ON THE NIELSEN-THURSTON-BERS TYPE
OF SOME SELF-MAPS OF RIEMANN SURFACES(*)

BY

IRWIN KRA

State University of New York at Stony Brook, U.S.A.

§ 1. Introduction

Let S be a surface of non-excluded (see § 2) finite type, and set S =8\ {x,} for some
%,€S. Consider the very simplest self-maps of §: the self-maps that are homotopic to the
identity on § (in particular such maps must fix ). When is such a map parabolic, hyper-
bolic, or pseudohyperbolic (see § 4 for definition) in the sense of Bers [9]? When is such a
map reducible (see § 2) in the sense of Thurston [36]? We give a complete answer to this
question, and as a consequence obtain two interesting facts:

(I) There exist irreducible self-mappings on Riemann surfaces of every non-excluded
type (p; n)==(0, 3); that is, as long as 3p+n>3.

(IT) The Teichmiiller (=XKobayashi) metric on the fibers of the Bers fiber spaces is
not (a multiple of) the Poincaré metric on the fibers, unless the Bers fiber space is one
dimensional.

The more exact formulation of our first important result is summarized in

TuEOREM 2'. Let 8 be an oriented surface of non-excluded finite type. Let €S and set
N =8\{,}. Let w be a self-map of 8 with w(z,) =z, and w isotopic to the identity on S. Let
J be an isotopy of w to the identity:

J: [0, 1] x8 -8,
J(01 x) = W(:E),
and

J(1, ) = .
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Let c(t) =J (¢, ;). (Then ¢ is a closed curve on 8.) The map w is isotopic to the identity on S
if and only if c is contractible in S, and w is an vrreducible self map of S if and only if ¢ is an
essential curve on S.

The equivalence of the contractability of the eurve ¢ to the triviality of the map w
is well known. See Birman [11] and the papers quoted here. Essential curves are defined
in §9.

Since essential curves are easily found, Theorem 2’ shows the existence of irreducible
maps for surfaces of most types. The types not covered by this theorem can be treated
by passing to 2 or 4 sheeted covers (see §9). It is of interest to note that the irreducible
mappings are precisely the pseudo-Anosov diffeomorphisms (see §9 of Bers [9]). Thus
Theorem 2’ gives the existence of a wide class of pseudo-Anosov diffeomorphisms.

A formulation of the second result mentioned above is contained in

TaeorEM 4'. Let 7, V(p, n)’—T(p, n) be the punctured Teickmiiller curve for surfaces
of non-excluded type (p, n). Then the Kobayashi—Teichmiiller metric on V(p, n) when restricted
to 71, 1(t) with 7€ T(p, n) does not agree with the hyperbolic metric on this surface, except if
(P, n)=(0, 3).

Special cases of our results have been obtained independently by Nag [29] in his
thesis. I thank Lipman Bers, Bernard Maskit, and Peter Matelski for many helpful sug-
gestions. In particular, Bers’ paper [9] is crucial to this work, and the Maskit-Matelski
paper [27] stimulated much of the current investigation. I am also grateful to William
Abikoff for a very careful reading of a previous draft of this manuscript.

In a series of papers, Nielsen [30] discussed automorphisms of orientable surfaces. He
classified these automorphisms into various types. About 50 years later, Thurston [36]
also studied automorphisms of surfaces, and introduced a different classification. Bers [9]
showed that Thurston’s classification can be obtained by looking at the element of the
modular group induced by a self-map of a surface. Quite recently, Gilman [18] obtained
the relations between the older Nielsen classification and the new Thurston-Bers classifi-
cation. These few historical remarks should help explain the title of this apper.

Several interesting new problems arise as a result of this work. These will be pursued
further in the future.

§ 2. Self-mappings isotopic to the identity

Let 8 be an oriented surface of type (p, n). Assume 8 is of non-excluded type; that is,

2p—24+n>0. 2.1)
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Figure 1. An admissible curve (c¢) on a surface of type (2, 0).

A finite non-empty set of disjoint Jordan eurves C={C, ..., C,} will be called admissible
(see Figure 1) if no C; can be deformed into a point, a boundary component of 8, or into
Oy, with k==j. Following Thurston [36] and Bers [9], we say that an orientation preserving
homeonmorphism f: §—8 is reduced by C if this set is admissible and if f(C)=C. A self-
mapping f of 8§ will be called reducible if it is isotopic to a reduced mapping, srreducible if
it is not. If f is reduced by O, we let Sy, ..., 8, be the components of S\ C. These will be
called the (proper) parts of 8 O or of 8. Then each surface 8, is again of finite non-excluded
type and f permutes the parts S;. We let «, be the smallest positive integer so that f fixes
§,. We shall denote the restriction f*[.S; by the symbol /% when the meaning is clear.

If fis reduced by C, then we say that f is completely reduced by C if for each 4, [ is
irreducible. Bers [9] has shown that every reducible mapping is isotopic to a completely
reduced mapping. If f is completely reduced, then the f* are called (Gilman [18]) the
component maps of f.

Let 2, €8 and set 8§ =8\ {x,}. Let f: §—9 be a self-mapping of §. Assume that f is iso-
topic to the identity on 8 and that f(z,) =,.

Problem A. Find necessary and sufficient conditions for f: 8—8 to be reducible.

We consider the group of orientation preserving self-mappings f of the surface S that
satisfy two conditions

(1) (o) =, and

(2) f is isotopic to the identity self-map of S.

We factor this group by the normal subgroup of self-mappings that are isotopic to the
identity as self-maps of S. We denote the factor group by

Isot (8, z,).
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We are interested in describing and classifying the elements of the group Isot (S, ).
Throughout this paper we restrict our attention to orientable surfaces of non-excluded finite

type, and maps between surfaces that are topological and orientation preserving.

§ 3. Another extremal problem

Let S now be a Riemann surface of non-excluded finite type (p, »); that is, S =
S\{xl, wy %}, Where Sisa compact Riemann surface of genus p, z;, ..., %, are n distinct
points on §, and (2.1) is satisfied.

For a quasiconformal map f: S— S between Riemann surfaces, we let

K(f) = dilatation of f;
it is given by the formula

1+ ||uflo
1— [l

where p is the Beltrami coefficient of f, and ||u||,, denotes the L® ( =essential supremum)-

K(f)=

norm of .

Problem B. Let x and y be two distinct points on S. Among all quasiconformal self-map-
pings f: S—8 with the properties

(i) 1 s isotopic to the identity, and

(i) f(z)=y,
find and characterize the extremals.

In particular, let o(x, y) =% log K, where K is the dilatation of an extremal for the problem
(an extremal always exists). Then p defines a metric on S (see § 10). Is ¢ a constant multiple of

the hyperbolic (Poincaré) metric on S?

We shall rely on the classical solution of a related problem. Let D be a Jordan domain
in CU {oo} with hyperbolic metric g, =p of constant curvature —4. For #, y€D, there
exists a unique self-mapping (Teichmiiller [35], Gehring [17]) f of D so that f is the identity
on the boundary of D, f(x)=y, and f minimizes the dilatation among all such mappings.
Let K(z, y) be the dilatation of such an extremal f. We shall need the following

LemMA 1 (Teichmiiller [35], Gehring [17]). There exists a differentiable real-valued
function » defined on [0, o) such that

@
(2) »(t) is strictly increasing,
(3) x(t)/t is strictly decreasing, and
(4) }log K(x, y) = x(o(, y)).

2#(0) =0, lim; .o x(t) = oo,
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The exact formula for #, which may be found in [17], will not be needed in the sequel.
The fact that K(z, y) depends only on p(z, y) is quite easy to verify. We will also need to
know (see [17]) that
(5) #'(0)=4%.
As a matter of fact ([35]),
K=l+%+o(92), 00,

and

K>1+g, all p.

It is quite easy to conclude from [17] and the methods of § 10, that the function
(@, y) = x(e(, y))

on D x D defines a complete metric on D. The metric gives rise to the usual topology on D.
It is invariant under the full group of automorphisms of D, and is not a multiple of the
hyperbolic metric on any segment which is part of a geodesic in the p-metric.

The solutions to Problems A and B and some related problems to be stated in § 6

involve not surprisingly, the theory of Teichmiiller spaces; which we now review.

§ 4. Teichmiiller spaces and their modular groups

We shall follow the notation of Bers [9]. Let § be an oriented surface of finite non-
excluded type (p, n). A conformal structure of the first kind is a topological mapping o of §
onto a Riemann surface of finite type. From now on, “conformal structure of the first kind”’
will by abuse of language be abbreviated by “conformal structure”. Two conformal struc-
tures o, and o, on S are strongly equivalent if there exists a conformal map ¢ of ¢,(S) onto
0,(S) such that o3 'ecoe is isotopic to the identity. The strong equivalence classes [o] of
structures form the points of the Teichmiiller space T(p, n) and the (Teichmiiller) distance
between two points [o;] and [o,] is defined by

{loy]; [o2]> = % log K (),

where b is the unique extremal isotopic to ¢,007". With this metric T'(p, n) is a complete
space homeomorphic to C°*?3*". Moreover, T(p, n) is a complex manifold, and, by a result
of Royden [34], the Teichmiiller metric is the same as the hyperbolic Kobayashi metric
on T(p, n).

