(P)) is homeomor-  

phic to an open sphere in the plane R E. 

(2.5) Every  point of  a 2-dimensional G-space is an interior point of  a closed and of  

an open convex set whose boundary  consists of  three segments, i.e., a triangle, where a 

convex set C means that p, q E C implies that T(p, q) exists uniquely and is contained 

in C. 

3. G-surfaces which possess locally nonconstant convex functions 

Let  R be a 2-dimensional G-space and ~v be a convex function on R. This means 

that for each geodesic with a representat ion x(3), - ~ < 3 < ~ ,  q~ satisfies the inequality: 

f~ (X(,~T l + ( 1 - -  ~,) 32) ) ~ ,~,(~(X(3 l)  ) "Jr- ( 1 - -  ,~1.) ~D(X(32)), 

for any 2E[0 ,  1], and for any r l ,  32ER. 

The plane, cylinder and open M6bius strip with canonical metric evidently possess 

(locally nonconstant)  convex functions. As we are interested in the topological struc- 

ture of  R, we may assume that a convex function qo is locally nonconstant ,  i.e., 

nonconstant  on each open set of  R. If  a non-trivial convex function q0 is constant  on an 

open set U~R, then we can construct  f rom R a topologically distinct R'  on which a 

2-812904 Acta Mathematica 148. Imprim6 le 31 aoOt 1982 
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non-trivial convex function is defined. This is done as follows; There is a disk D c  U. R '  

is obtained via the connected sum (R-D)#V,  where V is an arbitrary G-space with 

boundary S 1 which is identified with aD. The convex function on R' is equal to 9 on 

R'-V and is constant  on V, and agree with 9 on aD. Thus the existence of a non-trivial 

convex function does not imply a topological restriction on the G-space except a trivial 

one, namely, noncompactness (see [4]). Throughout this section, let 9 be locally 

nonconstant on R. And let R a and Rba denote the sets {qER;9(q)<---a} and 

{ q E R; a<.9(q)<.b } , respectively. 

(3. I) 9 is locally Lipschitz continuous on R. 

Proof. We first show that 9 is locally bounded above. Let  q~, q2 and q3 be the 

vertices of the convex triangle C mentioned in (2.5), and let p '  E ln tC .  Choose q on 

T(q2, q3) such that p' E T(ql, q). Then by convexity of 9,  we have 

9(P')<---(P' q /q! q) 9(ql)+(q! P'/ql q) 9(q) <~ (P' q/q! q) 9(q~) 

+(ql P' /ql q) ((qq3/q2 q3) 9(qE)+(q2 q /q2 q3) 9(q3))" 

Therefore 9 (p ' )~  max {9(q0, 9(q2), 9(q3)}. 
Secondly, we show that 9 is locally bounded. Let  S(p,Q)cC, Q--<Q(p), and let 

q E S(p, ~). Then by convexity of 9,  we have 

9(P) ~ ~(9(q)+9(q')), 

where q' satisfies that (qpq') and pq=pq'. Hence 9(q).-->29(p)-max {9(q0, 9(q2), 9(qa)} 

for q E S(p, Q). Thus 9 is locally bounded. 

In order to prove the local Lipschitz continuity of 9, we work in the above S(p, Q). 

Let  u, vES(p,Q/3). Extend T(u,v) in both directions until its endpoints arrive at 

aS(p, Q). Take points Ul,//2,v2 and vl in this extension of T(u, v) such that ui, u2, u, v, 

v2 and vl are in that order and ul UE=V2Vl=Q/3 and ul, vl EaS(p, •). Then by convex- 

ity of 9, 

( 9 ( / / 2 )  - -  9 (  u 1)) /u I U2 ~ ( 9 ( v )  --  9 ( / ' / ) ) / u  V ~ ( 9 ( U  l) - -  9(V2))/V2 U l" 

Hence there is an L > 0  such that 19(v)-9(u)] <- Luv for u, v E S(p, Q/3). Thus 9 is locally 

Lipschitz continuous. 

