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1. Introduction

In 1844, in a short note [8] in the Comptes Rendus de I’Académie des Sciences, Paris,

Augustin Cauchy published the first statement of what is now known as the Liouville

theorem for bounded analytic functions:

Any bounded entire function of a single complex variable must be constant.

This classical theorem generalizes at once to real harmonic functions on R™ which

are bounded only on one side:

Let nz2 and let u be a real harmonic function on R™, bounded either from above

or below. Then u must be constant.

When the dimension n=2, one can even consider superharmonic functions (e.g.,

satisfying the inequality Au<0):
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Let u be a real superharmonic function on R2?, bounded from below. Then u is
constant.

Proofs can be found for example in [21, pp. 111 and 130]. More recently, the Liouville
theorem was further generalized to solutions of quasilinear elliptic equations (Serrin [25]):

Let u be an entire solution of the equation
Au+ f{u,Vu)=0 in R".

Suppose that Of/0u<0 and that both u and Vu are bounded. Then u must be constant.
Under further assumptions, it can be shown [20], [26] that Vu is necessarily bounded
on all R™. Using this fact, one gets a standard Liouville theorem for bounded solutions.
See also Caffarelli, Garofalo and Segala [6] and references therein.
Still other Liouville theorems have been obtained for non-negative solutions of the
Lane-Emden equation
AutuP '=0, p>1 (1.1)

(note that the previous result does not cover (1.1), since uP~! is increasing for u>0).
We first state a beautiful and deep result of Gidas and Spruck.

THEOREM 1 (Gidas and Spruck [12]). Assume n>2. Let u be a non-negative solu-
tion of (1.1) in R™ with 2<p<2n/{(n—2) (Sobolev number for R™). Then u=0.

A striking fact about this result is that it fails for any p>2n/(n—2). For example,
when p=2n/(n—2), we have the Emden solution
(n~2)/2
»
=|C———— 1.2
ue) = (O ) (12
where >0 is a parameter and C=C(n)=+/n(n—2). This solution also shows that when
n>2 there are non-constant bounded superharmonic functions.

A second marvelous result concerning equation (1.1) is due to Bidaut-Veron.

THEOREM 2 (Bidaut-Veron [3]). Let n>2 and let u be a non-negative solution
of (1.1) on an exterior domain. Suppose 2<p<2(n—1)/(n—2) (=00 if n=2). Then
u=0.(")

Again this result fails for any p>2(n—1)/(n—2). For example, for p in this range
we have the singular solution

1/(p—2)
)= Clal /072, 0= (p=2) 072 a2 (-2 [T 1y

(*) In (3] this result was actually given for the more general equation Apu+u?~1=0, under related
restrictions on the parameters m, p; see also Theorem I below of Bidaut-Veron and Pohozaev.

The first author to observe the importance of the exponent p=2(n—1)/(n—2) is R. H. Fowler, this
exponent being equivalent to the special value o=—2 in Fowler’s work. Cf. Quart. J. Pure Appl. Math.,
45 (1914), 289-350, and Quart. J. Math. Ozford Ser., 2 (1931), 259-288.
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defined in the exterior domain R"™\{0}.
The purpose of the present paper is to extend the above considerations to non-
homogeneous degenerate elliptic equations of the form

Aputf(u)=0, u>=0,z€Q, (1.4)
where € is a domain (connected open set) in R", n>>2, and
Apu=div(|Vu|" 2 Vu)
is the well-known m-Laplace operator, m>1. Equation (1.4) arises in many nonlinear
phenomena, for instance, in the theory of quasi-regular and quasi-conformal mappings,
see [17], [22], [29], and in mathematical modeling of non-Newtonian fluids, see [2], [9],
[14], [15] for a discussion of the physical background. The equation also has a large and

well-known theoretical literature, some of which will be particularly discussed below.
A function u€C!(Q) is said to be a weak solution of (1.4) if

—/|Vu|m—2w-v¢+/f(u)¢=o for all g C (). (1.5)

We shall assume throughout the paper that f(u) is a non-negative function in
C([0,0))NCL((0,00)). Then a strong maximum principle holds for equation (1.4), in the
sense that all non-negative non-trivial solutions must be strictly positive, see Lemma 2.1
below. In what follows we shall always be concerned with weak solutions, without further
mention. (%)

The first main goal of the paper is to consider Liouville-type results for the degen-
erate equation (1.4), and also for continuously differentiable (or even Wo™(Q)NC(Q))

loc
weak solutions of the differential inequalities

—ApuzuPl w0, e, (1.6)
with p>1, and

—-Apuz20, ux=0,ze. (1.6")

Our second principal purpose is to derive universal a priori estimates for solutions of (1.4)
and (1.6), including, in particular, the generalized Lane-Emden equation A, u+uP~*=0,
that is, (1.4) with f(u)=uP~!. By using the word “universal” here, we mean that our
bounds are not only independent of any given solution under consideration but also do
not require, or assume, any boundary conditions whatsoever. We are not aware of any
previous results of this type for equation (1.4) with f(u)>0, with the exception of the
a priori estimates obtained by Gidas and Spruck for solutions of (1.1) in the neighborhood
of an isolated singularity, and a result of Dancer for the same case.

(?) It is possible to use an even weaker definition for weak solutions. That is, one needs to require

only that u€ Wli’gn ()NLE. (). By classical results, however, the two definitions are equivalent (see

the references in §8 below).
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THEOREM 3 (Dancer [34, Lemma 1]). Assume n>2 and 2<p<2n/(n—2). Let u
be a non-negative solution of the canonical equation (1.1) in a domain QZR™. Then for

every r €2 we have
u(z) < C(n, p)[dist(z, 8Q)] =%/ =2,

In particular, v is bounded on any compact subset Q' of Q, the bound being independent
of the solution.

The range 2<p<2n/(n—2) and the exponent 2/(p—2) are both optimal in view of
the special solutions (1.2) and (1.3).

The relevance of a universal boundedness theorem can be immediately illustrated by
Theorem 3. Indeed, Theorem 1 is a direct corollary of Theorem 3, since dist(z, 0Q) can
be chosen arbitrarily large when the solution is defined on all R™. The relation between
Theorem 3 and the Liouville Theorem 1 can also be considered in a deeper way. That
is, they both provide upper bounds for non-negative solutions, with Theorem 1 being
the extreme case where the domain is all of R™ and the upper bound becomes zero,
the smallest value it could have. In still other terms, Theorem 3 provides a continuous
embedding of the Liouville theorem for (1.1) in a family of results for an expanding
sequence of bounded domains. Theorem 3 is a special case of Theorem IV below, which
in turn is contained in Theorems 4.1 and 4.2.

Returning to the general equation (1.4), when n>m we define

=ml=l)
n—m

the lower critical exponent, and

n—m
the critical exponent for Sobolev embedding. We say that f is subcritical if n>m and
there exists a number 1<a<m* such that

Ffw)=0, (a=1)f(u)—uf'(v)=0, foru>0. (1.7)

Note in particular that the function f(u)=uP~" is subcritical when 1<p<m?*. A domain
Q is called exterior if QD {|z|>R>0} for some R>0. An important recent Liouville-type

result is the following

THEOREM I (Bidaut-Veron and Pohozaev [4, Theorems 3.3 (iii) and 3.4 (ii)]). Let Q
be an exterior domain. Then the differential inequality (1.6) has only the trivial solution
u=0, provided pe(1,m.] when n>m, or pe(1l,00) when n=m.

The result also applies when n<m, as follows.
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THEOREM I'. Let € be an exterior domain and let n<m. Then the differential
inequality (1.6) has only the trivial solution u=0, provided pe(1,0).

When the domain Q is the entire space R"™, rather than simply an exterior set,
Theorem I can be extended to a larger range of exponents. The full result is as follows.

THEOREM II. Let Q=R"™. Then the following conclusions hold.

(a) Let u(z) be a non-negative solution of A,u=0 (if n>m), or of An,u<0 (if
n<m). Then u is constant.

(b) Suppose either n=2 and m>1(1+v17), or n€(3,2m), m>3. Assume that f
is subcritical. Then every solution of (1.4) is constant.

(c) Assume that f is subcritical and that there erists p>m such that

flu)>ur (1.8)

for sufficiently large w. Then (1.4) has only the trivial solution u=0. The same conclu-
sion holds if pe (1, m], provided a<m in (1.7).

(d) If n>m and pe(1l,m,], then the differential inequality (1.6) has only the trivial
solution u=0.

Remarks. When n<m the inequality —A,,u>0 has the (bounded) positive non-
constant solution u=1—1/|z| on the exterior domain {|z|>1}, which indicates the ne-
cessity of considering (a) on the entire space R™. Notice also that the result of (b), when
it is applicable, is stronger than (c¢), and that (d) overlaps with (b) and (c), both cases
being of independent interest.

Case (d) is of course an immediate consequence of Theorem I; it was first proved by
Mitidieri and Pokhozhaev [18].

The special case m=2 of Theorem II (Laplace operator) is important enough to be
stated as a separate result, especially in order to compare our results with those of Gidas
and Spruck. We consider particularly the cases (b), (c), since for the Laplacian case (a) is
classical while (d) is a special case of the Mitidieri-Pokhozhaev theorem.

THEOREM 4. Let m=2 and Q=R". Then the following conclusions hold.

(b) Let n=3 and assume that f is subcritical. Then every solution of (1.4) is
constant.

(c) Suppose nz=4. Assume that f is subcritical and that (1.8) holds with p>2. Then
(1.4) has only the trivial solution u=0. The same conclusion holds if pe(1,2], provided
a<2 in (1.7).

Case (b) is due to Gidas and Spruck [12] under the additional assumption f(u)>0
for 4>0, the conclusion then of course being that u=0. The first statement of case (c) is
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similarly due to Gidas and Spruck, see [12, Theorem 6.1]. The second statement of case
(¢) is new.

Gidas and Spruck have conjectured (in view of case (b)) that the extra condition
(1.8) in case (¢) may be unnecessary. We are inclined to doubt this, since even in the
more general case of Theorem II, case (b), the required condition is n<2m, that is, n<4
when m=2. If, however, one treats solutions which are also bounded above, then their
conjecture is essentially true.

THEOREM III. Let Q=R"™ with n>m. Assume that f is subcritical and that f(u)>0
for all u>0. Then every bounded solution of (1.4) is trivial.

Theorems I-1I1 are sharp, in the sense of the following corollaries. (®)

COROLLARY 1. Let Q be an exterior domain. Then the differential inequality (1.6)
has a non-trivial solution if and only if me(1,n) and p>m..

The “only if” part follows from Theorem I. On the other hand, for Q=R"\{0}, one
readily verifies when p>m, that (1.6) has a positive singular solution C’|z|~™/(P=™),

m/(p—m) 1/(p—m)
m n—m
C'= (———) [ (p—m*)} )
p—m m

where

this being the exact analogue of the solution (1.3) when m=2.

COROLLARY II. Let Q be the entire space R™. Then:

(i) The inequality —A,,u>0 has a non-constant positive solution in R™ if and only
if n>m.

(ii) Assume n>m. Then the generalized Lane-Emden equation Apu+uP~1=0 has
a positive solution in R™ if and only if p=m*.

(ili) Assume n>m. Then the differential inequality —A,,u>uP~! has a positive
solution in R™ if and only if p>m,.

The “only if” part of (i) and of (iii) are an immediate consequence of Theorem II (a)
and II(d), respectively. Similarly, (b), (¢} of Theorem II imply that when n>m and
p<m®* all solutions of the generalized Lane—Emden equation in R™ must be constant,
and hence zero, which is the “only if” part of (ii).

(®) Some of the above Liouville theorems have previously been established in [19] for radially
symmetric solutions. If one knew a priori that solutions of (1.4) when Q=R"™ were necessarily radially
symmetric, then of course Theorem II would follow at once. Such an approach, however, seems an
unlikely possibility in any kind of generality; moreover when p>m* it is not even true that all solutions
are radially symmetric (see {32]).
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On the other hand, direct calculation shows that the inequality —A,,u>0 has a
(bounded) positive non-constant solution in R™ of the form

C(l-i—lxlm/(m—l))-("—m)/m,

which gives the “if” part for (i). For (ii), existence is a special case of Theorem 6.4
of [19].

Finally, by direct calculation, the differential inequality (1.6) has a (bounded) posi-
tive solution in R™ of the form (see Remark 4 in Mitidieri and Pokhozhaev [18])

u(z) =C"(3e+ |x|m/(m—l))—(m—l)/(p—m),

where C” is the coefficient given in the proof of Corollary I. (In fact, one finds explicitly
that —Apu=1uP~14 scy(mP—2m+1)/(m=1) for an appropriate constant c=c(n, m,p)>0.)
This yields existence for (iii), and the proof is complete.

COROLLARY III. Let Q=R". Assume n>m. Then the generalized Lane-Emden
equation has a bounded positive solution on Q if and only if p>m*, and (1.6) has a
bounded positive solution if and only if p>m..

This is a special case of Corollary II. Two model nonlinearities may be noticed here,

f) =, )=
’ 1+ut’

where 1<s<p<m* and ¢>>0. Both nonlinearities are subcritical as one easily checks. For

the first, Theorem II shows that the only solution of (1.4) on R™ is u=0. For the second,

Theorem II (b) applies, but not Theorem II (¢). Nevertheless, since f(u)>0 for u>0, by

Theorem II1 the only bounded solution of (1.4) for this nonlinearity on R" is again u=0.
Turning to the second principal goal of the paper, we have the following universal

a priori estimate (see §5 for other related results).

THEOREM IV. Let QCR™ and assume n>m. Then the following conclusions hold.
(a) Let u be a non-negative weak solution of the two-sided differential inequality

wP -y A u K AWPTHHD),  2€Q, (1.9)

where A>1 and m<p<m,. Then there ezists a constant C=C(n, m,p, A)>0 such that
for all x€Q)

u(z) SCR™™/ =™, (1.10)

where R=min(1, dist(x, d0Q)). If the additive terms u™ ! and 1 are dropped from (1.9),
then (1.10) is satisfied with R=dist(z, 0%).
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(b) Let u be a solution of (1.4). Suppose that f is subcritical and that, for some
A>1 and p>m, it satisfies the power-like condition

uP~U < fu) <A@PTHH1). (1.11)

Then (1.10) holds with C=C(n,m,p,a,A)>0 and R=min(l,dist(z,dQ)). If, instead

of (1.11),
uP™t < f(u) < AuP?, (1.12)

then (1.10) holds with R=dist(x, ).

