THE INHOMOGENEOUS MINIMUM OF A TERNARY
QUADRATIC FORM

BY

‘E. S. BARNES

1. Let Q(xz,y,2) be an indefinite ternary quadratic form with real coefficients
and determinant D=0. Davenport [4] has shown that, given any real numbers

%y, Yos 29, there exist x,y, z congruent (modulo 1) to =z, y,, z, satisfying
[Q(, ¥, 2)| < (| D|)}; (1.1)

the equality sign can hold if and only if @ is equivalent (under integral unimodular

transformation of the variables) to a multiple of the form
Q. (x, y,2)=2*+5y* -2+ byz+zx.

The main weapon used in the proof was a generalization of Minkowski’s result
on the inhomogeneous minimum of a binary quadratic form, namely:

If f(z,y) is a binary quadratic form with real coefficients and discriminant A?
where A>0, and u>0, »>0, uv=4, then, for any real numbers z,, y, there exist
X, Y=oy, Yy (mod 1) satisfying

—vA<Sf(x, y)<uA. (1.2)

By obtaining an ‘isolation’ of this inequality when » is approximately 2u, Da-
venport was able to show that the result (1.1) is isolated: that is to say, there

exists a positive constant ¢ such that the inequality
Q@ 9, 2)[ < (1-6) (| D])* (1.3)

can be satisfied whenever @ is not equivalent to a multiple of the special form Q.
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Recently Swinnerton-Dyer and I [3] made a detailed investigation of results of
the type (1.2) and developed a technique for obtaining best possible results for any
value of the ratio v/u. I use this technique here, together with Davenport’s general
method of attack on the problem, to find the best possible value of 4 in (1.3).

The proof leads naturally to a stronger assertion than (1.3) and shows that the
result (1.1) is isolated not only in respect of the form @, but also in respect of the
values 1, 3,1 (mod 1) of g, ¥, 2z, To make this statement precise we introduce the
following notation :

If Q=Q(z,y,2) is any indefinite ternary quadratic form and =z, ¥, z, any real

numbers, we set
M(Q; %y, Yo, 2) =g.Lb. | @ (2, 9, 2)|, (1.4)
where the lower bound is taken over all sets , y, 2=, ¥, 2, (mod 1). We then write

M (Q)=Llub. M(Q; %y Yo ) (1.5)

where the upper bound is taken over all real zg, ¥y, 2z9; we call M (Q) the inhomo-
geneous minimum of Q.

Clearly (1.1) implies that always
M@= D)t

Now if T is any 3x3 matrix with integral elements and determinant +1 and

we make the transformation of the variables expressed in vector notation by
X=Tq, (1.6)

then Q(z,y,2) becomes, say, @ (X, Y, Z), and the forms @, Q" are said to be equi-

valent. If also we define
X,=Txz, (1.7)
then it is clear that
M(Q 5 Xy, Yo, Zy) =M (Q; %, Y %)- (1.8}

Further, since X,, Y, Z, run through all real numbers when x,, ¥, z, do, we have
M(@Q)=M (@) (1.9}

It will always be understood, when we pass to an equivalent form by a trans-
formation (1.6), that any particular values of z,, y,, 7, under consideration are sub-
jected to the corresponding transformation (1.7).

The complete statement of the results we shall obtain is given, in the above

notation, by
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Theorem 1. (i) If Q(x, y,2) is not equivalent to a multiple of either of the forms

Qi lx,y,2)=2—y*— P tay—Tyztzx (1.10)
@ (z,y,2)=22"— y* +152%, (1.11)

then
M@Q) <(&|D] (1.12)

(ii) For the special forms @, @, we have
M(Qi; g, Yo 20) < (5| D)} (¢=1,2) (1.13)
unless g, Yo, 29=3, 1.1 (mod 1); further,
M (@55 D= | DD = M (Qy), (1.14)
M@, %5 )= (5| D)} =M (Q) (1.15)

In the course of the proof we shall use the following lemmas:

Lemma 1. If Q(x,y,z) is indefinite and has determinant D <O then there exist
integers x,, Yy, 2, satisfying
0<Q @y, y1, 7)< (4| D)} (1.16)
This is Theorem 2 of Davenport [5].