(3.2) R:,a>infRg, has the structure of  an embedded 1-dimensional topological 

submanifold without boundary.  
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Proof. Let p E R]. There is q such that q E S(p, O(P)) and q~(q)<q~(p). Take r on an 

extension of T(p, q) such that q~(r)>cpfp) and rE S(p, Q(p)). Let T' be a segment through r 

and contained in S(p, 0(/7)) and which intersects the extension of T(p, q) at exactly r and 

on which cp>cp(p). Then T(q, q') I1 R~ is exactly one point for every q' E T', because q~ is 

strictly monotone increasing along T(q, q')N (R-R~tq)), and the totality of those points 

is homeomorphic to T'. Hence this set is a neighborhood of p in R~, and it has no 

selfintersections. 

We conclude from (3.2) that R~, a>infn  q~ is homeomorphic to either a real line R 

or a circle S ~. 

(3.3) R is noncompact .  

Concerning the number of components of a level set R~;a>infg q9, of qg, the 

following holds. 

PROPOSITION 3.4. Let p and q be distinct points o f  R~a,a>infRqo. l f  there is a 

geodesic curve from p to q such that ~p does not take infR qv on it, then p and q are 

contained in the same component o f  R a. 

Proof. Let  x(r), tt<~r<~fl, represent the geodesic curve in the assumption. If  

minq~(x(r))=a, then cp(x(z))=a for every ~:, a < ~ f l ,  by convexity of qg. So p and q are 

contained in the same component  of R. Thus we may assume, without loss of general- 

ity, that there exists 3o such that q~(x(~o))=mincp(x(~))<a. Since C;(X(to))>infR~, 

we can choose r such that r~S(x(To),9(X(ro))/3), cp(r)<q~(x(ro)). Put tx ' :=max 

{a, l:0-q(X(ro))/3}, fl' := min {fl, ro+O(x(ro))/3}, and m := rain {(cp(x(r))-fp(r))/rx(~); 

a'<~r<~fl'}. The choice of  r implies m>0.  For each 3, a'<~r<~fl ', there is exactly one 

representation y'(v), - oo < v <  oo, of  a geodesic by (2.1) which satisfies that y ' (0 ) -  r, and 

y'(rx(r))=x(r). Then we have; for every v~rx(r), 

n , (v-  rx(r)) + q0(x(r)) ~< ((qg(x(r))- qg(r))/rx(r)) ( v -  rx(r)) + qv(x(r)) ~< q0(yr(V)). 

Since y'~(v), rx(r)<~v<O(X(ro))/3+rx(r), is contained in S(x(r0), 2O(X(ro))/3) for each 

r , a  ~ r ~ p ,  there is a v such that y'~(v)E S(x(ro),O(x(To))), and mo(x(%))/3+q~(x(r))<~ 

~0(y~(v)). 
Let e(r), a'<~r<~fl', be a continuous function which satisfies that ~(a')=e~')=O, and 

O<e(r)<m~(x(ro))/3 for any r, ct'<~r<~fl'. Convexity of q~ implies that the geodesic curve 

o~r at exactly one point, which is with a representation y'(v), v>~O, intersects ,,~))+~r 

denoted by y(r). We are going to see that y(r), a'<~r<~fl ', is a continuous curve such that 
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y(a')=x(a')  and y ( f l ' )=x~ ' )  and y(r)E S(x(r0), O(x(r0))). Let  a sequence {ri} tend to 

r, a'<~r<<.fl '. Since (y(ri)} is bounded, the sequence (y(vi)} contains a subsequence 

(y(rk)} which converges to a point Yo- Then, since the equality q~(yo)=cp(x(r))+e(r) 
R ~~ On the other hand, Y0 is on follows from continuity of e and cp, Yo belongs to ~(x(~))+~(~). 

r V the geodesic curve with a representation y'dv), - ~ < v < ~ ,  since the sequence {y~i( )} 

of representations of geodesics converges to y'(v), - ~  < v <  oo, by (2.2) when r; tends to 

r. Therefore we have from definition of y(v) that yo=y(r). 

: Next,  for each r, a'<~r<.fl', let z'(v), - ~ < v < ~ ,  be a representation of a geodesic 

which satisfies that z'(O)=x(ro) and z~(x(ro)y(r))=y(r). That this is well-defined follows 

from the fact that y(r)ES(x(ro)),O(X(ro)). From construction of z~(v) we see that 

z ' , (v)=x(ro-V),  z'~,(v)=x(ro+V), and hence each of them has a unique intersection with 