The inequality (1.10) yields absolute bounds for non-negative solutions on any com-
pact subdomain of their domain Q of definition, the constant C being independent of
any particular solution under consideration. We note also that the range m<p<m, for
case (a) and m<p<m* for case (b), and the exponent m/(p—m) in (1.10), are each
optimal; see the discussion in §5.

It is interesting to ask about the size of the singular set of a solution w which
is defined over some domain Q. Certainly it cannot consist of the entire boundary
of 1, since u is superharmonic. On the other hand, can one estimate in some way the
Hausdorff dimension or the Hausdorff measure of this set? Here, a tentative conjecture
is that the Hausdorff dimension of a singular set on 0€? must be less than or equal to
n—m(p—1)/(p—m); see Mazzeo and Pacard [16] for the case m=2, and also Veron [31,
pp. 242-254].

Remark. In (1.9), one might wish to study the apparently more general left-hand
side, AuP~!—pu™~!. The constants A and p can however be reduced to 1 by simple
rescaling; thus the special form of the left-hand side of (1.9) involves no loss of generality.
The same remark obviously applies to later formulations of the principal conditions on f.

Theorem IV has useful implications for the asymptotic behavior of solutions near
isolated singularities, see the corollary below.

COROLLARY 1V. Let u be a solution of (1.4), where f is subcritical. Then:
(i) Suppose that (1.11) holds, and let Q=B;1(0)\{0}. Then there exists a constant
C=C(n,m,p,A)>0 such that

u(z) < Cla|~™/ P~ (1.13)

for all zef.

(i1) Suppose that (1.12) is satisfied, and let Q) be an exterior domain. Then (1.13)
holds for all sufficiently large |x]. (Note that if p<m, then Theorem 1 gives a stronger
result.)
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The asymptotic behavior (1.13) near an isolated singularity (and further extensions
of this) were established for the Laplace operator (rn=2) by Gidas and Spruck [12] and
by Bidaut-Veron and Veron [5].

Theorem IV also implies the following non-existence theorem.

COROLLARY 1V'. Let the hypotheses of Theorem IV (a), or (b), hold. Then the
Dirichlet problem for (1.9), or (1.4), with data u>M on OQ has no solution if M is
sufficiently large.

Proof. The result follows at once from from (1.10) together with the fact that solu-
tions are m-superharmonic and so satisfy u>M in Q.

The a priori estimates given in Theorem IV are obtained from the following Harnack-
type theorem, itself of independent interest, which will be proved in §4; see Theorems 4.1
and 4.2.

THEOREM V. Let R and xg be such that Bp=Bg(1¢)C B2r(xo)CL, and assume
n>m. Then we have the following conclusions.

(a) Let u be a non-negative weak solution of the differential inequality (1.9). Then
for every Ry>0 there exists C=C(n,m,p, A, Rg)>0 such that

supu < Cinfu (1.14)
BR BR

provided R<Ry.

If the terms u™ ! and 1 are dropped in (1.9), then (1.14) holds with C=C(n,m, p, A)
and with no further restriction on R.

(b) Let u be a solution of (1.4), where f is subcritical. Suppose either n=2 and
m>1(1+v17), or n€[3,2m), m>3. Then (1.14) holds with C=C(n,m,a)>0.

(c) Let u be a solution of (1.4), where f is subcritical, and suppose that (1.12) is
satisfied for some p>m. Then (1.14) holds with C=C(n,m,p, o, A).

The case n<m can also be treated, see Theorem 4.3.

Some remarks on the proof methods are worthwhile. First, Theorems I', II (a) and
IV (a) are relatively elementary, with the exception that the last two cases require an
application of the classical Harnack inequality for quasilinear equations (Serrin [23]).

The proofs for Theorem II(b), (c), Theorem IV (b) and Theorem V (b), (c) ad-
ditionally rely on an important integral inequality for solutions of equation (1.4), see
Proposition 6.1. For the Laplace case m=2 this result is (essentially) due to Gidas and
Spruck [12]. When m>2, Proposition 6.1 is proved by direct calculation, using as a key
element an unusual nonlinear vector field w, see (6.10), and also, at one point, a delicate

interchange of order of differentiation. (For m=2 the interchange is elementary because
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of the smoothness of solutions of (1.4) in this case; the loss of C? regularity is at the
heart of the difficulty otherwise.)

When 1<m<2 the proof of the inequality is still more technical, the difficulty again
being due to the degeneracy of the m-Laplace operator and the loss of smoothness of
solutions. As part of the derivation, we have been led to an improved regularity result
for solutions of (1.4), extending the “classical” theory of [10], etc. This result is of
independent interest and is, to the best of the authors’ knowledge, new. It is worth
remarking as well that, when 1<m<?2, it appears to be impossible to obtain a strict
analogue of the Gidas—Spruck identity for the case m=2. Rather, we employ related
integral inequalities, which, fortunately, seem at least as useful as the identity itself.

The paper is organized as follows. Chapter I contains the proofs of Theorems I-V
and of several further results of a more special nature; see the Table of Contents for the
specific content of these sections. Chapter II is devoted to the proof of Proposition 6.1,
that is, the general integral inequality (6.1). In particular, in §§6 and 7 we prove the
inequality respectively for the case m >2 and for the more delicate range 1<m<2. Finally
§8 contains our regularity results for solutions of (1.4); see the main Proposition 8.1.

It may seem paradoxical that so much effort must be devoted to the integral in-
equality for (1.4), in view of the fact that it is applied only at one point in Chapter I. On
the other hand, on this application alone stands or falls the entire structure for functions
f(u) whose growth rate in the variable u exceeds the power m, —1 (=n(m—1)/(n—m));
for the case of the Laplace operator, in particular, a growth rate exceeding the “classi-
cal” power n/(n—2). This being the case, the further effort seems more than worthwhile,
even if it is lengthy and difficult. Moreover, this aspect of the theory makes abundantly
clear the great difference between the ranges (1, m.] and (m.,m*) of the variable p in
the equation A, u+uP~!1=0.

It almost goes without saying that much of the work in the paper can be expected
to carry over to more general operators and to nonlinearities f depending on x and Vu
as well as on wu.

The second author wishes to thank E. DiBenedetto and D. Andreucci for useful
discussions at the beginning of this work. The authors also wish to thank the referee for
carefully reading the manuscript and, in particular, for pointing out to us the importance
of reference [16].
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Chapter 1
2. Liouville theorems I

In this section, we prove the Liouville Theorem I’, and also, for completeness, Theorem I.
Our proof of the latter result was obtained independently of the work of Bidaut-Veron
and Pohozaev, and in some respects depends on different ideas.

The letter C' will be used throughout to denote a generic positive constant, which
may vary from line to line and only depends on arguments inside the parentheses or
which are otherwise clear from the context.

We begin with a series of lemmas. The first is the well-known strong maximum
principle.

LEMMA 2.1. Let u be a weak solution of (1.6'). Then either u=0 or u>0 on 1.
Lemma 2.1 is a consequence of the weak Harnack inequality (see Lemma 3.2 below).

LEMMA 2.2. Let u and v be continuous functions in the Sobolev space I/VI})C’"(Q)
which satisfy the distribution inequality

Apu—Anv<0 (2.1)
in a domain §} of R™. Suppose that uzv on 0N, in the sense that the set {u—v+e<0}
has compact support in 2 for every e>0. Then uzv in €.

Lemma 2.2 is a well-known comparison lemma; its proof can be omitted.

LEMMA 2.3. Suppose {|z|>R>0}CQ. Let u be a positive weak solution of the
inequality
Apu<0, zel (2.2)

Then there exists a constant C=C(m,n,u, R)>0 such that

w(z) > C|z|~(r=m)/tm=D) (2.3)
provided n>m, while
linlinf w(z)>0 (2.4)

if n<m.

Proof. First assume n>m. Define

K=Rr=m™/(m=1) min u(z)>0
|z|=2R
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and
v(z) :K|$|—(n—m)/(m-l)_

Then v is a fundamental solution of —A,,,v=0, so by applying Lemma 2.2 in the domain
|z|>2R we get (2.3).
To prove (2.4), let S>R and define

_ In(4S/la))
v(®)= s/

for z in €. Observe that
—div(|Vu|™ 2 V) <0, z€Q,

while also v=1 when |z|=2R; v=21 when |z|=2(2RS)"/%; and |v|=0 when |z|=48.

Since u>0 in ), we have e =inf|;;_r u>0. Hence by the weak comparison principle,
we get u>ev for 2R<|z|<4S. But then u(z)> e for |z|<2(2RS)/2. Letting S tend to
infinity now yields liminf, . u(z)> %5>0. as required.

We next give an integral estimate for solutions of (1.6) in a domain §2 of R". Here
and in the sequel, by Br=Bg(zo) we shall mean a ball of radius R and center zo, such
that the corresponding ball Bog(zo) of radius 2R is contained in the domain €.

LEMMA 2.4. Let u be a weak solution of (1.6) in Q for some p>m and let R>0.
Then for all y€(0,p—1) there exists a constant C=C(n,m,p,v)>0 such that

/ W' <CR™7, (2.5)
Bpr

where r=p—m>0. Similarly, for all 1€(0,m(p—1)/p) there exists C(n, m,p, u)>0 such
that
|Vul# < CRYPHT, (2.6)
Bg
Remark. The inequality (2.5) is due (in a slightly different form) to Bidaut-Veron
and Pohozaev [4, Lemma 2.5]; see also Mitidieri and Pokhozhaev [18]. We include the

proof for completeness and also for later reference.

Proof. It can be assumed without loss of generality that >0 in €, since otherwise
u=0 by the strong maximum principle, and (2.5} and (2.6) are trivially satisfied.

Now let £ be a radially symmetric C? cut-off function on the double unit ball Bs(0),
namely,

(1) é=1 for |z|<1; 0<KEK for 2|21,

(2) £ has compact support in B2(0),
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and, without loss of generality,

(3) |VE€|<2, |[VZ€|<c, where ¢ is a suitable constant, e.g., c=4,/n suffices.

For k>m to be determined later and d=p—1—~v>0, take ¢=[£(|z—zo|/R)|*u~¢>0
as a test function in the weak form of (1.6). (Test functions involving negative powers
of the solution have been classically used at least since the work of Moser in the 1950’s.)
This gives at once

d/gkuv—P|Vu|m+/g’°u7</u—du-vgk, (2.7)
where u=|Vu|"2Vu. Write
|VER| = k1| VE| < €F(1-2k/RE)

and 1=y~ (M~1/m y(m=1)/m  Then by Young’s inequality with the exponent pair
m/(m—1), m (and the usual trick(?)) one finds

‘/u_deﬁk

where r=p—m>0. In turn, by (2.7),

<g/Eku'y—pIvu|m+CR—m/£k—mu'y-r,

d
> /ﬁkuA’_p|Vu|m+/£ku'Y<CR’m/£k_mu7_T, (2.8)
the constant C depending on m, k, p, .

We can now prove (2.5). First suppose v>r. Letting

k:mZ >m
r

and applying the Young inequality to the right side of (2.8), using the exponent pair

T o

we obtain (again with the usual trick)

1
C’R_m/fk“mu“’_ré 5/fku7+0(m,p,7)R_m7/T/§0.

(%) Namely, to use a small coefficient multiplying one of the terms of the inequality at the expense
of a larger coefficient for the other, that is,

1

pa/(a—1)
el/(e-1)

ab<eal+

for any a,b>0 and exponents ¢, q/(q—l)/> 1.
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Consequently, (2.8) yields

d k, vy— m 1 k n—my/r

3 [ EW TPV +5 [ €T <C(n,m,p,y) R (2.9)
Condition (2.5) now follows at once. The special case y=r, on the other hand, is imme-

diately obvious from (2.8).
Finally, if y<r we apply Hélder’s inequality with exponents r/v and r/(r—-=) to

/T
/u"éC(/ ’U,T) Rr(1=v/7)
Br Br

Since (2.5) is already known to hold for the exponent y=r, this gives the required con-

obtain

clusion for all ~.

To get (2.6), note that u<m, and write

p/m 1—p/m
/]Vu|“< (/u”"’|Vu|m) (/u”) ,

where y€(0,p—1) and y=(p—~)u/(m—p). Since pe(0,m(p—1)/p), we have y€(0,p—1)
provided = is suitably near p—1. Hence one can apply (2.5) to the second integral on the
right. On the other hand, by (2.9) the first integral is bounded by CR™ ™7/ Combining
these estimates and simplifying then gives (2.6). This completes the proof of the lemma.

Remark. For 1<p<m, one can give an improved version of (2.5), see Lemma 4.1.
Now we are ready to prove the first Liouville theorem.

Proof of Theorem 1. Let u be a positive weak solution of (1.6), where (2 is an exterior
domain containing {|z|>R}. Take a sequence of points {z7} CR™ such that |z7|>3R and
7 —00.

Consider first the case n<m, p>m. In (2.5), take y=r=p—m<p—1 to obtain
/ uLCl? v, j=1,2,..,
B
where B=B|,s|,4(z7) (note that By, ,2(2?)CQ) and C=C(n,m,p). Then
minu” < i/urgcmjrm. (2.10)
B |Bl /s

But this contradicts (2.4) as 27 —occ. Hence there are no everywhere positive solutions u,

so from the strong maximum principle we get u=0, as required.
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Next suppose n>m and pe(m,m,). Let u be a positive weak solution of (1.6). As
in the previous case the inequality (2.10) is valid. Consequently there exists y’€ B such
that

W’ (y’) =minw’ <Cla’ |7 < (3)"Cly |7

(since 2|27|<|y’|<3|z|). On the other hand, recalling that n>m and using (2.3), we
have
u(y’) > Clyjl—(n~m)/(m—1)

for some C'>0. This yields an immediate contradiction, since y/ —o00 and

m n—

r m-—

when p < m,.

It now follows as before that u=0, as required.
For the case n>m, p=m., we need an auxiliary lemma.

LEMMA 2.5. Let u be a weak solution of (1.6) on QD {|z|>Ry>0}, with p>m. Also
let pe(0,m(p—1)/p). Then there exist a constant C=C(m,n,p, 1)>0 and an increasing
sequence {R;}—00 as i—o0, such that

/ [Vu(Rj,e)lﬂde)gCR;p"/’", j=1,2,..., (2.11)
Sn—l

where df is the surface area differential on S™~ ' and r=p—m.

Proof. We first show that for R> Ry

/ |Vul# < CRMPH/T, (2.12)
Bsr(0)\B2r(0)
To see this, notice that one can cover the set B3r(0)\B2r(0) by a finite number of
balls Byor(y;) with |y;|=3R. Thus (2.12) follows immediately from (2.6) by a covering
argument.

