
Acta Math.,  187 (2001), 161-190 
@ 2001 by Inst i tut  Mittag-Lettter. All rights reserved 

Extrapolation of Carleson measures and 
the analyticity of Kato's square-root operators 

PASCAL AUSCHER 

Universltd de Picardie-Jules Verne 
Amiens, France 

JOHN L. LEWIS 

University of Kentucky 
Lexington, KY, U.S.A. 

by 

and 

STEVE HOFMANN 

University of Missouri 
Columbia, MO, U.S.A. 

PHILIPPE TCHAMITCHIAN 

Universitd d'Aix Marseille III 
Marseille, France 

1. Introduction,  history and statement  of  the main theorem 

Let A be an (n•  of complex L~-coeflicients, defined on R n, with IIAII~<A, 

and satisfying the ellipticity (or "accretivity") condition 

/kl~21 ~< Re (A~, ~) ~< AI~I 2, (1.1) 

for ~EC n and for some A, A such that  0<A~<A<oc. Here ( . , . )  denotes the usual inner 

product in C n, so that  

(d~, ~) ~ E miy(x)~j "~i. 
i,j  

We define a divergence-form operator 

Lu =- - div(d(x)Vu), (1.2) 

which we interpret in the usual weak sense via a sesquilinear form. 

The accretivity condition (1.1) enables one to define an accretive square root 

v / L - L  1/2 (see [14]), and a fundamental question is to determine when one can solve 

the "square-root problem", i.e. to establish the estimate 

H v ~  fHLe(Rn)  • CHVfHL2(an), (1.3) 
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with C depending only on n, A and A. The latter estimate is connected with the ques- 

tion of the analyticity of the mapping A--+L 1/2, which in turn has applications to the 

perturbation theory for certain classes of hyperbolic equations (see [15], [19]). We note 

that  it is well known, and easy to see, that  (1.3) holds when L is self-adjoint. 

A long-standing open problem, essentially posed by Kato [14] (but refined by 

McIntosh [19], [21]--we shall explain this point more fully below), is the following: 

QUESTION 1. Let Az, z c C ,  denote a family of accretive matrices as above, which 

in addition are holomorphic in z, and self-adjoint for real z. Let 

L~ ~ - div A~(x)V. 

Is Llz/2 holomorphic in z, in a neighborhood of z=0?  

In fact, Kato actually formulated this question for a more general class of abstract ac- 

cretive operators. A counterexample to the abstract problem was found by McIntosh [21]. 

However, it has been pointed out in [19] that,  in posing the problem, Kato had been mo- 

tivated by the special case of elliptic differential operators, and by the applicability of a 

positive result, in that  special case, to the perturbation theory for hyperbolic evolution 

equations. A positive answer to the question posed above can be restated as 

CONJECTURE 1.4. The estimate (1.3) holds in a complex neighborhood in L ~ of any 

self-adjoint matrix A satisfying (1.1); i.e. (1.3) holds for the operator L (as in (1.2)) 

associated to any complex-valued matrix fl, whenever 

IIA-Alloo <~ so, 

with So depending only on n, A and A. 

Indeed, given Conjecture 1.4, then by the operator-valued version of Cauchy's the- 

orem, one obtains analytieity at z=0  of the mapping 

L 1 / 2  
z --+ - - z  , 

where Lz =- - div(Az)V, z-+Az is analytic, and Ao=-A is self-adjoint. It was this analytic- 

ity result that  Kato had sought, in particular for real, symmetric matrices, in connection 

with the theory of hyperbolic equations. 

In [14], Kato also framed a more general conjecture for square roots of abstract 

accretive operators belonging to some broad class (see [22] for the details). Again the 

abstract question was shown to have a negative answer: a counterexample was obtained 

by McIntosh [20], who then reformulated the conjecture for the special case of elliptic 

differential operators: 
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CONJECTURE 1.5. The estimate (1.3) holds for any operator L defined as in (1.2), 

associated to an L~- (n  • A with complex entries, for which (1.1) holds. 

To establish the validity of Conjecture 1.5 has become known as the Kato problem, 

or square-root problem. Until recently, both Conjecture 1.4 and Conjecture 1.5 had been 

proved completely only when n= 1. 

In the 1-dimensional case, the square-root problem is essentially equivalent to the 

problem of establishing the L2-boundedness of the Cauchy integral operator along a 

Lipschitz curve. Thus Conjecture 1.5, and hence also Conjecture 1.4, were proved in 

one dimension in the celebrated paper of Coifman, McIntosh and Meyer [5]. The precise 

nature of the relationship between the Cauchy integral operator along a Lipschitz curve, 

and the 1-dimensional Kato problem, was obtained in [16]. 

In higher dimensions, both Conjecture 1.4 and Conjecture 1.5 had been proved only 

in the case that  A is close, in some sense, to a constant matrix (or in the case that  one 

imposes some additional structure on the matrix--see [2] for some examples). 

The first result involving perturbations of constant matrices was due independently 

to Coifman, Deng and Meyer [4], and Fabes, Jerison and Kenig [9], who established 

the square-root estimate (1.3) whenever I IA-  Ill ~ ~< s(n). Clearly, their methods allowed 

one also to replace the identity matrix I by any constant accretive matrix, and this was 

certainly understood at that  time (see [10]). Sharper bounds for the constant s(n) on 

the order of n -1/2 were obtained by Journ~ [13]. Another result in the same spirit was 

due to Fabes, Jerison and Kenig [unpublished], who proved that  an appropriate analogue 

of (1.3) holds when A is continuous (and hence, at least locally, close to a constant 

matrix). Extensions of these "small constant" results, with L ~ replaced by BMO, and 

C replaced by VMO, were obtained by Escauriaza (VMO, unpublished), and by Auscher 

and Tchamitchian [2] (BMO with small norm; ABMO, a space somewhat beyond VMO; 

and, more generally, small perturbations of ABMO in BMO). In the latter results, one 

still supposes that  AE L~ ;  the point is that  the smallness of the perturbation is measured 

in a more general sense. 

In the present paper, we present the solution to Conjecture 1.4, in all dimensions, 

at least in the case that  A is real, symmetric. Our main result is 

THEOREM 1.6. Let n>~ 1. Suppose that A is a real, symmetric (n • n)-matrix of L ~ - 

coefficients satisfying (1.1). Then there exists Zo=s0(n, A, A) such that for any complex- 

valued (n • n )-matrix fi, with I IA-AIl~<s0,  the operator 

L =-- - div(/l(x)V) 

satisfies (1.3), with a constant C which depends only on n, )~, A. Moreover, 

][ ~/r~ I - - x /L  f[]L2(Rn ) <~ C(n, A, A)[[A-A[]~ ]]VI][L2(R,). (1.7) 
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It is worthwhile to make several comments at this point. The first is that  it is enough 

to establish (1.3) for v /L ,  for then (1.7) follows immediately by our previous remarks 

concerning Conjecture 1.4 and analyticity. Second, we observe that,  more generally, our 

proof actually yields that  Conjecture 1.4 holds if A is merely self-adjoint (not necessarily 

real, symmetric), if we assume also that  the heat kernel Wt~ (x, y), which is the kernel of 

the operator e -t~n, satisfies the "Gaussian" property 

,Wt2 (x, y)[ <<. C(n, A, A ) t-n exp{ - '~t /[2 } , (1.8i) 