Lemma 2. Let 3, B be real numbers with B>1. Then for any real z, there exists

an x salisfying
x=z, (mod 1), |2®-pB%|<B,
provided that
p*<B*+1 if B is integral,

fE<B+L1[2BP if B is not integral.

This result is contained in Davenport [4], Lemma 5.

Lemma 3. Let T be an integral 2x2 matriz of infinite order and of determinant
+1, and let R be a bounded point set in the Cartesian plane. Suppose that, for some
pownt A with integral coordinates, any point P of R has the property that either
T(P)— A belongs to R or T(P) is not congruent (mod 1) to a point of R.

Then, if P is a point such that T"(P) is congruent (mod 1) to a point of R for
all integral nZ0, P s the unique point F of R defined by

T(F)—A=F.

This result is due to Cassels, and is quoted by Bambah [1]; an alternative

proof is given in Barnes and Swinnerton-Dyer [2], Theorem D; (the region R* ap-



16 E. S. BARNES

pearing in this theorem may be taken as the set of all points of the plane which

are not congruent (mod 1) to a point of R).

2. The results stated in Theorem 1 for M (Q,; 1,4, 3) and M (Q,; 1, 4, 1) are easily
established by congruence considerations, and it is convenient to dispose of these

at once.

(i) We have
4Q,=2x+y+2?—5(y+32)°+402%

If z,y,2=},1,4 then 2z, 2y, 22z are odd integers; we may therefore write
4Q,=X*-5Y*+102%,
where X, ¥, Z are integral, Z=2z is odd and X — Y =2z — 2z is even. We then have
4¢,=2 (mod 4), 4Q,=0, 1 (mod 5), |
whence [4Q,|=6. We have thus shown that

| @, (%, y,2)|=3% whenever z,y,2=11,1.

Sinee 10.G. 5 D]=3 D@)=-2,
it follows that

M(@Q:55D=3=0%|D)?,
as required. :

(ii) If =, y,2==4 11 then
4Q,=2X*-Y*+152%,

where X, Y, Z are odd integers. Hence
4Q,=0 (mod 8),
and it is easy to see, by considering congruences mod 3, that 4Q,+0. We therefore have
|Q; (%, y,2)|=2 whenever z,y,2=}1,1
Since Q3 5 D=2, D(@)=—30,
it follows that

M@k b D =2=(%[D|)?
as required.

To complete the proof of Theorem 1 we have therefore to establish

Theorem 2. The inequality
M(Q; Zg> Yo» Zo)<(i45|D|)& 2.1

holds unless Q 1s equivalent to a multiple of @, or Q, with xy, Yo, 29=%, 1,3 (mod 1).
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For the proof of Theorem 2, we first observe that there is no loss of generality
in supposing that D <O (since we may consider —@ in place of @ if necessary). Let

a=@ (2, y,?) be any value assumed by @ for coprime integers x,, y,, 2, satisfying
(1.16), so that

0<a<(4|D))t. (2.2)

1
Making an appropriate equivalence transformation, we see that — Q(x, y, 2) is equi-
a

valent to a form
fle,y,2)=(x+hy+g2?—o(y 2) (2.3)

where h, g are real and ¢(y, 2) is an indefinite quadratic form of discriminant

4|\D
p_412]

- :
£ = 1. (2.4)
Then (2.1) is equivalent to the assertion that

M (f; 20, 9o, 20) < ({5 A% (2.5)

The first step in the proof of (2.5) is the consideration of the possible forms of

¢ (¢, 2). In this section we prove

Theorem 3. If f(x,y,2) is given by (2.3), (2.4), then (2.5) holds wunless either

D) ¢@)=4E" +8yz+2), yp2=ii (2.6)

or (i) ¢ (¥, 2)=20"+12yz+37% ¥p20=4 4, (2.7)

or (i) ¢y 2)=3k("+06yz+2%), w,2=hb (2.8)
where

- 9906 < £ < 1.0063 (2.9)

{or equivalent forms).
It is convenient to set
d= (A%}, (2.10)
so that, by (2.4),
d> (&) >

D

. (2.11)

Lemma 4. Let u>0, v>0 be defined by

pA=1d-1 (2.12)
_I%dnﬁ[d]z if d is not integral
\1(@+1)  if d is integral.

