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§ 1. In this paper we shall be concerned with infinite series whose terms are
real numbers. Suppose that the series

(1) > an

n=1
is absolutely convergent and has the sum s. Then, as is well known, every rear-
rangement, > a,, of (1) also converges and has the same sum s. If, however, (1)
n=1

converges, but not absolutely, then, according to Riemann’s classical rearrangement
theorem [3, p. 235, or 2, p. 318], for every real number s’, there exists a rearrange-
ment of (1) whose sum is s'.

Assume, now, that (1) is C)-summable [1, p. 7, or 2, p. 464], and that its C}-
sum is ¢. Consider the set of all C;-summable rearrangements of (1); what is the
nature of the corresponding set of (;-sums? We are going to answer this question;
the answer turns out to be somewhat more complicated than Riemann’s rearrange-
ment theorem (and also more difficult to obtain). We shall show, namely, that, for
any C,-summable series (1), the rearrangement set (c¢f. Definition 1 below) consists either
of a single number, or of all numbers of the form a+vf (v=0, 1, +2, ...) for some
particular real numbers B=+0 and o, or of all the real numbers. Moreover, given any
o, there exists a C)-summable series (1) whose rearrangement set consists of the single
number o; and, given any L-+0 and o, there exists a C,-summable series (1) whose
rearrangement set consists of all numbers of the form a-+vf (v=0, £1, +2,...).

We introduce
Definition 1. The set of numbers o such that the C-sum of some rearrangement

of (1) is o, will be denoted by R and called the rearrangement set of (1).
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In case (1) converges, the answer to our question is immediate, because the
C,-sum of a series whose sum is s, is ¢ {1, p. 100, or 2, p. 461]. Hence, if (1) con-
verges absolutely, every rearrangement of (1) has the C,-sum s; if (1) converges
conditionally, then, for every real number o', there exists a rearrangement of (1) whose
C;-sum is ¢'. Since this case is settled, we shall assume, from now on, that (1) is
not only C,-summable, but is also divergent.

If lim @,=0, then the answer is again immediatc: an examination of Riemann’s

>0
proof of his rearrangement theorem shows that, for every real number ¢', there
exists a rearrangement of (1) which actually converges to ¢’, and hence has the C,-
sum ¢’. An example of this case is the series1 -4 -4 +5+4+3~-2-21~-1~-%1+-,
where the nth group of consecutive terms with the same sign contains » terms, each
of which is equal to (—1)"'/n; this series obviously diverges, and is easily seen to
have the C,-sum 3.

§ 2. Instead of assuming, as in the preceding case, that r}lrg a, =0, let us sup-

pose merely that {a,} has a subsequence {a,,} such that ll_r)rolo an, =0 and :ZJ“%'
diverges. We shall show that, given an arbitrary real number ¢’, there exists a
rearrangement, nila;,, of (1), whose C,-sum is ¢’.

We shall er_nploy the notation s, =a; +ay+ -+ +ay, Gy =(5;+8+ - +8)/n
(n=1,2,3,...), and define s,, o, analogously for éla;. Our problem, then, is to

show that there exists a rearrangement, > a,, of (1), such that lim on=0'.
n=1

n-»oc

Since (1) is divergent and C,-summable, the subseries of positive terms of (1)
diverges, and the subseries of negative terms of (1) diverges. Furthermore, because

of our suppositions in the last paragraph but one, there is a divergent subseries of

o0
> ay % consisting exclusively either of non-negative or non-positive terms, and there
K=o k

is no loss of generality in assuming that the former is the case; this subseries, in
turn, contains a convergent infinite subseries. The sequence {a,} is thus seen to

contain infinite subsequences {b,}, {¢.}, {d.} with the following properties:
(1) b,<0 (n=0,1,2,...), and > b, diverges;
n=0
(ii) ¢, 20 (n=0,1,2,...), and > ¢, converges;
n=0

(i) d,>0 (n=0,1,2, ...), limd,=0, and > d, diverges.
n=0

n-»o0
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Now let & >4e,> - >4"1g >-.->0, &>2|a,— 0’|, and lim & =0. We define
k—»00

. o0
a rearrangement, > a,, of (1), by means of induction, as follows: Put m;=1,
n=1

am=a;=a,. Then s;=o0i=a,, so that |o1—0o'|<e, and |s;—0'|<g/2. Let k=1,
and suppose that the terms

(2) a;: aé; cee s a/;nk (mk —_>~ 1)
have already been defined so as to constitute a finite subsequence of {a,} such that
(3) |om, — 0’| <& and [sp, — 0| <e&r/2

(these inequalities hold for k=1, according to the preceding sentence). There is a
first term, call it a{**V, of {a,}, which has not been used in forming the sequence (2).