]Wt~ (x+h, y)-Wt2 (z, Y)I + [Wt~ (x, y + h ) -  Wt2 (z, Y)[ 

A" t--gTg ~ [h[~ ex [" -L~2Y[2 / ,  
(1.8ii) 

<<. C(n,A, ) p~ 

where the latter inequality holds for some positive exponent a depending only on n, A 

and A, whenever either Ih[<<.t or [h[<<.�89 I. Of course, (1.8) always holds for A real, 

symmetric, by the classical parabolic regularity theory of Nash-Moser-Aronson. To 

simplify matters as much as possible, we shall assume in the sequel that  A is real, 

symmetric. We leave it to the interested reader to check that  the same arguments yield 

a proof in the slightly more general case that  L is merely self-adjoint and Gaussian. We 

shall not insist on this point here, as we plan, in a future paper, to prove a more general 

result. Indeed, three of us (Auscher, Hofmann and Tchamitchian), along with M. Lacey 

and A. McIntosh, will present the proof of Conjecture 1.5, in general. In dimension 2, 

the solution to Conjecture 1.5 has recently been obtained by one of the present authors 

(Hofmann), jointly with McIntosh [12]. It was then observed by M. Lacey [17] that  the 

use of an appropriate sectorial decomposition of C n allows one to extend the argument 

in [12] to higher dimensions, assuming that  the above-mentioned "Gaussian" property 

holds. The removal of the Gaussian hypothesis was then permit ted by means of an 

argument due to Auscher and Tchamitchian. A summary of these combined efforts, 

giving the complete solution to the Kato problem, will appear in a forthcoming paper. 

The paper is organized as follows. In the next section, we discuss the strategy 

of our proof and make some preliminary reductions. In particular, we shall state an 

"extrapolation lemma" for Carleson measures, which lies at the heart of our approach 

here. In w we prove the extrapolation lemma. In w we state another key lemma, and 

use it, along with the extrapolation lemma, to prove Theorem 1.6. The proof of this 

key lemma is given in w w is an appendix, in which we give the proof of one technical 

lemma. 

Acknowledgements. The work described in this paper was initiated during the visit 

in 1996 of the second author to Macquarie University, where the question was posed to 
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2. T h e  s t r a t e g y  o f  t h e  p roo f ,  n o t a t i o n  a n d  p r e l i m i n a r y  a r g u m e n t s  

In the sequel, we shall use the convention that  the generic constant C may depend upon 

n, A and A, but that  when a constant depends upon other parameters, we shall note 

that  dependence explicitly, while leaving any dependence upon n, /~ and A implicit. 

We shall also suppose in the sequel that  A is real, symmetric, and that  ]]A-Atl~o~<~o. 

Moreover, by [2, Chapter 0.5, Proposition 7], we may assume, and do, that  ]t, AEC ~. 
Our estimates, of course, will depend only on n, ~ and A. 

Let us now state some notation that  we shall use in the sequel. Given a cube Q E R  n, 

let l(Q) denote the side length of Q, and let R~ and T~ denote respectively the Carleson 

box above Q of height bl(Q), and the Carleson tent above Q with slope b. That  is, we set 

RbQ--Q • (0, bl(Q)) and T~--{(x ,  t): xEQ, O<t<bdist(x, Qc)}. In the case that  b= 1 we 

shall write merely RQ and TQ. Given a positive Borel measure v on the upper half-space, 

we denote its "Carteson norm" by 

Ilvllc - sup IQI- .(RQ), 

where the supremum runs over all cubes Q with sides parallel to the coordinate axes. 

Given a Lipschitz function ~ defined on R n, we denote by ~tr the domain above the 

graph of r i.e., 

- {(x, t) e Rn+ : t > r  

It is known [2] (although for the reader's convenience we shall sketch a proof below) 

that  one may reduce the proof of (1.3) for V/~ to proving a certain Carleson measure 

estimate, which we shall now describe. We define a measure on the upper half-space by 

where 

Here, 

drY(x, t) = [~t(x)[2dx ~, (2.1) 

~t(x) = e-t~gtL~(x). ( 2 . 2 )  

- x .  
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(In the sequel, ~ will always be this Rn-valued function.) Our goal is to establish the 

Carleson measure estimate 

r rt(Q) 2- 1 / / [e_ t LtL~(x)[ 2 dt ll/Sllc -: s~p ~-~ --~dx~C(l+sg[[ft[[c). (2.3) 
JQJO 

By smoothly truncating in the time variable, we may suppose a priori that  [[/~[[c is 

finite. Thus, assuming that  (2.3) holds, and taking s0 small enough, depending only on 

ellipticity and dimension, we may hide the small term on the left side of the inequality 

to obtain that  [[/5]]c~<C. The bounds that  we obtain are of course independent of the 

truncation, which may then be removed by a limiting argument. We shall not tire the 

reader with such routine details, and shall therefore suppress the truncation in the sequel. 

Let us now sketch a proof that  this last estimate implies that  (1.3) holds for x /~ .  

A complete proof, by another method, may be found in [2]. We begin by noting that,  

since (1.8) holds for L (with A real, symmetric), a perturbation result of [1] (which is 

given also as [2, Chapter 1.2, Theorem 6 (ii)]) implies the following: for ] ] A - A ] ] ~ s 0 ,  

s0(n, A, A) small enough, the heat kernel Wt2 (x, y), which is the kernel of the operator 

e -t2L, satisfies 

IWt~(x,y)[ <. Ct -~  exp Ct 2 , 

. . . .  c [hP { - ] x - y ' 2 }  (2.4ii) ]Wt~(x+h,y)-Wt~(x,y)]+[Wt2(x,y+h)-Wt~(x,y)[<~ tn+ exp Ct 2 , 

where the latter inequality holds for some positive exponent a depending only on n, A 

and A, whenever either [h]~t or ]h[~< �89 Letting L* denote the adjoint of f,, we see 

that  the same bounds hold also for the kernel of t2L*e -t~L*. Moreover, t2L*e-t2L*l=O. 
Thus, standard real-variable orthogonality techniques imply the square-function estimate 

nlFL*e-t2L'g(x)12 dx T <" CIIglI~2(Ro). 

Consequently, if we resolve the square root as 

f 0(3 2 -  
L 1 / 2  - ~ -  ]0 e-2t LL2t2 dt, 

and then dualize and apply Schwarz's inequality, we see that  to prove (1.3) for ]x/2, it 

is enough to establish the inequality 

~ [  [tLe-t2Lf(x)[2 dx dt JR t ~< Cl[WIl~(rt~) .  

We now claim that, in the spirit of the Tl-theorem, this last square-function estimate 

follows from (2.3). Let us sketch a simple proof of the claim. 
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For a function G(x, t), define the triple bar norm by 

/07  IIIGIII 2_- IG(x,t)l  2 & ~ ,  
n 

and set Rt f=tLe- t2L f .  We want to prove that  the Carleson measure estimate (2.3) 

implies IIIR~flII~<CIIWII2, Let Pt denote a nice convolution-type approximate identity. 

By a slight abuse of notation, let y denote the variable of integration in the definition of 

the integral operator Re applied to f ,  i.e., nt f (x )=Rt ( f (y ) ) (x ) ,  and Rt(y)=Rtp,  since 

p ( y ) = y .  Since Re1=0, we have, following [3], that  

Rtf(x)  = R t ( f ( y ) -  f ( x ) -  ( y - x ,  VPtf(x))  )+ (Rt(y)(x), VPt f (x ) )  - I+II .  