Now take a sequence of positive integers {K;}—oc such that 2K;,,>3K;. Then
(2.12) implies

3K,
/ t"*l/ |Vul(t, 9)]/‘d9dt=/ Vul# < CK} P,
2K g§n—1 Bsk,;(0)\Bzx;(0)

Hence by the mean-value theorem for integrals, there exists R;€(2K;,3K;)— 00 such
that
KR! / |Vu(R;,60)* d6 < CK} /",
Sn—1
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and (2.11) follows immediately.
We can now finish the proof for the case p=m,. Integrate (1.6) over Br\Bg, to

/ u’"‘_ldacg—/ u- d0—/ u-vy df, (2.13)
Br\Br, Bp, 8Br,

where 11 and v, are the unit outer normal vectors (this is easily justified for the weak
form of (1.6)). The left-hand side of (2.13) tends logarithmically to infinity as j— oo

since

obtain

w1 > Cll_l—(n—m)(m,—l)/(m—l) — C|$|_n,

by (2.3). Clearly

<C

/ u-vy de
8BrR,

for some C>0. Using (2.11) with g=m—1 and p=m, >m, one can also bound the first
term on the right-hand side of (2.13) as follows:

/ u.yldO, <C(n)R;—1/ |Vu(R;,0)|™ " df
6BR]. gn-1
<CRpIR; Mo lmemm) ¢
for some C'>0 independent of j as j—oo. This contradicts (2.13), and the proof is
complete.

It remains to take up the case 1<p<m. This will be done with the help of three

lemmas.

LEMMA 2.6. Let n>1, m>1. There exists Ry, >0 such that the equation
Apv+v™ =0 (2.14)

has a positive radial solution vy, (|z|) in the ball |z|<R,,, with v, =0 on |z|=R,, and
U (0)=1.

Lemma 2.6 is well-known. A proof can for example be given by the shooting method
and use of Theorem 6.2 (i) of Ni and Serrin [19].

The function v, plays the role of an “eigenfunction” for equation (2.14). Since
(2.14) is homogeneous in v, clearly any multiple of v,, is also a solution in |z|< R, with
zero boundary data, while moreover any translation of v, is equally a solution.
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LeEMMA 2.7. Let g(s), s>0, be a positive function, with infss,, g(s)>0 for any
50>0. Suppose that u is a non-negative solution of the inequality

—Apu > g(u) (2.15)

in an exterior domain . Then liminf,_,o u(z)=0.

Proof. An easy calculation shows that the function

L m=l im/me1)

w(@) = e

satisfies A,,w=1.

Now suppose for contradiction that liminf,_,o, u(z)=e>0, and let ¥’ be a sequence
in 2 tending to oo as j— 00, such that lim;_,. u(y’)=e¢. Define y=inf,..,; g(s), so by
(2.15) and the conditions on g,

—Amu(z) > g(u(z)) >~
whenever |z] is suitably large. The function
we(z) = 2e—yw(z—y’)

is positive and satisfies —Ap,w.=7 when z€ Bg_(y?), with w,=0 when |z—y7|=R, for
some appropriate constant R.. Clearly Bg (y/)CQ if |y7]| is large enough. Hence by
the weak comparison principle we get u>w, in Bg,(y’) for all suitably large j. In turn
u(y’) >w.(y?)=2¢, an obvious contradiction if |¢7| is sufficiently large. The lemma, is
proved.

Remark. An immediate consequence of Lemma, 2.3 and Lemma, 2.7 is that if n<m,
then the only possible solution of (2.15) in an exterior domain is ©u=0.

LEMMA 2.8. If 1<p<m, then the only solution of (1.6) in an exterior domain Q
s u=0.

Proof. Suppose for contradiction that u#0 is a solution of (1.6) in Q. Then u>0
in 2 by Lemma, 2.1. Let yeQ be such that the ball Bg_(y) is contained in © and u(y)<1.
(The second condition is possible because of Lemma 2.7.)

Clearly there is some constant c€(0, 1] such that u>cv,, >0 in Bg, (y) while also
U=cvy, at some point in Bg_(y). In turn it is not hard to see that, for any sufficiently
small constant >0, there exists a (non-empty) domain D, strictly contained in Bg, (y),
such that

CUm >u—e in D,
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and
cvy, Ku—¢ in By, (y)\D..
Obviously for zeD,,
An{cvm)—Ap(u—e) = Ap(cvm) —Anu
> — ()™ 4 uP T > —(cvm )P HuP T 20,

since 1<p<m, cv, <v, <1 and cv, <u. By the weak comparison principle Lemma 2.2

(2.16)

we then find cv,, <u—e¢ in D, a contradiction.

This proves Lemma 2.8, and so completes the proof of Theorem I.

Remark. Lemma 2.8 applies also to the more general inequality

—Apu=min{u?P !, ™),

the proof being essentially the same, up to a simple and easily seen modification of the
second line of (2.16).

The argument used to prove Theorem I no longer works when p>m,. In fact, when
PE (M, ), n>m, it is easy to verify directly that the equation
A ut+uP =0

(and accordingly also (1.6)) has solutions of the form Clz—zp|~™/(P~™) in exterior do-
mains.

3. Liouville theorems I1

In this section we shall prove the (more difficult) results of Theorem II. To this end, it
will be critically important to use the generalized Gidas—Spruck inequality (Theorem 6.1
below) together with the assumption that f is “subcritical”, in the sense that (1.7) holds
for some & (1, m*). The following lemma, extending the range of Lemma 2.4, is the key
to the discussion.

LEMMA 3.1. Let u be a positive weak solution of (1.4) with n>m, and let
R>0, de(0,1), k>2m.

Suppose also that f is subcritical, with
m*—1

l<a<m®— d. (3.1)
M
Then there exists a positive constant C=C(n,m,«,d, k) such that
/éku(u)u%-d—m, SCR_%n/fk_zmuo_d, (3.2)

where o=2m—m, and £=E(Jx—xo|/R) is a scaled cut-off function on the ball Bog, as
in the proof of Lemma 2.4.



CAUCHY-LIOUVILLE AND UNIVERSAL BOUNDEDNESS THEOREMS 97

Proof. Let A, A, B, D, D be the coefficients in (6.2). By our assumptions on d and «
we have B>0 and

In turn, by (1.7),

Af () Auf () =65 )+ " (o= 1) () ~uf (0)] > 6 ()
Taking ¢=[£(|z—xo|/R)]*, one readily sees from (6.1) that

5/gkf(u)ul—d——m*|Vulm+Bf£ku—d—m*|vu|2m
(3.3)
</u2-d*m*{uv2(§k)u}+/ul‘d-m*{Duf(u)+131w1m}u.v@k).

Using Young’s inequality with the respective exponent pairs

m m 9 2m m
"m—-1)’ ™ om—1) {—

we may bound the terms on the right side of (3.3) as follows:

‘/uz—d—m*{uVZ(gk)u} gg/gku~d—m* vul2m_'_0/urf—dg(1~m)k:|V2£kl'm7

‘/Bul—d—m*'vulmu_v(gk) <g/§ku—d—m*lvu|2m+c/Ua—d§(1—2m)klvgk|2m’

[ Dot aveh) < § [ e rwu
+ C/ f(u) ul—d+m—m* E(lvm)k Ivfk lm,

where B=(1-d)(m—1)d/m and C=C(n,m,d,§). Hence, with the help of the estimates
1611, [VEI<2/R and |V2£|<c/R?, we get from (3.3)

/{kf(u) ul——d—m* Ivulm < a(R—Zm/Ek—2muo—d+R—m/£k—mf(u) u1+m—d—m*> ,
(3.4)
where the coeflicient a depends only on n,m,d, é, k.
Note that the condition k>2m is used here to make the integrals in (3.4) well-defined.
With the crucial estimate (3.4) in hand, we can now turn to the main conclu-
sion (3.2). The first step in its derivation is to take ¢p=£5f(u)u?~%~™* as a test function
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in the weak form of (1.4); this is allowable since u is assumed to be positive. One thereby
obtains

/éka(u)uZ—d—m, =/fk(f(u)u2_d_m‘)'|Vulm+k/§k’1f(u)u2"d—m*U-Vf. (35)

The Young inequality with exponents m/(m—1) and m yields the following estimate for
the second integral on the right of (3.5):

[t Te| < [ eyt (9l 2/ (R
Moreover, the first integral can be controlled with the help of (1.7), namely

(f(w)u?= ") =l =™ [(2—d—mu) f(u) +uf (u)]

nm f(u)ul—d—m*

SUET ot 1—d—ma £ () < —

since a<m*. Thus (3.5) gives

/gkf2(u)u2—d—m. <( n +k‘) /{kf(u)ul——d—-m,lvulm

n—m
+omERT™ / g f(u)ult o dTme

Eliminating the first integral on the right by using (3.4) now gives

/fka(u)uz—d—m‘ galR—2m/§k—2mua-—d+a2R—-m/ék——mf(u)u1+m—d—m*’ (36)

where a1=(k+n/{n—m))a, as=a;+2™k.

On the other hand, by the Cauchy inequality,
aQR—m/ék—mf(u)u1+m—d—m* <%/ékfz(u)UQ_d‘m*+%G§R‘2m/§k"2mu""d.
Using this to eliminate the second integral on the right in (3.6) then yields (3.2), with
the constant C=2a; +a3.
We also need the following weak Harnack inequality, due to Trudinger [28].
LEMMA 3.2. Let —A,u>0 and uz0 in Q. Then for all v€(0,m.—1) and R>0,

there exists a constant C=C(n,m,v)>0 such that

min u(z) > CR™™" ||ul| L7 (Byr)- (3.7)

rEBRr
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Proof. The function v satisfies the hypotheses of Theorem 1.2 of [27], with
ap=1, b():O; ai(:r)zbi(x)z(], 121,

and (3.7) then follows immediately from Theorem 1.2 of [28].(%)
The following estimate is a consequence of Lemmas 3.1 and 3.2.

LeEMMA 3.3. Let u be a positive weak solution of (1.4) in . Assume that f is
subcritical and ne€(m,2m?—m). Let

g:mm(z ).

"2m2—m—n
Then for all ¢€(0, ) there exists C=C(n,m,a,q)>0 such that
Ifu'~™lLa(Bry < CR™MI™™, (3.8)

where Bp=Br(x)CB4rC.

Proof. Choose d so small that (3.1) is valid. Then using Holder’s inequality with
exponents 2/q and 2/(2—q), together with (3.2), we bound

1-myq _ o—d 1-m d—o
/| (furmy= / Wiy

q/2 (2—q)/2
< ( f2(u)u2—-d—m*) (/ uq(d—a)/(2—-q)) (3_9)
BR BR

/2 (2—q)/2
< (CR—zm / ua—d) ( / uq(d—a)/@—q)) _
Bar Br

There are now two cases.

(i) n€(m,2m—1]. Because n<2m—1 one sees at once that

2 -1
oc<0 and QZ—————2 nz(mm ) .
m2—-m-n

(%) The weak Harnack inequality is also a direct consequence of earlier arguments in [23]. In par-
ticular, one may apply the proof given in §3 of [23], restricting however to the case 3<0 because u
obeys only the super-solution inequality — div(|V«|™~2V«)>0. This means that Case I (p. 265 of [23])
can be omitted, and the iteration of (35) in Case II must be terminated at the first point p, where
pv=m+B,~12m—1. But then p,_1 <m—1, while p, =sp,_1, where sc=m*/m=n/(n—m).

In turn, by adjusting p{; appropriately (see [23, top of p. 268]), we can take p,_; arbitrarily near
m—1. Thus the relation (40), p. 268, holds with maxu replaced by ®(v,2), where v is any exponent
less than (m—1)s=m,—1. The remainder of the argument on p. 268 of [23] (that is, Case III with
B<1—m<0) continues to apply, and accordingly we reach the display line immediately after (41), with
max u replaced by ®(v,2), exactly the conclusion (3.7) of Lemma 3.2.
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Then, using the fact that ¢<p<2, we obtain by direct calculation

aq
— e [0,m.~—1).
2—q€[ ,m )

Choose d>0 so small that
q(d—o)
2—q

€(0,m.—1).

Since 0 —-d<0, by Lemma, 3.2 we have

1/yq0—d
/ u"_dS/ [C’R""/7 (/ u7> ]
Bar Bagr Bsr

—(2-q)/q
_ CR2n/a ( / uq(d—a)/@—w) .
Bsr

Combining (3.9) and (3.10) yields (3.8).
(i) n€(2m—1,2m?—m). For this case one checks in a straightforward way that
0€(0,m,—1). Choose d>0 so small that

(3.10)

y=0—-d€ (0,m.—1).

Since q(d—0)/(2—q)<0, we may now (symmetrically) apply the argument of (3.10) to
the second integral in (3.9), and the conclusion follows as before.

Now we are ready to prove our second Liouville theorem.

Proof of Theorem 11. (a) First part. Let u be a non-negative solution of A, u=0
in R™. By subtracting an appropriate constant, we can assume without loss of generality
that infgr»u=0. We must show that u=0.

By the Harnack inequality, Theorem 5 of [23],(®) we have

max < C(n,m) min u.
Bgr(zo) Br(zo)

Letting R— o0 we get

supu < C(n,m)infu=0,
R» R”

which is the required conclusion.

Second part. As before, we can assume that infr~u=0, and must show »=0. But
if u#0, then by the strong maximum principle « is everywhere positive in R". Hence
(2.4) gives inf,_, o u(z)>0, so u must have a zero minimum at some finite point y, an

immediate contradiction. Case (a) is proved.

(6) See also Lemma 4.2 below, in the special case é=d=f=0.
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Remark. The Liouville theorem of the first part of case (a) is probably known, but
we do not have a direct reference.

(b) By the second part of case (a), we can assume without loss of generality that
n>m. Also, as previously, it is enough to consider positive solutions u. It is not hard to
check that the hypothesis n<2m?—m of Lemma 3.3 holds in the present case, hence (3.8)
is valid for any g€(0, g). A short calculation verifies that n/m< g (recall that 1<n/m<2
by assumption). Thus there exists an exponent g€ (n/m, p). With such a choice of ¢, by
letting R—c0 in (3.8) we get

Il fu' ™| pammy =0

It follows that f(s)=0 for all values s in the range of the solution u(z). Thus in
turn A,,u=0 in R™, whence by the Liouville theorem for the m-Laplacian (first part
of case (a)) we get u{z)=Const., as required.

Before proving case (c¢) it is convenient to give a simple lemma. (Recall that o=
2m—m,.)

LEMMA 3.4. If either

n=2 1<m<$ or n>3, nx2m—3, (3.11)

then
(i} o>m/n,

(i) (a=m)n<(2a—m.—m/n)m for all a€[m, m*].