R]. The desired curve from p to q in R~ is obtained as follows. From construction of 

z,(v), a -.~r-~fl, v~-O, we see that q~(z~,(v)) and q~(z'~,(v)) are monotone non-decreasing 
, , < <  , for v~>0, and moreover  cp(z~(v)),a r 13, is strictly monotone increasing for 

z~(v), v~O has a unique intersection with R, v>-X(ro)y(v). Thus for each r, a'<<.r<~fl', ' >- ", 

which denoted by z(r), and the intersection is continuous with r. In fact, to prove it 
t t r ~ .  around r = a '  f ixp =z~, ( ro-a+l ) .  Then convexity of q~ along z~,(v),v~O, implies that 

q0(p')>a. There is a nieghborhood o f p '  on which cp>a. Therefore we find a St>0 such 

that z ' ( r o - a + l )  is in the neighborhood if Ir-a'l<Oj. Then continuity of 

z(r),a'<~r<a'+5~, is obvious. In the same way we find a di2>0 such that 

z(v), f l ' -62<r<.fl  ', is continuous.  To prove continuity of z(r),a'+6~<~r<.fl'-62, put 

mt: =inf{9(y(r))-9(X(ro))/X(zo)y(r); Ct'+dil~<'t'<~fl'--(~2). Then we can see that m l > 0  

and that for each r, a'+Sl<~V<.fl'-52, for every v>~X(ro)y(r), 

rnl(v-X(vo) y(r))+q~(y(v))<-((qg(y(r))-q~(x(Vo)))/X(ro) y(v)) (v-X(vo) y(v))+q~(y(r))<-cp(z'~(v)). 

Thus the set {z(r); a '  +51 ~<r~<fl'- 52} is bounded. Continuity of z(r), a '  ~<r~<fl ', holds by 

means of the same argument as in continuity of y(r). 

As a direct consequence of the proof of Proposition 3.4, we have: 

(3.5) I fp  and q are taken from different components  of R~, then cp attains infR Cp on 

every geodesic curve which joins p and q and infg q~ is attained at exactly one point 

on it, 

THEOREM 3.6. I f  there is a value a such that R", is not connected, then the 

fol lowing holds: 



A C L A S S I F I C A T I O N  O F  B U S E M A N N  G - S U R F A C E S  W H I C H  P O S S E S S  C O N V E X  F U N C T I O N S  2 1  

(1) c,o attains infnq0. 
minq~ �9 (2) Rmin~vlS totally convex and it is either a straight line or a great circle. 
_ min q~ (3) R Rminq ~ consists o f  two components. I f  b>infRg0, then R~ has exactly two 

components. 

Proof. (1) has been proved.  In (2), total convexi ty  nf Rm! nr is trivial�9 minq~ If  a R m i  n ~=Q~ a s  - - -  - - m l n  q~ 

minqJ a 1-dimensional manifold, then it follows from total convexi ty  of Rmin~ and [1], p. 46 

a U min q&l= (7) min q~ (9.6) that/gminq0hminq~ �9 either a straight line or a great circle�9 If  ---min~ -- or  Rmin~ has only 

one point then we can see that R a is connected,  a contradiction. In fact, we can prove 
a - ~ n m i n  ~0 this as follows. Take points p and q in R a and r m ~/Xmincp, and join from r to p,  and from 

r to q b y  segments T(r, p) and T(r, q). Since S(r, o(r)) is not separated by R m!nq~ --mmqJ ' w e  get a 

continuous curve y(r), ct<~r<<.t3, joining aS(r, p(r)/2) n T(r, p) and OS(r, •(r)/2) n T(r, q) 
which is contained in S(r, p(r)) and does n " min~  ot i n t e r s e c t  Rmin~. If for each r, ct~<r~</3, z(r) is 

defined by the intersection of  a geodesic curve in the direction from r to y(r) and R a as 

in the proof  of Proposi t ion 3.4, then z(r), a~<r~</3, is a continuous curve joining p and q. 