Now, the non-tangential maximum of VPt f  is L2-bounded, so the triple bar norm of II 

satisfies the desired bound, given that  we have an appropriate Carleson measure estimate 

for Rt(y), namely (2.3). Moreover, it is essentially known that  the triple bar norm of I 

is bounded. Indeed, just take the absolute value of the integrand, and use, in effect, the 

results of Dorronsoro [8], along with property (G), to estimate the tail of the kernel of 

the operator Rt. We leave the routine details to the reader. This completes our sketch 

of the proof of the fact that  (2.3) implies (1.3) for V ~ .  

Thus, our goal is to prove (2.3). Our method of proof is one which has been used 

in [18] and [11], to establish parabolic measure estimates for certain classes of parabolic 

equations. This technique is an inductive procedure which, roughly speaking, utilizes 

a stopping time argument, reminiscent of Carleson's "corona" construction, to "extra- 

polate" the constant which bounds a certain Carleson measure estimate. In the present 

setting, this extrapolation method may be formalized as follows. Let #,/5 be two positive 

measures defined on the upper half-space R+ +1, with 

d~ =_ K~(~) dx dE dfi - Kt  (x) dx d--t t , 
t '  

where O<~Kt(x), Kt(x)<~/3o. In the next section we shall prove the following "extrapola- 

tion lemma for Carleson measures". 

LEMMA 2.5. Suppose that #, fit are given as above, and that # is a Carleson measure 

with II~llc <~Co. Suppose also that there are positive constants 5 and C1 such that 

fi(RQn ~ r  < CIlQI,  

for every cube Q and every positive Lipschitz function ~ with IlV~ll~<l which satisfy 

sup IQ ' l - l~(Tr  n ~ )  ~< 6, 
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where the supremum runs over all dyadic subcubes Q' C_ Q. Then fi is a Carleson measure, 

with 

II llc < c(n, a, Co,/ o)(1 + C1). 

For our purposes, we shall apply the extrapolation lemma wi th / ;  defined by (2.1), 

and with # defined by 

dp(x, t)  -17,(x)12dx t '  (2.6) 

where 

~t(x) =-- "~(x) -- e-E2t2LEtL~(x), (2.7) 

and s is a small, fixed number, to be chosen later, and which will ultimately depend only 

on n, A and A. Since A is real, symmetric, it is not hard to see that  

IIpllc ~< Co (2.8) 

(independently of a), where Co depends only on ellipticity and dimension. Indeed, this 

follows easily from the fact that  the heat kernel Wt2(x, y), the kernel of e -t~L, satisfies 

(1.8), plus the fact that  v ~  satisfies (1.3). We omit the details, which are standard. 

Moreover, it follows readily from (1.8) and (2.4) that ]Tt(x)] 2, ]~t(x)12~<~0, with/30 de- 

pending only on ellipticity and dimension, and again we omit the routine details. We are 

therefore left with two main tasks. One of these is to prove the extrapolation lemma; 

the other is to verify that  p and fi satisfy the remaining hypothesis of the extrapolation 

lemma, for some/i depending only on ellipticity and dimension, and with 

C1 ~-~ C ( s 1 6 3  2 I I# l l c ) ,  

where a is the same as in (2.7). In carrying out the latter task, we shall exploit the circle 

of ideas surrounding the proof of a sort of "Tb"-theorem for square roots, given in [2]. Let 

Pt denote a nice approximate identity, given by convolution with a function t -np(x / t ) ,  

p E C k ,  with support in the unit ball, and f p = l .  Suppose that there are constants C'  

and C" such that  for each cube Q, there exists a mapping F--FQ: 5Q--+C n (here 5Q 

denotes the concentric dilate of Q having side length 5I(Q)), satisfying 

~ QIVFQI 2 <. C'IQ], (2.9i) 

f ILFQI 2 <c" IQI (2.9ii) 
Q (1(0) )  2. 

(Here VFQ denotes the transpose of the Jacobian matrix.) We shall utilize the ideas 

of [2] in the form of the following lemma, whose proof may be deduced from the proofs 

of Theorems 3 and 4 of [2, w although for the sake of self-containment, we shall give 

the proof here momentarily. 
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LEMMA 2.10 [2]. Suppose that IIA-AIIL~ ~<c0. Fix Q and suppose that there exists 
FQ .satisfying (2.9i) and (2.9ii) with respect to Q. Then, 

lfQfz(e) dt lel J0 I~(x)P~(Vre)(x) ]27dx'<C(l+C'+C"+~l l f ' l l c )"  

Before proving the lemma, we note that  in our case we shall define the mapping FQ 

as follows. Given Q, with side length I(Q), we define FQ: R~--+R n by 

FQ =-- e-(~/2)2(l(Q) )2L ~, (2.11) 

where c is the same small number that  first appeared in (2.7). We remind the reader, 

also, that  ~(x)-=x, throughout this paper. We observe that  this is the same FQ that  was 

introduced previously in the solution of the 2-dimensional Kato conjecture in [12]. It is 

a routine matter to prove that this particular choice of FQ satisfies 

5Q[VFQI2 << CIQI, (2.12i) 

fsQILFel 2 <<. C IQI (2.12ii) 
~2(l(e)) 2' 

and we omit the details. These estimates are, of course, restatements of (2.9i) and (2.9ii). 

For the reader's convenience, let us now sketch the proof of Lemma 2.10, following 

[2, w As usual, let HI(hQ) denote the homogeneous Sobolev space of complex-valued 

functions having a gradient in L2(hQ), and let HI(hQ) denote the closure of C~(hQ) 

in HI(hQ).  By ellipticity, the sesquilinear form 

B~(r  _= f f iVr  
J h e  

is coercive and bounded on H i (5Q). Also, the mapping 

defines a bounded anti-linear functional on H i (5Q). Thus, by the Lax Milgram lemma, 

there exists a unique HQ E H i (hQ) such that  

fSQ IVHQ 12 <<. C~ ]QI, 

and LHe=div( f i -A)VF e in the weak sense. Setting GQ=_FQ+He, we then have that  

LGe = LEe 
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in the weak sense. Choosing e0 small enough, we therefore obtain from (2.9) that  

~Q[ VGQI 2C'lQI ( 2 . 1 3 i )  

and 

~ [LaQI2 ~ C . IQI (2.13ii) 
Q (l(O)) 2 

We now define an operator, mapping matrix-valued L2-functions into Cn-valued 

functions, by 

Otf(x) = -te -t2L div Af, 

so that,  by the definition (2.2), we have 

"~t(x) = Otl(x), 

where I = V ~  denotes the identity (n x n)-matrix. To prove the lemma, we therefore need 

to show that 

1 / Q f  (Q) dt 
IQI Jo IOtl(x)Pt(VFQ)(X)[ 2 --[-dx<~ C(l+C'+C"+egll~llc). 

We may replace FQ by GQ, as the resulting error is no larger than Ce02 II~lIc. We may 

also multiply VGQ by a smooth, non-negative cut-off function XQ, supported in 4Q and 

identically 1 in 3Q, since the convolution kernel of Pt has support in a ball of radius 

t<~l(Q). Furthermore, we may replace GQ by C,Q=--:~Q(GQ-cQ), where CQ denotes 

the mean value of GQ on 5Q, and where :~Q is another smooth, non-negative cut-off 

function, supported in 5Q and identically 1 in 4@ We note that by Poincar~'s inequality, 

GQ satisfies (2.13i) with constant CC', and that  VGQ=VGQ on 4@ Following a trick 

of Coifman and Meyer [6], we write 

Ot = Ot -O t  l Pt + Ot l Pt =- St + Ot l Pt. 