2—543808. Acta Mathematica. 92, Tmprimé le 29 décembre 1954.

v (2.13)
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Suppose that there exist y, 2=y, 2, (mod 1) with

—ulA<g¢(y, 2)<vA. (2.14)
Then for any x, \
M (f; 2o, yo» 20) <5 d = (5 A%)}. (2.15)

Proof. If in (2.14) we have ¢(y, 2) <0, then, for any x,, we can choose z=z,
with |z+hy+gz|<}]. For this choice of z,y,z we have

0 f(x, y,2)<i4+puA=id.
If, however, ¢(y, 2)>0, we have
0<¢(y,z)<rvA;

applying Lemma 2 with ﬁ2=¢(y, z), B=1d (noting that then B>} by (2.11)), we
see that for any z, we can choose x=z, with

|f(z, y, 2)| <id.

The required result (2.15) follows immediately.
In the notation of Barnes and Swinnerton-Dyer [3] we denote by R. the set
of points of the &, n-plane defined by

—~1<é&n<m.
An inhomogeneous lattice £ is a set of points

E=ax+fy,
n=yx+dy,
where z,y run through all numbers congruent (mod 1) to x,, y, respectively, and
A=AL)=|ad—By|+0

is the determinant of L£. L is admissible for R, if it has no point in the interior
of Ru. The critical determinant D, of R, is defined to be the lower bound of A (L)

over all admissible lattices £. We now have

Lemma 5. For all m>1,
Dn=>4Vm. (2.16)

This result is equivalent to Davenport’s result quoted in § 1 (Davenport [4],

Lemma 3). A less direct proof is given in Barnes and Swinnerton-Dyer [3].
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Now since ¢(y,2) has discriminant A?%, it may be expressed as the product of

two linear forms of determinant A. Thus the form

1
m ¢ (¥, 2)

with y, 2=y, 2z, runs over the values of £# corresponding to a lattice £ of deter-

minant l From the definition of D, it is therefore clear that (2.10) is certainly
°

soluble, for any y,, z,, if

1<Dm, where m=£-
I

Combining this result with Lemma 3, we have

Lemma 6. If u,v are defined as in Lemma 4 and

v
m=—>
® (2.17)
then the inequality (2.5) certainly holds unless
1
—2=Da. (2.18)
"

As a first step towards the elimination of possible values of d, we use (2.18)
with the estimate (2.16) for D,.

Lemma 7. If (2.5) does not hold, then d satisfies either

d=2, (2.19)
or 2.969 <d<3, (2.20)
or 3.975<d<4, (2.21)
or 4994 <d<35. (2.22)

Proof. By Lemma 6 and (2.12) we have

1 _
—24Vm,
7

ie. 16 uv=<1.
Substituting for w,» and noting that, by (2.10),

8AZ=154d3,
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this inequality becomes
8(2d—1)(2d+[d?)<15d® if d is not integral, (2.23)
8(2d—1)(@*+1)<154* if d is integral. (2.24)
Now (2.24) may be written in the form
(d—2) (d*—6d+4)<0,
and this inequality is easily seen to be false if d=6 or if $<d<1. Thus (2.24) can
hold for integral d > ¢ only if d =2, 3, 4 or 5. Further, since [d]>d —1, 2d + [d]?>d* + 1.

Hence (2.23) cannot hold if d satisfies d=>6 or $<d<1.

It remains for us to consider non-integral d satisfying (2.19) and 1<d<®6.

(i) If [d]=1, (2.23) is
15d* —32d%+8>=0;

the lLh.s. takes its greatest values at the end-points of the interval 1 <d <2 and is

negative for d=1 and d=2. Hence (2.23) is never satisfied.