To prove (3), fix a point p o f R  m!n9 Then by (2), minq~ S(p , O(p)/2)-Rmin~ o has exactly two 

components .  We denote  its components  by V~ and Vz. For  each a E R - R  rn!n~~ let 
-a  - -  - -  - - m i t t  qg~ 

x(z'), 0~<r~<a, x(0)=p,  x (a )=q ,  be a representat ion of  a geodesic curve from p to q. Then 

x(r) ,0<r<Q(p) /2 ,  is contained in only one of Vl and V2. Put A : = { q E R  -/?m!n~" all " ' m l n  q~ ' 

geodesic curves  f rom p to q on which sufficiently small parts near p intersect V~}, 
�9 _ _ rnin r B.  -- (q  E R Rrnincp , all geodesic curves from p to q on which sufficiently small parts near 

p intersect V2} and C : =  {q 9 R -Rm!nq~" there are geodesic curves from p to q such that 

one of their representat ions,  y ' ( r) ,  0~<r~</3, y ' (0)=p,  y'(fl)=q, intersects V1 and another  

z'(r), 0~<r~<?,, z ' (0)=p,  z'(~')=q, intersects V2}. 

Both A and B are open and connected in R - - R  m!ncP if they are nonempty.  If  we - -  - - m m  q0 

show that A IIR =R-Rm!ncp  i.e. C = ~ ,  then the first part of (3) will be proved�9 In fact,  if 
. . . . . .  m l n ~ ,  , 

C = ~ ,  VI~A and V2~B will follow from the argument stated below. 

Suppose q E C exists. Then we have a contradiction from the following consider- 

ations. Fix a point q0=Y(r0) such that q0(q0)=a, where y(r), - ~ < r <  co, is a representa- 

tion of  a geodesic determined by y '(r) ,  0~<r~</3, in the definition of C. And let z"(z-), 

0<~r~<lro-/3l+?', be a continuous curve from p to qo such that if ro~>/3 then z"(r)= 

z'(r) for 0~<r~<y and z"(r)=y(r+fl-7,) for V~<r~<ro-/3+~, and if ro</3 then z"(r)=z'(r)  for  

0~<z-~<~, and z"(r )=y(f l - r+~,)  for  V~<r~</3-ro+V, where z'(r),  0~<r~<v, is in the definition 
minq~ of  C. We consider  the class of  all curves from p to qo whose interiors are in R -  Rrnincp 
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and such that sufficiently small parts near p meet  V2 but do not meet  V1. This class is 

nonempty.  Since Rm! n ~ i~ totally convex and is either a great circle or a straight line, we - - m m  q~ - -  

f i n d  from (5.18), [1], p. 25, a geodesic curve from p to q0, in the class, whose interior is 

contained in minq~ R-Rmin~ and which is different from a geodesic curve with a representa-  

tion y(r),0~<r~fl. Let  z(r),0<<-r<<-6, z(0)=p,z(6)=qo,  represent  this geodesic curve.  

Using these representat ions y(r),  0~r~<fl, and z(r), 0~<r~6, we connect  any two points 

q~ and q2 in R~ by a continuous curve in R~, a contradiction. This is done as follows: If  

yl(r), O<~r<~fll, and y2(r), 0~<r~<fl2, represents  geodesic curves such that yl(O)=y2(O)=p 

and ylq30=ql, yz(flz)=q2 and if Yi(~), 0<r<p(p) /2 ,  i= 1,2, are contained in V1, then we 

can connect  yl(Q(p)/3) and y2(9(p)/3) by a continuous curve in Vi and, hence,  as in 

Proposit ion 3.4, we find a curve in R~ which joins q~ and q2- Thus, without loss of  

generality, we may consider that yi(r), 0<r<Q(p)/2,  are contained in Vi for i= 1,2. By 

the same idea as in Proposi t ion 3.4, we can find two curves in R~ such that one of them 

joins ql to qo and the other  joins q2 to q0. Thus R~is connected,  a contradiction. Hence  

C = Q  is proved.  

The above arguments show that V ~ A  and Vz~B, and hence they are not empty.  
rain ~v Therefore  R - R ~ i , ~  is the disjoint union of  A and B. 

To prove the second part of  (3) it is enough to see that both RbbnA and RbbnB are 

connected for any b>infn  q~. This is evident by the above argument. 

To continue our investigation, we need the notion of  an end e which is, by 

definition, an assigment to each compact  set K in R a component  e(K) of R - K  in such a 

way that e(Kl)~e(K2) if K ~ K 2 .  

THEOREM 3.7. I f  there is a compact component o f  a level set o f  q~, then all level 
sets are compact. 

Proof. Theorem 3.6 implies that every  level set consists of one or two components .  

So we first consider  the case where all level sets are connected.  