Since S t l = 0 ,  it follows from a slight variation of standard orthogonality arguments that  

1 /Q~ot(Q) [2d-~dx<~ IQI IS (V Q)(X) cc', 
where we have used that  St is being applied to a gradient field. Moreover, 

1/Q[,(o) dt 
[QI Jo ISt((1-XO)VSO)(x)le Tdx<" CC" 
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since the kernel of St decays rapidly, at least in the sense of L2-averages, by a standard 

argument using ellipticity, integration by parts, and the Gaussian bounds for the heat 

kernel of L. Also, 

so that 

Hence 

- d i v  ff~XQVGQ ---- - div AXQVGQ = ~Q LGQ - AVXQ'VGQ, 

Ot(XQVGQ) = te- t2LxQLGQ-te- t2LAVXQ .VGQ. 

Qf(Q) dt ~C(I(Q))2ZQ(IgGQI2§ ' Jo IO~(xqV~Q)(~)I 2 ~- dx 

and the conclusion of Lemma 2.10 now follows from (2.13). 

We finish this section by stating a lemma which we shall find useful in the sequel. 

It is a sort of "John-Nirenherg lemma for Carleson measures". 

LEMMA 2.14. Fix Q. Suppose that O~Ht(x)~13o in Q, and that 

IHt(x)-  Ht(x')] <<./3o Ix-x'I____Z 
t ~ 

for some a > 0 ,  whenever x, xlEQ. Suppose also that there is a number ~C(0, 1], and a 

number/3, such that for every dyadic subcube QI C_ Q there is a subset E' C_ Q ~, with 

IE'l ~ lQ'l  

and 
fz(Q') dt 

/E' JO Ht(x) T dx ~ /3'Q"" 

Then the following estimate holds in Q: 

1 f f Z ( Q )  ~dx<~C((~, 
IQI ]Q ]o 

We defer the proof of Lemma 2.14 to an appendix (w We note that  ~[t(x)-[~/t(x)l 2 

satisfies the size and HSlder continuity hypotheses of the function Ht(x)  of the lemma, 

with/30 and c~ depending only on n, A and A, as the reader may readily verify using (2.4). 

We omit the routine details. 
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3. P r o o f  o f  the  e x t r a p o l a t i o n  l e m m a  

We begin with a few preliminary observations. Recall (in the statement of Lemma 2.5) 

that  
dx dt dx dt df~ =- fft  (x) ----~, d p -  Kt(x) t ' 

where 0 ~< Kt, B2t <. ~o. Given a cube Q, let Q* denote its immediate dyadic ancestor. We 

note that,  for every bE[0, 1], we have that  

sup #((R~. \TQ)N(Qx (0, oc))) <~ C~ob, (3.1) 
Q IOl 

as the reader may verify by an elementary computation. A similar computation shows 

that  

sup #(RQ\TQ) <<. C~o, (3.2) 
Q IOl 

and moreover the same holds for ~. 

We now prove the following variant of Lemma 2.14: 

LEMMA 3.3. Suppose that 

d[~ - B2t (x) dx dt 
t 

with O<<.~[t<<.~o. Suppose that there exists a number r/E (0, 1], and a number/31E (0, oc), 

such that on every cube Q we have a decomposition Q=EQUBQ, EQNBQ=O, satisfying 

(i) IEQI>rlIQI, 
(ii) BQ= U Qj, where the dyadic subcubes Qj are non-overlapping, and 

(iii) f~(RQ\(URQj))<<./~lJQ[. 
Then f~ is a Carleson measure, with 

II~llc ~ ~1. 7/ 

Proof. By truncating in t, we may make the qualitative a priori assumption that /~  

is a Carleson measure. This assumption may be removed by a limiting argument. 

Fix Q. We have that  

~(RQ) -- ~(RQ\(U RQj)) +}--~ ~(RQ~) ~</J1 IQI + II~llc ~ IQjl ~</~1 IQ[ + I[~llc(1-~)IOI, 
J 

Dividing by IOl, and taking the supremum over all Q, we obtain the conclusion of 

Lemma 3.3. [] 

We remark that  since TQr C_ RQj, the hypotheses of Lemma 3.3 will be verified if, in 

par t icular , /~(RQ\(U TQ 3) ) ~ ~1 JQJ. 
Next, we prove the following "Calderdn-Zygmund decomposition" for Carleson mea- 

sures. 
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LEMMA 3.4. Let # be given as above, and let a>~O, b=-2 -N for some positive inte- 
ger N. Suppose that Q is a cube such that 

p(RQ) <~ (a+b)lQ I. 

Then there exists a family S={Qk } of non-overlapping dyadic subeubes of Q such that 

sup #(TQ'\(U TQ~)) ~< C( l+~0)b ,  (3.5) 
IQ'I 

where the supremum runs over all dyadic subcubes Q'c Q, and 

a+b 
IBI-< ~ IQI, (3.6) 

where B denotes the union of those Qk such that #(RbQk)>aiQk[. 

Proof. If #(R~)<~aIQI, then let S = { Q }  and B - - ~ ,  and we are done. Otherwise, 

p(RQ\R~)<.b[Q[. In this case, we perform a stopping time argument, subdividing Q 

dyadically and stopping the first time that 

,((RQ\R~,) n (Q'• (0, ~ ) )  > 2bIQ' I. (3.7) 

Let S be the collection of selected cubes which are maximal with respect to (3.7). In 

particular, if QkES, and Q* denotes its immediate dyadic ancestor (or "parent"), then k 

b * •  #((RQ\RQ~ )N(Q k (0, cx~))) ~< 2b[Q*kl = 2n+lblQk[. (3.8) 

We shall show that this collection S satisfies (3.5) and (3.6). To verify the latter, we 

note that  by (3.7) and the definition of B, we have that 

(a+2b) IBI <~ ~ t~(RbQ~)+ ~ t~( (RQ\ RbQk)n (Qk x (0, c~))) < tt( RQ) <. (a+b)IQI, 

and (3.6) follows. 

We now proceed to show that (3.5) holds. Fix a dyadic cube Q~, and observe that 

if Q'C_Qk, for some Qk in S, then #(TQ,\(UTQk))=O. Thus, we may suppose that Q' is 

not contained in any Qk E S. Then 

TQ'\(UTQk)=(TQ'N(Eox(O,c~)))U( U ((TQ'\TQk)N(Qkx(O,c~)))), (3.9) 
Qk C_ Q' 

where Eo=-Q\(UQk). Note that by the stopping time construction, we have that 

1 f ft(Q) dt 
IQ'l JQ, Jb (q,) K (x) T dx 2b, 
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for all Qr which meet E0. Hence, for a.e. xEEo, we have that  

fo t(Q) dt Kt(x) -~ <~ 2b. 

Integrating this last estimate over Q'N E0, we obtain in particular that  

#(TQ,~[,Eox (0, oo))) ~< 2blQ't. (3.10) 

Moreover, if Q* is the dyadic parent of Qk, then k 

TQ,\TQk C (RQ,\RbQ; )U(RbQ~.\TQk). 