() If [d)=2, (2.23) is
15d° — 32382 — 484 +32>0;

the Lh.s. increases with d for d>2 and is negative when d=2.969; hence d satis-

fies (2.20).
(i) If [d]=3, (2.23) is

15d® —32d*—128d +72=0;

the Lh.s. increases with d for d>3 and is negative when d=3.975; hence d satisfies

(2.21).
(iv) If [d]=4, (2.28) is

15d4°—32d*—- 2404+ 128> 0;

the Lh.s. increases with d for d>4 and is negative when d=4.994; hence d satisfies

(2.22).
v) If [d]=5, (2.23) is

15d% - 32d* — 384d +200=>0;

the Lh.s. increases with d for d>=5 and is negative when d=6; hence (2.23) does
not hold.

This completes the proof of the lemma.
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Corresponding to the values of d allowed by Lemma 6, we find the following

Sy
values of m=—:

M
m=3%, (2.19")
2<m <2.0126, (2.20")
1 <m < 2.4389, (2.21")
26 < m < 2.8915. (2.22')

Now the estimate (2.16) is known to be best possible if and only if m is of
the form

2
m=1+; (r=1,2,3,...)

or m=1; in particular D.=4Vm for the values m=35, m=2. However, for the re-
maining values of m given in (2.19')— (2.22’), strict inequality holds in (2.16). The

results we shall need are given in the following four lemmas:

Lemma 8. If m=3 and L is admissible for Rn, then either A(£)>4V§ or L s
gwen by

§n=§(x2+8xy+y2)y z, yE%’% (mOd 1)'

Lemma 9. If m>2 and C is admissible for Rn, then either A(C)=V33 or L is
given by
En=k(@*+6xy+y®), x,y=L1 (modl), k=}m.

Lemma 10. If m=Y and £ is admissible for Rpn, then either A(L)>2V30 or

L is given by
En=k(22*+122y+3%%), =, y=L 1 (mod 1), k=& m.

Lemma 11. 7f m>2% and C is admissible for Rm, then A(C)=4V3.

In order to avoid interrupting the main argument, we defer the discussion of
these results until § 4.
Now suppose that (2.19) holds, so that d=2, m=3}. Then
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Hence, by Lemmas 3 and 8, (2.5) holds unless

¢y, 2)=3(y* +8yz+2"), 9o 2=} 1};
this is (i) of Theorem 3.
Next suppose that (2.20) holds, so that m satisfies (2.20’). Then, since

4N 4 V15d3
T 2d—-1 2d-1 8

1

n

it is easily verified that 1 yss. By Lemmas 3 and 9 it follows that (2.5) holds
"

unless ¢ (y, 2) is equivalent to a positive multiple of *+ 6yz+2* with y,2=1, 1 (mod 1).

This shows that (2.8) of Theorem 3 holds for some k>0. Also, since then AZ=50%?
we have
A*=50k*=1d>.
The bounds (2.9) for £ now follow from the bounds for d given in (2.20). Thus
¢ (y, z) satisfies Theorem 3 (iii).
Next suppose that (2.21) holds, so that m satisfies (2.21'). Then the inequality

1-.sv30 (2.25)
cannot hold unless :
m=1, d—4, i=§—*l/?7). (2.26)
For (2.25) is equivalent to S
gl/3052d-1:2dl— 1 V158d '

494 —64(2d—12=0,
which reduces to
(d—4) (494 —60d+16)=0;
since 3.975 <d <4, this is true only if d=4 and the sign of equality holds: this gives
(2.26). It now follows at once from Lemmas 3 and 10 that (2.5) holds unless ¢ {y, 2)

is equivalent to a positive multiple of
298 +12y2+39°% y,2=11 and d=4. Since then
A? =14 -=120,

we see that (ii) of Theorem 3 holds.
Suppose finally shat (2.22) holds, so that m satisfies (2.22'). Then, by Lemmas
3 and 11, (2.5) holds unless
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LNG
"
But this inequality is equivalent to
S | A
T
4y 2d-1

3(2d—1P2<A’=L 4>

and it is easily verified that this is false for d satisfying (2.18).
This completes the proof of Theorem 3.

3. The next step in the proof of Theorem 1 is to decide what values of x, &
and ¢ are allowable in (2.3) if (2.5) is not satisfied and ¢ (y,z) is given by one of
the forms in Theorem 3.