The modular group Mod (p, n) is the group of isotopy classes of self-mappings of S. It
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acts as a group of holomorphic isometries of T'(p, n) as follows. If f is a self-map of S, then
the self-map f* of T'(p, ») sends [¢] into f* ([¢]) =[o0f~1], where o is a conformal structure
on 8. The modular group acts effectively on 7'(p, n) unless the type appears in the following

short list of exceptional types:
(0,3), (0,4), (1, 1), (1,2), and (2,0).

Let X €Mod (p, n) and assume that ¥ acts non-trivially on T'(p, n). Bers [9] has introd-
used a classification of elements of Mod (p, #) by setting
a(x)= inf {7,%(z)), (4.1)
reT(p,n)
and calling y elliptic if it has a fixed point in T'(p, »), parabolic if there is no fixed point and
a(y) =0, hyperbolic if a(y)>0 and there is a 7€ T(p, n) with a(y)=<z, (z)), and pseudo-
hyperbolic if a(y) >0 and a(y) <{z, y(z)) for all € T(p, n).
The number a(X) is not easily computed. If y is induced by the self-map f of § and ¢
is a conformal structure on S, then cofloos~! is a self-map of the Riemann surface o(S).
Let h, be the unique extremal self-map of o(8) isotopic to cof~1oo~t. Then
a(x)= inf §log K, .
[l T(p,n)
We should also observe that X induces a quasiconformal self-mapping on every surface

represented in T'(p, n).

§ 5. Fiber spaces over Teichmiiller spaces and their modular groups

Let T be a finitely generated Fuchsian group of the first kind operating on the upper
half plane U. We denote by M(I") the space of Beltrami coefficients for I'. For every

u€M(T') there exists a unique homeomorphism
wk: CU {oo} - CY {oo},

(i) which is normalized to fix 0, 1, oo,
(ii) has Beltrami coefficient 4 in U, and

(iii) is eonformal in the lower half plane U*.

Two Beltrami coefficients u, v are equivalent if we| U* =w| U*. The trivial Beltrami coeffi-
cients are those equivalent to zero. The Teichmiiller space T(I') is the set of equivalence
classes [u] of Beltrami coefficients 4 € M(I"). If I has type (p, n), then T(I") can be used as
a model for T'(p, n).
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For each p € M(T"), there is also a unique y-conformal normalized automorphism of U
that is denoted by w,. The equivalence relation on M(I') can also be described alternately
by:

p~v <>w,|R=w,|R.

Remark. A Beltrami coefficient, as an element of the Banach space L*(I") of Beltrami
differentials, has L®-norm (||-||,) less than one. It will be useful to abuse language occa-
sionally and call elements of norm one of L®(T"), Beltrami coefficients of norm one. If x is a
Beltrami coefficient of norm one and z€ € with |z| <1, then zu is a Beltrami coefficient in
the ordinary sense.

Every element y € M(I") induces an isomorphism 6* of I" onto a quasi-Fuchsian group
I'* defined by

64(y) = whoyo(wr)-l, y€T.

The isomorphism 6# depends only on [u]. Similarly,
0/:(7) =w,0)y° (w/z)_l

defines an isomorphism of I' onto a gquasiconformally equivalent Fuchsian group. These
mappings are called right translations and allow us to place an arbitrary point of 7'(p, n)
at the “origin” of Teichmiiller space.

An automorphism 0§ of the Fuchsian group I' is called geometric if there exists a quasicon-
formal self map w of U such that

O(y) =woypow™, all y€I.

We let the extended modular group, mod I', denote the group of geometric automorphisms
of I', and we define the modular group as

Mod I' = mod I'/T';

that is, Mod I is the quotient group of geometric automorphisms by the normal subgroup
of inner automorphisms. The group Mod I' acts on 7(I") as follows: if the element y of
Mod I' is represented by the quasiconformal self map w of U and if 4 € M(T"), then

2([p]) = [Beltrami coefficient of w#ow-1].

If I is torsion free of type (p, n), then Mod I may be taken to be a model for Mod (p, n).
The Bers fiber space F(I') is defined by

F(T) = {([u], 2); [W]€T(T), zEwr(U)}.
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The natural projection of F(I') onto T(I"} will be denoted by z. The extended modular
group acts on F(I") as follows: if § €mod I is represented by the quasiconformal map w,
then

B(lp), 2) = (1. 8),

where € M(), z€ws(U); v=Beltrami coefficient of wrow1, and
2 = wowo (wk)~(2).

The action of mod I" on F(I') is always effective. It follows easily from the above definitions,
that if 6€mod I' and y is the image of § in Mod I, then the following diagram commutes

O —2 By

ln ln (5.1)
x
() —=— T(T).

Observe that the action of T' on F(I") is particularly simple since I' >mod I'. For
v €L, z€a~({u]),
(el 2) = ([ul, y#2),
where y € M(I'), and
& =wropo (wr)t =G4(y).

The quotient spaces

V() = FI)/T

provide various models for the Teichmiiller curves. For I' torsion free of type (p, n), V(I")=
V(p, n)’ is a model for the punctured Teichmiiller curve for surfaces of type (p, n). See Earle—
Kra [13] as well as Bers [8] and Kra [22], [24] for more details on the concepts discussed in

this section.
Let us assume now that I" is a torsion free Fuchsian group of type (p, »), and let us

choose a point a€U.
Let A=T'a={ya; y€T'}, and let

h:U—UNA4

be a holomorphic covering map. The Fuchsian model for the action of I' on U\ 4 is the

group
= {g€Aut U; Iy €T’ with hog=yoh},
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where Aut U is the group of complex analytic automorphisms of U(=8L (2, R)/+£ I). Then
Ul = (UT)\{d} = (UNAT, (5.2)

where 4 is the equivalence class of ¢ in U/T", and I is & torsion free Fuchsian group of type
(p, n+1).

Throughout this paper we will follow the above notational convention: given a€U;
A=Ta will denote its I"-orbit, ¢ its U/I"-equivalence class, and T" a torsion free Fuchsian
group defined by (5.2).

We define a surjective mapping

kR M) - M(I")
by the formula

’

(mph=y%,yeM@y

The mapping #* induces a mapping

p: T() > P
by
p([ul) = ([v], w(a)),

where y€M(I') and »=~h*u. The mapping y is a biholomorphic surjective map, whose
existence shows that F(I') is complex analytically isomorphic to T(f‘), which is a model
for T'(p, n+1). Further, the projection map z: F(I') »> T(I') may be identified with the
forgetful map T(p, n+1)— T(p, n) discussed in Earle-Kra [13].

We proceed to study the action induced by the isomorphism y on the modular groups.
Let 6€mod I'. Assume that 0 is induced by a quasiconformal map w that conjugates T
into itself. The mapping w can be replaced by another mapping that induces the same
isomorphism 6 and sends the distinguished point a onto itself (see Lemma 2 of § 9). Thus
without loss of generality we assumed that w(a)=a (see Bers [8], Kra [22], Riera [33]).
The condition w(a)—a suffices to guarantee that w is an automorphism of U\ 4. Hence,

there exists a quasiconformal W: U~-U such that the following diagram commutes

v YW .y

L
U4 —2. U\ 4.

The mapping w induces a self-map of (U\ 4)/T. Hence W induces a self-map of U/T,
and thus W conjugates T' onto itself and defines an element % of Mod . Tt is now straight
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forward to check that the diagram

iy —*— 1)

P, b

FT)—— F(T)
commutes. We have constructed an isomorphism
I:mod I'>Mod I'. (5.3)

The Image of I is a subgroup of index » -+ 1 in Mod I". The image consists of those elements
x €Mod I' that are induced by self-mappings W of U/f‘ that fix one of the (specified) punc-
tures on U/f‘. For more details see [8], [22], [33].

We are now ready to classify the elements of the group Isot (S, x,), which was defined
in § 2.

ProrosiTioN 1. There is a canonical isomorphism I:m(S)— Isot (S, zy). In par-
ticular, the elements of Isot (S, z,) are classified by the fundamental group of S.