If spm, +af*" P zo"+ 51”2—“, then, according to (i), there exists a finite subsequence of

terms B, D, ..., b of {b,} not already singled out of {a,} in the course of

this induction, such that

’ Er+1
Smk +a§k+1)+b(1k+1)+ b(2k+l)+ +bg‘k+1) <g + 2 ;

. o Ex+1 . .
(if sm,+af" P <o’ + —=—, then simply ignore b{*", ..., b¥*D wherever they occur;

2
an analogous statement holds for dff*®, ..., d¥*V and 'V, ..., ¢iiP considered
below). If

Sy, +@E VL BED 4 LB < E’%},
then, according to (iii), there exists a finite subsequence of terms d{**V, d¢¢**V, ..., dy¥*V

of {d,} not already singled out of {a,} in the course of this induction, such that
dftV <y /2 (1=1,2, ..., v) and

’ s * €x+1
lsmk‘f‘a\lkﬂ)‘*‘b(lk’l)‘l' +b<uk+1)+d(llc+l)+ +d§,k+1)—o"|< f)j .
According to (ii), there exists a finite subsequence of terms c{**?, ¢f*¥, ..., ¢ik*? of

{¢.} not already singled out of {a,} in the course of this induection, the number, w,

of these terms being as large as we please, such that

+ + Ek+1 ; .
(4) P+ F TP <o’ 2*—(s;,k+a§"+"+b‘1"“’+---+b£1‘“>+

+d(lk+1)+ vee ds}kﬂ)).
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If we put
! . plk+D) ’ X (2.5 e —gl+D S X220
A +1=C1 " eees Qmpyw=Cu  Amy+w+1 =03 amk,-,w.;z—lh 3 eee
’ Y XCED Ve — Jk+1) ’ — Jlk+1)
amk+‘w+u+1_‘bu > amk+w+u1~2“d1 R amk+w+u+v+1—dv >

then it is evident, from (3), (4), and the definition of o, as the centroid of the

system of points si, 83, ..., sy, that, by taking w large enough, we shall have

(5) loi — o' | <ex (me<ism+w+u+v+1).

On account of (4),
€k +1 .

IS;nk+w+u+v+1 —-d l <
2

As before, we can obtain a finite subsequence of unused terms c), ¢, ..., ¢!
of {c,}, with ¢ as large as we please, such that
. Eri1 ’
k+1 (k+1 ’ +

(6) Coit+ G <o’ + 2 “Smytwtutvil-
If we put

’ __ A (k+1 ’ __ Akt .

amk+w+u+v+2'—‘c§a+1): cees amk+w+u+v+t+1"‘c(w+t , Mpr=mi+w+ut+v+i+1,

(so that m; <my,;) and bear in mind again the definition of oy, it is evident from
(5) and (6) that

(7) |oi ~o'| <ex (mpg+wrutv+1<i<me.,),
and that, if ¢ is taken sufficiently large,

8) |Gy — 0" | <in

Moreover, on account of (6),

Era1
l$me, =0 2+ .

o0 0
This completes the induction. The series > a is obviously a rearrangement of > an;
n=l n=1

and because of (5), (7), (8), and the fact that lim ¢ =0, we have lim ¢,=0’, q.e.d.

k->on n—>00

An example of this case, in which lim @, =0, can be obtained from the example
n-—»o0

given at the end of § 1 by inserting the terms +1 and —1 after each group of

negative terms:
1-3-3+1-1+%+3+5—-%-2-3-3+1-1+-;

the C;-sum of this series is evidently also }.
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§ 3. The next case to be considered is that in which (1), in addition to being
divergent and C)-summable to ¢, has the property that, if {a,,} is the subsequence

of non-zero terms of {a,}, then

(9) lim 21—
. k-»00 Ng
and
(10) 0<éd<|an,| (k=0,1,2, ..))

for some fixed constant & independent of k.
We shall show that, under these conditions, given an arbitrary real number
o'+ ¢, there exists a rearrangement of (1) whose C-sum is ¢’. We may assume,

without loss of generality, that o <¢’. For suppose that ¢’ <o, so that —o< —o'.