Lemma 12. If f(x,y,z) is given by (2.3), where ¢(y,z2) is given by (2.6), then
(2.5) holds unless f is equivalent to

h@ g 2)=2" 1y +8yz+2% (3.1
and

Tos Yos 20=%, 3, 3 (mod 1).
Proof. We have
f@,y,2)=(x+hy+gz —3(* +8yz+27)

with ,y,2=x,, 1} (mod 1). Since A?=15,

(AN =1 (3.2)

Now
(£} —D=(tz+ih—1g?+3 (3.3)
(e =(tatihtigl—5 (3:4)

hence, by (3.3),

and the sign of inequality holds unless
2y +3h—1g=1 (mod 1).
In the same way, taking the lower sign in (3.3), we see that (2.5) holds unless

—xy+3ih—1g=} (mod 1).
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Similarly, choosing x=uz, with
b<| a+ihriol <t
we see that (2.5) holds unless
2o +1h+ig=} (mod 1),
—zy+3h+39=1 (mod 1).
Since the above four congruences imply that

2,=1, h=g=0 (mod 1),
the lemma follows at once.

Lemma 13. If f(z,y,2) s given by (2.3), where ¢(y, 2) is given by (2.7), then
(2.5) holds unless f is equivalent to

fo@, y,2) =2 — (29> + 12y 2+ 32°) (3.5)
and

Ty Yor 29 =1 3> 3 (mod 1).
Proof. We have

flx,y,2)=(x+hy+gz)’—(2¢°+12y2z+32%),
with 2, ¥, 2=z, 1,1 (mod 1). Since A?=120,
(s A%} =2
Now

[(£2,3 —D=(Fa+ib-jof+},

f(x, 4 )= (ka+ih+dor -4
Choosing z=ux, to satisfy any one of

| e+ ih-lol<i,

§<| txtib+igl<}
we see, precisely as in Lemma 12, that (2.5) holds unless
z,=3% h=¢g=0 (mod 1).

This gives the result of the lemma.

For the case (iii) of Theorem 3, we want to show that (2.5) holds unless
xg=3}, h=3}, g=1 (mod 1) and k=1. For this, the simple argument used in Lemmas
12 and 13 is not sufficient. However, the complete result will follow by a considera-
tion of the automorphs of f(x,y,z) and an application of Lemma 4. The proof

divides naturally into two stages, given in the following two lemmas.
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Lemma 14. If f(x, y,2) is given by (2.3), where] ¢ (y, z) satisfies (2.8), (2.9), then
if (2.5) does not hold we have
h=g=} (mod 1); (3.6)
further, in the form equivalent to f(z,y, é) with h=g=1,
|z, —1]<.016 (mod 1). (3.7)
Proof. There is clearly no loss of generality in supposing that
0<h,g<1 (3.8)
in (2.3). We than have to prove that h=g=1 and that (3.7) holds under the as-

sumption that (2.5) is false for some .
Since y,,2,=3%,4 (mod 1) and A’~=504% (2.5) holds unless, for some
MA(f; 3 3) = (1) > (19x.9814)% > 1.484. (3.9

Now
f(Za b =(Fz+ih+ig)°— 5k,

(£, 5 =D=(Lz+ih-}9’+ik.
Hence, for any x, for which (3.9) holds, we have
|(p+ay+3h+1g)? —5k|>1.484, (3.10)
(PEpo+ih—1g° +5k > 1.484 (3.11)
for all integral p and any choice of sign. In (3.10) we choose p so that
1<|pta,+ib+ig|=a<2,
and in (3.11) we choose p so that
p=|pta,+3h—ig|<}i
We then have, from (3.10), either
“o®>5k+1.484>3.9605, «>1.99,

or «?<3k—1484<1.032, «<1.016;

it follows that
—.016 < +ay+ih+1g<.016 (mod 1). (3.12)

Similarly, from (3.11) we deduce that

B*>1.484—3k>.2261, B> .475,
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whence
1—.025< txy+ikh—Lg<i+.025 (mod 1). (3.13)
Adding (3.12), (3.13) with suitable choices of sign we find that
1-.041<h,g<}+.041 (mod 1), (3.14)
—~.032<2x,<.032  (mod 1),
whence either |ao|<.016 (mod 1) or |x,—}|<.016 (mod 1). If h,g satisfy (3.8) it is
clear from (3.12) that the second alternative must hold, i.e. that z, satisfies (3.7).