Proof. Represent S as U/T" for some torsion free Fuchsian group I'. Then, of course,
I"=n,(8S). Choose a €U, so that d, its equivalence class in U/T", represents z,€8. As sbove
represent (U/I')\\ {4} by a torsion free Fuchsian group I' so that (UIN{é} = U/I‘

The isomorphism I is the restriction of the isomorphism (5.3) to '©mod I'. We shall
discuss- this isomorphism in detail and show that indeed I(I') =TIsot (U/T", 4). For the con-
venience of the reader, we will repeat certain arguments from [8], [22], [38]. Let y €I and
choose a quasiconformal automorphism w, of U so that wy(a) =7(a) and w, acts trivially
on I' (that is, wyogowy ' =g for all g€T'). Let w=w;y oy. Then w conjugates I" onto itself
and w(a) =a. The mapping w induces an automorphism W of U/I" (that fixes &) so that

7 A

Jq jq (5.4)
g LA

commutes, We now use the observation of Ahlfors [3] that W is homotopic (or equivalently,
isotopic) to the identity on U/T if and only if w induces an inner automorphism of I'. We
thus see that I(w)€Isot (U/T, d)<Mod I'. The mapping I is well defined. If i, also acts
trivially on I and sends @ onto y(a), then @=; 0y and w induce self-maps W and W
of (UI)YN{d}= U/I'. We must show that Wo W1 is isotopic to the identity on U/T. Now
WoW-! is induced by the self map Wow =4 'ow, that acts trivially on I and fixes the
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point g€ U. Such a map is homotopic to the identity (on U/T") by the homotopy along
Poincaré geodesics defined by Ahlfors [3]. This homotopy keeps fixed the point 4. It fol-
lows that @ow™! is isotopic to the identity on (U/T')\ {4} (Baer [4], [5], Epstein [14];
see also Bers [8], Kra [22], and Birman [11]).

The mapping I is a homomorphism. Let y,€T’, j=1, 2. Choose wy, such that wyoy=
yowy, all y€T, and wy(a)=y,(a). Let w;=wq'oy;, and construct W;: U/T'>U/T so that
Wioq=w,;0q. Then clearly

WioWyo0q = W, 0qow, =qow,0w,,

showing that I(p oy,)=1I(p;)oI(y,).

To show that I is injective, let y €1" and assume that I(y)=1. Using the notation in-
troduced at the beginning of this proof, we see that W is isotopic to the identity on
(U/I')\{é}. In particular, w must act trivially on I' (the inner automorphism is trivial
because w fixes a). Since w=wyq 1oy, and both w and w, commute with the elements of I,
we conclude that so does y. Hence y is the identity.

It remains to show that I is surjective. Let W be a self-map of U/T" that fixes the point
d and is isotopic to the identity as a self map of U/T". Lift W to a sef-mapping w of U so
that (5.4) commutes. Then w(a) =y(a) for some y €I, and it is quite easy to see that I{y)
is the class of W in Isot (U[T, 4).

Remark. Proposition 1 is well known. It has been proven explicitly or implicity many
times (in [8], [11], [22], for example). It is a special case of more general results. See Birman
[11] and the literature quoted there.

§ 6. Teichmiiller discs in T(p, n)

A point 7 in the Teichmiiller space T(p, n) represents a Riemann surface S of type
{(p, n). Choose a torsion free Fuchsian group I' of type (p, ») so that S=U/T". Take T(I') as
a model for T(p, n).

A formal Techmiiller (Beltrami) coefficient for I is of the form

u="kpllp], (6.1)

where 0 <k <1, and @ is a meromorphic integrable automorphic form for T' of weight —4 and
norm 1 (that is,
@: U—CU {0}

is a meromorphic function satisfying

py2)y'(2)? =p(z), allz€U,all y€T,
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and

Il =4 [ _lo@asndzl -,

The automorphic form ¢ as above projects to a meromorphic quadratic differential @
which has at worst simple poles at points of U/T" and at the punctures of U/['—hence ®
has only finitely many poles. A formal Teichmiiller coefficient is called a Teichmiiller
coefficient for I' if ¢ is also holomorphic (in addition to being integrable) on U/I’. The
Banach space of integrable holomorphic quadratic differentials on the Riemann surface 8
will be denoted by @(S). Note that every element of Q(U/I") comes from an automorphic
form. We shall henceforth identify automorphic forms of weight —4 and quadratic dif-
ferentials.

A quasiconformal mapping w whose Beltrami coefficient is a (formal) Teichmiiller co-
efficient u given by (6.1) will be called a (formal) Teichmiiller mapping. The quadratic
differential ¢ will be called the initial differential of w. The terminal differential of w is the
hegative of the initial differential of w~1. For more information on the connection between
formal Teichmiiller mappings and the problems considered in this paper, the reader is
refered to Bers [9].

Assume now that ¢ €Q(U/T") with ||¢|| =1. Consider the map of the unit disc A into 7/(T")
given by

A3z >[4/ |9 1€T(T).

This mapping is an isometry with respect to the hyperbolic metric on A and the Teichmiiller
metric on T'(I'). The image of this mapping is a totally geodesic submanifold of T(I")=
T(p, n) called the Teichmiiller disc through T corresponding to the differential ¢. Techmiiller’s
theorem asserts that the Teichmiiller discs through 7 fill out 7(p, n). A Teichmiiller line
through T consists of the points [k¢/|p|], —1<k<1, in 7).

Problem C. Let m: F(I')—~T(I') denote the Bers fiber space. Recall that F(F)=T(I’).
Thus we can define Teichmiller discs in F(I"). Let [u] € T(I"). Is m~Y[u]) @ Teichmiiller disc?
The domain s=2([u]) =ws(U), u€ ML), has the canonical hyperbolic (Poincard) metric
on it. Does the metric that wr(U) gets from its imbedding in T(f) cotncide with the Poincaré

mebric?

It will be convenient to characterize the Teichmiiller metric on F(I') more directly. The
Teichmiiller metric on T(I") arises from the solution of an extremal problem. The same is
true for F(I'). We proceed to describe the extremal problem for F(I).

Choose any point a€U. We say that two Beltrami coefficients y and v€M(I") are
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equivalent with respect to {I'; a} provided w#| U* =w?| U* and w¥(a) =w>(a). Call the space
T(T"; @) of such equivalence classes the Teichmiiller space of the pointed Fuchsian group
{T; a} (see Kra [22]). It is quite easy to define a Teichmiiller metric on 7'(I; @), and to show
that

g > ([ul, we(a))

defines an isometric surjective mapping of T(T'; @) onto F(I'). Thus a Teichmiiller disc in
F(I') through the point ([0], &) is of the form

([, w(a)),

where z€C, |2| <1, u=@/|¢| is a formal Teichmiiller coefficient of norm one with ¢ holo-
morphic on U\ {['a} (that is, ¢€Q(( U/T')\({d})). It is an easy exercise to show that the iso-
morphism of T(f‘) onto F(I')=T(I; a) preserves Teichmiiller dises.

An element of y€Mod (p, ») takes a Teichmiiller disec D through 7€ 7'(p, n) onto the
Teichmiiller dise y(D) through x(z).

Problem D. Which elements of Mod (p, n) leave invariant (as a set) some Teichmiiller

disc in T(p, n)?
A necessary and sufficient condition for y(D)=D is that D and y(D) have (at least)

two points in common (Marden—Masur [26]). This question is closely related to under-
standing the action of Mod (p, #) on the various boundaries of T'(p, n). See Abikoff [1],
Bers [10], Kerckhoff [19], Marden—Masur [26)].

§ 7. The Thurston-Bers classifications of elements of Mod (p, n)

Let f be an automorphism of a surface of type (p, n) and y the corresponding element
of Mod (p, n). Bers’ [9] important result on the classification of elements of Mod (p, n)
has several parts. For an exposition of this and several related topics see Abikoff’s mono-
graph [2].

(A) The map y is elliptic if and only if { is (isotopic to) a periodic mapping.

(B) If f is not (isotopic to) a periodic mapping, then y is hyperbolic if and only if f is
irreducible. The reducible (non-periodic) f correspond to parabolic or pseudohyperbolic .

(C) A non-periodic element y € Mod (p, n) is hyperbolic if and only if it leaves invariant
a Teichmiiller line in 7'(p, n). In this case we can choose a model T(T') for T'(p, n) so that
% €Mod I is induced by a Teichmiiller mapping w that conjugates [ into itself and satisfies
K(w?) =K(w)? Equivalently, the initial and terminal quadratic differentials of w coincide.

Such a w is called ([9]) an absolutely extremal (non-conformal) mapping.
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(D) A parabolic or pseudohyperbolic ¥ (non-periodic) can always be induced by a
completely reduced f. The component maps of f induce elements of modular groups of the
parts of § which we will call the restrictions of y. The map y is parabolic if all the restric-
tions are periodic (or trivial) and pseudohyperbolic if at least one restriction is hyperbolic.

PrOPOSITION 2. Let y€Mod (p, n) and let a be a positive integer. Then y and x* are
both of the same type.

Remark. The identity element of the modular group will be considered to be of elliptic
type.
Proof. If y is elliptic, then so is y* because a fixed point of y is certainly a fixed point

of 4o, If x is hyperbolic, it has an invariant line /, then ! is also invariant under y*. So y* is
also hyperbolic. If y is parabolic, then all the restrictions are elliptic (or trivial). Hence all
the restrictions of y» are also elliptic, and x* is parabolic. If y is pseudohyperbolie, it is
reducible and at least one of the restrictions is hyperbolic. The same is true for y=. Since

type is preserved by raising to power, the converse is also true.

Remark. As we have seen, mod T is a subgroup of Mod I'. Hence the above classifica-
tion carries over to elements of mod I.