The series > (—a,), which also satisfies (9) and (10), has the C;-sum —o [I, p. 8,
1

or 2, p. 476), and if a rearrangement, say n; (—ay), of this series has the O,-sum

— o', then the rearrangement > a, of (1) 'has the C,-sum ¢’. We shall also as-
n=1

sume that

A1D) 0<d —0o<d.

o0
We shall obtain a rearrangement, > a, of (1), whose C,-sum is ¢’, and which has
n=1

the property that, if {as.,} is the subsequence of non-zero terms of {a,}, then

lim 7y,1/n,=1 and 6 <|ay., | (k=0,1, 2, ...), so that the analogues of conditions (9) and
k—o0

(10) are satisfied by this rearrangement of (1). Consequently, the procedure for ob-
taining this rearrangement can be applied successively a finite number of times, if
necessary, so as to yield, finally, a rearrangement of (1) whose C,-sum is an arbitrary
6'>0 (¢’ not necessarily satisfying (11)). Thus (11), which at first appears to be a
serious restriction, entails no loss of generality either.

Since (1) is C)-summable, we have [1, p. 101, or 2, p. 484]

(12) Sm =0 (m)
and
(13) Am=0(m).

The fact that the Cj-sum of (1) is ¢ is equivalent to the assertion that

(14) sg=0+o0(l).

1

M3

s~
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Suppose that ¢, is a natural number (m=1, 2, 3, ...). Then (14) implies that

1 m+t,, ¢ -1 1 m 1 m+i,
c+o(l)= > sk=(1+—"'-) lr—nzsk+_ > sk}
k=1

m+in K1 m Mim+1

£\ 1m }
=(1+2= 1)+ — mak|
( +m) {o‘+o( )+mk§13 'k

so that
t

m
S Smix=tmo+{m-0(1)+tn-0(1)}.
k=1
If {m/tn} is a bounded sequence, or if m/t,—> oo sufficiently slowly, then m-o(1)+
+tm-0(l)=o0(tn), and hence
tm
(15) S Smik=tmo+o(ts).

k=1

An immediate consequence of (12) is that if {m/t,} is a bounded sequence, or if

m/tm— oo sufficiently slowly, then
(16) Sm+tm=0(tm)-

Now let {a, } be the subsequence of positive terms of {a,}. Since (1) is C;-

summable and divergent, {a,, } is an infinite sequence. Furthermore, we bave

a7 lim Pntiog,

m—>o0 pm

For if (17) were false, there would be an infinite subsequence {pm,} of {pm} such

that, for some fixed constant ¢>0,

(18) Prp+1/Pmy, > 1+ ¢ (h=1,2,3,..).

For all sufficiently large values of h, and for every natural number := [g p,,,h]

(where [2] denotes the greatest integer in z), let » (h, i) be the number of terms
. . . o 2 .
a; (7=pmh+z, Pm, +1+1, pmh+2+z, cees [(l—i— Q)p"‘n] —H)

that are negative, and set

N,= min v (h, ).

i§[%p”‘h]
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Then relations (9) and (18) imply that

(19) lim N, = + oo.

h->

Bearing in mind (10) and (18), we see that

—
-,
IIA

r—

UGS
=
3
&
| S|
v

Spmh.H —8[(1+§) pmh]‘*'i =9 (h, 7:) . (S

and hence
(20) ol )
5 (om0 1) [500] H00

It follows from (15), however, since {pmh / [g Pm n]} and {pmh / [(1 + g) Pm h]} are

bounded sequences, that

[%th]

[
Z Spmh+i= [ép”‘h] 0'+0(pmh)

i=1
and

c
i=1 8[(1+§) th]+i= [épmh] g+o (th) s
so that
[E7ma]

igl (spmh+i - 8[(1+§) Z)mh]+i):0 (Pmy) -

This, in view of (19), contradicts (20). Therefore (17) must be true.
Because of (17), we can choose an infinite subsequence, {g.}, of {pn}, such that,
as m—>0°, ¢mi1/gmn—>1 as slowly as desired; let us do this in such a way that the

following conditions are satisfied:

21) a1t Squret  + 80, = (mi1—gn) 0+ 0 (gmi1— gm)
(this is (15) with ¢, replaced by gm.1—g¢m and m+k replaced by gm+k);
(22) 8441 =0 (qm+1—qn)

(this is (16) with ¢, replaced by qm:1— gqn);

(23) lim Zm, —qm—“~=0, if, for every m, v, is an integer such that ¢, <v, <g@mi1
m->0 Vm Gmi1 —qm
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(this condition can be satisfied because, according to (12), as m—> oo, Sm/m—>0 at a
certain fixed rate);
a +
(24) lim —mtt. A _g
m—so0 qm+1 gm+1—Gqm
(this condition can be satisfied because, according to (13), as m— oo, am/m—>0 at a

certain fixed rate).