If we apply the integral unimodular transformation =X, y=-2, 2=Y+62%Z
to f(x,y,2) we find that
f@, y,2)=(X+h Y+, ZP—5k(Y*+6Y Z+Z%
where
hy=9, 1=6g9~h

and
X, Y, Z=xyL,1 (mod 1).

It follows that (3.14) must still hold if %, g are replaced by bk, g;. Similarly, using
the inverse transformation x=X, y=6Y +Z, z= — Y, we see that (3.14) must still

hold if %, g are replaced by
h.,=6h—g, g.1=h.

Let now R be the region of the k, g-plane defined by
1_ 04l <h,g<}+.041, (3.15)
01
7=(_Ve)

(which is clearly of infinite order). Then, if P is the point (k, g), we have

and let T be the matrix

() -ren

1

P,= ("'1) =T(P),

g-1

Since 0<h, g<1, (3.14) shows that PeR. Also, by what has been proved above,
T(P) and T '(P) are congruent (mod 1) to a point of R; and since P satisfies
(3.15) it is clear that in fact

T(P)-(0,2)eR, T (P)~-(2,0)¢R.

Finally, the argument shows that the point 7™ (P) must satisfy (3.14), i.e. must be
congruent to a point of R, if (3.9) holds.
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It now follows from Lemma 4 that this is possible only if P satisfies

T(P)=P+(0,2),
ie. if P=(h,9)=( 3.
This completes thé proof of the lemma.

Lemma 15. Suppose that

f@, g, 2)=@+iy+12)?—2k(®+6yz+2°), ‘ (3.16)

where k salisfies (2.9), and suppose that (2.5) is false with yo, 2,=%,3 (mod 1) and x,

satisfying (3.7). Then
k=1, zy3=} (mod 1). (3.17}

Proof. Since f has determinant D= —%¥%* and k satisfies (2.9), it is quickly
verified that (2.2) holds, i.e.
0<a<(4|D|)?

with a=f(1,1,0)=3—-}k.
If we make the equivalence transformation
z2=X+2Z, y=Y, z=X (3.18)

we find that
flz,y,2)=aF (X, Y, Z)

=aX?+ (3K Y+ 22 - (¥k-HXY+3XZ+YZ, (3.19)
so that
1 3 )2
F =X -—(15k— 2zl -
(X, 7, 2) {X 4a(5k 3)Y+2az; D(Y, Z)
with

X, Y, %=} 2—1 (mod 1). (3.20)

Now the form (3.19) is of the original type (2.3) and we are supposing that
(2.4) is false, i.e. that
M(F;}5h 20— 1) = (5 A%
(where here A? is the discriminant of @ (Y, Z)). By Theorem 3 it follows that we
can apply an equivalence transformation to ¥, Z, say Y=o Y'+8%Z, Z=y Y +0Z
so that ®(Y,Z) is transformed into one of (2.6), (2.7), (2.8) (with Y', Z' for y, z),

and that then
Y, Z'=L1 (mod 1).

Since «, f,y,d are integers, we deduce that each of Y and Z must be congruent to
0 or i (mod 1); hence, by (3.20),
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2,=0 or 1 (mod 1),

and so, by (3.7), ;=% (mod 1) as required.
Further, by Lemmas 12, 13 and 14, we see that ez_mh of the coefficients
~ia (15k—3) and 2% must be congruent to either 0 or } (mod 1). Since a=%—-%%

and k satisfies (2.9), it is easy to see that this can hold only if

1
~ (15k-—-3)=
) (15k~-3)=3,

IR

e

whence a=1, k=1. This proves the lemma.
By Theorem 3 and Lemmas 12-15, we have now shown that (2.5) holds unless
f(x, y,2) is equivalent to one of
fl (x’ ?/’ z)=z2q%(y2+ 8yz+22), xo’ y(]v ZOE%’ %, %’
fa(@, y,2)=2"~ (29" + 1292 +32%), %, 4o, 20=4 1.}
fa@, 4, 2) = (@ +3y+32)° —§ (0" +6y2+2%), %o yp 2=} 1