Hence by (3.10), (3.8) and (3.1) applied to Qk, we have that  the #-measure of the set in 

(3.9) is no larger than 

2bIQ'l+(2n+l +VZo)b IQkl, 
Q~c_Q, 

and (3.5) follows. This concludes the proof of Lemma 3.4. [] 

We now proceed to give the proof of the extrapolation theorem. The proof is based 

on an inductive, boot-strapping procedure. Our induction hypothesis is the following 

statement, which is defined for a~>0. 

H(a):  Let Q be a cube such that  #(RQ)<~alQ J. Then there exists numbers ~=r](a)E 

(0, 1], fl2- fls(a)==_fl2(a,n , rio, b) c (O, (x)), and a decomposition Q-- EQUBQ, EQN BQ=~, 
with ]EQI>>.~IQI , and BQ=--UQj, where {Qj} is a (possibly empty) collection of non- 

overlapping dyadic subcubes of Q, such that  

p(RQ\(UTQj)) ~< fl2(I+C1)IQJ- 

The proof of the theorem proceeds now in two steps. 

Step 1. Observe that  H(0) is true. Indeed, in this case #(RQ,)=-O, for all dyadic 

subcubes Q'CC_Q, so by the hypotheses of our theorem, applied with ~b~0, we have 

~(RQ) ~<C~ IQI. 

Step 2. Show that  there exists b>0, depending only on n, fl0 and 6, such that  for 

all a>>.O, H(a) ~ H(a+b). 
Once Step 2 is completed, we are done. Indeed since IiPiic<~Co, we have that  

H(Co) can be achieved in finitely many steps, with the number of steps depending only 

on r],(~,flo,C0, in which case Lemma 3.3 may be invoked, with rl-rl(n,(~,fl0,C0) and 

fll=fl2(T], 5, flo, Co )( l q'-C1). 
Let us now carry out Step 2. In order to do so, we first prove 
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LEMMA 3.11. Suppose that H(a) holds, that b -2  -N, and that Q is a cube for which 

~(n~) <~ alQI. 

Then there exists a decomposition Q=EQUBQ, EQABQ=O, with 
(i) IEq l>b~(a ) [QI ,  

(ii) BQ=UQj, where Qj are non-overlapping dyadic subcubes of Q, and 
(iii) /5(RQ\(U TQj)) <<. C(~o, b, n,/32(a))(1+C~) [QI- 

2Nn 
Proof. Write Q -  Uj=l Ok, where Qk are non-overlapping dyadic subcubes of Q with 

side length 2-NI(Q), and observe that there is at least one Ok, which we designate as Qko, 
such that 

P(R0~ o) ~< a l0< l ,  

since RbQ--URok. As we are assuming that H(a) holds, there exist non-overlapping 
ko dyadic subcubes Qj c_ Qko such that 

IOkoX(UQ~~ r](a) IO~ol =~(a)2 -NnlQI 

and 

Moreover, 

/5(R�9 TQ~O) ) ~< ,~2(a)(I+C1)I0<I =/32(a)2-Nn(l+C~)lQI. (3.12) 

/5(RQ\RbQ) <<. ~o log(l/b)[Q]. (3.13) 

Thus, setting 

BQ= ( U 0k)u(UQk~ - 
k~ko 

and invoking (3.2) (with/5 in place of p) in each Ok, k:/:ko, (3.12) and (3.13),  we obtain 

the conclusion of Lemma 3.11. 

We now proceed to Step 2. 

cube for which 

[] 

Suppose that a ) 0 ,  that H(a) holds, and that Q is a 

#(RQ) ~< (a+b)lQ] , 

where we choose b-2  -N so small that 5>~C(l+~o)b (this is the constant on the right 

side of (3.5)). By Lemma 3.4, there exists a family S--{Qk} of non-overlapping dyadic 

snbcubes satisfying (3.5) and (3.6). Let us denote by S' the subcollection of QkES such 

that p(R~k ) <~aIQk I. Let (a+b)/(a+2b)=_l-O, and observe that either 

IE01-IQ\( U Qk)l/> �89 (3.14) 
QkES 
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o r  

] U Ok[ t> �89 (3.15) 
QkES' 

For each QkES', we invoke Lemma 3.11 to construct a family {Qk} of non-overlapping 

dyadic subcubes of Qk such that  Lemma 3.11 (i)-(iii) hold with Q replaced by Qk, BQ re- 
B - k placed by Qk=_UQj, and EQk--Qk\BQk. We now define 

BQ_=( U UQ~)u( U Qk), (3.16) 
k:QkES' j S \ S '  

and observe that  its complement EQ =- Q\ BQ =- Eo U (Uk: Qke S' EQk) satisfies 

IEQI/> bUll(a) �89 (3.17) 

by virtue of (3.14), (3.15) and Lemma 3.11 (i) applied to every QkES'. Moreover, if we 

let S" denote the collection of all the cubes whose union is the set BQ in (3.16), then we 

have that  

RQ\( U TQ,,)C_(RQ\( U TQk))U( U TQk\(UTQ}))-R1UR2 �9 
Q"E S" QkE S QkE S' 

Now, since (3.5) holds, with C(1+/30)b~<5, the hypotheses of the extrapolation theorem 

imply that  ~(R1)~<C1 [Q[. Also, since TQk C RQk, and since Lemma 3.11 applies to every 

Q k  E S ' ,  w e  obtain that  

t~(R2) ~< C(~o, b, n, &(a ) ) ( l+C1)  E IQkl <~ C(~o, b, n,/~:(a))(I+C1)]Q[. 
QkES' 

Thus, in view of (3.17), and the fact that  EQ=Q\(UQ,~s, Q"), we have that  H(a+b) 
holds. This concludes the proof of the extrapolation theorem. [] 

4. Deducing (2.3) from the extrapolat ion lemma 

As mentioned in the previous section, we shall apply the extrapolation lemma to the 

measures/5 and # defined by (2.1) and (2.6), respectively. To establish (2.3), it is enough, 

given Lemma 2.5, to prove that  there is a constant 5>0, depending only on ellipticity 

and dimension, and a constant 

ol  = c(~-1)(1 +~,~)II#llc, (4.1) 
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such that  

~(RQ n ~ )  ~< C~ IQI, (4.2) 

whenever Q is a cube and 0 is a non-negative Lipschitz function with Lip norm at most 1, 

for which 

sup IQI-~(TQ, n ~ )  ~< 5. (4.3) 
O'C_Q 

Here, the supremum runs over dyadic subcubes of Q. Indeed, we have already observed 

above that  the other hypotheses of the extrapolation lemma hold, with constants that  

depend only on ellipticity and dimension. Let us now proceed to prove that  (4.2) holds, 

given (4.3). 