For every natural number m, consider the expression

aq
(¢’ —a)+ _Sm+l
. ’ gdm+1—Qqm
(25) Um = (gm+1— m) -1,
a”m+1

and set [uj,]=un. Because of (24), (11), (10), and the definition of the sequence {ay,}
we have, for all sufficiently large values of m, say for m=m*, 1 <upn, <gmii—qm—1,

and hence
(26) 1ZUn <qmer—gm— 1.
It follows from (25), (24), and the definition of u,, that
(27) (um+1) g, ,, = (gms1—gm) (6" = 0) + 0 (gm 11— gm)-
Now, for every m=m*, put
ae=a; (gn+1<k=Zqmi1— (um+1)), a;m+rum=aqm+l )

(28)
allc":ak—l (Qm+l_ (um—1) =k=qm+1),

o0
’ . .
and let aj=a, for every natural number k <gn.. Then > aj is obviously a rearrange-
k=1

ment of (1), and we are going to show that the C,-sum of this rearrangement is o',

According to (28), for every m=m",
Sos1+ Sapezt 8 1= (Sapme1 T Sapre T F Sap 1) F S0y g -wpin T (Unt1) gy
(29)  =((gms1—gn) 0+ 0 (qme1—qm))+ 0 (gmi1— gn) + ([gns1—qn) (0" —0) + 0 (gm+1— qm))
=(qme1—qm) 6" +0(gmi1 = gn);

the second equality is obtained by making use of (21) and (22), (23) with v, =
=@ms:1— (Un+ 1) (bearing in mind (26)), and (27).
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We shall now show that

(30) is;c:na’-l—o(n),

43

which immediately implies that the C,-sum of > a; is ¢’. If n is a sufficiently large
<1

natural number, then there exists an m=m* such that

31 In <P =Qmi1-

We have
n am n

(32) S osk= > S+ D> Sk.
k=1 k=1 k=gpu+1

Because of (29),

i Am= Im* 11 Tm* 12 Im
S Sp= Zs;c+( > s+ > st > 8;)
k=1 k=1 /

k=apet+l k=@pa, g+l k=g, _q+1

=0 (gm) + Z (g —qr1) - 0" +0 (g — qx-1))

k=m*+1
(33) v =0(qn) + (qm ~ qm») - 6" +0 (g — gm+)
=m0 +0{gn)
=06+ ((gn—") ¢ +0(qn))

=n-0' +o{n),

the third equality resulting from [2, p. 77, 4], and the last equality being a con-

sequence of (31) and the fact that gn/gm.1—>1 as m—>co. On account of (28), there

exists an integer r satisfying the relation

(34) 0<r=<u,+1,
such that
n
(35) > 8= (Sqp+1t Sqprzt o+ 8n1) tSn s trag, .
k=apyt1

If we make use of (14), (31), and the fact that gn/gm.1—>1 as m—>oco, we see that

(36) 8g,,+171 Sq 42t o +8n1=0(n);

with the aid of (12), (34), (31), and (26), we obtain

(37) Sn-r=0(n);
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and (34), (31), and (27) yield

(38) rag,  =o(n).

Combining (35), (36), (37), and (38), it follows that

n

(39) S si=o0(n).
k=gy+1
Relation (30) is now a consequence of (32), (33), and (39), and if we bear in mind
(28), it is evident, finally, that the assertion following (11) is true.
An example of this case is the familiar series 1—1+1—-1+ —-.-, whose C,-

sum is }.

§ 4. The case to be considered in this section, in contrast to those treated in
the foregoing sections, exhibits a departure from the Riemann rearrangement theorem.
We shall assume that (1) is divergent and C;-summable, and satisfies the fol-

lowing condition:

For every C,-summable rearrangement, . an, of (1), if {as,}
(40) nt

is the sequence of non-zero terms of {a,}, then lim
k—>o0 N

Nis1

>1.

We shall also suppose that
(41) the C,-sum of (1) is O.

This entails no loss of generality. For if b is a real number, and the C,-sum of
a+ay+ - +ap+ay,,+-+ is ¢, then the C,-sum of a;+a,+ - +a,+tb+ta,, 4+
is 6+b, and conversely [1, p. 102]. Hence, if the Cy-sum of a,+a,+ -+ +a,+ - is
o, then a rearrangement of this series is C,-summable to ¢’ if, and only if, a re-
arrangement of the series —o+a;+a,+ - +a,+ - is Cy-summable to ¢’ —o, and
the addition of a single new term to our original series (1) does not invalidate (40)
or the assumptions just preceding it.
We proceed to prove a series of lemmas.