To complete the proof of Theorem 2 (and hence of Theorem 1) we have only to
observe that

fs(x, 4, 2) =@ (2, 9, 2);
2fy (=, y 2) =24 — (y + 42)* + 152°
~Qy(x,y,2) With =z, yg 20=1331;

folx, ¥, 2)=2(x—y—~32)*—~ (x— 2y +62)°+152°

[

~ Q2 (x’ y; z) With (Eo, yO’ ZOE%’ S %'

4. Proof of Lemmas 8-11. For the proofs of Lemmas 8-11 we must appeal to
the general theory of two-dimensional inhomogeneous lattices developed in Barnes
and Swinnerton-Dyer [3]. For the convenience of the reader we state briefly the partic-
ular results we shall need.

We denote by [b,, b,, by, ...] the continued fraction

where b; ‘is integral and |bi|22. If b;,>0 for all ¢+ and b; >4 for some arbitrarily

large ¢, we have
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(b1 bay vvv s By Bgay oo 1<[By, gy vy by bry1, Brisa, o--] (4.1)

provided only that b,,,<b,,;, in particular
(B bgyevv s bn—1]1<[by, byy vy By ... 1< [y, by v, By, (4.2)

Let {a,}(— o0 <m<oo) be a chain of positive even integers for which the in-

equality a,=>4 holds for some arbitrarily large n of each sign. For each n we define

Gn:{ans An-1, an—Z,-'-]

¢"=[an+1, An 12, an+3,...],

so that, by (4.2), 0,.>1, ¢,>1. For any real i, 4 with Ay >0, the inhomogeneous
lattice £ defined by
E=2{0,(u—H+ (-1}

77=ﬂ{(u“%)+¢n(v*%)},

where %, v run through all integral values, is called a symmetrical lattice corresponding
to the chain {a,}. If £ has determinant A, we have A=Au(0.¢,—1), so that, for
points of L,

A A
§n=m(()nx+y) (+dny), = y=11 (modl). (4.3)

A symmetrical lattice £ is admissible for R,: —1<&n<m (m>1) if and only
if the inequalities

By 40zl _ 4, (4.4)
m

4(0n¢n—1) B

> —=A; 45
(6n—1) (gn— 1) (45

hold for all #n.

For any m>1, all critical lattices of R, are symmetrical. Moreover, if 1 <m <3,
the inequality
AL)=2(m+1) (4.6)

holds for any R,-admissible £ which is not symmetrical.

Finally, if 0<D<2(k+1) and, for any n,

A7 <D, A;s% (4.7)

then the inequality
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_2(k-1) VD® - 16k

— A — 4.8
*T2+)-D|¥3E 1) - D s

holds with «=0, or a=d¢,.

Proof of Lemma 8. Let m=3 and suppose that £ is R,-admissible and has

A(L)<4Vi=4Vm. Since 2(m+1)>4Vm, £ must be symmetrical; and, by (4.4), (4.5)
we require

A;<4V3 AI<4)3

for all n. Thus (4.7) holds with D=4V§, k=%, since now D*=16k%, (4.8) shows that

for all n
2(k—1)

S Y 15=
S D ttVIs=18.8,8,.]

en:¢n:

Henge {a,} is the periodic chain {g} and, by (4.3),

A
2V15

En= (#®+8zy -+, z, y=},1 (mod 1).

Finally, since now Aj; =4 V% for all n, we require

A=4V3 A<4)3,

whence

a-alf Ay

Proof of Lemma 9. It is shown in [3), Theorem 9, that if m>2 and L is ad-
missible for R,, then either A(£)=V33 or £ is a symmetrical lattice corresponding
to the chain {6}. Lemma 9 follows at once from this, on observing that, for the

chain {6} we have

B gn—[6]=3+2)2

for all n,
A 2 2 —1 1
Enzm(x +6xy+y°), x,y=4i 4 (mod 1),
where
AzmAr=2m B oy
V2' 4V2

Proof of Lemma 10. Suppose first that the inequalities

A; <830, Ar<£V30 (4.9)
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hold for all n. We show that then {a,} is the periodic chain {g, i} For (4.7) holds
with

D=£8V30, k=%,
and so (4.8) gives, for all =,

’oc— 5 “S» 1 —
12-2V30! 12-2V30
2 3

—<a=< —,
6—V30 6—1V30

ie.