Proof. 1t is easy to check that (i) is equivalent to (n—m)%>m?2—m, which is satisfied
in either case of (3.11). Similarly, (ii) is equivalent to

n(n—m)(n—2m)a <m(n®-2mn*+m?). (3.12)

If n>22m it is enough to verify (3.12) when a=m*=mn/(n—m), as is easily done. On
the other hand, if n=2 or n<2m then the worst case of (3.12) occurs when a=m, that
is, we must verify

nm(n—m)(n—2m) <m(n®—2mn?+m?).

This reduces to (n~m)?>m?—m, and as before is satisfied in either case of (3.11). This
completes the proof.

We can now return to the proof of the theorem.
(c) If either n=2, m>3% or n€[3,2m—1), then the result of case (b) applies, so we
are done. Thus without loss of generality we can assume that either

1

n=2, m<§ or n23, n>2m—2
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Now suppose for contradiction that u is a positive solution of (1.4) on R™, with
/ being subcritical. By (1.8) there is some uo>0 such that f(u)>uP~! for u>ug. By
integrating (1.7) we get, for u>ug,
f(U()) a—1

flw) <—==xu
Up

Coraparing the last lines it follows that p<ea. Again by integrating (1.7), we find for

u<Lug

flu)> (o) o =, (3.13)

where A>ul™%>0.
Consider first the case when p>m, so that m<p<a<m*. Define

o=2m-m,, T=2p—-m,, V=20-m,.
Then clearly
T—o=2(p—m)>0, v—o=2(a—m)=2(p—m)>0.

Also by Lemma 3.4 (i),
c—-d>0, 7-d>0 (3.14)

provided d is fixed less than m/n.
Let k>2m. From (3.2), with the positive constant C rewritten as C4, we have

/gku(u)uZ—-m,—d gclR—Qm/gk-Qmua'—d

(since a<m*, the hypothesis (3.1) of Lemma 3.1 is satisfied if d is made even smaller,
if necessary).

Now, for u>ug, by Young’s inequality with the exponent pair

T—d T—d

o-d T—0

we get (since f(u)>uP~1)

1 - ~m(T— —-m
(ER)*™u" %< z_clfz(u)uz_m‘ I Co(eR) T/ o), (3.15)

while for uug, similarly (since f(u)>Au®"1)

—2m . o— 1 — M — —m{v— a—m
(ER)7*"u” ™" < g fA(wu? ™ T Ca(gR) T (27 (316)
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for appropriate constants Co and C3. Combining the previous lines yields (with the
constant C'=2C] max(C3, C3))

F2(w)u2~m=4 < C max[RP-mT-D/(-m) pr-m(v—d)/(c=m)]  (3.17)
Bg
provided that k is taken suitably large (greater than both m(r—d)/(p—m) and
m{v—d)/(a—m); in fact k=2mp/(p—m) suffices for all purposes.("))
We assert that
n—mz-_—d gn—mzld—<0. (3.18)
-m a—m
Indeed the first inequality can be rewritten in the form (a—p)(o—d)>0, which is clearly
satisfied in view of (3.14). The second (strict) inequality, on the other hand, follows at
once from Lemma 3.4 (ii), since d<m/n.

Let R— o0 in the inequality (3.17). In view of (3.18) there results
Fru)u®~™ 4 =0,
Rn

But this is impossible because, as we have seen, f{u)>0 for all ©>0.
There remains the case p<m. Here by assumption also a<m. Now by hypothesis
fu)>uP~! for uzwug. Also (3.13) gives f(u)=Au®"! for u<ug. Hence

—Au > min(Au® "t wP~) > Tmin(u™ !, wP ),

where /=min(}\, 1). After a trivial change of scale, it now follows from the remark after
the proof of Lemma 2.8 that u=0.
(d) This is an immediate consequence of Theorem I.

Remark. The proof of parts (b), (¢c) give upper bounds for various norms of u in
terms of the radius of the ball Bg, see (3.8) and (3.17); these can be considered as
another type of universal a priori estimate.

Proof of Theorem III. Let M be the upper bound for the solution u, that is,
O<u(z)<M in R™ Asin (3.13), there holds

> f(M) ua—-l

3,,0—1
f(u) 2 MT:T Au

(7) For its interest, one may note that

Cy= (201)(<7~d)/("'—d)7 O3 = (201/)\2)(0—d)/(V~d)_
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for u< M. Here it should be noted that A>0, since by assumption f(u)>0 for all u>0.

Arguing as in the proof of case (c), but without the necessity for introducing the
constant 7 or deriving the inequality (3.15), we obtain (3.16), this now being valid for
all z in R™ Inequality (3.17) is therefore replaced simply by

f2(u)u2—m,—d < 201C3Rn_m(y_d)/(a_m),
Bp

and the proof is completed with the help of (3.18) exactly as before.

4. The Harnack inequality

Here we establish Harnack inequalities for weak solutions of the equation (1.4) and the
inequality (1.6), see Theorems 4.1-4.3.

As previously, Bg=Bgr(zo) denotes a ball centered at zo with radius R, such that
the corresponding ball Bag(zg) of radius 2R is contained in . Our arguments will be
restricted throughout to such “admissible” balls Bg. Moreover, the letter C denotes a
generic positive constant, which may vary from line to line and only depends on the
arguments inside the parenthesis.

The following result is an extension and generalization of Lemma 2.4.

LEMMA 4.1. (i) Assume that m<p<m. in Lemma 2.4. Then (2.5) holds for all
v€(0,m.—1), and (2.6) for all pe(0,n(m—-1)/(n—1)).

(ii) Assume p>m, and let u be a non-negative weak solution of the differential
inequality

~ApuzuP =™ | Vy[™ in Q.

Then there exists a constant C=C(n, m,p,v)>0 such that
/ WY <CR"™™/"+CR", (4.1)
Br

for all v€(0,m,—1) provided m<p<m., and for all v€(0,p—1) provided m,<p<m*.

Proof. (i) We proceed as in the proof of Lemma 2.4. To begin with, for k>m we
have

(e /myr-r)/my _ gh/m YT =p)fmgy 4 _T’%gk/m—luw—r)/m VE.
m

With the help of the elementary inequality |z+y|™<2™ !(|z|™+|y|™), an easy calcula-
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tion then leads to (recall |V¢|<2/R)
d/IV(S’“/’"W“”/m)IJr(W) /gkuv

< (2(77;7')) [g/gkuv—Plvulm+/§ku7:|+(%) gR—m/fk—mu‘Y—'r

<C(m, k,p, )R~ / ghmyrr

by virtue of (2.8). Then exactly as in the derivation of (2.9) from (2.8), we find that
/ IV (gk/my =)/ mym < cpn=ma/r
for ve€(r,p—1). Then by the Sobolev inequality,
/ [gk/my(r=r)/mm®  CRn=ma/rym*/m.

Rewriting this by setting y=m*(y—r)/m, we obtain exactly (2.5) with v replaced by 7.
But from the condition y&(r,p—1) then follows ¥€ (0, m,—1), which is the first result.

The second is then obtained by following the derivation of (2.6), but using at the
final step the result just shown.

Remark. We have not in fact used the condition p<m, in this argument. However,
if p=m, then the original restriction y<p—1 is weaker than or equivalent to y<m.—1.
This can be restated alternately, that (2.5) holds for any y€(0, max(p—1,m,—1)).

(ii) The proof of Lemma 2.4 carries over without difficulty, once one notes that the
inequality (2.7) continues to hold, but with the addition of two further terms

/gkuq—r+/€ku—d|vu[m—l

on the right side. In turn, we derive (2.8) essentially as before, but now with an added

¢ [ e

on the right-hand side. Finally, again essentially as before, by Young’s inequality one
gets (2.9) with an additional term CR™ on the right side. The rest of the proof then
follows exactly as in Lemma 2.4 and the previous case (i).

term
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LEMMA 4.2. Assume QCR™ and n>m. Let u be a non-negative weak solution (in
WETNC) of the two-sided inequality

loc
|Amul <du™ '+, (4.2)

where d and f are non-negative measurable functions on Q. Let q€(n/m,n/(m—1)).
Then for every R>0 for which Bg is admissible, there exists a constant C, depending
only on the parameters

n, m, q, Rm_n/q“d”Lq(an)?

such that

supu < C(inf u+ R™ ™) f|l La(5,p)) - (4.3)
Bg Br

With slight change of notation, this is exactly the special case ¢=0 of Theorem 5
of [23], after restriction to the operator A(p)=|p|™ 2p, see §1 of [23]. The factor R™~"/4
is just that required to rescale to the unit ball By in the proof of Theorem 5; see p. 263
of [23].

Remark. Lemma 4.2 also holds when n=m, and even when n<m provided g=1;
see §1, relation (8), and §6 of [23].

We can now prove our first Harnack inequality. It will be assumed unless otherwise
stated that n>m. All balls Bg are assumed to be admissible, in the sense noted at the
beginning of the section.

THEOREM 4.1. (a) Suppose n>m and pE(m,m.). Let u be a non-negative weak
solution of the differential inequality

W —Aju<AuP !t in Q, (4.4)
for some constant A>1. Then there is a constant C=C(n,m,p, A)>0 such that

sup u(z) < C inf u(z). (4.5)
zE€BR r€BR

(b) If m<p<s<m. and (4.4) is replaced by
WPy VT A e KA T U™ T 4 V™Y in Q, (4.6)

then (4.5) holds with C=C(n,m,p,s, A, R)>0. The constant C' may become arbitrarily
large if R—0 (when p<s) or if R—oo.
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Proof. (a) First assume Byr CQ. We shall apply the Harnack inequality, Lemma 4.2.
In the present case, in view of (4.2) and (4.4) we can take é=f=0 and

d=d(z)= AuP~™,
We require an estimate of the norm IEHJ(:E)HLq(Bm) for some g€ (n/m,n/(m—1)).
By the left side of (4.4) and by (2.5) with By replaced by Bsg, we get

JERS Aq/ wP=Me < OAIRNmal(p—m)/(p—m) — RN
Bar

provided ¢ satisfies the principal condition y=(p—m)g<p-1. Since p<m., however,
it is easy to see that one can choose (and fix) a value g€(n/m,n/(m—1)) so that this
condition holds. Hence I <CAR™4~™ and in turn R™~™1I <CA.

Lemma 4.2 now gives the conclusion (4.5), but under the additional assumption
ByrC ). By a chaining argument, increasing C appropriately, but still dependent only
on n,m,p, A, one can replace By by Bag. This finishes the proof for case (a).

(b) Again it will be assumed to begin with that ByjpC$). From (4.2) and (4.6) we
have f =0 and

é=A, d=A@u""+1).

Therefore, besides an estimate for the norm I we shall also need to bound the norm
J=1&|| p¢'(B, ) for some ¢'€(n,c0). First,

I‘I<Aq/ (us~™41)7 < 297179 (u(s’m)q+1):2q“1A‘1/ (W'+1),  (4.7)
Bar

Bar Bar

where y=(s—m)q. By choosing ¢ near enough to n/m, and recalling that s<m,, we have
v<s—1<m,—1. Hence, with the help of Lemma 4.1 (ii) and the left-hand inequality
of (4.6), it follows that

11 CAq(Rn—m“//(P—M) +R") = CAq(Rn—mtI(s—m)/(p~m) +R"),

where C=C(n,m,p,s). Moreover, JzA(fBzR)l/q;C’AR"/‘?'. In turn (with the appro-
priate rescaling factors)

R™™/a] LCA(R™(—P/(P=m) L Ry™  R1=™/4] = CAR. (4.8)
Lemma 4.2 now yields the required conclusion, since the ball Byg can always be replaced
by Bsg. The proof is complete.

Remark. When s=p the first estimate of (4.8) reduces to R */4I<CA(1+R)™. In
turn the coefficient C=C(n, m,p, s, A, R) in {4.5) becomes C=C(n,m,p, A, R), of course
remaining bounded as R—0.
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THEOREM 4.2. Let u be a solution of (1.4), with n>m. Then:
(a) If f is subcritical and either n=2 and m>(1+3V17) or n€(3,2m), m>3,
then

supu < Cinfu (4.9)
BR BR

for some constant C=C{n,m,a).
(b) Suppose that f is subcritical, and that for some p>m

uP < f(u) < AuP™Y for all u>0. (4.10)

Then (4.9) holds with C=C(n,m,p,a, A).
(c) Let the conditions of case (b) hold, but with (4.10) replaced by

wP < f(u) AP Hu™ ) for all u>0. (4.11)

Then (4.9) is satisfied with C=C(n,m,p,a, A, R). The constant C remains bounded as
R—0.

Proof. (a) As in the proof of Theorem 4.1 we shall apply Lemma 4.2. By (1.4) and
(4.2) one can take é=f=0 and

d=d(z)=u'"""f(u).

We must estimate the norm IE||¢2(1:)||Lq(Bm) for some g€(n/m,n/(m-—1)).
As in the proof of Theorem II(b) we can choose ¢ so that g€(n/m, ), and even
more so that ge(n/m,n/(m—1)). Then by Lemma 3.3, we find

I<CRMa™,

and the Harnack inequality follows exactly as in Theorem 4.1 (a).

(b) Before proceeding with the main proof, we note that necessarily p<a, as follows
by integration of (1.7); see (3.13).

Now utilizing the left side of (4.10) in (3.2) gives

/gkur—d<CR—2m/§k—2mua—d’ (412)

where T=2p—m., 0=2m—m, and d is chosen so that (3.1) is satisfied.

If n=2 and m}%, or if n>>3 and n<2m—%, the previous case (a) applies and we

are done. It is therefore enough to consider the ranges n=2, m<§ and n>3, n>2m— %
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Lemma 3.4 shows that o >m/n in both. We may of course suppose that d<m/2n,
so that o —d>m/2n. Clearly 7—d >0 —d since p>m. Then from the Young inequality
with exponents
—-d 7-d

=

-d’ T1-0’

Q

we find (with the usual trick)
CR—Qm/gk—Zmua—dg%/gkur—d_*_CRn—(‘r—d)m/(P—m),

since 7—o=2(p—m). Note also that we must take k suitably large, say k=2pm/(p—m);
see the analogous derivation of (3.17) in the previous section. In turn, with the aid
of (4.12),

/ w4 < CRP(r=dym/(p=m) (4.13)
Bar

where we have replaced Bg by Bzgr and used the fact that BypCS2.
We assert that
n m
RS L 4.14
(p—m)— <1 p (4.14)

In fact, since m<p<a, therefore also p&(m,m*). Hence (4.14) is exactly the result of
Lemma 3.4 (ii) with « replaced by p.