An amplification of a result (Theorem 6) of Bers [9] is contained in

THEOREM 1. An element y €Mod (p, n) leaves invariant a Teichmiiller disc in T(p, n)
if and only if it can be induced by a conformal self-map or a Teichmiiller self-mapping w of a

Riemann surface S of type (p, n) satisfying the following two equivalent conditions:

(a) the mapping w? is also a Teichmiiller mapping,
(b) the terminal differential of w is a multiple n of the initial differential with |n| =1.

A mapping y that leaves invariant o disc 1s either elliptic (if w can be chosen conformal),
hyperbolic (if =1, for some choice of w), or parabolic. Conversely, every elliptic or hyperbolic

¥, leaves invariant a disc, while no pseudohyperbolic y can leave a disc invariant.

Proof. An observation of Kravetz [25] (see also Earle [12]) implies that if w, and w,

Wy

Sz<—S_&’S1

are Teichmiiller mappings, then w;ows! is also a Teichmiiller mapping if and only if the
Beltrami coefficient u, of w; is & constant multiple of the Beltrami coefficient u, of w,.
The case where either u, or u, is zero is trivial. Hence write

My =’:¢4/l‘171l» j=1,2,
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where 0<r,<1, ,€Q(S), and ||g,|]| =1. It is easy to see that u, is a multiple of u, if and
only if ¢, is a multiple of p,. Recall that ¢, is the initial differential of w;.

If w is a Teichmiiller mapping, then w? is a Teichmiiller mapping if and only if the ini-
tial differential of w is a multiple of the initial differential of w ™" (=the negative of the ter-
minal differential of w). Thus we have established the equivalence of (a) and (b). The con-
stant # must have absolute value 1 because w and w~! have the same dilatation, and the
quadratic differentials under consideration have norm one.

Assume that an element y of Mod (p, ») leaves invariant a dise through v€7T(p, n).
Hence y must restrict to a Mobius transformation on this dise. Choose a Fuchsian group I'
80 that T(I") becomes a model for 7'(p, ») with the origin in 7(T") corresponding to 7. Choose
@€Q(U[T) with |jp|| =1 so that the disc corresponding to ¢ is invariant under y and set
u=@/|p|. Choose a quasiconformal w that induces y. Without loss of generality w is a
Teichmiiller mapping. Then there exists a Mébius transformation A that fixes the unit
disc A so that

2([tu]) = [Beltrami coefficient of w*ow1] =[A(t)u], for all (EA.

In particular,
2{[0]) = [Beltrami coefficient of w—] = [A(0)x],

and we conclude that the terminal differential of w is a multiple of ¢, by the uniqueness
part of Teichmiiller’s theorem. Similarly y~! leaves invariant the same disc in T(I") and
is induced by w—1. Hence the initial differential of w is also a multiple of ¢.

The converse is established by direct computation. If w is a Teichmiiller self-mapping
of U that conjugates I' into itself and satisfies condition (b), then we let ¢ be the initial
differential of w and show that the disc through O corresponding to ¢ is invariant under y,
the element of Mod I' induced by w. Write =@/ |p]|, and assume that the Beltrami coeffi-
cient of w is ku, for some k with 0 <k<1. The Beltrami coefficient of w~! is then 7ju with
7€C, |7| =k. The chain rule shows that

- w.
fi(pow) = — =k, (7.1)

t4

and that the Beltrami coefficient of w*ow! is

C—kp\w, _,_ _Ht-k
<l—kt b b 1=t A0

where the next to the last equality is a consequence of (7.1). Since ¥>0 and |7j/k| =1,
A is a Mobius transformation fixing the unit disc.



246 1. KRA

The last part of the theorem is essentially a consequence of the Bers classification of
elements of Mod (p, n).
If y€Mod (p, n) is elliptic, then the fixed point set

T(p, n)* = {t€T(p, n); Xt=t}

is- again a Teichmiiller space of type (p’, »'). If ¥ is induced by the conformal self-map A
of 8, then p’ is the genus of §=8/¢h> and #’ is the number of distinguished points on §
(which is the sum of the number of punctures on § and the number of points over which the
projection S—§ is ramified). Thus as long as 3p’ —3 +n' >0, T(p, n)* has positive dimen-
gion, and every point of T'(p, n)* is clearly contained in a Teichmiiller disc invariant under y.
In general, view A as a conformal map fixing U, the universal covering space of §=U/I".
The mapping b acts on M(I") and Q(S) by the rules

h*uoh = uk'[k', weM(T),
Fpoh =g(h')%, @€Q(S).

The first formula gives, of course, the action of  on T(I"). Since A conjugates I' onto itself,
h* fixes M(I') and Q(S). From the above two formulae, we see that for the Teichmiiller

coefficient u~@/|@|, we have
Wu=p[[y|, where y=h*p.

It is quite easy to see that the linear mapping »*: Q(S)—>Q(S) has an eigenvalue (see, for
example, Farkas—Kra [15, p. 256]); which must be of absolute value one. Say h*p=7A¢p
with 1€ C, {4] =1. Then h*u=74u. Hence the Teichmiller disc determined by ¢ is invariant
under y.
If y is hyperbolic, then, by Bers’ [9] theorem, y has an invariant line, and hence an
invariant Teichmiiller dise.
Finally, a pseudohyperbolic y cannot have an invariant dise, since a Mébius transforma-
tion that fixes a disc must be elliptic, parabolic, or hyperbolic. In the first two cases a(y) =0.

In the last case, by Bers’ [9] theorem, y is hyperbolic.

CoRrROLLARY 1 (of the proof). Let f: S— 8 be a conformal mapping of a Riemann surface
of non-excluded finite type. Let (p, n) be the type of the Riemann surface 8[{f>. (Thus n is the
number of {fy-equivalence classes of punctures on S.) The mapping f is reduced if 3p —3 +n>0.

Proof. The mapping f is reduced whenever we can find an admissible curve on S/{f).

Remark. Theorem 1 provides a partial solution to Problem D. The theorem does not
treat, however, the case of parabolic elements: As we shall see, in § 9, we will exhibit a class
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of parabolic elements of Mod (p, n) induced by products of Dehn twists about admissible
curves and their inverses. If no inverses appear (that is, if we consider a product of Dehn
twists), then the corresponding element of the modular group has an invariant dise. This
was proven by Marden—Masur [26]. If inverses of Dehn twists are also used, then one can
produce parabolic elements of Mod (p, 7) that do not have any invariant dises (H. Masur,
private communication). Necessary and sufficient conditions for a parabolic element to

have an invariant disc are not known.

Prorosirion 3. Let w: F(I')->T(I") be the Bers fiber space, where T' is a torsion free
Fuchsian group of type (p, n). Let 0€mod I' and y €Mod I be induced by the same quasicon-

formal automorphism w of U (so that (5.1) commutes). Then

a(0) = a(y), (7.2)
where a( ) is defined by (4.1).
In particular: If y is hyperbolic or pseudohyperbolic, then so is 0. If 0 is elliptic or para-
bolic, then so is y (i could be the idenitity).
Moreover: If y is hyperbolic, then 6 is hyperbolic whenever we can replace I" by a quasicon-
formally equivalent group so that y and 0 are induced by an absolutely extremal w (for the
surface U|T") that fizes some point z,€U.

Proof. The Teichmiiller metrics on 7(I') and F(I") are the Kobayashi metrics on these
spaces (Royden [34], see also Earle-Kra [13]) and hence all maps involved are distance non-

increasing. Then for z€ F(I'),
lx, O = {mvx, mbix) = {mz, gy = aly);

from which (7.2) follows. Assume now that y is hyperbolic. It therefore can be induced by
an abolutely extremal w (after passing to a quasiconformally equivalent I'). Let ¢ be the
initial (and terminal) differential of w and set g =¢@/|p|. Then the Teichmiiller line corre-
sponding to ¢ is invariant under x; that is, there exists a Mébius transformation 4 that

fixes the unit disc A (and has the open interval ( —1, 1) as its invariant axis) so that

2([8p]) = [A@)ul, tEA. (7.3)
Write

w= Bowy,,;

for some ¢, with 0 <fy <1 and B a Mébius transformation. Then for any 2,€ U,

O([tp], w*(zo)) = ([(AE) ], WP ow(zy)).
16 — 802908 Acta mathematica 146. Imprimé le 24 Juin 1981
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Hence we can produce an invariant line in F(I') if we can find a z,€ U with w(z,) = 2,.

Let
pP:mod I'>Mod I

be the canonical projection.

CoROLLARY 2. For every hyperbolic y€Mod I', we can find a hyperbolic 6 €mod I'
and a positive integer o so that P(0) = x*, provided T is of type (v, n) with p>2.