Le t  R~ be compact .  And suppose that R b is noncompact  for some b with a<b. We 

fix a point p in R~ and choose an unbounded sequence {qi}, qi E R b. Let  xi(r), r~O, be a 

representat ion of a geodesic curve ~uch that xi(O)=p and xi(pqi)=qi, i= 1,2 . . . . .  Then we 

have a subsequence {Xk(r)) of  {xi(r)} which converges to a representat ion x(r), r~>0, of 

a geodesic curve.  I f  we see that cp(x(r))=a for any r~>0, then R~ is noncompact  since 

x(r), r~0 ,  represents  a half-straight line. This is a contradiction. Thus, if R~ is compact  

then R b is compact  for  all b>a. It remains to prove that q~(x(r))--a for every  ~->~0. For  
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each: r ~  > the diameter  o f R  a, there is a number ko such that pqk>v for k>~ko . For  such 

k0, it follows from convexi ty  of  ~ that k>~ko implies q~(xk(r))~<b. Therefore ,  we have: 

~(x(v)) = q~ (limxk(r)) = lira q~(Xk(r)) <~ b. 

On the other  hand, since r~>the diameter  of  R~, the following holds: cf(x(r))= 

~(limxk(r))=limcf(xk(r))~a. cf(x(r)), the diameter  of R ,~<r<~,  is bounded and mono- 

tone non-decreasing,  so cf is constant  on it. Therefore ,  it follows from convexi ty  of  q~ 

that ~(x(r ) )=a  for ~>0. 

Suppose that R", is noncompact  and R b compact  for some a<b. In this case, there 

are at least two ends of  R because  of the existence of a straight line intersecting R b 

along which ~ is nonconstant  and monotone.  In particular R is not simply connected.  

Under  the assumption stated above,  we claim that q~ does not take infRcf. In fact,  

suppose (p takes infR ~. Then the minimum set is noncompact ,  otherwise all level sets 

are compact  because  of  the above argument.  Thus the minimum set consists of  either a 

half-straight line or a straight line. Since R is not simply connected there is a non-null 
miner homotopy  class of  closed curves with any fixed point p E Rmin+ as a base point. Then we 

get a geodesic loop at p by (2.3). Along this geodesic loop, q~ is constant because 

cf(x(v))~qJ(p), where x(v), O~r~a,  is a representat ion of this geodesic loop. Since this 

geodesic loop is contained neither in that half-straight line nor in that straight line, there 

is an open set U in the neighborhood o f p  such that q~ is constant on U. This contradicts 

local nonconstancy of  q~. Thus we can suppose that ~0 does not take infR % 

Now,  we are going to obtain a final contradiction in this case. Put to: = inf { t E R; R t, 

is compact}.  If  we prove that R ~~ is homeomorphic  to the ciosed half-plane, which is 

proved in Proposit ion 3.8, then as R is not simply connected we have a geodesic loop 

with endpoint  p where  q~fp)<to. This geodesic loop must intersect Rtt~ Thus this 

contradicts convexi ty  of  cp. 

Next  we consider  the case where there is a level set which is not connected.  In this 

case it follows from Theorem 3.6 that q~ takes infR ~ and the minimum set is either a 

straight line or a great circle. 

If  the minimum set is a great circle, all level sets are compact  by the same reason 

as we have already shown that R b is compact  if so is R~ for a<~b. 

In the case where  the minimum set is a straight line, each component  of any level 

set is noncompact .  In fact, suppose that there is a compact  component  of  some level. 

Then R has at least two ends and hence it is not simply connected.  Then for every  
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min q~ p R~i.~there is a goodesic loop at p which is not homotopic to a point curve. Thus the 

geodesic loop at p must lie in the minimum set which is a straight line, a contradiction. 

The proof is complete for all cases. 

The following proposition is directly used in the proof of Theorem 3.7. Once we 

establish Theorem 3.7, we may lind by the same reasoning as Proposition 3.8 that 

Rbo, b>a>infRq~, is topologically a part of a cylinder, S t • b], if R~is compact. 

PROPOSITION 3.8. I f  there is a value b>infRcf such that R~ is noncompact then 

there exists a homeomorphism h of  R• b], a>infR % onto each component of  Rb, 
such that cpoh(u, v)=v for every (u, v)ER• b]. 

It should be noted that each level set R~, a<.c<~b, has a neighborhood which is 

homeomorphic to the union of triangles of R 2 since, from the same idea as in (3.2), R',I 
is covered by triangles whose interiors are mutually disjoint. Hence our aim is to alter 

the above homeomorphism to globally satisfy the condition. 