We are now able to estimate the norm I. First, by the right side of (4.10) there
results

19 gAq/ ulP—ma.
Bzr

By (4.14) and the fact that d<m/2n, one can choose g€(n/m,n/(m—1)) so that
{(p—m)g<T—d. Then by Holder’s inequality,

I9< CAIR(1—(p—m)q/(T—d)) (/ i < CAIR™™ ™
B

2R

)(p—M)q/(r—d)

by (4.13). The rest of the proof is as before.
(c) The inequality (4.13) follows exactly as in case (b). On the other hand, by the
right side of (4.11),
T4 gAq/ (uP~™ 1)1 <2q—1Aq/ (uP=™a41).
Bzr B

2R
Hence, exactly as in case (b), one gets I <CA(R™9~™+ R"/%). With the rescaling factor
of LLemma 4.2, we then find

R™ ™4 < CA(1+R™).

The Harnack inequality (4.9) now follows as previously, except of course the coeflicient C
now depends on R.

Harnack inequalities can also be given when n<m, the case earlier left aside.
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THEOREM 4.3. Let n<m. Then:

(a) Assume the hypotheses of Theorem 4.1 (a), except that the condition p&(m,m.)
is replaced by pe(1,00), that is, m,=o0c. Then (4.5) is valid with C=C(n,m,p, A).

(b) Assume the hypotheses of Theorem 4.1 (b), with m<p<s<oo. Then (4.5) holds
with C=C(n,m,p,s, A, R).

Proof. Everything is the same as in the proof of Theorem 4.1, with the exception
that the exponents ¢, ¢’ must be chosen as in the remark after the proof of Lemma 4.2.
Such a choice is obviously possible, and the proof is complete.

Remark. Since q is here subject to a weaker condition than in the previous case
n>m, it is no longer necessary to have the upper bound p<m, or a<m*.

Comment on the form of the coefficient C in (4.9). This constant arises in a com-
plicated way, depending on Lemmas 3.1, 3.2, 3.3, 4.2, as well as on the coefficient on
the right side of (4.13). By following the proof, however, it is not hard to see that the
corresponding coefficients C' can become unbounded only when one or another of the

following limits occur:
d—0; m-on; g—oe; g—on/m; 2m?:-m—on; p—m

(omitting the trivial limits m,n—1, m,n—o00 and A—oc). Moreover, d—0 only when
a—m*; g—g or g—n/m only when m—n or m— 3n (in the proof of Theorem 4.2 (a));
and 2m? —m—n only when n=2 and m—)i(l+\/1—7).
In turn, the coefficient C=C(n,m,a) in case (a) can become unbounded only if
a—m*, or n=2 and m—)i(1+\/ﬁ), or n>3 and m approaches either n or %n
Similarly, the coefficient C=C(n,m,p, @, A) in case (b) can become unbounded only

if a—m*, or p—m, or m—n (and of course A—o0).

5. Universal a priori estimates

In this section, we shall establish the universal a priori estimate Theorem IV, as well
as several other related conclusions. The notation will be adapted from the previous
section, in particular, Br=Bpg(z¢)C Bag=Bagr(zo) C.

Proof of Theorem IV. (a) By (1.9), Lemma 4.1 (ii) implies that there exists a con-
stant C'=C{(m,n,p)>0 such that

/ o < C(R™™+R")
Bgr
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where r=p—m. Therefore

1
infu < —— v <C(1+R™™).
B S B J, SO
In turn,
inf u < C(14+R™™/). (5.1)
Br

On the other hand, again by (1.9), a simple modification of Theorem V (a) implies
that, for R<1, there exists a constant C=C(m,n,p, A)>0 such that for & Bg,

u(z) <supu < C(inf u+1). (5.2)
Bgr Bgr

The conclusion (1.10) now follows at once from (5.1) and (5.2).

To prove the second part of Theorem IV (a), note first that in this case (5.1) is
now valid without the additional term R~™/" and also without the restriction R<1.
Similarly, in view of the second part of Theorem V (a), the inequality (5.2) holds with no
restriction on R and without the additive term 1. The required conclusion then follows
as before.

Remark. A similar result can also be given for the differential inequality (4.6).

(b) We first prove (1.10) under the assumption (1.11). This being the case, we need
to apply Lemma 4.2 with

6=0, d=AuP"™, f=A.

Proceeding exactly as in Theorem 4.2 (b), we deduce that there exists C=C(n,m,p)>0
such that

ldliza(,m) < CART™™
for some g€ (n/m,n/(m—1)). Therefore, by (4.3), since Hf||Lq(BzR)=CAR"/q we get
supu < C(infu+R™) (5.3)
BR BR
for some C=C(n,m,p, A)>0.
On the other hand, by (1.11) and Lemma 2.4, we have

1
infuP "M ——on uP""mLCR™™
Br |Br(2)| JBg

for some C=C(n,m,p)>0, that is,

inf u < CR™™/(P—m). (5.4)
Br
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Now (1.10) follows immediately from (5.3) and (5.4).
Next suppose that (1.12) holds in place of (1.11). Then (5.3) is valid without the
additional term AR™ since f=0. Therefore in (1.10) one has R=min(z,d), and the

proof is complete.

We say that the exponent m/(p—m) in (1.10) is optimum, if for any 6>>0 there exist
a domain  and a solution u of (1.4) in 2 such that

u(z) > ™/ =™ (5.5)

for some z€Q satisfying dist(x, 9Q) =4, where the constant C=C(n, m, p) is independent
of the solution as well as the domain .

When f=u?"! and p€(m.,m*), the singular solution of (1.4) defined in the proof
of Corollary I (see the Introduction) immediately reveals that m/(p—m) is optimum,
by placing the singularity z=0 on the boundary. In fact, we have the following more
complete result.

PROPOSITION 5.1. Assume that n>m, p€(m,m*) and f=uP~'. Then the exponent
m/(p-m) is optimum for (1.10).

Proof. Let m>1 and p>m. Consider the initial value problem

(/| 2’ +uP~ =0, u>0,t>0,
u'(0) =0.

Local existence and uniqueness are well known, with u'<0 for t>0. Furthermore, since
(lu'|™2u’) <0, it is easy to see that the solution can be continued, still with u’'<0, as
long as u>0; see for example the Appendix of [19]. Define

To =sup{T >0|u(t) >0 for t[0,T)}.
Then since p<m* we get from [16, Theorem 6.2]
Ty <oo, u(Tp)=0.

Therefore
((~u’)m_1(t))'———u”_1(t), t€ (0, Tp). (5.6)

Multiply (5.6) by «’ and integrate from 0 to t€(0, Tp] to obtain

m—1 /m_lup —uP
S () = @ (1)),
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It follows that

7 P —1/m
_Ci.<1_u E}t)> :uép_m)/m, (5.7)
Up UO

where

m

o~ (M=)

Integrating (5.7) once more from 0 to ¢, we get

1
el :/ (1—s)~1/m ds,
u(t)/uo

that is,
1 m/(p—m)
ug = <C’/ (1—sp)_1/mds) g/ pmm)
u(t)/uo

In particular,
ug = KT, ™ @™ (5.8)

where
/(p—m)

K=K(m,p)= (c/olu—sp)—l/mds)m >0.

For §>0, let B=DB; be the ball centered at 0 with radius d, and let u=u(t) be the
unique solution of (IVP) with uo=K§~"/(P=™)>0. By (5.8), for this solution we have
To=0. It follows that

v(z) =v(x1, T2, ooy Tn) = u(21)

is a solution of (1.4) which is defined and positive in B, and of course depends only
on the variable z=z;. Clearly dist(0,0B)=4, while u(0)=uo=K5~™/(P~™ >0. This is
just (5.5), and the proof is complete.

It is also interesting to know for what values of p the estimate (1.10) holds at all.
Again, we consider the pure power f=u?~! for simplicity.

PROPOSITION 5.2. Let n>m. Then (1.10) fails to hold for (1.4) if p=m or p2m*.
Similarly (1.10) fails for (1.6) if p=m or p>m,.

Proof. For p=m, the equation (1.4) is homogeneous. Clearly a multiple of a non-
trivial non-negative solution is still a solution, which can have an arbitrarily large maxi-
mum value, whence (1.10) cannot hold. On the other hand, when p>m*, it is well-known
(e.g., Theorem 6.4 of [19]) that (1.4) has positive entire solutions on the entire space R™,

whose maximum value can be arbitrarily large. Again, (1.10) cannot hold.
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For (1.6), we observe that when p>m, the solution given in the proof of Corol-
lary II (iii) takes arbitrarily large values C’3~(m~1/(P~™) when =0, so again (1.10)
fails. The proof is complete.

Remarks for the supercritical range p=mn/(m—n). Proposition 5.2 indicates that
the optimum range of p for the global estimate {1.10) to hold for (1.1) is (m,m*). Yet
a corresponding local version (1.13) near an isolated singularity may continue to hold
outside this range. Indeed, for m=2 and p=2n/(n—2), the estimate (1.13) was estab-
lished for solutions of (1.1) by Caffarelli, Gidas and Spruck, see [6, Theorem 1.1, p. 272],
though there the constant C' might depend on the solution itself.

For a non-removable singularity at the origin, the estimate can be strengthened to
show that C is independent of the solution for sufficiently small |z| (see [6, Theorem 1.2,
p. 273]). Of course, similar estimates hold on exterior domains via the Kelvin transform
(always assuming m=2).

On the other hand, when n>m+1 and p=m(n—1)/(n—m—1), (1.13) need not hold
for an exterior domain, in contrast to case (ii) of Corollary IV. To see this, we observe
that uP~! is supercritical for the dimension n—1 if n>m+1 and p>(n—1)m/(n—m~1).
Thus (1.1) has a positive radial solution ug(r) on R*~! (e.g., Theorem 6.4 of [19]). Put

w(x) =u(z', z,) = uo(|z']).

Obviously u is also a solution of (1.1) on R™, but (1.13) does not hold in an exterior
domain since u is constant (>0) along the direction z,.

Whether the local estimate (1.13) holds for (1.4) in B;(0)\{0} remains open even
for the pure power f=uP~! when pe[m*, (n—1)m/(n—m—1)), except m=2 and p=
2n/(n—2).

Finally, it is interesting to note that, for a positive solution u of (1.4) on R™, the
estimate (1.13) for large |z| is equivalent to the radial symmetry of u, provided m=2
and pe(2n/(n—2),2(n—1)/(n-3)). In fact, (1.13) plainly holds if u is radially sym-
metric. On the other hand, (1.13) for large |z| implies that u must be radially sym-
metric with respect to some point zo€R"™ by Theorem 1.1, p. 48, of [33], provided
pe(2n/(n-2),2(n-1)/(n-3)).

Chapter I1
6. A general integral inequality I

In this section we shall establish an important integral inequality for solutions v of (1.4),
generalizing the Gidas—Spruck identity for solutions of (1.4) in the case m=2. The
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following agreements will be used throughout. Boldface lower and upper case letters
respectively denote vector and matrix quantities; when x is a vector and A a matrix,
by {xAx} we mean the quadratic form x-(Ax), where standard matrix multiplication is
always understood and x-y means the inner product of the vectors x and y.
For a weak solution ueC'(Q) of (1.4), we introduce the centrally important vector
field
u=|Vu|"?Vy, (6.1)

where in the usual way it is understood that u=0 when Vu=0 (recall m>1). (The
simple notation u in (6.1) may not carry a clear indication of the meaning of this vector;
alternative notations suggest themselves but all seem cumbersome in view of the many
appearances of this vector in later places. Consequently we retain the indicated notation,
and simply remind the reader again of the central importance of the vector u.) Recall
that

m(n—1) .

Mmy=——= m'= .
n—m n—m

Then we have the following principal result.

PROPOSITION 6.1. Suppose me(1,n). Let u be a positive weak solution of (1.4)
and p€C§(Q) a non-negative test function.
Then for any deR we have

/ul—m*—d{Af(u)+Auf/(u)}|vu|m¢+3/u_m*_d|vu|2m¢

(6.2)
</ul_m*_d{Duf(u)+1A)|Vu|m}u-V¢+/uz_m*‘d{uVQQbu},
where V2¢ is the Hessian of ¢ and
-1 N — _
A:”—(1— d )(m*—l), A=l pomTlia_g,
n My n m
(6.3)

1 *
_ﬂ’ :<2_m )_(g_i)d.
n m m
The vector u is nonlinear in Vu when m+2; this makes the proof of Proposition 6.1
more delicate than that for the linear case treated by Gidas and Spruck. In addition, the

proofs when m>2 and 1<m<2 are distinctly different, with the latter requiring extreme
care.

O

D:

Before turning to the main proof, it is convenient to introduce some further notation.
Let

Qo ={zeQ|Vu(z) =0}



116 J. SERRIN AND H. ZOU

be the critical set of the solution u in 2. Moreover, by ¢ we mean the complement, of
the set € in Q, that is, ﬁczﬂ\ﬁ. In particular, Vu#0 on €.

Now by the standard regularity theory for quasilinear elliptic operators, one has
ueC?(Qg,) for all m>1. For z€Qf, we can thus introduce the important Jacobian
matrix

U=Vu, (Vu)!=0u/dz;=0(Vul™ ?u;)/0z;. (6.4)
It is easy to see that, for z€Q¢,,
U=|Vu|" 2 [I+(m-2)ww|H, (6.5)

where w=Vu/|Vu|, H=V?u is the Hessian of u, and (notation) a®b denotes the dyadic
matrix with components a;b7.

By virtue of Theorem 8.1 we have ue W22(§2), and so also HELZ (). Thus when
m>2 the three factors on the right side of (6.5) are respectively in C°, L> and L?, locally
on Q (when m>2 the definition of w on €, is unessential since the first factor vanishes
there!); hence in this case U=Vu is in fact well defined on all @, with ue VVJ)CQ(Q) and

UelLi (). When m>2 it is clear that U=0 on Q, but in fact also U=0 a.e. on ¢,
even when m=2 since €, is a level set of u).
The derivation of Proposition 6.1 involves, at the beginning, several easy lemmas.

We first have the following simple result.
LEMMA 6.1. For all m>1 and all z€¢

cr’

min(1,m—1)|Vu|™"?|V2u| < |U| < max(1,m—1)|Vu|"2|V2u|, z€Q.

Proof. For zeQ¢, we have by (6.5)

U=|Vu|/"%AH, (6.6)
where
A=T+(m-2)wew. (6.7)
Clearly A is symmetric with eigenvalues Aj=m—1, Aa=...=A,=1.