Lemma 1. Let > a, be a rearrangement of (1) and have the Ci-sum a, so that
n=1

«€R (cf. Definition 1 in § 1), and let {ay, } be the sequence of non-zero terms of {an}.
Then there exists an infinite subsequence, {ny;}, of {ni} such that

(42) lim s, =a.

j>o0
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Proof: Aecording to (40), there exists a constant ¢>1 such that l—iwr;(nk“/nk) =c.
k—>c0

Hence, there exists an infinite subsequence, {nk].}, of {n} such that lim (nk].+1/nkj)=6,
J=>c0

so that we may write

(43) Nipr1 = N (c+ &) (j=1, 2,3, ...),
where
(44) lim &=0.

J—=>00

It follows from the definition of the sequence {nk}, that a;,,=0‘if Ny <M< Ty 1 -

Using this fact as well as (43), we see that

’ 7 ’ 7 ?
(S1+ 8+ +8n, +8u, 1+t 8, )=
Ni.+1 7 7 it
7
Syt o+
A
- 1 P

’
nk]-+1—'nkj_l , S"kj+1

(Sny,
(c+ &) Ni; Rrjr1 "k Nkj+1

Solving this equation for the s,, in parentheses in the preceding line, and making
7

use of (43), (44), the fact that the C,-sum of > a, is a, and (12), the relation (42)
n=1

is- obtained.

Suppose that > b, is an infinite series, and by, by, ..., bi, (By <ky<-- <kp) is
K1

a finite subsequence of the sequence {b;}. Then we shall call by, +by,+ - +by, a

subsum of > b,.
¥=1

Definition 2. The number B is initially accessible by kil by provided that, for every
e>0 and every mnatural number n, there exists a subsum, by +bg, + -+ +bkp, of élbk
such that every b, (k=n) is a term of this subsum, and |by +be,+ - +br —fB|<e.

Definition 3. The number [ is terminally accessible by 121 by provided that, for
every £>0 - and every natural number n, there exists a subsum, by, +bi,+ -~ +bi, of
121bk such that no b, (k=n) is a term of this subsum, and [bkl+bk=+ +bkp—ﬁ|<s.

Lemma 2. If a€R, then a is tnitially accessible by (1).

Proof: Let kila; have the C,-sum « and be a rearrangement of (1). According

to Lemma 1, there exists an infinite subsequence {s;ci} of the sequence {s} of partial

sums of this rearrangement, such that lim s,'ci:oz. Now let £>0 and the natural

i—>00
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number » be given. For all sufficiently large values of 4, |s;, —a| <e. Moreover, since

kfla; is a rearrangement of (1), every a, (k=n) is a term of the partial sum s;ci,

provided that i is sufficiently large. The truth of Lemma 2 is now evident.
Lemma 3. If « is initially accessible by (1), then «€R.

Proof: We shall employ an argument which is similar to, but simpler than, the

one used in § 2. Let ¢ be a positive number satisfying the relation £>|a, - a|.
0

We define a rearrangement, > a,, of (1), by means of induction, as follows: Put
n=1

’ 7 ’ 4
my=1, an =a;=a;, so that s;=0;=a, and consequently |o;—a|<e and |s;—a|<e.

Let =1, and suppose that the terms
(45) ay, g, ..oy Am, (m;=z1)
have already been defined so as to constitute a finite subsequence of {a,} such that

(46) Ia:,.i—oc|<§,and Is;,,jwoc|<§,

{(note that these inequalities hold for j=1). Since, by hypothesis, « is initially ac-
cessible by (1), there exists a subsum, call it S;.;, of (1), such that, if n; is the
largest index possessed in (1) by any term of (45), then every a; (k<w;) is a term
of S;.;, and

(47) |S,-+1—-oc|<;—8—-

If there are any terms of S, ; which are not terms of (45), denote them by af™,
ad™®, ..., a"P. On account of (40), infinitely many terms of (1) are equal to zero.
Let 2{°0, 287D, ..., 20"P (w=1) be a finite subsequence of terms, all of them equal
to zero, of {a,}, not already singled out of the latter sequence in the course of this
induction. It is evident from the meaning of on, that, if w is chosen large enough,

and if we put

4 — 501 ’ U+l ’ _ U+ PN ES )}
Um;a1 =24 ), (lmjfz—zfz e, Umivw =20 5 Umjrws1=01
’ U1 ’ _ D)
Uy w2 = A2 ): reey a'm]--i—w+v‘av( P
then, because of (46),
N , £ .
(48) |oi —a| < = (m;<i<m;+w+v),
7

and, because of (47),
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’
(49) Ism].+w+,,—~oc|< —