Proof. Without loss of generality y is induced by an absolutely extremal w that is a
Teichmiiller mapping conjugating I' into itself. Let @ be the initial differential of w. Let
W be the self-map of U/I" induced by w. Then W permutes the zeros of the projection of
@ to U/T'. Hence a power of W fixes these zeros. We conclude that for some z,€ U and some

positive integer o, there is a g€I" with
w*(zg) = g(2,)-
(The assumption p > 2 is needed to guarantee a non-empty zero set for ¢.) Let 0 be the ele-

ment of mod I' induced by g—tow*. Then § is hyperbolic by Proposition 3, and P(0) = =

§ 8. Metrics on the fibers of F(T')

Let : F(I')— T(I') be the Bers fiber space, where I' is a torsion free Fuchsian group
of type (p, n) satisfying (2.1). For every 7€ T(I"), 7~(7) is a domain in CU {co} bounded
by a quasicircle passing through 0, 1, cc. The domain #—'(r) has two canonically defined
metrics on it: the Teichmiiller metric (-, ->, and the non-Euclidean metric ¢ of constant

negative curvature —4. Both metrics are invariant under mod I'.
ProPrOSITION 4. (a) Let x, yEn~(t). Then for x+y,
#o(@, y)) <<z, < o=, y), (8.1)
where x is the function of Lemma 1. Further, if I has type (0, 3), then
$z, 4> =elz, y). (8.2)

(b) In general, the Teichmiiller metric on n~Y(t) is complete.

(¢) For x;=([u,], z,)€EFI), 1=1,2,
d(2y, 25) < {xq, 23,

where d is the non- Buclidean metric on C\\ {0, 1}.
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Proof. Assertion (b) is obvious since the Teichmiiller metrie is complete on F(I') and
Y1) is closed in F(I"). Alternately, (b) follows form (a) since both g and »og are complete
metrics on the domain zt=(7).

To obtain the inequalities in (8.1), it suffices to assume that v =0, and thus that
7-1(0) = U. We identify F(I') with T(I'; @) for some ¢ €U and take z=ga. There is now a

unique formal Teichmiiller Beltrami coefficient
po =t/ || €M(T),
where g €Q((UN\4)/T"), @ has a simple pole at a, ||p|| =1, and £>0, such that [,]=[0], and
w(a) =y
(4 =Ta, and we abreviate @/|p| by u). It follows that

14t
<z, y>=%1og Ty

Now the map z —([0], z) of U into F(I') is holomorphic. Since the Teichmiiller metric on

F(I') is the Kobayashi metric, this map is distance non-increasing. Hence
{2, ¥ <o(@, y)-
If 7-1(0) were a Teichmiiller disc, then the map
A3z > ([0], w™(a)) EF() (8.3)

would be an isometrie mapping of the unit dise A onto 7~1(0) in F(I"). This would mean that
the Beltrami coefficient zu would be trivial for all z€ C with |2z| <I. In particular, w™(z) =z
for all z€R, and hence

d .
@

=0, all x€Ry
0

b=

that is (see Bers [7]),

2 ffuC(C—l)(g_x)—O, all z€R,

or 4 would also be locally trivial. Now if I is of type (0, 3), then T(I") is a point and F(I')=U.
In this case, the holomorphic mapping (8.3) is distance non-increasing establishing the
equality (8.2).

To establish the (first) strict equality in (8.1), note that w* is the identity on R and
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sends z into y. Hence it is a competing function for the extremal problem associated with
Lemma 1. It is clearly not the extremal function for this problem (see Teichmiiller [35]).
Hence
#lol, y)) <<z, 9,
establishing part (a).
Part (c) follows from the fact that the mapping (projection onto the second coordi-

nate)
FI)3(ul, 2) +2€0\{0,1}

is distance non-increasing with respect to (-, -> and d (see Kra [23]).

CoroLLARY 3 (of the proof). The fiber m~1(0) is a Teichmiiller disc if and only if there
exists a formal Teichmiiller Beltrami coefficient u of norm 1, u=g/ ||, where ¢ has a simple
pole at UL with p€QUUITYN{E}), ||| =1, such that zu is a trivial coefficient for all
z€A.

CorOLLARY 4 (of the proof). There exist Beltrami coefficients p==0 such that zu s
trivial for each z€C, |z| <1/|u].

Proof. Take any Beltrami coefficient for a triangle group (a group I' of type (0, 3)—

torsion is permitted), and use the fact that the corresponding Teichmiiller space is zero

dimensional.

Remark. Some years ago this author asked the following question. If u is a trivial
Beltrami coefficient and 0<<¢<1, is fu also trivial? Gehring [17] produced an example to
show that the answer is no. The following simple example due to Edgar Reich also shows

that in general the answer is no. Reich works with the unit disc A. Fix «€C, |«| <1,

and put
w(z) =z+a(l —2z), zEA.

Then w is a quasiconformal automorphism of the unit dise fixing the unit circle. The Bel-

trami coefficient of w is
— oz
l—oz

u(@)=

If o==0, then y is not locally trivial since for any Ll-holomorphic function f on A,

[[ s =5%

which is non-zero for f=1, for example.

——a [ e

2=0
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In §10 we will give more interesting examples- involving formal Teichmiiller dif-
ferentials.
For g€T’, we define two functions on T(T'):

fl(‘r) = inf <x’ gx>7

rex ()

fa(r) = inf o(z, gx).

ren~Y7)

It is well known that f,(7) is the length of the geodesic corresponding to the element g of the

fundamental group of the Riemann surface represented by 7. For parabolic g,
f7)=0=/f,(r), allzeT(I).
If g is hyperbolie, then for 7=[u], w€M(I),
fo(7) = }|log 2,
where 2, is the multiplier of the hyperbolic element

-1
g =w,og0w,”,
and

fo(r) = o(z, g,2), for all z on the axis of g,.
(See § 9.) Thus we also have

ProrosiTIiOoN 3. For hyperbolic g€T’, f,: T(I")—(0, =) is a continuous (real analytic)

function, and
#(fo(7)) < H(7) < fo(v), all T€T(T). (8.4)

§ 9. Solution to Problem A

We need a slight generalization of a well known fact about (Teichmiiller) trivial auto-

morphisms.

Lemma 2. Let 1" be a finitely generated torsion free Fuchsian group of the first kind. Let
L, §=1, ..., k be the axis of a hyperbolic element y,ET. Assume that these axes project to dis-
jount Jordan curves on U[T" under the canonical projection q: U~ U|T'. Let c; be a closed collar
about q(y;), with these collars pair-wise disjoint. Let C =q(c, VU ... U ¢,). Then U’ =UN\C s
open in U, and for each pair of points x, y in the same component of U’, there exists a quasi-
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conformal automorphism w of U such that w(x)=y,
wog =gow, forall geI’ (9.1)
(hence w s the identity on R), and
w 18 the identity on C. (9.2)

Proof. Let c=c, U ... U ¢,. Since U’ =¢=1(S\¢), U’ is open in U. Let D be a component
of U’, and let a€D. Define

D' = {y€D; 3 a quasiconformal automorphism w of U satisfying w(a)=y, (9.1), and (9.2)}.

The set D’ is not empty since ¢ € D’. Assume that y,€D’, and assume that w, is the cor-
responding map. Choose a small disc D; around y, so that D;= D and ¢| D, is injective.
For y € D,, there exists a quasiconformal automorphism w, of D, such that w; is the identity
on the boundary of D; and w,(y,) =y. We extend w,; to I'D,(=the image in U of D, under
TI") by invariance, and to be the identity on U\ I"D,. Then w =w, ow, sends a to y and satis-
fies (9.1) and (9.2). Thus D;< D’ and D’ is open in D. Precisely the same argument shows
that D’ is closed in D. Hence D=D'.

We now return to Problem A and use the notation of § 2. We represent the surface
S with some conformal structure by a torsion free finitely generated Fuchsian group I' of
the first kind so that 8=U/T". We choose a € U so that § =(U/T')\{d}. Finally, we choose
another Fuchsian group I' so that §= U/F

We have seen (Proposition 1 of § 5), that the elements of Isot (8, d) are classified by
7,(8)=T". We shall call a hyperbolic element g€T" simple if g is a power of an element
whose axis projects to an admissible Jordan curve on S. If ¢ is not simple, it is called
essential (according to Maskit—-Matelski [27]) if the axis of g projects to a curve that inter-
sects every admissible curve on S. The element g€I" is essential if and only if the projec-
tion of the axis of ¢ is a filling curve on 8, as defined by Thurston [36]. See also [32] and
Figures 2 and 3.

It is easy to verify that g is essential if and only if the complement in S of the projec-

tion of the axis of g consists of a union of discs and punctured discs.

THEOREM 2. Let 13=fEIsot (S, ) and let g €T be the corresponding elements of I' 22gz,(8).

(a) If S has type (0, 3) then g is a parabolic (hyperbolic) element of mod I' if and only if
g 1s a parabolic (hyperbolic) element of . In particular, f is reducible if and only if g is para-
bolic.

(b) Assume that 8 is not of type (0, 3), then:
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Figure 2. A non-essential, non-simple curve (c,) on a surface of type (2,0). ¢, is a reducing curve for the
corresponding self-map of a surface of type (2,1).

Figure 3. An essential curve on a surface of type (2,0).

(i) g is a parabolic element of mod I if and only if g is either a parabolic or a simple
hyperbolic element of T,

(ii) g s @ hyperbolic element of mod T if and only if g is an essential hyperbolic
element of I, and

(iii) g 4s pseudohyperbolic element of mod I' if and only if ¢ is a non-simple non-
essential element of T',

In particular, f is reducible if and only if g is not a hyperbolic essential element of T'.