Now using the fact that H is also symmetric, and that trace(MN)=trace(NM) for

any pair of square matrices, we get
|U|? = trace(UUT) = |Vu|*™~* trace( A2 H?).
Diagonalizing A and recalling the form of its eigenvalues, we easily obtain
min(1, (m—1)%)|H|? < trace(A?H?) < max(1, (m—1)%)|H|?,
and Lemma 6.1 follows at once.

The following elementary result in linear algebra is preparatory for the crucial
Lemma 6.3 below.
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LEMMA 6.2. Let S be a real symmetric (nxn)-matriz. Then

1
trace % > = (trace S)?.
n

Proof. Let o1, ...,0, be the eigenvalues of S. Then by diagonalization of S we have

n

n 2
1 1
trace 82 = E 02> - ( g oi> = = (trace S)?
n
1

by the Cauchy—-Schwarz inequality.

LEMMA 6.3. For m>1 and x€$); we have

1
trace(U?)— - (trace U)* > 0. (6.8)

Proof. Recall from (6.6) that U=|Vu|™2AH, where A is given by (6.7). Since A
is symmetric and positive definite (all eigenvalues positive), we can write B=vA. But
then

trace[(AH)?] = trace[B(BHB?H)] = trace[(BHB?H)B] = trace[(BHB)?].
Moreover B and H are symmetric, so that also BHB is. Hence by Lemma 6.2 we find

trace[(BHB)?] > —le[tra,ce(BHB)]Q _ % [trace(B2H)| — 7—11 [trace( AH)J2.
Combining the above relations we get
trace(U?) = |Vu|* *trace[(AH)?] > % |Vu|?*™~4[trace(AH))? = %(trace U)?,
completing the proof.
Remark. When m >2 we have U=V u, so that trace U=divu=—f(u) (a.e.) by (1.4).
But U=0 a.e. on g, which thus implies

flu)=0 a.e. on Q.

If u#0, then u is positive by the strong maximum principle. This gives the following
regularity result.

COROLLARY. Suppose that f(u)>0 for u>0. Then |Q}=0 when m>2.

That this corollary may not hold when 1<m<2 makes many of our later proofs
more difficult for this case, see §§7 and 8.

The following standard result in the calculus of weak derivatives will be used repeat-
edly in what follows, frequently without explicit mention.
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LEMMA 6.4. Suppose that a,be VV&,E(Q), where a is scalar and b is either scalar or
vector. Then

/ bV = — / (aVb+(Va)b)é
for any test function ¢€C§°(Q).

For the remainder of the section we shall assume that u is a positive solution of (1.4),
with m=>=2. (The case 1<m<2 will be deferred until the next section.)
Put

v=1u"u, (6.9)

where a€R is a constant to be determined later, and u is the principal vector (6.1). By

the assumption m>>2 we have ue Wlf)’cz(Q), as already noticed. Hence also vEVVlicz(Q)

LEMMA 6.5. Suppose m>2, and let u be a positive weak solution of (1.4). Then
u-Vu=|Vu|", v -Vu=u®|Vu|™, diva=-/Ff(u). (6.10)
Moreover VEVVlzcz(Q) and
Vv =au® Y Vu|" ?Vu®Vu+u®Vu, divv=u®"1(a|Vu|"—uf(u)), (6.11)

where U=Vu, V=Vv are the Jacobian matrices of u,v. Finally, with standard matriz
multiplication notation,

UVu = (Vu)Vu= m?_lvqwm). (6.12)

Proof. The identities (6.10), (6.11) follow by direct verification with the aid of the
fundamental equation (1.4) and Lemma 6.4. For the final relation (6.12) we use the

calculation

(Vu)Vu = |[Vu|> ™(Vu)u= %qu|2_mV(|u|2)
—m — m—1 m
=3[Vl V([ Va7 = —=V(|Vul™).
Now define
I(x) =trace(V?)— —71; (divv)2.

Note that I(z)€ L () (for m>2) since V€ LZ ().

loc
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LEMMA 6.6. Suppose m>2. Then I(z)>0 a.e.

Proof. Observe that
v=uu=s5"2%|V(u*)|" 2V (u®) =1,
where s=1+a/(m—1), a#1—m, while
v=u*u=|V(lnu)|™ *V(lnu)

if a=1—m. For points € ¢, the conclusion now follows directly from Lemma 6.3 applied
to & and U=V rather than to u and U, with the obvious changes if a=1—m. (Note
here that diva=trace U a.e. on Q¢,..) When z€Q,,, then U=V =0 a.e., and again the
conclusion holds.

Let beR. Consider the vector field
1 b
— —_— - - — i .13
w—w(x)—(v Vv v div V)U (6 )

(the expression v-Vv is interpreted as the vector (v-V)v or equally as the matrix prod-
uct vV'). Also put
W =uPT2 A (u)+ Auf' (u)} [ Vu™

. (6.14)
+ Bub2%72 | Vy|*™ - C div (6 T2 | V| ™ u)
where

n—1
a?,

1 A -1 1
A:(l- )b, A=-""" B=-"""(pb+2a-1)b—
n m

(6.15)
n—1 m—1

C=——a+ b.
n

2
loc

Clearly w and ¢ are in L{ _ (in fact, the first three terms in ¢ are continuous). The coefli-
cients A, A, B in (6.15) are the same as in (6.3) provided b and a are chosen appropriately,
see (6.26) below.

The next result is the key to Proposition 6.1 in the case m>2.

PROPOSITION 6.2. Suppose m22 and let w and ¢ be given as above. Then divw=
ubI(x)+ in the sense of distributions, that is,

—/w-V(b:/(ubI(w)—l-d))qﬁ for all $€CT(R™). (6.16)
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Proof. By virtue of the identities (6.10) and (6.11), and Lemma 6.4, we have

Iy s/ub(divv)v-w
:-/ub(divv)2¢—b/u"-l(divv)v-vw—/u"v-V[divv]¢
= [uraivve-b w2 o vum—uf ) Vi

- [utt v ol vl - ufw)o
=~ [uraivv e+ [ube Ao ruf @)ITu"

+B0/ub+2a-2|Vu|2m¢+C’o/ub+“u-V(ua_1|Vu|m)¢,

where
Ap=a+b, By=-ab, Cyp=-—a.

We have next, by (6.10) and (6.11),
—/ub(v'Vv)-qu:—a/ub+a_1(v-Vu)(u-V¢)—/ub”(v'Vu)-ch)
=hL+1.
With the help of (6.10) one finds that

div(ubT* =} (v-Vu)u) = div(ub+2971 | Vu[™u)
— ub+2a—1u'v(|vu|m) _ub+2a—1f(u) Ivulm

+(b+2a—1)u+?2=2|Vy)2™.

This gives the evaluation

(6.17)

(6.18)

L=A / W20 £ () [Vl 4 By / ub+28-2| gy 4 Oy / W20 10 (V™) (6.19)

where
Ay=-a, B;=(b+2a—-1)a, Ci=a.

(6.20)

The integral I is more difficult, involving a delicate interchange of order of differen-

tiation. That is, in rewriting I we should like to use the relation (in an obvious subscript

notation)
ViVj ’U.i = VJVZ ui = f'(u)Vj Uu.
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This is only a formal calculation, however, except in the regular case m=2, and con-
sequently it is necessary to follow a somewhat roundabout procedure. For h>0 and
hi=he;, i=1, ...,n, let Uy, be the matrix with components

{Un] = h™H{IVu(z+1) "2 V(e +17) = V(@) V;u(2)}- (6.21)

Since ueW,52(Q2), as noted just after (6.5), it is standard that U, —Vu in L} _ as
h—0, see (6.1). Hence we can write

I, =—1li b+a . )
2 hli)l%) U (VUh) VqS

In turn, by Lemma 6.4,

I = lim { / (vUR)-V(ub**) o+ / ubTe trace(VU,)p+ / ubﬁv.(divU{)qﬁ},

the last term understood in the distribution sense. Now by (6.10)—(6.12), with conver-

gence in the sense of L _(Q),

(vUR)-V(u"*?) = (b+a)u’ o v ((Vu)Vu) = m_m_—l (b+a)u’T2 u-v(|Vu™)
and
trace(VUy) — trace(VVu) =u~* trace(V?) —au"'u- (VVu)
:u_“trace(V2)—a2u“_2|Vu|2m—m—rg—lau“'lu'VUVMm).

Finally, for the third term in the limit, we assert that (uniformly on compact subsets
of Q)
div U} — —f'(u) Vu. (6.22)

Assuming (6.22) for the moment and then combining the previous four lines, we get

IQ:/u_atrace(VQ)—/ub+2“f'(u)|Vu|m¢

(6.23)
+B, / w22 G2 g+ / w2V (|Vu™) ¢,
where )
By=—a?, Ch="—"p. (6.24)
m

It is clear that the left side of (6.16) has the form

I
2N+,
n
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where Iy, I, I> have been calculated above, see (6.17), (6.19), (6.23). The terms in
Iy, I, I with coefficients Cy, C1, Cz can be put in pure divergence form, as required for
the function . In particular, making use of (6.10) we have the following identity for

rewriting the indicated term in Iy:

div(u®*2e~ V™ u) = u®u- V(w7 | Vu|™) —ub+227 1 f(u) [Vul™

+ (b+a)ub+2a—l 'Vu|2m’
while, for the corresponding terms in I, I3,

div(u?*2271 | Vu|™u) = w20 a . V(| V™) — w201 f(u) [Vu™

+(b+2a—1)ub+2e2 | Vy*™.
With the help of these identities and the previous calculations for Iy, [1, > we are
lead to the main formula for 1, with coefficients

Ag

n

1

C R
A= +A1+*ng+01+02, A=‘—1+E,

B
B= —n—0+Bl+B2—(b+a)%’-—(b—l—?a—l)(Cl-FCg),

C
C= 704—01 +Cy,

or equivalently, for A and B,

A= 1—4712+A1+C,

B= %‘*‘314‘324—(&—1)%—(b+2a—1)c.

Using (6.18), (6.20) and (6.24) together with a little arithmetic, we then obtain the
claimed values (6.15) for the coefficients A, A, B,C. This completes the proof of Propo-
sition 6.2, once we have shown (6.22).

Proof of (6.22). Apply finite differences to (1.5) to obtain

divU} =y, (6.25)

where y is the vector with components

) . 7Y —
yJ:cJ(x)u_(iL‘il.}%_u_(x_)’ i=1,2,...,n,
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and
o) = — /0 F(u(@)+tulz+ ) —u(z))) dt.

The result now follows at once since h™(u(z+h?) —u(z))— Vu and ¢/ — — f'(u) as h—0,
uniformly on compact subsets of Q.

We now determine the parameters a and b. To motivate our choice, let us first seek
the maximum value of b, and hence A, subject to the condition B=0. Writing b=b(a)
and differentiating the relation

B(a,b)=0

with respect to a, we obtain, when ¥'(a)=0,

n—1 m—1

2a +2b—— =0.
m

n

Solving the last two equations for a and b gives

m—1
a=————m", b=——m"
m . n

where the critical exponent m* was defined at the beginning of the section. In fact, these
values for ¢ and b are not optimal, since in §3 we need to have B>0. Thus we make the

modified choice 1
a=—-"""mr, b=""m*—d, (6.26)
™m n

where d is a given parameter which will eventually be chosen small and positive. With
these values for a and b, the constants A, A, B in (6.15) take the final form given in (6.3),
while

n—1 m—1

a+ b

C
C=224C14Cy=
n m

by (6.18), (6.20), (6.24).
We can now complete the proof of Proposition 6.1 for the case m>2. First, from
(6.13) and (6.11),

—1 1
w= ub+2au'Vu+a———nn w2 Ty a4t ;—lub““f(u)u.
By means of (reverse) integration by parts and (6.10), one gets
—/ub+2“(u-Vu)-V¢=/(u-V(ub+2a))u-V¢+/ub+2“ divuu‘V¢+/ub+2“uV2¢u

=(b+2a)/ub+2“_1|Vulmu-V¢ (6.27)

__/ub+2af(u)u_v¢+/ub+2a{uv2¢u}
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(in a corresponding calculation at this stage of the proof Gidas and Spruck use a different

partial integration). In turn

—/w-qu: (—n;;—la-%b) /ub+2“_1|Vu|mu~V¢

n+1
n

~ /ub+2“f(u)u~ng+/ub+2“{uV2¢ ul.

By Proposition 6.2 and Lemma 6.6 the left side of the previous relation is greater
than or equal to [1¢ for all non-negative test functions ¢. Moreover the integral of
the last term in the expression (6.14) for ¢ can be rewritten using integration by parts,

namely

c / div(u®*2*~ 1 Vu[™u)¢ = —C / w2 Yy Ve (6.28)

The required conclusion (6.2), (6.3) now follows, with

]3=C+(%la+b> =2a+2mm_1b: (Q*TZ;>—(2——;—1>(1

and b+2a=2—m.—d.

Remarks. Tt is obviously possible to state Proposition 6.1 in a slightly more general
form, without specifying a and b.

In the present case m>2, equality can be attained in (6.2) by adding the term
Ju'I(z)¢ to the left-hand side. Whether equality can hold in (6.2) itself is an open

question.

7. A general integral inequality II

The proof for Proposition 6.1 given in §6 for the case m>2 fails when 1<m <2, since the
Jacobian matrices Vu and Vv are singular on the critical set

Qo ={reQ|Vu(z)=0}.

Because we cannot be assured that this set is empty when 1<m<2, or even of measure

zero, the previous proof becomes only formal. Moreover when 1<m<2 the function I{x)

in Lemma 6.6 cannot be defined on the critical set €2.,, creating a further complication.

All this forces us, when 1<m<2, to modify the previous argument in essential ways.
As in §6, definitions (6.1) and (6.9), we continue to write

u=|Vu/™?Vu, v=uu
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The matrices Vu, Vv, though now having no meaning on ., are of course well defined
and continuous on 5. It is then convenient to redefine U and V, for 1<m<2, as

- Vu, z€Qg, Vv, zeQf,
lo,  zeQ., 0, T€Q.

(7.1)

With these redefinitions, Lemma 6.5 continues to hold, with the first relation of (6.11)
and also (6.12) in the slightly modified form

V =au® | Vu|" 2 VueVu+u® U, UVu= 2~ — V{(|Vul™); (7.2)

the second relation of (6.11), however, remains unchanged in view of the calculation

/v Vo= /u u-Vo= / au®"H (Vu)¢]
= [t s -auvamo.
For fixed 0<e<1 we put
=|Vu|"?Vu, |Vul. =max{|Vu|,e}.

Clearly u, is in C(?) and Vu, in L _(Q) by Proposition 8.1. The following technical
lemma will be important in the sequel. Its proof will be deferred until §8, Lemma 8.4.