[Z, E] Sa< [E, Z], (4.10)
where a=0, or a=¢,. Using (4.1), (4.2), we see that a,—1<0,=[04, Gn_1,..-]1<@n,
and so (4.10) shows that a,=4 or 6. If a,=4, (4.10) with a=0, and a=¢,_, gives

4, a-1,...121[4, 6,4, ...],
4, 04:1,...121[4,6,4,...],

whence a@,_1=6, a,,,=6, so that a,_;=a,,;=6. Similarly, if a,=6, (4.10) shows

that a,_;=a,;;=4. It follows that {a.} is {6,4}, as required.
Now if £ is symmetrical and admissible for R, with m =%, either (4.9) holds
for all » or, by (4.4) and (4.5),

A>min {350, S7V30}—3/50;
while if £ is not symmetrical, (4.6) gives
A=2(m+1)=4>5V30.

It follows that if £ is Rn-admissible, with m>% and A (C)<2V30, then C isa
symmetrical lattice corresponding to the chain {6, 4}. For this chain, 8, and ¢, are

%(6+V?I)), %(6-1—1/56) in some order, for each n, whence

E’?“z_l%ﬁ(zxzﬂhﬁfiyz), 2, y=}} (mod 1),
A >mA;',_4m

21/30 2V30 17

Proof of Lemma 11. For m =% we have

2(m+1)>4V§;



32 E. S. BARNES
it is therefore sufficient to show that there exists no symmetrical lattice satisfying

A;<4V3, BAL<4V3 (4.11)
for all n.

Now if (4.11) holds, then (4.7) holds with D=4V3, k=2%. Hence, by (4.8),

6
35-18V3’

17|
o«
35—18V3
no_ 2
35—18V3 35-18V3’

with «=0, or a=¢,. Thus for all » we have

0. > 11 - 11
" 351813 3.8231

> 2.87,

so that a,>4 for all ».

If now a,>6 for some n, we have, using (4.1),

0,>06,4,4,4,..1=4+V3, ¢.>[4,4,4,..]=2+13,
whence ~
10+6V3  9+7V3

5+V3)(3+V3) 33
913

1AL < 56 < 0.6.

Ar= =064...,

N

whereas {4.11) gives

It follows that a,=4 for all n. But then A;=4V§, contradicting (4.11). Thus
(4.11) cannot hold for all =.

5. It is not difficult, using the same methods, to show that Theorem 1 remains
true if in (1.12) and (1.13) we replace 4/15 by a slightly smaller constant. The
ranges of d given in Lemma 7 are then slightly increased, but Theorem 3 still holds
with the forms (2.6), (2.7) replaced by 1k(y*+8yz+7°), k(2¢y*+12yz+32%), where k
is nearly 1. (For the proof of this, we need stronger versions of Lemmas 8 and 10,
but these are easily obtained.) We may then show, just as in Lemmas 14 and 15,
that in each case £ must be 1. I have not given the details, to avoid complicating
the main lines of the proof.

Thus the ‘second minimum’ (%|D])} is isolated, and the problem remains to
find the third and any further minima. Since Davenport [4] has given a (zero) form
with M (Q)= (1| D|)}, the third minimum is at least (| D|)}.
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I think it likely that the methods of this paper will not prove adequate for a
complete analysis of the problem. It is easy to see that, in particular, the method
will break down if there are uncountably many distinct lattices admissible for R,
with determinant not exceeding 1/u; and this situation does in fact arise if one
attempts to find the forms @ with M (@)= (1| D|)*.

However, a complete answer to the problem may be obtainable by the use of
‘local’ methods on the chain {a,} associated with ¢ (y,z) in the form (2.3). I hope

to investigate this attack in the near future.

The University of Sydney, Australia.
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