Remark. For type (0, 3) every hyperbolic element of I" is essential. Hence (a) is a special
case of (b).
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Proof of the theorem. Part (a) is completely obvious since the Teichmiiller metric on
F(I')= U agrees with the Poincaré metric on U (by Proposition 4 of § 8). To prove part (b)
we examine the action of ¢ on F(I'). Recall that

g([pl, 2) = ([, g#(2)),

where
z€wAU), pw€M(l'), and ¢*=whrogo(wr)l.

By Proposition 4, for every x € F(I'),
<z, gx) < o(x, g).

Note that g(x, gx) is well defined since 2 and gz are always in the same fiber. It is clear that
for a parabolic element g of T', a{g) =0 (see § 8). Assume that g is a hyperbolic element of I'.
By Proposition 2 of § 7, it suffices to assume that g is primitive (not a power of another
element of I'). We will compute for certain z€w#(U), the Poincaré distance o(z, g4(z)).
Choose a normalized Riemann map A: w#(U)—U. Note that how# is a normalized

p-conformal automorphism of U and hence equal to w,, and that
gu=w,ogow," =hogroht (all g€T).

Hence I',=w,T'w,* is the Fuchsian model for the quasi-Fuchsian group I'*. Invariance of

the Poincaré distance under conformal maps shows that

Qw/‘(U)(z’ gﬂ(z)) = QU(h(Z), gﬂOh(z))7
for all z€w*(T). Thus

lnf gwﬂ((])(za gﬂ(z)) = ln(j; QU(Z: g,u(z)) = %Ilog A,ul ’ (93)

zewh(U)
where 4, is the multiplier of g,,. The axis of g, projects to a curve on U/I,,. Assume now that
g is simple and primitive. Bers [6] has shown how to construct a sequence u,;€ M(I") so that
lim 4, =1.
i
Hence the infimum in (9.3) must be zero, and inequality (8.1) shows that a(g) =0, or that
g is a parabolic element of mod I".

If g is a hyperbolic and non-simple element of T", then the axis of g projects to a closed

geodesic on § with a non-trivial self intersection. By the Keen-Halpern collar lemma
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(see Matelski [28]), there is a constant C'>0 such that
() =C, allrel(l)

(see Proposition 5). Hence a(g) >0 and ¢ must be a hyperbolic or pseudohyperbolic element
of mod T.

Assume that g is essential. (See Figure 3.) Choose a minimizing sequence

{xj} < F(F)’
ljm $&y, gz;» = alg). (9.4)

j=>

Recall that F(I') = T(f‘) and thus each poipt x,€ F(I') represents a surface of type (p, n+1)

in T(T"), where I' has type (p, n). There are two possibilities:

(I) There exist a constant 0,>0 such that all simple closed geodesics (admissible
curves) on all z; have length > C,, or
(II) By passing to a subsequence we may assume x, carries an admissible curve 7, of
length &; with
lim &;=0.
j—»o0
In case (I), we modify an argument of Bers [9] to show that the minimum a(g) is
achieved. By Lemma 4 of [9], we may assume, by passing to a subsequence if necessary,
that there exists a 0,€Mod I such that y;=0,2, converges to an element y € F(I'). Since

each 4, is an isometry,
<y, 009007 (y)> = {x;, gy
Thus by (9.4)
lim <y;, 0,0900; (y,)> = a(g). (9.5)

j=>0

Since y=lim,_, y,;, we may assume (by selecting a subsequence if necessary) that the

sequence {0,0906; '(y;)} converges to some point z€ F(I'). We claim that

lim 60,0906, (y) =z. (9.6)

j=>00
This follows from the inequalities,

<B,0900;(y), 2> <<B,0900;(y), 0;09007 (y,)> +<0,0900;  (y,), 2>
=<y, Yy +<6j°g°6;1(y])’ z).
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The limit (9.6) implies that for any >0,
<(B50900;")0(6:0900; ") (), y> <&

for large i and j. Since Mod I acts properly discontinuously on F(I'), we may assume that

6,0900; ! is constant (by passing to a subsequence). Setting
0,0900; = jEMod 1'1,
we conclude that <{y, §y>=a(g), by (9.6), or that

{z, gx> = alg),

where x =0;"y (for any j). Hence ¢ is a hyperbolic element of mod I".

In case (II), we modify an argument of Maskit—Matelski [27]. The curve [, is also an
admissible curve on the surface 7;=n(z,) € T(I"). The length of this curve 7, on 7; is less than
&;. Since the axis of g projects to a curve that crosses [;, the Keen-Halpern collar lemma
implies that the length of the axis of ¢ on 7, must go to infinity. Thus

lim inf p(z,g2)=lim }|log 4| = + oo,
j>w0 zea~\z) j=>0

where 4, is the multiplier of g,,, with u,€ M(T"), [u;]=7,. Thus

lim o(z, gy) = + oo,
j—=>
and by Proposition 4 of § 8, the sequence {«;} could not have been a minimizing sequence
for (9.4).

Before considering the case of non-simple non-essential hyperbolic g €I", we investigate
the question of finding reducing curves for reducible elements of Isot (S, d).

Consider first a primitive parabolic element g€I'. We want to determine the action
of the corresponding element f€Isot (S, 4) on S. Without loss of generality g(z) =z+1 and
o satisfies Im ¢ >1. Thus, by a well known lemma of Shimizu-Leutbecher (see, for example,
Kra [21, pp. 58-62]), we conclude that ¢(U,) N U, is empty for all y €T such that y is not
a power of g, where

U;={2€C; Im2>1}.

We must construct a quasiconformal automorphism w, that commutes with I' and satisfies
wo(a)=a +1. Choose £ >0 so that

U,={:€C;Ima—e<Imz<Ima+e}c U,.
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Define

1 _
wo(z) =Re z+1—= [Im (z—a)| +4 Im 2z, 2€U,.

Note that wy(z+1) =wy(z) +1, and that w, is the identity on the boundary of U, We ex-
tend w, to I'U, by invariance:

w(yz) =pow,(z), z€U,, y€T,

and set it to be the identity on UN\I'U,. We compute the action of w=wg'og on §=
(UNA)T, where A =Tla. Note that ¢(U,)\{d} is a punctured annulus a on S, and that
the projected map W:S—8 is the identity outside this annulus. (Here ¢ is the projection
of U to U/T".) By modifying our construction slightly we may assume that W is the identity
also on a smaller punctured annulus around 4. We can draw two conclusions: W is the in-
verse of a Dehn twist about the curve ¢({Im z=a—e¢}) (see Marden-Masur [26]), and W
is completely reduced by a family of admissible curves in §\ a. See Figures 4 and 5.

We now assume that g is a primitive simple hyperbolic element of I'. Without loss of
generality we assume that g(z) =iz, A€R, 1>1. The axis of ¢ projects to a geodesic on S.
We take a collar neighborhood of this geodesic on 8§ and lift it to U. Without loss of gen-

erality we may assume that one component of this set is of the form
U,= {ze U; z=ré®, r>0, ;—Z— s<0 <72—Z+ e}.
We take @ to be on the imaginary axis, and we define w, (in polar coordinates) by

1 7
wy(r, 6) = (1’ exp [(1—-;’9-—5

) log A] , 0) , (r, 0)€U,.

Again, wy(dz) =1z, € U, and w, is the identity on the boundary of U,. Hence we continue
exactly as in the case of a parabolic element of I". Here W is a product of the inverse of a

Dehn twist about the the curve
(i)

followed by a Dehn twist about the curve

Q({Arg z=g+£}).
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Figure 4. A curve on a surface of type (2, 1) corresponding to a parabolic element of the covering group.
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Figure 5. The inverse of the Dehn twist about ¢, on a surface of type (2, 2) corresponding to the para-
bolic element of Figure 4. @ = annulus where “‘action’” of Dehn twist takes place. ¢y, ..., ¢; are reducing
curves for Dehn twist. Note that the restriction of this map to @ may be identified with the restriction
of the spin in Figure 6 to the corresponding @, since the Dehn twist about ¢, can be “unwound”.

Such a map is known as a spin (see Birman [11] and the literature quoted there) on &

()

Remark. The case of simple parabolic g €' is similar to the case of a simple hyperbolic

about the curve

See Figures 1, 6, and 7.

g. In the first case, the second Dehn twist can always be unwound to become the trivial

map.



ON THE NIELSEN—THURSTON—BERS TYPE OF SOME SELF-MAPS OF RIEMANN SURFACES 259

puncture
2d

g

W
N

N
LY

AN
N

i

P

Figure 6. The spin about ¢ on a surface of type (2, 1) corresponding to the admissible element of Figure 1.

