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O. Introduction 

I n  this  paper  we shall s tudy  a ~vpe of ana ly t ic  extreme value problems depending on 

parameters.  More precisely, the purpose is to s tudy  the singularities of the extreme value 

as a func t ion  of these parameters.  The key to all t ha t  follows is the concept of subana ly t ie  

functions.  These are funct ions whose graphs are subanaly t ie  in  the sense of Hi ronaka  [5]. 

I n  fact, in  Section 3.2 of this paper, we shall see t ha t  unde r  ra ther  general  circumstances,  

extreme value funct ions  are subanalyt ie ,  hence their  singularities are amenable  to the  

ra ther  detai led analysis  in  Chapter  2. As a by-product ,  we ob ta in  some results in  ana ly t ic  

geometry,  for example  t ha t  the s ingular  set of a subana ly t ic  set is subanaly~ic. 

T h e  ma in  mot iva t ion  for this work however, depends on the  fact t h a t  the abs t rac t  

machine  can be applied in  different areas of  mathemat ics  to give in te res t ing  results. I n  
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the last two sections of Chapter 3 we shall very breifly encounter such applications. How- 

ever, the emphasis in the presentation here is on illustrating the abstract machine rather 

than on exploiting special consequences that  can be drawn in these cases. These and other 

applications will recieve a much more thorough treatment in their own right in another 

paper. 

Recently the author learned that  similar ideas (to use the theory of subanalytic sets in 

connection with problems in the calculus of variation) have appeared also in control theory 

(see Sussmann [12]). However, the applications made there appear to be of essentially 

finite dimensional nature. Also they can be viewed as special concequences of the infinite 

dimensional theory in Section 3.2. 

I t  is a pleasure for me to express my gratitude to the people who helped me during 

this work in one way or another. First of all I want to thank professor L. Carleson. With- 

out his constant encouragement and friendly advice, this paper would never have been 

initiated, much less completed. I also want to thank professors J.-E. BjSrk and B. Mal- 

grange for invaluable help in connection with the development in Chapter 2, and A. M. 

Gabrielov for a helpful suggestion in connection with the stationarity claim in Theorem 

2.3.3. With their help the originally very messy proofs of the author have simplified 

tremendously. 

1. Results in real analytic geometry 
1. l .  Seml-analytic sets 

In this section we recall the basic facts about semi-analytic sets. Throughout this 

paper, M and N will denote finite dimensional real analytic manifolds. For convenience, 

the manifolds will be assumed second countable. However, we allow different components 

to have different dimensions. Also, in most cases the manifolds are allowed to have bound- 

ary, even if this is not mentioned explicitly. 

Definition 1.1.1. A subset A of M is called semi-analytic iff, for every x in M, we can 

find a neighbourhood U of x in M and 2pq real analytic functions g,s and hij (1 ~<i ~<p and 

1 < j ~<q) such that  

AN U=U{yEU:g~j(y)=O and h~(y)>O f o r j = l  . . . .  ,q}. 

We let SEM (M) denote the family of semi-analytic subsets of M. This definition 

generalizes the notion of real analytic set (take all h~j constant). The basic properties of 

semi-analytic sets axe summarized in the following: 
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T H E O R E M  1.1.2.  

(i) SEM (M) is closed under locally/inite union and intersection, and under set theoretic 

di//erence. 

(ii) I] A E SEM (M) and B E SEM (N), then A x B E SEM (M • N). 

(iii) I / A  E SEM (M), then A, A~ and aA E SEM (M), and dim .4 = dim A. Furthermore, 

each topological component o / A  belongs to SEM (M). 

(iv) For any locally ]inite /amily ( A ~ T  o/ sets in SEM (M), we can /ind a semi- 

analytic strati/ication o/ U~ETA~, compatible with each A~. In  /act, the strati/ieation can 

even be chosen as a triangulation with each simplex semi-analytic. 

(v) I / A  E SEM (M), then the regular set r(A) and the singular set s(A) are both semi- 

analytic. Moreover, dim s(A) ~<dim A - 1  (unless A is empty). 

Remarks 1.1.3. 

(i) By a strati/ieation of a set A we mean a locally finite decomposition A = U~Ex Fa 

into a disjoint union of connected real analytic submanifolds such that  if FaN F ~ 4 ~ ,  

then FBcP~,  and dim l~B-.<dim F a - 1  whenever ~#fl .  The stratification is semi-analytic 

if F~e SEM (M) for all aEI .  I t  is compatible with B c M  iff for each aEI ,  either r ~ c B  

or FaN B = ~ .  (In this paper, submanifolds are always imbedded.) 

(ii) The dimension in (iii) and (v) above is the Hausdofff dimension. However, it is 

easily seen that  for any stratifiable subset A of M, this dimension is an integer and equals 

the maximum dimension of the strata in any stratification of A. 

For the proof of Theorem 1.1.2, see Lojasiewicz [8], [9]. 