Proof. We know as in the first part of the proof of Theorem 3.7 that every c, c<.b, 
R~ is noncompact and so homeomorphic to R. Fix a value d, infR q~<d<a, and choose 

an unbounded sequence {Pi} - ~ < i < ~  in R~ in that order of an orientation of R~ in both 

directions of R~. For each i, - ~ < i < ~ ,  let f~ be a point in Ra a such that pif~=piR d. 

Then for each c, a<~c<.b, T(pi,f.) N R c is exactly one point which we denote by pi(c). 
Clearly pi(b)=pi for every i, - ~ < i < ~ .  And for every c,a<.c<~b, {pi(c)} _~<;<= is 

unbounded in both directions of R,(. Otherwise, there exists a half-straight line starting 
at a point of R~ on which q0 is bounded and which intersects R',I. Moreover {pi(c)} _~<i<= 

is in this order. This is proved as follows, Let W be a nieghborhood of T(po,fo). Wn Rb, 

is separated by T(Po,fo) into two components W_~ and WI. Let F be a function of Rba 
to {--1,0,1} which satisfies that if qET(po(b),po(a)) then F(q)=O, if 

qERb,-T(po(b),po(a)),q~(q)=c and the subarc of R~ from po(c) to q meet W-I then 

F ( q ) = - l ,  and otherwise F(q)=l .  By the remark above the proof, F is continuous 

except on T(po(b),po(a)), and hence for every c,a<.c<~b, and for every integer 

k>~ 1,pk(c) is in only one of two sides of T(po(b),po(a)). Also for k~ < -  1, pk(c) is in the 

other side. Since this fact is true for each i, - ~ < i < ~ ,  {pi(c)}_~<~<~ is in this order on 

R~ for every c, a<.c<.b. 
Let Mi denote the set which is surrounded by R~, R~,, T(Pi(b),pi(a)) and T(pi+l(b), 
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pi+l(a)), more precisely,  the totality of  the subarcs of RC's from pi(c) to Pi+l(C!, for all 

c, a<~c<~b. 
It suffices to construct  a homeomorphism hi of  the domain ((u, v) E R2; i<~u<~i+ 

1, a<_v<-b} onto M; such that ~ o hi(u, v)=v. Because if we connect  hi's we get h. This is 

done as follows. Put o:=min{Q(q)/2;  q EMinRb}. If  we consider a neighborhood 

U : = { q ;  qRbb<o} of MinR b, then there is an e>0  and b'<b such that MinRb,_~cU. 
Choose sj E R b t'l U and b'-~ rj~.Rb,_ efl U, j - - ' 0 ,  1 . . . . .  n ,  in this order,  such that so=pg(b), 

sn=pi+l(b), ro=Pi(b'-e) and rn=Pi+l(b'-e) and sj, sj+ I, rj, rj+jES(tj, Q/2) for some 

b~ Rbb,J=O, 1 . . . .  , n--1. For  each j,  O<-j<.n - l, let Mij be the domain which is surround- 
b b' ed by Rb,Rb,, T(sj, rg) and T(sj+ 1, r) and let M/j be the domain which is surrounded by 

T(sj+l, rj), T(sj+l, rj+ 0 and Rbb',. Then,  we can construct  (by the same techniques as (3.2) 

and Proposit ion 3.4) a homeomorphism of  M o. onto the trapezoid in R 2 whose vertices 

are if+j/n, b), (i+j/n, b'), (i+(l"+ l)/n, b) and (i+j/n+e/n(b-b'+e), b'), and a homeomor-  

phism of  M~ onto the triangle in R 2 whose vertices are (i+(j+l)/n,b), (i+j/n+ 
e/n(b-b'+e),b')  and (i+(j+l)/n,b'). The homeomorphisms agree on the segment 

T(rj, sj+O n Rb,. If  we connect  these homeomorphisms we get a homeomorphism (hi) -1 

of  MinRbl to {(u, o)ER2; i<~u<.i+l, b'<~v<-b} which satisfies q~oh;(u, v)=v for all 

u E [i, i+ 1]. We do not know whether  M; is compact ,  so the desired homeomorphism is 

obtained as follows. Le t  bo be the most lower bound of  ' b {b ; R b, NM~ has a homeomor-  

phism (h~) -1 which satisfies the condition}. Then bo=a. Otherwise we can construct  by 

the same way as above a homeomorphism (h;) -~ of  R~b, NMi, for some b'<bo, which 

satisfies the condition, a contradiction.  