0 is the punctured annulus where “action” of spin takes place. The spin about ¢ is the inverse of the

Debn twist about ¢, followed by a Dehn twist about ¢,. The admissible curves ¢; and ¢, along with ¢,
and c, are reducing curves for the spin.
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Figure 7. The action of the spin of Figure 6 on the curves d, ¢, c,, ¢, of the punctured annulus a,

Finally, continuing with the proof of Theorem 2, we are ready to consider hyperbolic
non-simple, non-essential elements g €1". (See Figure 2.) In this case there exists an admis-
sible curve ¢ on S=U/I" such that ¢ is disjoint from the projection of the axis of g to U/T".
The curve ¢ is also admissible on S. By Lemma 2, we can choose w to be the identity on the
preimage of ¢ in U. Hence ¢ is a reducing curve for W (defined as above). Since W is redu-
cible, ¢ must be parabolic or pseudohyperbolic. Since it cannot be parabolic, we have
completed the proof of Theorem 2.
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Remarks. (1) We have shown that for non-essential g, there is always an admissible
curve on U/T" that is disjoint from the image of the axis of g. By taking a maximal set of
disjoint and homotopically distinct curves of this type, we clearly can obtain an admissible
set O of Jordan curves so that the self map f of § corresponding to g is completely reduced
by C.

(2) Magkit-Matelski [27] have showed that for essential elements g €I, the function
fs (of Proposition 5 of § 8) achieves a minimum on 7'(T"). Theorem 2 shows that these are
also the elements ¢ of I" for which f(z) =<{x, gz) achieves a minimum somewhere on F(I').
The relation between these two extremal problems is not completely clear. See § 12.

S. Wolpert has informed the author (oral communication) that for essential g€I’
the function f, is a Morse function on 7'(I"), as a consequence of Kerckhoff’s work [20]. It
has a unique minimum on 7'(I') and every critical point of f, is an absolute minimum.

{3) The fact that parabolic and simple hyperbolic elements of I' act as parabolic
elements of mod I' was also obtained by Nag [29].

COROLLARY 5. Let S be a surface of non-exluded type (p, n)==(0, 3). There exist non-

conformal absolutely extremal self maps of S (with respect to some conformal structure).

Proof. If n>0, the result follows immediately from our theorem and the (easily verified)
existence of essential curves on a surface of type (p, n—1), since T'(p, n) is isomorphic to
the Bers fiber space of a surface of type (p, n—1). (Except if (p, n) =(1, 1), where 7'(1, 1)
is isomorphie to the fiber space over a point.) It thus remains to consider type (p,0),
p=2. The case p=2 follows trivially from the isomorphism 7'(2, 0)=T(0, 6). In general,
we know that surfaces of type (0, 2n +2) admit absolutely extremal maps that are not holo-
morphic. Let 2, ..., %, be 2142 distinct points on CU {co}. Let Z=CU {o}\{xy, ...,
Tyn, s} Liet w be an absolutely extremal non-holomorphic self-map of ¥. By our theorem
such a map exists for some choice of z;, j=1, ..., 2r+2. Let S be a two sheeted cover of
CU {oo} that is branched over z;, j =1, ..., 2n +2. The surface § is, of course, a hyperelliptic
Riemann surface. Lift w to a self map W of S. The maps w and w? are Teichmiiller mappings,
with K(w?) =K(w)2. Hence W and W2 are Teichmiiller mappings with K(W?2)=K(W)2
Thus W is aboslutely extremal by Theorem 6 of Bers [9].

In the proof of the above corollary, we have encountered an interesting

Open Problem. Let X=C~{0, 1,2y, ..., 2, 3} with n>4 and {z,, ..., 2,5} distinct in
N0, 1}. Find necessary and sufficient conditions for the ewistence of mon-holomorphic

absolutely extremal self-maps of X.



ON THE NIELSEN-THURSTON—BERS TYPE OF SOME SELF-MAPS OF RIEMANN SURFACES 261

It is instructive to reformulate Theorem 2 in purely topological terms. This reformu-
lation is contained in Theorem 2’ of the introduction. It should be noted that we can
actually distinguish topologically the four types (elliptic, parabolic, hyperbolic, pseudo-
hyperbolic) of Bers, rather than just the two types (reducible, irreducible) of Thurston.
Similarly, the concept of a parabolic element of I' can be described completely in terms of
7,(8): a parabolic element of I' corresponds to a loop that is contractible to a puncture on §.

Thus we also have

TareEOREM 2’ (addendum). Furthermore,

(1) ¢ is a power of a Jordan curve on S if and only if (w s reducible and) all the component
maps of w: S—S are isotopic to periodic maps, and

(2) ¢ is a non-essential non-simple curve on S if and only if some component map of w:
S8 is irreducible.

§ 10. Solutions to Problems B and C

THEOREM 3. Let I' be a torsion free Fuchsian group of type (p, n)==(0, 3). Then for all
z, y € F(I") with x=ky, and n(x) =n(y), we hove

<@, ¥ <oz, y)-
In particular, for every T€T(I"), the fiber n—l(t) is not a Teichmiiller disc.

Proof. Assume there exists a t€T(I") and « and y€x~Y(z) such that

{z, y) =o0(@ ¥) (10.1)

Without loss of generality we may assume that =0 and x=a is used as base point for

identifying F(I') with a Teichmiiller space T(I") = T(I'; @). Thus we may write
y = whr(a),

where p =@/ ||, @ is an integrable meromorphic form (p €Q((U/T)\{d})) of the type de-
scribed in § 8, 0<¢,<1, and
144

0u(@,y) = } log 7= 0a(0, to)-
0

Consider any point z on the geodesic line segment in the ¢ metric between x=a and y.
We know that

{w, 2y < Q(x, z), <z, y> < Q(Za Y),
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by Proposition 4, and that
o, 2) +olz y) =olx, y) =<z, ¥,
by the assumption (10.1) and the choices made. By the triangle inequality
{z, 2y = o(w, 2).

We conclude that the segment in U (between x and y) is also a geodesic ray in the Teich-

miiller metric. Thus for any z on this segment

1+t
z=w"(a) with o(x,2)=13log 1—5
In particular, 0 <¢<t{, implies that fu is trivial; that is,
w(E) =&, all £€ER. (10.2)

Since for fixed £€R,
t > w(&)

is a holomorphic function from the disc A into C, we conclude by the identity theorem for
holomorphic functions that {10.2) holds for all t€A, and that fx is trivial for ail €A. Thus
the assumption (10.1) for a single pair of points implies that 7='(0) is a Teichmiiller disc in
F(I). In particular, this would imply that the axis of a hyperbolic element g €I" correspond-
ing to a simple loop on U/I" would be an invariant line in the Teichmiiller metric for the
element g in mod I'. Thus ¢ would be a hyperbolic element of mod I" (Bers [9]). This con-
tradicts Theorem 2.

Remark. The fact that the fibers of &: F(I')—7'(I") are not Teichmiiller discs has also
been obtained by Nag [29].

CoROLLARY 6 (of the proof). The Teichmiiller metric on any fiber n=Y(z) is not a con-
stant multiple of the Poincaré metric. As a matter of fact, if we restrict attention to any segment
of a Poincaré geodesic in w1(t), then the two metrics are not constant multiples of each other

on this segment.

CoROLLARY 7. Let T' be a torsion free Fuchsian group of type (p, n)==(0, 3). Let
P EQUUNA)T), where A=Ta, a€U, with |p|| =1. Let

B={teA;ip/|p| is a trivial Beltrami coefficient}.

Then B is a discrete {possibly empty) subset.of the unit disc A.
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Remarks. (1) In particular, the Beltrami coefficient @/|p| can not be locally trivial.

(2) If g€T yields a hyperbolic element of mod I, then the axis of ¢ is never in a single
fiber in F(I"). It would be interesting to desecribe the image of this axis in 7(I").

The above results have solved Problem C.

We turn now to Problem B. Consider an arbitrary surface S of finite type (p,n)
satisfying (2.1). Represent § as U/T" with I" a torsion free Fuchsian group. The matric g
defined in § 3 coincides with the projection to U/I" of the Teichmiiller metric onzz—1(0) = F(T).

Hence we have obtained

CoRrROLLARY 8. The metric ¢ on UJT" is complete and never a multiple of the Poincaré
metric on U|T", except if U[T is of type (0, 3).

We formulate the above corollary as follows:

THEOREM 4. Let 8 be a Riemann surface of non-excluded finite type (p, n)=3=(0, 3). Then
8 carries two canonically defined metrics on it: the Poincaré metric g of constant negative curva-
ture —4 and the Teichmiiller metric o (which is the restriction to S of the Kobayashi metric on
the punctured Teichmiiller curve). These metrics are not constant multiples of one another.

However, there exists a universal constant ¢>0 such that
co <é <0
on 8 x 8\ {diagonal}. The metrics o and ¢ are invariant under conformal maps.

Remarks. (1) If S is of type (0, 3), then p=p.
{2) We have also established Theorem 4’ of the introduction. We have also obtained

ProPoSITION 6. Let S be a Riemann surface of finite type, and let z,€S. There exists a
constant ¢, >0 such that for all y €S with o(xy, y) <c,, there exists a unique (extremal) quasicon-
formal mapping w with the properties

(1) w is homotopic fo the identity (on S),
(il}) wizy) =y, and
(iii) whenever @ satisfies (i) and (ii), then K(w)<K ().