Referring again to the meaning of o), it is clear from (48) and (49) that, if ¢ is

taken large enough, and if we put
Y] (J+1) G+1)

’ _ LU+ ’ _ ’ .
Amjrwivel = 2wl Amjrw+v+2 = 2w+2> <05 Imprwrvit =Rt

and set m;+w-+v-+t=my;,,, then, since w=1, we have m; ,>m;, and

(50) |a{—a|<§, (m;+w+v<i<m,,,),

>

’ &€
(51) lom;,, —al< e

and |s,,  —~a|<e/(j+1). This completes the induction. The series > a, thus de-
- n=1
fined is obviously a rearrangement of (1), and it follows from (46), (48), (50), and

(51) that lim o; =0, q.e.d.

Lemma 4. If a€R, then —a is terminally accessible by (1).

Proof: Let £>0 and the natural number » be given. By hypothesis and Lemma 2,
o is initially accessible by (1). Hence, there is a subsum, S, of (1) such that every
a;, (E<n) is a term of S, and

(52) |S—a|<§-

According to (41) and Lemma 2, 0 is initially accessible by (1). Hence, there is a
subsum, T, of (1) such that every term of § is a term of T, at least one term of

T is not a term of S, and
£
(53) 17| <3-
Let U be the subsum of (1) consisting of those terms of 7 that are not terms of
S. Then
(54) U=T-5,
no a; (k<n) is a term of U, and (52), (53), and (54) imply that |U +a|<e, which
means that —o is terminally accessible by (1), q.e.d.

Lemma 5. If a€R, then —2a is terminally accessible by (1).
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Proof: Let £>0 and the natural number n be given. According to Lemma 4,

there exists a subsum, S, of (1) such that no a; (k<n) is a term of S, and
€
(85) |8 +af< 3

Let n’ denote the largest index possessed in (1) by any term of S. Then there
exists a subsum, 7', of (1) such that no a, (¢<x’) is a term of T, and

(56) |T+a[<§-

Let U be the subsum of (1) consisting of the terms of § and the terms of 7. Then
(57) U=8+T,

no a; (k<n) is a term of U, and (55), (56), and (57) imply that |U + 2 «| <&, which
means that —2a is terminally accessible by (1), g.e.d.

Lemma 6. If a€R, then —a is initially accessible by (1).

Proof: Let £>0 and the natural number n be given. By hypothesis and Lemma 2,
there exists a subsum, S, of (1) such that every ax (k=nz) is a term of S, and

(58) | [s-al<;-

Let n’ denote the largest index possessed in (1) by any term of S. By Lemma 5,
there exists a subsum, 7', of (1) such that no a, (k<n') is a term of 7, and

(59) |T+2a|<§-

Let U be the subsum of (1) consisting of the terms of § and the terms of 7. Then
(57) holds, every a; (k<n) is a term of U, and (58), (59), and (57) imply that
|U +a|<e, which means that —a is initially accessible by (1), q.e.d.

An immediate consequence of Lemma 6 and Lemma 3 is

Corollary 1. If acR, then —acR.

Lemma 7. If feR and y€R, then f--y€R.

Proof: According to Corollary 1, —B€R, and hence, by Lemma 4, 8 is termi-
nally accessible by (1). On account of Lemma 2, y is initially accessible by (1).
An argument analogous to that used in the proof of Lemma 6 now shows that g+
is initially accessible by (1), and then Lemma 3 implies that f§+y€R, q.ed.
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Corollary 2. If ax¢R, then ma€cR (m=0, +1, +2, ...).
Lemma 8. The set R is closed.

Proof: Let I be the set of numbers that are initially accessible by (1). According
to Lemmas 2 and 3, R=1I. Suppose that 1 is a limit point of I; we have to show
that 2€1. Let £¢>0 and the natural number » be given. Then there exists a number
p €l such that

(60) lu—2]< %
2

There is a subsum, S, of (1) such that every a, (k<) is a term of S, and
£

(61) |8 —pl<3-

From (60) and (61) it follows that |S—1|<e, and consequently 1€l, q.e.d.