The local theory of semi-analytic sets is in many respects similar to the (global) theory 

of semi-algebraic sets. However, at one very important point, this analogy breaks down; 

semi-analytic sets do not in general behave well under maps. More precisely, if A E SEM(N) 

and ~0: N-~M is a proper analytic map, then it does not necessarily follow that  

9(A) E SEM (M) (see for instance [5] or [8]). This should be compared with the Tarski- 

Seidenberg theorem ([11], [13]) in the algebraic case. This fact severely restricts the useful. 

ness of semi-analytic sets in many situations. However, it turns out tha t  these difficulties 

often disappear completely if one replaces SEM (M) by a slightly larger family. This will 

be discussed in the next  section. 

1.2. Subanalytie sets 

The purpose of this section is to define and establish properties of the smallest exten- 

sion of SEM (M) which is closed under the usual set theoretic operations, and with respect 
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to taking images under proper analytic maps. Sets in this family are called, following 

Hironaka [5], subanalytic. More precisely: 

De/inition 1.2.1. A subset A of M is called subanalytie iff, for every x in M, we can 

find a ncighbourhood U of x in M and 2p pairs @~,A~) ( l<~i4p and c$=1, 2), where 

A~e SEM (M~) for some real analytic manifolds M~, and where the maps ~ :  M ~ M  are 

proper analytic, such that  
P 

A N U = U  1 1 2 2 (% (A~) \% (A~)). 
5=1 

We let SUB (M) denote the family of subanalytic subsets of M. Clearly every semi- 

analytic set is also subanalytic. As we shall see, Definition 1.2.1 is much better adapted 

for dealing with maps than is Definition 1.1.1. The following theorem, analogous to Theorem 

1.1.2, shows tha t  in fact very little is lost when passing from semi- to subanalyticity. 

THEOREM 1.2.2. 

(i) SUB (M) is closed under locally finite union and intersect on, and under set theoretic 

di//erenee. 

(if) / /  A E SUB (M) and B E SUB (fir), then A • B E SUB (M • N). 

(iii) / / A  E SUB (M), then A, A ~ and ~A E SUB (M), and dim ,ff = dim A. Eurthermore, 

each topological component o/ A belongs to SUB (M). 

(iv) For any locally/inite/amily {A~}~ T O/ sets in SUB (M), we can [ind a subanalytic 

strati/ication o/ [.J~er A~, compatible with each Av. I n  ]act, the strati/ication can even be 

chosen as as a triangulation with each simplex subanalytic. 

(v) I / A  E SUB (M), then the regular set r( A ) and the singular set s( A ) are both subanalytic. 

Moreover, dim s(A) <-~dim A - 1  (unless A is empty). 

In  addition, we now also get the/ollowing use/ul property: 

(vi) Let q~: fir-+M be an analytic map and let A E SUB (M) be a set such that q~: . 4 ~ M  

is proper. Then ~(A)E SUB (M). Also,/or any BE SUB (M), ~0-1(B)E SUB (N~. 

Proo/. (i), (if) and (vi) are simple manipulations with the definitions. (iii)follows 

easily from (iv). The proof of (iv) can be found in Hardt  [4] (for an alternative proof using 

desingularization, see Hironaka [5], [6]). (v) finally, will be proved in Section 2.4 of this 

paper. 

There are many links between the theory of desingularization and subanalytie sets. 

In  Section 2.2, we shall, for instance, make use of the following tool, the proof of which 

can be found in ttir0naka [5]. 
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TaEOREM 1.2.3. Let A E SUB (M) be a relatively compact set. Then we can find a 

compact analytic mani/old M and an analytic map q~: ~I-+ M such that ~(~I) = A. 

1.3. Subanalytic functions 

Definition 1.3.1. A continuous map ~: /V-~M is said to be subanalytie iff its graph 

G ~ c N x M  belongs to SUB (N•  

We denote the family of subanalytic maps from N to M by S ~ B  (N, M). $ ~ B  (N, M) 

is a natural set of morphisms to s tudy in connection with subanalytic sets. For instance, we 

have: 

PROI, OSI~IO~r 1.3.2. 

(i) I /  9 E $ ~ B  (N, M) and AE SUB (M), then ~-l(A)e SUB (N). 
(ii) I /  ~eS~IB  (N, M), A e SUB (/V) and q~: A -+M is proper, then ~(A)e  SUB (M). 

Proo/. This follows from Theorem 1.2.2 if we note that  ~-I(A)=7~N(G~N (N • A)) in 

(i) and that  ~(A) =~M(G~ N (A • M)) in (ii) where ~N and 7eM are the projections. 

When working with $ ~ B  (N, M), it is natural to extend the idea of stratification 

from sets to maps: 

Definition 1.3.3. A stratification of a map F: N ~ M  on a set F c  N is a simultaneous 

stratification of F = U ~ I  F~ and M =  U~J Av such that  

(i) For  each/z E 1, q91 r ,  is real analytic and has constant rank. 