Remarks. (1) The mapping w satisfies

% log K(w) =@(xo, )

(2) In connection with Proposition 6, consider the Bers fiber space : F(I')—>T(T").

161 — 802908 Acta mathematica 146, Imprimé le 24 Juin 1981
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Fix 2, €z7(0). It would be interesting to describe the shape of the sets

{y€n—40); <y, x> =&},
and

{?/6.7‘1:"1(0); <?/; .’110> = <y’ g£€0>},
where

£>0,and g€, g==1.

In particular, how does the constant ¢, depend on z, (and §)?

§ 11. Infinitesimal forms of the metrics on the fibers

Let T be a finitely generated torsion free Fuchsian group of the first kind. Let
a: F(I')=T({I"} be the associated Bers fiber space. We are interested in computing the in-
finitesimal form of the Teichmiiller metric on z~1(0) and comparing it with the Poincaré
metric. We know that for z,€ U,

To compute {z, zy+1», we choose @ €EQ((UI)\(4y) such that u=¢/|p]| is locally trivial
with respect to the group I'. Then, of course,

(zg W (2e)y = |t] +0(t2), 0.

Since (see, for example, Bers [7])

w(2e) =2, +tz°(z° foé C)d“dc +o(t?), t-0,
U

) E—2)
we see that
syt a= 1) ([ p@)dcndE R
0(zq, W' (%))_2 ol 2w ff FE—T) (=) +o(8?), t—-0,

and hence (as a consequence of (8.1) and (5) of Lemma 1) that

zo(zo Jf /‘(C di N d
: {~1(—2)

with equality in the first inequality for groups of type (0, 3).

2Im 0\

<8 Im z,,
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§ 12. Absolutely extremal self-mappings

The following theorem is due to Thurston [36]; see also Poénaru [31]. A proof appears
in [32]. The proof given below is a slight modification of an argument of Bers (oral com-
munication). Our proof does not rely on any ideas from the theory of measured foliations.

THEOREM 5. Let w: S—>8 be an absolutely extremal mapping with dilatation K >1.

Then K is an algebraic integer.

Proof. First assume that S is a compact Riemann surface of genus »>2, and that the
initial (and hence terminal) differential of w is the square of an abelian differential, p=.
At a non-critical point P of w, there is a natural parameter z vanishing at P so that (see
Bers [9])

@ =dz near P. (12.1)

If { is such a natural parameter at w(P), then w is represented at P by
Rel=K:Rez, Im{=K*Imz. (12.2)

The mapping w induces an automorphism 7' of the first homology group on S with

integral coefficients:
T: H\(S) - H(S).

If ¢ is a closed curve on S, 7' sends the homology class of ¢ into the homology class of the
closed curve w(c). If we choose a canonical homology basis for H,(8), then with respect to
this basis 7 is represented by a symplectic matrix—in particular, by a matrix with integral
entries. There is a canonical pairing between H,(S) and H, the vector space of harmonic

one forms on 8:

{e, w>= f w, c€H(S), weH.

Let T* be dual map to T
T H~3;
it satisfies
{Te, w) =<e, T*w);

f 0= f 0. (12.3)
Te e

that is
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In particular, with respect to an appropriate basis for H# (the basis dual to the one used
for the symplectic representation for 7'), 7% is represented by the adjoint of 7.
Now Re ¢ and Im p €, and (12.1) together with (12.2) show that for every closed

curve ¢ on S,

f Re p=K? f Re ¢. (12.4)
Te [+]

Hence (12.3) shows that

T* (Re ¢) = K? (Re ).
Similarly,
T* (Im @) = K~ (Im ¢).

In particular, K* is an eigenvalue of an integral matrix, and hence must be an algebraic
integer.

Now for the general case. Assume that § has type (p, n). Let S be the compactification
of 8. The mapping w extends to a formal Teichmiiller self-mapping of § (with the same
dilatation). Let #y, ..., ,, consist of the poles and zeros of odd order of #, the initial dif-
ferential of w. The mapping w permutes these points, and by pasing to a power of w, we
may assume that

w(x)=x; j=1,..,m

As in Ahlfors [3], one constructs a four sheeted or two sheeted cover M of § which is rami-

fied precisely over {#, ..., #,}. We lift w to a self-mapping W of M so that

M l M

§-* .5
commutes. The easiest way to see that W is absolutely extremal is to observe that W* is a
Teichmiiller mapping if and only if «* is a formal Teichmiiller mapping whose initial dif-
ferential is permitted to have poles only at 2, ..., x,, and K(W?) =K(w?) =K(w)2=K(W)2
Hence by Theorem 6 of Bers [9], W is absolutely extremal. The initial differential of w
lifts to M. On M, it is holomorphic and has zeros of even orders only. Lifting it to another
two sheeted cover, if necessary, this quadratic differential becomes a square of an abelian.
This finishes the proof.

Let us consider a more general situation. Let w be a Teichmiiller self-mapping of a
surface S. Assume that the dilatation of w is K, and that the terminal quadratic differential
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of w is a multiple (of absolute value one) of the initial differential. Assume that one (and
hence) both are squares of holomorphic abelian differentials (on a compact surface). Calling

these abelian differentials ¢ and y respectively, we have
p=e"2p, GER.

The analysis of the previous section goes through with the following replacing (12.4):

f Re w=K1’2fRe ®.
Te c

T* (Re ??¢p) = K* (Re o),

Thus we conclude that
and simiiarly
T* (Im %) = K- (Im ¢).
The generalization of Thurston’s (Theorem 5) result becomes

TaEOREM 5'. Let w: §—8 be a Teichmiiller mapping with dilatation K >1. Assume
that the terminal differential v of w is a multiple (®, O ER) of the initial differential @ of w:

y=e Q.
Then

6 . 1
(% cos 5) O Sk l/(cos2 g) (K+2+K")—4
are algebraic infegers.

Remark. For 0 =0, we obtain as before that + K% are algebraic integers. The same is
true when 0=2x (as is to be expected); while for § =z, we obtain no information (47 are
algebraic integers). By studying the action that w induces on an invariant Teichmiiller disc,
one can conclude that

$(E+2+ K (1+cosb)

is an algebraic integer. This statement is equivalent to Theorem 5’. By interpreting Theorem

5" in terms of the action of w as an element of the modular group, we obtain

TEEOREM 6. Let y€Mod (p, n) leave invariant the Teichmiiller disc D<T(p, n). Let T
be the trace of the Mdbius transformation y|D. Then T is a real algebraic integer, and

7 1 elliptic<> x| D is the identity or | T| <2,
% 18 parabolic <> x| D is not the identity and |T| =2,

17— 802908 Acta mathematica 146. Imprimé le 24 Juin 1981
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and
% 8 hyperbolic = |T| > 2.

Let ¢ be an essential curve on a surface S of non-excluded finite type (p, n). We have

associated two real numbers to this curve:

K = dilatation of absolutely extremal mapping corresponding to ¢,

and

A =exp 2l,

where [ is the length of shortest geodesic determined by c¢. To be more explicit, represent
8 by U/I" with T torsion free of type (p, n). Then ¢ corresponds to an element g €T, with
g a hyperbolic element of mod I'. Without loss of generality g has fixed points at 0, oo and
multiplier >1. We have seen that (Theorem 2 of § 9) that there exists a point x,€ F(I')
such that

a(g) = {Zy, gZo)-

Of course, the dilatation of the corresponding absolutely extremal self-mapping (of the
surface of type (p, n+1)) is

K = exp (2=, 92o))-
Maskit-Matelski [27] have shown that there is a 7€T(I") with 7 =[], p, € M(I"), so that
ylogh, >}logd,, alu€d(T), (12.5)
where for u€ M(I'), A, is the multiplier of gﬂ=wﬂogow;1. Recall the functions f, and f,
introduced in § 8. The number 4 is, of course, 4,,.
ProrosiTIioN 7. (a) If (p, n)=(0, 3), then

K=
(b) For (p, n)==(0,3), we have
K <.
Proof. Part (a) is obvious. For part (b), recall that for all z; on the Poincaré axis of
9.0, We have

3 log K =alg) < {wy, 97> <oy, g2;) = § log 4.
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We have already remarked that K is an algebraic integer. The number A also satisfies
an equation—a transcendental equation. Translate so that uy=0. Then equation (12.5)
together with the fact that

Ay =w,A), all peM(T),

“

shows that (see, for example, Bers [7])

= 1ff = I(C fE—1ye—al¥ndll =0, all peM(T).

This is equivalent to the condition that the Poincaré series giving the variation of the

length of the geodesic corresponding to g,

z 7,(5)2
yer (PO (E—1) (yC—A)

vanishes identically (see Gardiner [16]).

It would be of interest to determine if, in the above situation, =~1(0) contains a point
where a(g) is assumed. The precise relation between the two invariants K and A should be

clarified by future investigations.

Note added in proof (March 12, 1981). Proposition 3 can be strengthened. The element
6 € mod TI' is hyperbolic whenever y € Mod T' is hyperbolic. The arguments used to prove Pro-
position 3 yield, in certain cases, a relation between the axis of § and the axis of y. Details
will appear elsewhere.
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