Clearly h~ -I and h~ll agree on the segment T(Pi+l(b),pi§ so we obtain the de- 

sired homeomorphism h -1 of Rba onto {(u, v)ERZ; - o o < u < c %  a<_v<_b} after connect-  

ing hi -1 and hi+ll for  all i, - o o < i < ~ .  

We shall observe how the existence of  a locally nonconstant  convex function on R 

will restrict  the number  of  ends of  R. 

LEMMA 3.9. I f  there is a compact level set of  q9, then R has at most two ends. 

Proof. Suppose that R has more than two ends. Then there is a compact  set K such 

that R - K  contains exactly three unbounded connected components  U~, U2 and U3. 

We will prove that q~ is bounded above on two of the U1, U2 and U3. Therefore  q~ is 

bounded above on exact ly two of  them since q~ is not bounded above. In order  to see 

this, we may suppose that sup ~(Ua)=sup c;(U2)= oo. Then we can find such a high level 
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set that it does not intersect K but intersects U1 and U2. This implies that this level set 

is not connected.  Therefore  q0 is bounded above on U3 since Theorem 3.6 says that all 

level sets except  the minimum set consist  of  exactly two components .  Choose a point p 

in the minimum set and an unbounded sequence {q;} in U3. Let  xi(T), r>~0, represents  a 

geodesic curve,  i= 1,2 . . . . .  which satisfies that xi(O)=p and xi(pqi)=qi. Because of  (2.2) 

there is a subsequence {xk(r)} of  {xi(r)} which converges to a representat ion x(r), r~>0, 

of  a geodesic curve.  In the same way as in the proof  of Theorem 3.7, we see that {x(r); 

r~>0} belongs to the minimum set. Since x(r), r>~0, represents a half-straight line, this 

contradicts the compactness  of  level sets. 

Thus we may suppose,  without loss of  generality, that cp is bounded above on Uz 

and U3. If  we put m :=min q~(K), then m=infR qg. In fact, if we suppose that there exists 

a point q with cp(q)<m, then we can find a half-straight line on which cp is constant equal 

to q~(q) or non-increasing in the same way as above argument after taking an unbounded 

sequence {qi) contained in Uj, j = 2  or 3, which does not contain q. However ,  since this 

half-straight line intersects K, this is impossible. 

Le t  p E K  satisfy that cp(p)=m. Then there is a half-straight line emanating from p, 

and an unbounded subarc of  which lies in K U U> But q~ is constant,  equal to m, on the 

half-straight line. Thus R m is noncompact ,  contradicting Theorem 3.7. 

LEMMA 3.10. Suppose  there exists a noncompact  level set. I f  R has more than one 

end, then q9 attains infR Cp and the min imum set intersects every e(K), where e is an 

arb#rary end  and K is any compact  set  o f  R.  

It turns out f rom Proposit ion 3.12 that if cp has a noncompact  level then R has 

exactly one end. But this lemma gives a step of the proof  of  Proposit ion 3.12. 

Proof. From assumption there exist two ends e~ and e2 and a compact  set K which 

satisfies that e~(K) and e2(K) are distinct components  of R - K .  Put a:=minq~(K),  

b:=maxq~(K).  We will find that a:=infRcp. Otherwise there is a point p such that 

q~(p)<a. We may suppose,  without loss of  generality, that p ~ ~l(K). If q0 is bounded on 

e~(K), then making use o f p  and an unbounded sequence in e~(K), in the same way as 

before,  we obtain a representat ion x(r), r~>0, of  a geodesic curve intersecting K and on 

which q0 is constant.  This contradicts the choice of  p and a. 

The above argument also shows that every  e(K) intersects the minimum set i f R - K  

has at least two unbounded components .  

Le t  Kj be any compact  set. Then there is a compact  set K = K j  such that every  
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e(K) intersects the min imum set, and hence so does e(KO. Thus the proof  of  the final 

s ta tement  is complete .  

THEOREM 3.11. I f  R is a noncompact  G-surface which admits a locally noncon- 

stant convex function,  then the number o f  ends is at most  two. 