It is-evident now from Corollary 2 and Lemma 8, that there are only three
possibilities:

(4) R={0};

(B) R={ma}m-o, 11 42 ... for some a=0;

(C) R is the set of real numbers,

We shall show, by means of examples, that each of these possibilities can actually

be realized.
Example A. Let

92k g g —92*
(k=1,2,3,..)
an={ —92 % jf 9 1

0 if » is any other natural number.

Since lim a,+0, (1) diverges.

n—->o0

Suppose that n=4. Then there is a k=1 such that 22 =n<2""". We have

1 o

1S i 92F_k —k
0"—";'7‘212 < 2,5-16-2 =k-27%,

[

and hence lim ¢, =0, so that (41) holds.

n—-oq

Let > a, be a C,-summable rearrangement of (1). Then there exists an in-
n=1

finite subsequence, {n;}, of {n} such that

4 — 543808. Acta Mathematica. 92. Imprimé le 29 décembre 1934,
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(62) a;=0 m<js2n;i=1,2,3,...).
For if this is not so, then, for every sufficiently large n, there is at least one j
satisfying n<j<2n and a;=+0; hence, for every sufficiently large k, there are at
least 2¥ values of § satisfying 22k<j§22k+1 and a;+0. There are precisely 2k+ 2
values of n satisfying 1 <n=2""41 and a,+0. Consequently, for every sufficiently
large k, since 2¥>2k-+2, there is at least one m; satisfying 22* <m,, <22*"! and
|a',,,k|_2_22k’2""“2, which implies that

Ia;"kl 92k +2 k2

= k+1
my 22

k1
_92"tlk-2
=9 s

so that lim |ap, |/m,=co, contradicting the fact that > a, is C;-summable (cf. (13)).
k—o0 n=1

An immediate consequence of (62) is that (40) holds.
Suppose that there are infinitely many values of ¢ such that s;,i=0 (throughout
the rest of this paragraph, let ¢ represent only these values). Then, because of (62),
we have also s;=0 (n; <j=<2n;). Hence,
Syt Syt e+ 8, S+ s+t +0

¢=1lm--———-=1lm
iso00 n; i—>00 2 n;

7
g,

DO

so that ¢'=0.
Suppose, however, that s;iﬂFO for every sufficiently large value of . Then there

is a largest value of k, call it k;, such that one of the terms «; (1<j<mn;) is either
equal to szi""i or to —22ki“"i, but none of these terms is equal to —22ki”‘i, 22ki"‘i,
respectively. Since ni?la; is a rearrangement of (1), 11112 k;= <. Now
= -
k-1

k; ; k; k-1 k-1 k-1
’ 2% . j_ s i, i, i g, it
Sni|Z22 L7 Z 22 1222 kl_(ki_1)22 k,+1:22 ki+1 (22 l—ki+1):
=1

which implies that lim |s, |=co. Assume that ¢’+0. Then, for every sufficiently
i>o00
large <,

(63) |sn,|>2]0'|.
Because of (62), we have s}:s;i (m<j=<2n;1i=1,2,3,...). Hence,

’ 7 ’ ’ I ’ ’
, L SitSgt et 8y . 81+s?_+~--—1—sni+nis,,i
o' = lim ———— = lim -
iso00 n; i=>o00 2 n;

’ . 7
=to'+} lim s,,
100
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and consequently

. ’ ’
lim $n, =0,

{00

which contradicts (63). Therefore we must have ¢’ =0.
Thus we see that B={0}.

Example B, Let

2k it p=22"
— 9k 1 i p=22" 41 (k=1,23,..)
an = .
1 if n=2"+2
0 if » is any other natural number.

Then it is obvious that (1) diverges.
Suppose that n=4. Then there is a k=1 such that 92" << 22", We have

2/ _j
257,

A
S|

M =

On
j

and an argument analogous to one employed in connection with Example A now
shows that lim ¢,=0, so that (41) holds.

n—>00

Let 3 a, be a C,-summable rearrangement of (1). Then there exists an infinite
n=1

subsequence, {n;}, of {n} such that

(64) either a;=0 or a;=1 (m<j<16n;i=1,2,3,...).

The proof of this is analogous to the proof of the existence, for Example A, of the

sequence {n;} satisfying (62), and will therefore be omitted. A consequence of (64) is
(65) Sn, S Sna1S e S Sigm, (¢=1,2,3,...).