LEMMA 7.1. Let Uy, be the (matriz) difference quotient introduced in the previous
section, see (6.21). Then as h—0,

u U, —>u U  weakly in L} _(Q),
Vu. U, = Vu.U  weakly in L (Q).

Remark. These relations are obvious when m>2, since Up,—Vuin L, and Vu=U.

They are far from trivial when m<2.

Now proceeding in analogy with the demonstration in §6, we set
ve=u"u,, V.=Vv,

and )
I.(z) =trace(V.V)—=div v, divv. (7.3)
n

From Proposition 8.1 it is evident that V, V. and divv, are in L (). Hence I.(z)€

L{,.(£2). The proof of the next result will be deferred until the end of the section.
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LEMMA 7.2. Let Q.={zcQ|0<|Vul<e}. Then, for all suitably small >0,

L@)> { S () /8D, zet,
7o

z€QL.

?

Now let b€R, and consider the vector and scalar fields w.=w.(r) and Y.=v.(x)
given by

We = (st— —l-ve div v) ub (7.4)
n

and ~ . .

e = w2 A (u) + Auf’ (w) ) T + Aub+ 2= Vu ™ div u, 5
+Bubt22=2|gy[™ T 4 C div(u®T2* 7 | Vu|™u,), .
where T'. =u.-Vu=|Vu|"2|Vu|?,
. S -1
A=A-A, A=2-T"""% (7.6)
n m

and A, A, B,C are given by (6.15).
PROPOSITION 7.1. Let w, be defined by (7.4). Then

div w, = ¢ +u? I (z) + O (2™ V)
in the sense of distributions, that is,
- /we-wz /(we+ubI€(m))¢+0(52(m’1)) for all $cC(R™). (7.7)
Proof. By virtue of (1.4), the identities (7.2) and (6.12), and Lemma 6.5, we have
Iy= / u(div v)ve- Vo
— /ub(divve)(divv)¢—b/ub_l(divv)vs-quﬁ—/uva-V[divv]qb
=— / uP(div v.)(divv)¢—b / w292 (a| V)™ —uf(u)) T ¢
(7.8)
- [ un vt Ve - s )l

=— /ub(div ve)(div v)¢>+/ub+2a’1(Aof(u)+uf'(u))Fs¢

+BD/ub+2“_2{Vu|mFe¢+Cg/ub“ug-V(u“_l[Vulm)q‘),
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where
Ag=a+b, By=-ab, Cy=—a. (79)
Next, by (7.2) again,
-~ /ub(vs-V)-V¢>: —a/ub+“‘1(v5-Vu)(u~V¢)—/ub+2“v€U-V¢
= Il +_[2
With the help of (1.4) one finds that
div(ubT* = (v,- Vu)u) = div(u® 24711 u)
=ubt207 1. VT, 297 f () T 4 (b+ 20— 1) w2472 |V I,

This gives the evaluation

I1=A / w201 (W) 4+ By / w22 Ty ™+ ) / u’t2e=1y. VI, (7.10)

where
Ai=—-a, Bi=(b+2a-1)a, Ci=a. (7.11)

The term I5 is more difficult, involving a delicate limit calculation. By Lemma 7.1 (i},

I = lim / ubtev, U, Vo
h—0

=}llin}){/(vsUh)-V(ub+a)¢+/ub+“ trace(VEUh)cz)—l—/ub+“v5-div(UZ)¢}.
—
We deal separately with the three terms on the right. By Lemma, 7.1 (i) and (7.2) we get
-1
(veUpr)-V(@'*) = (b+a)ubT v, Up,-Vu — T—nm— (b+a)u’*2 tu, - V(|Vul™)

weakly in L2.
Next,
V. =Vv, =au®* ' Vu®u. +u®*Vu,,

where we note that V.=0 a.e. on g, since V2u=0 a.e. on this set (that is, V(Vu)=0

a.e. on the level set §,). Therefore, again using Lemma 7.1 and (7.2), we find as h—0
trace(V.Up) — trace(V.U)
=u"%trace(V.V)—au"'u-(Vv,.Vu)
-1
=u"*trace(V. V) —a?u® 2T |Vu|™ - Tm—au“_luE-V(IVulm)

+0(2m V)
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weakly in L'; the last step arises from direct differentiation together with the observation

that —_—

u-Vu.Vu=
O(e™2|Vu| " V2u) =O(*m D V2), z€Q..

Finally, for the third term in the limit we have, exactly as in (6.22),

1
av®"lu.-V(|Vu|™), z €S,

divUT = — f'(u)Vu. (7.12)

Combining the previous lines yields

12:/ubtrace(VsV)—/ub+2"f’(u)FE¢

(7.13)
+B2/ub+2a-2rsIvu|m¢+C2/ub+2a—'lu5_v(lvu|m)¢+O(EQ(TN—-I))
(since V2ue L2 (£)), where
-1
By=—a®. Cp=1T""b. (7.14)
m
It is clear that the left side of (7.7) has the form
I
D4 L+,
n

where Iy, I, I have been calculated above, see (7.8), (7.10), (7.13). The terms in Ig, I1, I2
with coefficients Cy, C1, Cs can be rewritten in pure divergence form, as required for the
function .. In particular, making use of (1.4) and differentiation, we have the following
identity for rewriting the indicated term in Iy:

div(ubt297 | Vu™u, ) = w0 u,- V(e Vu|™) +ub 2 Hdiv u, [Vu|™

+(b+a)u’T2* T, | VU™,
while for the corresponding terms in I; and I, we have
div(u"*2= 1 Vu|™u, ) = div(ub*2* 710 u)
=uP+20- 1y VT, —u?t 207 f(u) T+ (b+2a— 1) w22 | Vu|™ T,
and
div(u®T2e= 1| Vu|™u, ) = w2 Tu, - V(| Vu|™) +ub 22 L div u, | Vu|™
+(b+2a—1)u’T?4 72T, | Vu|™.

With the help of these identities and the previous calculations for Iy, I, 2 we are
lead (after a little arithmetic) to the main formula for v, with coeflicients given in (7.6)

and (6.15). This completes the proof of Proposition 7.1.
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PROPOSITION 7.2. Suppose mée(1,2). Let u be a positive weak solution f of (1.4)
and ¢€C(Q) a non-negative cut-off function. Then

/ub+2a~—1{Af(u)+Aufl(u)}|vulm¢+B/ub+2a—2|V’u|2m¢

(7.15)
~ 1
S/ub+2a_1{Duf(u)+D|Vu|m}u-V¢+5/ub+2“{uV2¢>u},
where A, A and B are given in (6.15) and
p=-" pgu Ly (7.16)
n m

Proof. We shall obtain (7.15) by letting e—0 in (7.7). In preparation for this limit
process, observe first by (7.2} that

-1 1
w, = ubt2e u5U+a%— w2 V|, + Eub”“f(u)ue. (7.17)
As in §6, equation (6.27), we evaluate the first term on the right in (7.17):

— / u**2%u, U- V¢ = (b+2a) / w21 |y ™, Ve
(7.18)
+/ub+2a div ugu-V¢+/ub+2a{u5V2¢>u}.

This cannot, however, be obtained as in §6 by a direct integration by parts, since the
matrix U is not a true gradient. Nevertheless, by approximating U by U, and using
Lemma 7.1 (i) it is clear that (7.18) is valid.

Finally, a transformation of the last term in the formula for ¢, , see the corresponding
relation (6.28), gives

c/div(u””“—l[vmmug)qs:—c/ub+2a—1|vu|mue~v¢. (7.19)

With the help of (7.17)-(7.19) one may now carry out the limit as € approaches zero
in (7.5), (7.7). Since u. goes to u pointwise and boundedly, and similarly I'. goes to
|[Vu|™, the only difficulty then resides in the limiting value for the quantity div u., which
appears both in (7.5) and (7.18). Corresponding to the term in (7.5), however, we have

IVu|™divu, = —Ivulm W), e (7.20)
T em? VA, ze., '
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while for the term in (7.18),

—uf(u), CUGQS:»
udivu, = (7.21)
em2Vu|Vu|" %Ay, z€Q..

Letting £—0, and using the fact that . then converges to the empty set, we see
that the right side of (7.20) converges pointwise in € to —|Vu|™f(u). Moreover, by
Proposition 8.1, it is uniformly bounded in LZ _(£). Hence the convergence also holds
weakly in L2 (Q); see the remark after Lemma 8.3.

For the second term on the right side of (7.21) we have the estimate

€™ 2Vu|Vu|™ 2 Au| < ™7 Vu™ 2| V2u|z € Q..

By the second part of Proposition 8.1, it now follows as for (7.20) that the right side of
(7.21) converges weakly in L2 () to —uf(u).

In summary, both the quantities |Vu|™divu, and udivu. converge weakly in
L% (%), respectively to —|Vu|™f(u) and —uf(u).

The resulting limit (7.15) is now easily obtained with the help of a little arithmetic,
provided that the term u®I, in (7.7) is non-negative, or at least non-negative in the limit

as €—0. Indeed by Lemma 7.2 we have

liminf/ubIE(z)QS;liminf/ ull(z)é
e—0 e=0 Jo.
(7.22)

1 . b+2a—2 2
> —
>~ Tm=1) Ehrr(l) qu (I14+uf(u))¢—0

since |2 N(supp ¢)|—0 and the integrand in (7.22) is bounded. Proposition 7.2 is there-
fore proved.

Proposition 6.1 for the case 1<m<2 now follows by setting, as in (6.26),

- —1
a:—m—lm*, b="""m*—d.
m n

It remains to prove Lemma 7.2.

Proof of Lemma 7.2. For |Vu|<e one has ve=e™"2u%Vu and
V. =™ 24 HaVueVu+uH),

with H=V?u. Since H=V2u=0 a.e. on ., one has as well that V.=0, divv.=0 a.e.
on (... On the other hand, v,=v, V.=V and I.=1I when [Vu|>e.
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Therefore, as in the proof of Lemma 6.6 we get I.(z)>0 (a.e.) on Qf (note that
I.=0 a.e. on Q).
Next consider the remaining case x€€).. Here one finds by (7.2) and (6.5) that

V=421 Vu|" 2 [aVuaVu+u(l+(m—2)wew)H],
where w=Vu/|Vu|. Thus, recalling that 1<m<2,
trace V.V = g™~ 2% 2(e=1) | gy |2
x {a?|Vul* + amu|Vu 2 {wHw} + 2 (|H|> + (m-2)|[wH|?)}
> e™ 220D V™2 {02 | Vul|* + a| Vul?- mu{wHw} + (m—1)u? |H[*}
=™ 220DV 2 {Q+ L (m—1)u?[HI?),

\Y

defining Q. By the Cauchy-Schwarz inequality (and the usual trick),

a?|Vult.

Q> 1——mi— a®|Vul|* = -
“\ 7 2m-1) -

Noticing that |[Vu|™*t2<e™*2 and |Vu|™2>e™"2 since 1<m<2, we then get by com-

bining the previous lines,

1 1
trace V,V = — T a?e?mq2e=1) 4 E(m— 1)e2(m=2)q2 1|2, (7.23)

On the other hand,
1 1 1
- div v divv = - trace Vo divv = Esm_Quz(“_l){aIVu|2+uAu}-{a|Vu|m —uf(u)}

using the second equation in (6.11) at the last step. Then, by the Cauchy-Schwarz
inequality again,

1
- divv.divv < %(m—l)eQ(m‘mum‘|Au|2
1l ) (7.24)
2(a—-1)_a_ m m o m 2
D e ol b )+ g (lale™ Fuf ()
Hence finally, by (7.23) and (7.24),
I. =trace V.,V — % divv. divv
2——1———u2(a_1) a2z€2m+2(m—1)Msm(lalsm—1~uf(u))+i(|a|5m—|—uf(u))2
2(m-1) n n?

= 2(ml—1) w21 [(1+ %) laje™+ %uf(u))r.

The required result now follows from the fact that n>2.
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8. Regularity theory

In this section, we consider the regularity of weak solutions of (1.4). We shall require
only that ueC?(Q) and feC'(R™), rather than the more specialized conditions which
were assumed for the earlier work.

The following fundamental result is well-known, see [1], [10], [11], [13], [27], [29], [30].

THEOREM 8.1. Let u be a weak solution of (1.4). Then there exists 3€(0,1) such
that

ue W2(Q). (8.1)

loc
Moreover,
ue CLP (). (8.2)

loc

The embedding ue W;>?(2) for 1 <m <2 in particular is due to Acerbi and Fusco [1],
though the result is essentially contained in earlier work; we give a separate proof below
as a corollary of Lemma 8.2.

Our main regularity theorem improves (8.1) in the case 1<m<2, by introducing an
important weighting factor.

PROPOSITION 8.1. Let u be a weak solution of (1.4), with 1<m<2. Then
|Vu|™2V2u e L2\ Q) (8.3)
where ' is any compact subset of 1 and
Qo ={zeQ|Vu=0}

18 the critical set of the solution wu.

Condition (8.3) implies that the “natural” Jacobian matrix U=Vu, see (6.5), is in
L (9'\Qe). This fact is crucial for the proof of Proposition 6.1 in the case m<2, see
the discussion of (7.21) in §7.

The proof of Proposition 8.1 requires a series of lemmas. The first is elementary.

LEMMA 8.1. Let a,b be vectors in R™ with |a|+|b|>0, and suppose m>1. Then
| [a]™ 2a—[b|™~?b| < C1(|al+|b))™?|a—b| (8.4)

and
(la]™ 2a—|b|™*b)(a—b) > Cz(|a|+ b)) ?|a—b|?, (8.5)

where
Ci1=2, Cy=2*""min(m—1,1).



CAUCHY-LIOUVILLE AND UNIVERSAL BOUNDEDNESS THEOREMS 133

Remarks. The right-hand sides of (8.4) and (8.5) are undefined when a=b=0 and
m<2; in this case we understand them to have the value 0. The same agreement will of
course apply in later applications of these inequalities.

The actual forms of €y and Cy are not important, only the simpler fact that they
depend only on the exponent m.(®)

Let {e;}7 be an orthonormal basis of R™. For h>0 and h'=he;, put
upi (2) =h~ (u(z+h) —u(z)), i=1,2,..,n, (8.6)

and introduce the matrix field U, with components

{Un}, = b {|Vu(@+h)|" 2V u(@+h') — | Vu(z)|™ >V u(z)} (8.7)
where V;u=0u/0z;. For simplicity we shall also write (8.6) and (8.7) in the abbreviated
forms

up =h" (u(z+h) —u(r))
and

Up, =h"H|Vu(z+h)|™ 2 Vu(z+h) - |Vu(z)| "2 Vu(z)},

with similar simplifications in subsequent formulas. Of course, we shall always suppose
that % is so small that these formulas are meaningful for a given z in .