To this end, we recall that  Wt2-e  -t2L, and we denote the kernel of this operator 

by Wt~(x,y). Thus, W(~/2)2(Z(Q))~--FQ (recall that  FQ was defined in (2.11), and 

satisfies (2.12)). We define also 

Let g Q  denote the concentric cube with side length xl(Q).  Our fundamental estimate 

for FQ is 

LEMMA 4.4. Fix a cube Q. Let r be a Lipschitz function, defined on R n, with 

O ~ ( x ) ~ r  for all xEQ, and with [[Vr Then 

fq/s lV ( FQ - Fr ) f  dx <<. (4.5) 

We shall defer the proof of this lemma until the next section. Let us now show that  

Lemma 4.4, together with (4.3), imply (4.2). Let ~ ( r )  be a smooth cut-off function, with 

2~( r ) - i  if r>2 ,  2~(r)-0 if r < l ,  0~<X~I, and we note that,  by (2.4), 

satisfies the size and HSlder continuity hypotheses of Lemma 2.14, with constants that  

depend only on ellipticity and dimension. Consequently, it is enough to prove that  there 

exists ~/>0, depending only on dimension and ~, such that  for every dyadic QPc_ Q, there 

is a set EQ, C_Q' with IEQ,[>~[Q'I, on which the following estimate holds: 

1 /E f'(r dt IQ'I (x) I t(x)i2-t-dx< C( -X)(l+ gll llc)" (4.6) 
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Indeed, given (4.6), we may apply Lemma 2.14 to the function ~It(x) defined above, to 

deduce that 1s ,2 dt 
~Q--[[ a2W(x) I~t(x) -~-dx<~ C(e-1)(l+~]lFt[[c)" 

Since f : : ( ; ) [T t  (x)[2 dt/t <. c, it follows that  (4.2) will hold, once we have established (4.6). 

We now show that  (4.3) and Lemma 4.4 imply (4.6), as long as we choose 5 and e 

small enough depending only on ellipticity and dimension. We consider two eases: either 

r for all xeQ', or else there exists xoEQ', with r In the latter 

ease, since I]Vr we have that  

tr162 < l~l(Q'), 

as long as x~B(xo)=_{[x-zol<~lel(Q')}. Thus, r189 for xEB(xo)NQ'--EQ,. 
Since xocQ', it follows that [EQ, I>~C-1cnlQ' I. We have also that  

/E f ~(Q') dt /E f~ 2~-'/8v(x)dt 2 , 1 I~(x)l 2 dx<~ll~ll~ --dx<<.CIl~/~ll~lQ [ log~,  
Q,J~(x) ~ Q' (~) t 

which yields (4.6) in the present case. 

Otherwise, if r for all xEQ', then we may apply Lemma 4.4 to Q', and 

use (4.3) to obtain that  

Q,/SlV(FQ,-Fe)12 dx <. C(5+e[Q'I) <<. CelQ'[, (4.7) 

if we set d=e.  Now, let Mr denote the Hardy-Lit t lewood maximal operator, taken with 

respect to balls of radius at most r. Then from (4.7) we deduce that  

~ ,/16[~ll(Q,)/100 (V ( FQ, -  f~0))[2 dx ~ Cc IQ'I. (4.8) 

Hence, 

]{xC ]!gQ' : MI(Q,)/loo(V(FQ,-Fe))(x) > gl/4}] ~ cct/21Q, i. 
Thus, for e small enough, there exists r /depending only on n, and a set EQ, C_ 1Q,, with 

IEQ, I~>~IQ'I, and such that,  for all xEEQ,, we have 

Ml(Q,)/lOO(V ( F Q, - Fr ) )(x) ~ ~1/4. (4.9) 

;~(Q') 
Now, Jl(Q,)/lOO [Tt(x)12dt/t<~C]]Tt[[~ <<-C" Hence, in (4.6), it is enough to integrate over 

the t-interval g,(x)<~ t<~ 1 i5-6l(Q ). By the triangle inequality, 

[~t(x)l ~< IX/t(x)Pt(V(I-W~(~(x))~)~)(x)l 
+l~(x)P~(V(w~(~(x))~-w~(+( ))~)~)(x)l 

(4.10) 
+ I~t(x)Pt(V(F~ -FQ,))(x)I + [~t(x)Pt(VfQ,)(x)[ 

= I + I I + I I I + I V ,  
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w h e r e  FQ,--e-(e/2)2(I(Q'))2L~_W(e/2)2(I(Q,))2~ and F ~ - W ~ 2 ~ .  Since FQ, satisfies 

(2.12), with Q' in place of Q, we may invoke Lemma 2.10 in Q', to deduce that  

[ f(Q') v 2 _dr dx < c( - )lO'l(l+dll Hc) 
J Q '  J0  t 

By (4.9), we have that,  for xEEQ, and t < ~  ~ j, 

IH ~< c c  ~/4 I~(x)t, 

which we may hide on the left side of (4.10), if r is small. Since p is Lipschitz, and 

VPt -  Qt/t, where Qt is an operator given by convolution with a smooth kernel which is 

supported in the the ball of radius t, we have that  

I <~ C~(x)  t-ll~t (x)]. 

In proving (4.6), we only integrate where t ~ ( x ) .  It follows that  I~Ccl~t(x)l, which 

may also be hidden on the left side of (4.10). Finally, 

I(W(~(~))2-w(~(x))~)~(y)l <~ clr sup ~-~wt2~(y) <~ Cr (4.11) 
t>0 

since [[Vr162 , and 

sup ~t Wt2 (P t>0 ~ < C .  

(In the last estimate, we have used that  ~ELip l ,  and that  the kernel Wt2=e -t2L has 

Gaussian bounds.) But (4.11) implies that  

IPt(v(w(~v( ))~-w(~r ct-~-l f ]x-yldy'e~C~. 
J(Iz-y]<t} 

Thus, II<<.Cel~t(x)l , which may also be hidden on the left side of (4.10), if e is chosen 

small enough depending only on n, A and A. This proves (4.6), given Lemma 4.4. The 

proof of Theorem 1.6 is now complete, modulo Lemma 4.4 and Lemma 2.14. We give 

the proof of the former in the next section, and of the latter in w 

5. P r o o f  o f  L e m m a  4.4 

Throughout  this section, Q is a fixed cube, with p-l(Q). We recall that  we are using 

the notation Wt2--e -t2L, a n d  we denote the kernel of this operator by Wt: (x, y). Recall 

also that  W(~/2)2o~ ~ =_ FQ, and that  W~2 (~(x)p ~-= F~. 
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Our goal is to prove 

/Q/S IV(FQ - F, ) I  2 dx < C(#(TQ n ~,  ) § e IQI), (5.1) 

whenever ~b is a Lipschitz function with IIV~li~<l and satisfying O<~<~l(Q) on Q. 
Z - Z 

We begin by defining some cut-off functions. Fix Q, and let O,O, OEC~, O<~O,O,O<~l, 
Ilvoll~+llvoll~+llvoH~<<.c/o, and suppose that  0 - 1  on ~Q, supp 0C~Q,1 0=1 on gQ,1 

supp0_CiQ, 0=1 on 3Q, supp~C_Q. Let xQ=center  of Q. Now, since W~-I=I, we have 

that  V(W~I)=0 (even if ~- depends on x). Hence, on the left side of (5.1), we may replace 

by ~(. ) -~(xQ)--~l+qp2,  where 

~)I(Y) ~ (y--XQ)O(y), 
~2(Y) ~ (y-  xQ)[1-O(y)]. 

Also, we may replace ~(x) by r162 Our first step is to prove that  

Q/S IV(W(~/2):o~ - W(~,Q):)~212 dx <~ Cc IQI- (5.2) 

By elliptieity and the definition of 0, we have that  the left side of (5.2) is dominated by 

a constant times 

J ( ~ ) ~ A V ( W ( ~ / ~ ) ~  - W(~,~)~ )~2-V(W(~/~)~o~ - W(~,~)=) ~2 

J (5.3) 

= I+II .  