Suppose that for every sufficiently large ¢ and for every k satisfying n; <k =8n,,
there is at least one § satisfying k<j=<2k and a;=1. Let ¢’ be the O,-sum of
721 a,. Then there are two possibilities: either s; n;> 0’ —1 for every sufficiently large
i, or else there is an infinite set, I’, of natural numbers such that s; ni§0'~1 for

every iel’. If the second alternative holds, then, in view of (65),
8:’i+1 + S;'i+2 +oeee Sé n; = ni(o' — 1)

for every ¢€l’, and hence
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’ 4 ’ ’
E L S A N A R
. i i
¢’ = lim ‘<o’ -4,
i>00 2n

iel

which is absurd. If the first alternative holds, then, according to the first sentence
of this paragraph, s;.,>0" and s, >¢'+1 for every sufficiently large ¢, so that, in
view of (65), sg i+l + 85 ngratoee + 316 n > 81 (o’ +1), and hence

Si+ -+ S5n+ St 16

¢’ = lim =o' +1,
i—o00 lﬁni %

which is also absurd. The initial supposition in this paragraph must therefore be
false. Consequently, there exists an infinite set, I’’, of natural numbers such that,

for every i¢€I”, there is an m;, satisfying n; <m; <8n;, for which
(66) a;=0 (mi<j<2my; iel’’)

An’immediate consequence of (66) is that (40) holds.

According to Lemma 1, there exists an infinite subsequence, {n;}, of {n} such
that 'lug Sp,=0’. Since s, is an integer for every n, o’ must also be an integer.
This means that every number belonging to the rearrangement set of (1) is an
integer.

Conversely, if » is an integer, then ve€R. We have already seen that 0€R.
Suppose, then, that v>0. Let a,=1 (1<n<=v)and an=a,_, (n=v+1,v+2,v+3, ...).

o0
The series > a, thus defined is a rearrangement of (1), because infinitely many terms

n=1

of (1) are equal to 1, and, according to the second sentence following (41), the C;-
sum of this rearrangement is y. Similarly, if » <0, the series obtained from (1) by
simply deleting the terms a, (n=22k+2, k=1,2, ..., —»), is a rearrangement of (1),
and the C,-sum of this rearrangement is ».

Thus we see that R is the set of integers.

Example C. Let

922k 1k 1 if p—o22?
—gflekn e 92T g
1 if n=2"""42
W=y g2k if n—=22"" (k=1,2,3,...)
— o2k 3 if n=2""1+1
V2 if n=2""12
0 if » is any other natural number.
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Then arguments analogous to ones employed in connection with Example B show
that (40) and (41) hold (and (1) is obviously divergent), and that the rearrangement

set of (1) contains every number of the form ,u+vl/§, where u and v are integers.
It is well known that the set of all such numbers is everywhere dense in the set
of real numbers, and from this fact and Lemma 8, it follows that R is the set of

real numbers.

§ 5. Let us return to our original question. Suppose that (1) is C,-summable;
what is the nature of its rearrangement set R?

If (1) is convergent, the answer is given in § 1. Suppose that (1) is divergent.
If 0 is not a limit point of the sequence {an}, then our question is answered in
§ 3. Assume that O is a limit point of {a,}. If, for every £>0, there is a non-zero
limit point of {a,} in the interval (—e¢, &), then, as is easily seen, this case can be
reduced to the one treated in § 2. If, however, there exists an £>0 such that O is
the only limit point of {an,} in the interval (—e¢, &), then the terms of (1) in this

interval form an infinite subsequence, {an,}, of {an} such that lim a,, =0. Now there
k00
o0
are two possibilities: either > Ia,,,kl diverges or it converges. If it diverges, we have
1
the case discussed in § 2. Suppose, however, that it converges. Let > am, —o. If
. k=1

the C)-sum of (1) is o, then the C,-sum of the series obtained from (1) by setting
am, =0 (k=1,2,3, ...) exists and is equal to ¢—«, and conversely. (This is very
easy to prove if one considers, in addition to the series already mentioned, the series
obtained from (1) by setting ;=0 (i=m,; k=1, 2, 3, ...), and makes use of the fact
that C,-summable series may be added and subtracted term by term.) Hence, there
is no loss of generality in assuming that a., =0 (k=1, 2, 3, ...). This means that

&

if we put &= 3 and if {a, } is the subsequence of non-zero terms of {a,}, then

|av,,k|>6 (k=1,2,3,...). If lim ng, /=1, then we have -the case considered in
k—>oc

§ 3. If, however, this limit is not equal to 1, the discussion in § 4 applies.

Thus it is evident that the assertion made in the second paragraph of § 1 is true.
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