Here and in the sequel, by Br=Bg(2¢) we shall mean a ball of radius R and cen-
ter xo, such that the corresponding ball Byg(x) of radius 4R is in §2.

LEMMA 8.2. There exists a constant C=C(x, R,n,m)>0 such that (when h<R)
/ {|Vu(z+R)|+|Vu(x)|}™ 2| Vun|? dz < C, (8.8)
Br

the integrand being assigned the velue 0 when Vu(z+h)=Vu(z)=0.
Proof. Take differences in (1.4), resulting in
divUl =y, (8.9)

where y=f'({)u, and ¢ is an intermediate value, see (6.25).

() To obtain (8.4) and (8.5) one can proceed as follows. By direct calculus we see that for fixed
|al, [b|#0 the ratio of the two sides of (8.4) attains its maximum when cos@=1 if m>2, and when
cos0=—1 if m<2; and conversely for (8.5) the ratio assumes its minimum when cos#=—1 if m>2, and
when cos =1 if m< 2, where 0 is the angle between the vectors a and b; in all cases, then, the extremum
is reached when a and b are parallel. Once this is shown, it is easy (again using elementary calculus) to
estimate the maximum and minimum of these ratios as |a| and |b| vary. (In fact, C> can be taken to be
1 when m=2 or m>3.)
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Let & be a standard cut-off function on the ball Bog CQ; see Lemma 2.4. Multiply
(8.9) by the test function &2uy,(z) and integrate over B to obtain

[€UnTuns [ 0n9€) =7l (8.10)
Observe by (8.5) and (8.7) that (for each fixed direction e;)
Up-Vu, > Cg{(Vu(:v-}—h)lHVu(:c){}m—Q |Vuh|2. (811)

Also when mée(1,2), we can bound(®)

1
= ‘/ VA{(|Vu|™ )V u(x+sh?) up V€2 ds dz
0

‘/UhUh‘v(€2)

1
/0 /[]vmm—?vj u)(z+sh*)Vi[uy: V; €2 ds dzx

1
m-—1 2 2¢2 T
< [ [ 1vutat st (19l (9621 funl [V ds
<4R—1/I/|Vu(x~l—sh)|""‘_1|Vuh|§dsdaU-I-CR_2
0
<2 [(1vuta+nI+u@) Ve do (5.12)
1 2
+CR_2/(/ [Vu(x+sh)lm_lds) {IVulz+R)|+|Vu(z)|}* ™ dz
0

+CR™?

C
< 72 /{IVu(z+h)|+|Vu(x)|}m'2 |Vup|*¢?dz+CR™2.
The constants C' in the above calculation clearly depend only on n, m and bounds on Vu

in the ball Bsg(xo). The estimate (8.8) now follows at once with the help of (8.10)-(8.12).
For m>2, we have by (8.4),

’ [uonvie)

<8R’1/{qu(x+hi)l+|Vu(:c)|}’"_2 |Vug|-|uplé dz

< % /{}Vu(x‘*'h)\'HVU(I)]}’""zIvuh|2§2 dz+CR™2,

(®) At the first and second steps of the calculation, we use summed index notation to avoid con-
fusion. At the fourth step take |VE|<2R™!, and at the second to last step use the Cauchy—Schwarz
inequality.
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and again (8.8) follows immediately.

Proof of (8.1) when 1<m<2. By (8.8),
|Vup|?dz < C
Br
since u€C(£). Because up—Vu as h—0 (uniformly on compact subsets), it is now
a standard result of the calculus of distribution derivatives (using the weak sequential
compactness of L2 (Q)) that ue W>2(£), as asserted.

loc loc

The rest of the section is devoted to proving the important embedding (8.3). We
first need two technical lemmas. Here it is convenient to define

I=32-m)=1-1im;
note particularly that [>0 when 1<m<2.

LEMMA 8.3. The function
|Vu| 7 V2|, z€Q5,
g (8.13)
0, T € Qyy,
is in LE ().
Proof. By (8.8) the quantity
K= (|Vu(z+h)|+|Vu(z))) | Vuy)|

2 .(Q) (use the Heine-Borel theorem). Clearly K; 27!z pointwise in .

is uniformly in Lj

Hence by the weak sequential compactness of L2 (Q), K, —2~'2 weakly in L2 (£2), which
at once yields the required result.

Remark. Here (and also below) we use the fact that weak convergence and pointwise
convergence are consistent, that is, if 1, —1 weakly in LP, p>1, and v, —( pointwise
(almost everywhere) then 1)=( a.e. This result is apparently well-known but it seems
difficult to find a proof in standard texts. An easy demonstration can be given using

Egoroff’s theorem. Indeed, suppose that 1¥#¢ on some set of positive measure, say, e.g.,

I'={zeQ|¢(z)>((z)}
with |T|>0. By Egoroff’s theorem, there exists I'; CI' such that |T'y|=3|T|>0 and 1, —¢
uniformly on I'; (up to a subsequence). Put ¢=xr,. Then by weak convergence,

Jins— [wo- s
/¢h¢=/n¢h—>/n§»

while by uniform convergence,

a contradiction.
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LEMMA 8.4. Let 1<m<2. Let U be given by (7.1), and u.=|Vu|™ 2Vu as in §7.
Then as h—0,
u. U, = u. U weakly in L3 (Q)

and
Vu, U, —»Vu. U weakly in Li..(9),
where Uy, is the (matriz) difference quotient (8.8).
Remark. This is exactly Lemma 7.1, whose proof was previously deferred.

Proof. (i) For fixed £>0, we write
u Uy =|Vu|  u,-|Vu|' Uy,

Clearly

» gm/2-2 ifm<3,
IVul ™ u, <

T 4
| V| ™/ 22 it m> 3,

so [Vu| 'u. € L (Q). On the other hand, by (8.4) and (8.7), one verifies since m<2 and
I>0 that
IVu|' [Un| < 2(IVu(z+h)|+|Vu(z)]) ™ | Vual,

which is uniformly bounded in LZ () by (8.8).

Now observe that outside the critical set the expression u.U;—u.U pointwise as
h—0, while on the critical set both sides are zero. The first conclusion now follows as
previously, in view of the weak sequential compactness of L (Q).

(ii) By the definition of Vu,., we have
M2 |V2y| if [Vu|<e,
| u€I < —92 2 .
[Vu|m V2| if |Vul 2 e,
where, for the set {|Vu|>¢}, we have used the equality Vu.=Vu=U together with
Lemma 6.1 and the fact that m<2. Therefore

|[Vu.| <e™ 2|V3u| for z€Q. (8.14)

Now write

(8.15)

Vu|"'Vu,, z€Qf,
0, € Q.

Then by (8.13)-(8.15),

Y| =|Vu| ™ [Vu.| <™ 2|Vu| V2| =em"22, z€QF,.
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Thus YeLZ () by Lemma 8.3.

loc

Asin (i), the quantity |Vu|' Uy, is uniformly bounded in L2 (). But also [Vul' U, —
|Vu|'U pointwise as h—0. Therefore as in earlier arguments, the convergence is also

sr2
in L .

(©). Consequently, noting that
Vu, = |Vul'Y,
we see that (with weak convergence in L. (Q))

Vu.Up,=Y|Vu'Uy, = Y|Vu|'U=Vu.U.

This completes the proof.

Finally, we can prove the embedding (8.3). By (6.25), since U,€C(2), we can write

Junve=[vs.

for any ¢peW, ' (2). We take ¢ to be the vector
p=u.? £€(0,1),

where ¢ is a standard cut-off function in Bsg, see Lemma 2.3; actually ¢EW01 2(Q) Then
one obtains easily, after contracting against u,,

/§2trace(Vu5Uh)+]2{(ugUh)-V§=/§2y~u€.

Let h—0. Using Lemma 8.4 and the definition of y (see (6.25)), we get
/52 trace(VuaU)+/2£(usU)-V§:—/§2f’(u)u5-Vu. (8.16)
Now from Lemma 6.1,
trace(Vu.U) > (m—1)e™ 2 |Vu|™ 2| Vu?

when 0<|Vu|<g, and similarly

trace(Vu,U) = trace(U?) > (m—1)2|Vu >4 | V2|2
if {Vu|>e. In turn, one checks without difficulty that

trace(Vu. U) = (m—1)2|Vu|™ 222 for z€Q.
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On the other hand, from (8.13) and another use of Lemma 6.1, we get |U|<|Vu|~2.
Consequently, by the Cauchy—-Schwarz inequality and (8.13),

~£(u.U)-VEE(IVule[Vu) T U] ue| (IVule [Vul)' | VE]

1 242 m—2,2 1 2(m—1) v 2
< —(m— v + —— V .
~ 2( 1) § ’ uls z 2(m_1)2 I uls l El

Thus by (8.16),

3(m=17 [ @1vur222 < [ a@) e+ [ B,

where

A(z) = Va2V, B(z) = |f' ()| Vul™

1
2(m—1)2

are in LS (). In turn

[Vu|™~22% < Const.,
Br

the constant being independent of € (since [Vu|.<1+|Vul in the expression for A(x)).
By the Lebesgue monotone convergence theorem, we now get

|Vu|™"222 < Const.,
Bpr

which by (8.13) is exactly the statement that |Vu|™2|V2u| is in L2(Q\§). This
completes the proof of Proposition 8.1.

9. Historical note: Cauchy and Liouville, a question of priority

Augustin Cauchy was the first person to publish the result now known as Liouville’s
theorem (see [8]). The contribution of Joseph Liouville is an interesting and tangled
story, worth recounting in some detail. A few weeks before Cauchy’s note appeared,
Liouville announced to the academy his first results for doubly-periodic functions, for
which he is justly famous (C. R. Acad. Sci. Paris, 19 (1844), 1262). This announcement
includes, without proof, a weak version of Cauchy’s theorem, namely the statement that
a doubly-periodic holomorphic function must be constant. Cauchy was entirely aware
of the relation of his result to that of Liouville, as he writes (C. R. Acad. Sci. Paris,
19 (1844), 1379), “If one considers separately the case of doubly-periodic functions, one
recovers the special theorem regarded with reason, by one of our honorable associates,
as particularly applicable to the theory of elliptic functions.”
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Three years later, Liouville gave a series of informal lectures on his theory for
F. Joachimsthal and C.W. Borchardt; these lectures, containing the previously cited
weak version of Cauchy’s result, but with no reference to Cauchy, were transcribed and
edited by Borchardt and (much later) published in J. Reine Angew. Math., 88 (1880),
277-310. Outside of the first announcement and one later note (see below), this is the
entire published record of Liouville’s work; surprisingly it does not contain Liouville’s
own proof, but instead an alternate discussion due to Borchardt.

In 1851 Cauchy again wrote explicitly that his work of 1844 “furnished the fun-
damental principle invoked by M. Liouville for doubly-periodic functions” and went on
to restate his result of 1844 (see C. R. Acad. Sci. Paris, 32 (1851), 452-454; (Buvres
complétes, 1'® série, tome XI, 373-376). At about the same time, Liouville delivered a
carefully written course of lectures at the Collége de France on doubly-periodic functions,
containing a relatively simple proof of his doubly-periodic theorem, but again not citing
Cauchy’s contribution.

Liouville was clearly much concerned with what he considered his priority to the
doubly-periodic result, for in 1855 (J. Math. Pures Appl., 20, 201-208) he republished his
1844 remarks together with a later comment of 1851 containing much the same material;
indeed he even went on to refer explicitly to his lectures at the College de France “in the
second semester of the year 1850-1851”. This degree of concern almost certainly stems
from the remarkable fact that near the end of his mathematical notebook for the year
1844 he had written the following “Remarque d’analyse”:

Soit f(z) une fonction bien déterminée de z. Si le module de f(z) ne dépasse
jamais M, on a f(z)=Constante.

Since it is evident that he understood the function f(z) to be given on the entire
complex plane, this is clearly the general result! There follows a one-line proof sketch,
which however can only be cousidered tentative. From internal evidence it seems highly
likely that these words were written prior to the announcement of 1844, that Liouville
then devoted his effort to finding a proof of the doubly-periodic result, and, upon finding
a (difficult) demonstration, then reported this (but only this) result to the academy. He
never afterwards referred to the “Remarque”.

Liouville saw the utility and centrality of the doubly-periodic theorem for elliptic
function theory, but in his preoccupation with this he missed the elegance and beauty of
the main result. Cauchy on the other hand immediately understood its importance, as
have all subsequent writers. Clearly disappointed at the turn of events, Liouville at no
time thereafter ever made reference to Cauchy’s theorem. The irony is that nevertheless
it is Liouville’s name which has become attached to the theorem.

The first modern proof of the main theorem (still found in texts today, based on
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the Taylor expansion) is apparently due to Briot and Bouquet in the first edition of
their monograph Théorie des fonctions elliptiques, Paris, 1859. They refer neither to
Cauchy nor to Liouville for the result. Very curiously, the first published attribution of
the theorem to Liouville (to our knowledge) occurs in the second edition, Paris, 1875,
pp. 202-203. In the preface (p. iv) they cite Liouville’s lectures of 1851 as the source
for their attribution, though as we have noted above, their proof is neither Cauchy’s nor
Liouville’s but essentially the modern one based on Taylor’s series.

A few years later, E. Borel, Lecons sur les fonctions entiéres, Paris, 1900, p. 2, gives
the result back to Cauchy, though without citing a source. Finally, Whittaker and Watson
in A Course of Modern Analysis, Cambridge, 1902, explicitly call the result “Liouville’s
theorem”, again without citation; in their second edition, however, Cambridge, 1915,
while still naming the result Liouville’s theorem, they specifically attribute it to Cauchy
and cite the 1844 reference at the beginning of this note. On rare occasions a more
modern treatise on complex analysis still refers to Cauchy, e.g., works of Copson, 1935;
Dinghas, 1961; Sansone and Gerretson, 1962. But by this time the die has been cast.

For simplicity throughout the present work, we have continued the customary prac-
tice of attaching Liouville’s name to results in which a non-negative solution of an elliptic
equation is shown to be constant.

{We are indebted to Professor Edgar Reich for his aid in locating some of the sources
cited above, and for helpful discussions of the various historical issues involved. We
also thank Fabienne Queyroux of the Bibliothéque, Institut de France, for her help in
locating Liouville’s notebooks and manuscripts. We cite also J. Liitzen’s Joseph Liouville
1809-1882: Master of Pure and Applied Mathematics, Springer-Verlag, 1990, where there
is an extended and interesting discussion of some of the material above, though the
presentation is partly marred by championship of Liouville’s priority claims.)
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