Since V W t ~  is a matrix, we should explain our notation: if F=(F1, ..., F~) is a vector, 

then IVF[2-F_,yVFj.VFj and AVF.VF=-~j AVFj.VFj. Now 

I = - / V(0)2. AV W(~/2)~o2 ~2 (W(e/2)~o2 - I?V~ r P2 

+ f (O)2LW(~/2)~o~ ~:(W(~/2)~o: - W ~ , ~ )  ~ 

I1+I2. 
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We now claim that,  for t~<~0, 

/(O)2lVWt2~212 CeZIQI, (5.4) <<. 

f (o)UlVW~@~el u ce21QI (5.5) 

(the latter will be used, and proved, later) and 

Assuming momentarily that  the claim is valid, we immediately obtain that  Ill l ~< Ce 3 IQ[ ~< 

CelQ I as desired. To prove the claim, and also to handle I2, we note that  for t ~< c0, 1 xcTQ, 
we have 

It2LWt2~2(x)l+lWt2~2(x)l<<. ct-n f e-l*-Yl~/ct~lx-yldy<<, ct2 <<. Ce20. (5.7) 
Jl*-yl>Co co 

(In the first inequality, we have used that  IxQ-yl~lx-yl, under the present circum- 

stances.) This last bound yields (5.6) immediately, and also (5.4), by an argument 

similar to the proof of Caccioppoli's inequality. The proof of (5.5) is a bit more delicate, 

owing to the x-dependence of ~;Q, and we defer it until the end of this section. Moreover, 

an application of (5.6) and (5.7) also yield the bound lI21 ~<Ce 2 IQI <<-CelQI as desired. 

Next, we turn to the bounds for II. We have 

II = f (0)2AV W ~ 5  qo2-VW~r P 2 -  / ( 0 ) 2  W~ ~ P2 LW(e/2)~e~P2 

+ f 
- I I l+I I2+II3 .  

Now for 1 x E 7 Q, we have 

(5.8) 

where we have used that  P2 is Lipsehitz with Ilv~2ll~ ~<c. The bound 1II31 <<.CelQ [ now 

follows easily from (5.4) and (5.8), and we have llI2l~<ccE2l, by (5.7) and (5.8). Also 

IIIII~<Ce 2[Q[, by (5.5). This concludes the proof of estimate (5.2), modulo the proof 

of (5.5), which we continue to defer for the moment. 
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We now return to the proof of Lemma 4.4 (that is, the proof of estimate (5.1)), and 

observe that  by (5.2) we may replace p by ~1 on the left side of (5.1), which we then 

dominate by a constant times 

(.5.9) 

+ f A V W ~  ~ . V W ~  .1 R~ Q 
=- V1- 2 V2 q- V3. 

We note that,  since IIVqOllI2<.CIQI 1/2, we have 

II(w,~-I)~xll2 .< c~IIWQII~ IQI 1/2 <~ cc2elQI ~/2. 

Also, 
C 

llLW(~/2)=o~w~ll2 <~ ~ IQI 1/2- 

Integrating by parts, and then combining the last two estimates, we see that  we may 

replace W~2~qal by ~1, in 1/2. Let us call the resulting term ~V2. The error Iv2-v21 is 

on the order of C~IQI, which we allow. We write 

: / We2~ ~- j AYWe2o2/8~I'VWe2o=/8~91" 

Next, we claim that  we may replace V3 by 

14 - fRA(VW+t:  +,)I t=++ (VW+t:  ~l ) [ t=~bO,  

at the expense of introducing another allowable error. Indeed, by the chain rule, 

~W~2~ ~x-(~Wc2t2~l)lt=~Q ~ ( ~ Wt2~g91 t=eoQ) s , 

which is bounded in absolute value by 

sup 0 Wt2 ~1 �9 
t>0 0~ I 

(5.10) 

(5.11) 
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Moreover, for t>O, since ~1 is Lipschitz, and since (O/Ot)Wt21=O, we have that  for all 

x E R  n (and in particular for xEQ), 

C f e_lx_yl2/ct21x_y I W~2~(x) <~ ~ dy<<. C. 
JR 

Also, since ~1 is supported in �88 we have that  for xEQ ~, 

~Wt2~ ~l(x) ~< ~ C  JIx-yl>e [ e-lX-YJ2/ct2 I~11 dy <~ Co-1M~I(X). 

Combining the last two inequalities, we see that  

since II ~112 ~< CO. Thus, the claim that  the difference IV3- V31 is small follows immediately 

from the inequality 

CIQI t/2. (5.12) 

We shall prove the latter estimate momentarily. Assuming for now that  (5.12) holds, we 

therefore have that  (5.9) equals O(E[QI) plus 

=-- ~ ( A VWe2t2 ~I" VWs2t2 ~fll) dt dx 
JR~ Jo/(2-,/2 ) 

{e/(2,/~) (AVW~t~I .VW~t~I )  dt dx 

f~ tAVWe2t2~l"VWs2t2Lqol dtdz 
o/(,/~) 

fo/(2,/~) 
-fl:t~J~l tAVWe2t2~i'VW~t~Lq~dtdx} 

- -4e2 {r~ - r 2 } .  

We note that  

-4e2F1 -= - 4 E 2 / ~  f IW~2t2L~ll2dxtdt<- O" 
y ~/(2,/5) JRn 

We now claim also that  

4c2F2 ~ C(,U(TQn~r247 1/2 Jl(VW~2t2~l)Jt=r (5.13) 
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Let us show that the last claim establishes the conclusion of Lemma 4.4. Indeed, 

4~2F2 -- V3-1/2 

~-]inA(~We2t2(fll)[t=~Q'(VWe2t2~)l)lt=r �9 

Combining this last identity with (5.13), ellipticity, the fact that # is a Carleson measure, 

and the fact that  

IIVW~=~=/s~lllL=(~o) ~< ClQI ~/2 

(the proof of which is routine, and omitted), and then hiding a small term on the left, we 

obtain (5.12). But given (5.12) and (5.13), the conclusion of Lemma 4.4 follows, since 

we have shown that (5.9) is dominated by 4~2F2 plus small errors. It is therefore enough 

to prove (5.13). 

To this end, let t2 = { (x, t) �9 R+ + 1: CQ (x) < t < 8/(2 v/2 ) }. Then, 

4~2F2 = 4 a 2 / / a  tA VW~:t: ~1" V W~2t2 L~I dt dx 

= 4 e 2 / / a  divx( tgvwe2t2~l  Wa2t2Z~l ) dt dx -~- 4 e 2 / / a  tlW~t~L~,] 2 dx dt 

= 4a2F~+4e2F n. 

We observe that, by the divergence theorem, 

4~2r ' = 4~2/f~ div~,t [(tA VW~t2 ~1, O) W~2t2 L~I] 

= 4c2fo (N, (AVW~2t 2 ~1, 0)) tWE~t~L~I da(x, t), 

where N denotes the outer unit normal to r But along the "top" part of 0f~, when 

t - 8 / ( 2 v / 2 ) ,  we have that N - ( 0 ,  ...,0, 1). Hence 

[4a2F '] ~< Ca2/RJVW~t~IIt=~QI.ICQ(x) W~r ] v / l +  (VCQ) 2 dx. 

But CQ(x)=r so that 

IIVCQH~ ~< IIVr c IIr 4 C. 