Proof. Suppose  that  the number  of  ends of  R is not less than three. Then L e m m a  

3.9 says that all level sets are noncompac t  and L e m m a  3.10 concludes that ~ takes 

infR q0 and the min imum set intersects  every  e(K). Since the noncompac t  minimum set 

is a half-straight line or  a straight line, it cannot  intersect  more  than two e(K)'s.  This is a 

contradiction.  

N o w  we will classify G-surfaces  which admit  locally nonconstant  convex  func- 

tions. First  we consider  the case where  R has two ends. 

PROPOSITION 3.12. I f  R has two ends, then each component  o f  each level set is 

homeomorphic to a circle S l and R is homeomorphic  to a cylinder S l •  

Proof. In the first step we will see that all level sets are compact .  Suppose  that 

there is a noncompac t  level set. L e m m a  3.10 and two ends of R imply that q0 takes 

infn q0 and the min imum set is a straight line. Since R has two ends there is a geodesic  

loop whose  endpoint  is contained in the minimum set and which is not homotopic  to a 

point curve,  a contradict ion.  We know the exis tence of  a homeomorph i sm of R to a 

cylinder f rom the r emark  above  Proposi t ion 3.8. 

In the case that  q0 does not take infR q0, then all level sets are connected.  Therefore  

each level set intersects  a straight line at one point which connects  two ends. Thus R is 

topologically a cyl inder  by the r emark  above  Proposi t ion 3.8. 

Nex t  we claim that  if cp takes  infR Cp, then the minimum set is a great circle. 

Otherwise,  since it is a point or  a segment~ all level sets are connected.  The existence of 

two ends implies that there is a compac t  set K such that R - K  consists of  exact ly  two 

unbounded componen ts ,  so q~ is bounded above  on one of the components  of  R - K .  

Thus,  in the same way  as in the p roof  of  Theo rem 3.7, we can derive a contradiction,  

namely the min imum set contains a half-straight line. It  turns out at the same t ime f rom 

this considerat ion that  there exist  level sets which are not connected.  Therefore  each 

componen t  of  a level set intersects a straight line at one point which passes  through the 

minimum set and connect  two ends. 

N o w  we can conclude the following: 
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THEOREM 3.13. l f  R is a noncompact  G-surface which admits a locally noncon- 

stant convex function,  then R is homeomorphic  to either a plane, a cylinder S I • or 

an open MObius strip. 

Proof. The case where R has two ends has already been treated in Proposit ion 

3.12. We may suppose by Theorem 3.11 that R has one end. First we will prove that if 

there is a compact  level set, q0 takes infR q~. In fact, suppose that q~ does not take infR qo. 

Then we can produce  a straight line through a certain compact  level set by choosing 

two sequences {qi} and { qi'} which satisfy that lim q0(qi)=infR qg, and lim q0(q~)= ~ ,  and 

connecting qi and q~ by a segment. Hence  R has at least two ends, a contradiction. 

Therefore ,  the minimum set of  q~ is either a point, a segment, or a great circle. Since the 

detailed construct ion of  homeomorphisms is the same as Proposition 3.8, we need only 

to see how to map a level set. 

When the minimum set is a point, we map it to the origin of canonical plane R 2 and 

R a , a>minq~, onto a circle in R 2 with center  (0, 0) and radius a-minq0.  

When the minimum set is a segment, we map it to a segment T in canonical plane 

R 2 and R a , a>minq0, onto the set {w•R2; w T = a - m i n c p }  in R 2. 

If  the minimum set is a great circle, we map it to the shortest  great circle T in 

canonical open MObius strip M and Ra ~, a > m i n  q~, onto the set {w C M; w T = a - m i n  q~} in 

M. 

Next  we consider  the case where all level sets are noncompact .  If  9 does not take 

infRq~, Proposit ion 3.8 implies that R~, a>infRq~, is mapped onto the set {(u, v)ER2; 

- oo<u<oo ,  v=a} in canonical plane R 2 and R is topologically a plane. Hence  we 

examine the case where ~v takes infe q~. 

When the minimum set is a half-straight line (a straight line), we map it to a half- 

straight line T (a straight line T') in canonical plane R z and R~, a > m i n  q~, onto the set 

(w~R2;  wT=a-minq~}  ({wER2; w T ' = a - m i n ~ } )  in R z. 

Finally, if the minimum set is a great circle, then R is topologically an open M6bius 

strip. Otherwise R is topologically a plane R 2. 
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