In particular, v/1 + ]V~bQ [2 4 C. Moreover, 

[aCQ(x) W~2r L~I(X)I < sup ItWt: x/L v ~  pl[ ~ C M ( x / ~ I ) ,  
t>o 
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where M denotes the Hardy-Lit t lewood maximal operator. Consequently, 

14c2F'1 ~< C~11r II(VW~t~ ~)lt=~qll2 ~< CelQI ~/2 II(VW~t~)lt=~ll2, 

as desired. 

It remains to treat  the term 4~2F ", which equals 

r ro/(24~) 2 ~ dt / / le - e t  LctL991(x)l z 4 dx. 
JR JCQ(x) t 

Let k~t(x, y) denote the kernel of e-~2t2Letn. Clearly, fk~t(x, y)dy=O. Hence, 

/ k~(x, y) ~(y) ~y = f k~(~, y)[~(y)-~(x)-((y-x) V)~l(X)] dy 

+ ( f  ket(x,y)ydy.V)~l(X) 

=_ f~,(x)+g~(z). 

Now, IIV~lllLOO ~C ,  and V~I is supported in 1 1 xE~Q, we ~Q. Moreover, for all have that  

dist(x, QC)>~3> l/(2x/~), so that  �88 (O,o/(2x/~ ))CTQ. Also, 

_r kr (x, y) y dy = e etL~(x). 

Thus 

n Jr Lg~t(x)l ~ -( dx <. C~(TQna~) 

1 as desired, since r 1 6 2  on ~Q. 

Next, we note that  I IV2~I l I~CQ -1, so that  the expression in square brackets in 

the definition of f~t(x) is dominated in absolute value by 

cly-xL2 

Therefore, 

IS~,(x)I <<. C ~  /(~t)-ne-'x-'lV(C~')21x--yl2 dy<~ C~to, 

and consequently, 

Q J O  

(5.14) 
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On the other hand, for xE(2Q) ~, y)l(x) and V ~ l ( x ) = 0 ,  so that, in the definition of 

f~t(x), we may multiply the integrand by X3Q/2(y). Hence, for xE(2Q) ~, we have by the 

same computation as in (5.14), with 2(3Q/2(y ) inserted in the integral, that 

ILt (x)[ <<. C ~t M(XaQ/2)(x), 
0 

which in turn implies that  

f2  ~o~ dtdx Q)c - - 7  ~< C~2 I QI. 

We have thus established (5.13). Modulo the proof of estimate (5.5), which we had 

deferred, the proof of Lemma 4.4 is now complete. 

It remains only to prove (5.5). We note first that, by the chain rule, 

~We2o~ ~o2-(VWr ~ ( ~-~ Wt2~)2) t=~OQCV~Q. (5.15) 

Consequently, by (5.7), and the fact that OWt~/Ot=-2tLWt2, 

f (O)21vw~,~- (vw~2) l~=,~l  2 <~ (5.16) Cc4[Q[. 

Thus, by (5.4), (5.16) and ellipticity, the left side of (5.5) is dominated by a constant 

times 

(here we have used that r162 on supp O) 

=/ /~  o 
~) 8i ( A v W ~ v w ~ ) + ~  

- 2 q 2 -e2t2L 2 = 4 [ ( 0 )  f E tVe L~2.AVW~t~2+O(e IO[) 
J Jr 

= 4 [ ( 0 ) 2 / ~  [e-~t~LctLp2(x)l 2 dt dx 
J Jr t 

- 4  V(O) 2 e2te-e2t2LL~p2.AVW~t~ ~2 dt dx 
r 

+ f ~ (O)2r (g, (AVWc2t2 ~2, 0)) da(x, t) + O(c 2 [Q]) 
JO{(x,t)cR~_ + :#J(x)<t<o} 

=- z~ + z 2 +  z3 +o (~  z IQI), 
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where we have obtained the last equality by the same argument, involving the divergence 

theorem, that we had used to treat 4c2F2 above. By (5.7), and the definition of 9, we 

have that 

Z 1 ~ C  
/7 t 

Also, by (5.7), and then Sehwarz's inequality and (5.4), 

Cg2 f Ot IQI1/2 (f(0)21~W~2t2(~92(x)l 2 dx~l/2dt ~ CE31QI �9 
go Q \ J  / 

Finally, since N=(0, . . . ,0 ,1)  along the "upper" boundary t=o, we have that, by 

(5.7), 

Ce / ( 0 ) 2  le ~ (x) e -e2 (~(x))2LL~2 (x)l. I (V We2 t2 ~2)l t=r dx I Z31 ~< 

I1 11oo/( )21(vw 2,  2)1 =r dx. 
J 

Using the elementary inequality a~  �89 (5.16) and the fact that II~H~<~Q, we see 

that the last expression is dominated by 

Cc3 []Q]+ / l~We~2[~(O)2 dx] . 

For c small enough, we may hide the second summand on the left side of (5.5), and the 

proof of Lemma 4.4 is now complete. 

6. Appendix :  P r o o f  of  L e m m a  2.14 

Fix Q. Our goal is to establish the estimate 

Qfl(Q) 1 /o Mr(x) dt IQI -[- dx <~ C(U , a)(~0+~),  (6.1) 

given the hypotheses of Lemma 2.14. 

Let 0<e</ (Q)  (we remark that the present E has no connection with the number 

used in w167 it is now merely a small, arbitrary number). Let 

M(e)----sup ~ ~Z(Q'TQ,Ht(x) dxdt 
Q,cQ IQI T' 
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where the sup runs over all dyadic subcubes Q'C_Q, and where the integral is taken to 

be zero if l(Q')<.e. Clearly then, M(e)<oc,  and x--+f:(Q)Ht(x)dt/t is continuous. 

Let N -  (2/rl) ~. Then the set a=_{xEQ:f:(Q)Ht(x) dt/t>N} is open, and moreover, 

/3 (1 Xr/ laI<~tQ\EI+-~[Q[<~ -g )]QI, (6.2) 

by Chebyshev's inequality and the hypotheses of Lemma 2.14. 

Next let it_= U Qj denote the usual Whitney decomposition of ft. Then 

~ l(Q)f dt f(Q)[ dt 
IQHt(x)dx -~ <~ NIQ\it[+ E Ht(x)dx-- de aQj t 3 

fl(Qj) f dt 
<~ NIQI+~ [ [ Ht(x)dx-- (6.3) 

j Je JQj t 

+E ['(Q) [ dt 
j Jmax(l(Qj),r JQj T '  

where again we use the convention that  the integrals in the middle term are zero if 

l(er 
By the Whitney construction, there exists xj E Q\ l t ,  with dist (x j, Q j) <<. Cl(Qj). We 

therefore have 

Qj aQj 

Hence, 

fm l(Q) [ . t ( z )  dx dt (-~ ) ~• jQj T ~< ~ o + N  IQj[, 

since xj EQ\i t .  Thus, returning to (6.3), we obtain that  

f l(Q)f Ht(x)dxdt<(C3o+2N)lQt+M(e)lit I 
J Q t "~ 

~< C(a, ~)(3o +Z)IQI +M(e)(1 - �89 

(6.4) 

where in the last inequality we have used (6.2). But we can repeat the previous argument 

to show that  (6.4) holds also with Q replaced by any dyadic subcube Q ' c  Q. Thus 

2 
M(r .< = C(a,  7/)(/3o+/3), 

r! 

and the conclusion of the lemma follows by letting r 
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