(ii) For each/~EI,  there is a (unique) v(~u)EJ such that  ~(Fz)=A,ig). The stratifica- 

tion is simple iff q In s is one-to-one for every/~ E I such that  dim F# =dim A~(g). I t  is sub- 

analytic iff all Fg and A are. 

One can now prove the following result: 

THEORE~ 1.3.4 (Hardt). Let ~ E $ ~ B  (N, M) satis/y the condition that q~: F ~ M  is 

proper, where F E SUB (N). Then q~ has a simple subanalytie strati/ication on F. Moreover, 

the corresponding stratifications o / F  and M can be chosen compatible with any locally finite 

]amilies o/sets in SUB (N) and SUB (M). 

Proo]. This follows immediately from Corollary 4.4 in Hardt  [4] if we choose an arbitary 

open subanalytie subset L of N containing ~ such that  ~: L -+M is still proper. 

We now restrict attention to subanalytic functions. This is the central concept in this 

paper. 
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Let R = R U { •  be the extended real line. R carries a natural structure of an 

analytic manifold with boundary (diffeomorphie to [ - 1 ,  +1]). Furthermore, for any 

set X, let :~(X) be the set of extended real valued functions on X, i.e. maps from X to R. 

Definition 1.3.5. Let /E :~(M). Then we say that  / is subanalytie iff its graph GIC M • K 

belongs to SUB (M • R). 

We denote the class of subanalytic functions on M by $:~ (M). Clearly, $:~ (M)= 

S~/B (M, K). Of special interest is the class of locally bounded subanalytic functions, 

S:~I~162176 and the class of continuous subanalytic functions, 

S:~ ~ ( M) ( = $:~ (M) N C(M) ). 
The basic property of subanalytic functions which makes them useful in the calculus of 

variation is contained in Proposition 1.3.7 below. 

Given a map~:  N-+M and a subset A c N ,  we define two maps, ~ and ~ from 

:~(N) to :~(M) by 

~A(f) (x) de~ inf {/(U): uecf-l(x)N A) 
(fe:~(N), x e M  and ueN) (1.3.6) 

CA(/)(x) ~f sup {flu): ueq71(x) ~ A }. 

PROrOSITION 1.3.7. Suppose that q~ E $~lB (N, M), A E S~lB (N) and that q~: ~ M  

is proper. Then (fA and ~A both map S~ (N) into S~(M). 

COROLLARY 1.3.8. For any finite set {fj}~=x o//unctions in S:~ (M) (or in $~1~176 or 

S:~~ maxl<j<v fj and minl<j<v/jE $:~ (M)(S~I~176 or S~~ 

Proof o/ Corollary 1.3.8. This follows immediately from the proposition if we take 

A = N  = M  • {1 ..... P), V =projection M • {1 ..... p}-->M and apply ~A and q5 A to the func- 

tion / on N, defined by f(x, ~)=/j(x). 

Proof of Proposition 1.3.7. Since qSA(/)= - ~ A ( - / ) ,  it follows that  it is enough to con- 

sider ~A. Consider the set 

Bd'J{(u, t, t ' ) E N • 2 1 5  =flu),  uEA and t'>~t}. (1.3.9) 

Clearly B is subanalytic, hence so are the sets B o and BI~  M • R defined by B 0 ~f~p(B) 

and B~ a~--f (M • R)~ .B 0 by Proposition 1.3.2 and Theorem 1.2.2, where ~f is the map 

defined by ~v((u, t, t')) =(~(u), t'). Moreover, define B~ and B a l m  x R by B2 =7r(B~) and 

B a = g(B~) where 

B~ a~f {(x, t', t")~M •  • R:(x, t ')~B o and t">t'} 

and 
B~ def ((X, t', t")~M •  • R:(x, t')~B~ and t"<t'} 
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and where g is the projection g((x, t', t")) = (x, t"). Again it follows tha t  B 2 and B 3 are sub- 

analytic. Therefore the proposition follows from the following formula for the graph of 

~(l). 
G~,~a) = (BomB2) U ( B l a B 3 )  (1.3.10) 

To prove (1.3.10), we need only note tha t  (Bo~B~) consists exactly of those points on 

G~s where the infimum is actually attained, whereas (BlaB3) consists of those points 

where it  is not attained. 

2. Singularities of subanalytic functions 

2.1. Singular supports of subanalytic functions, the Ck-case 

De/inition 2.1.1. Let  ] E ~ (M) and let/c be a non-negative integer. The singular sup- 

port o/]  rood C k (denoted Sing k supp (/)) is the complement of the set of points x in M 

such tha t  for some neighbourhood U of x in M, the restriction of ] to U is of class C k, i.e. 

finitely valued and k times continuously differentiable. 

Note tha t  by  definition Sing k supp (/) is closed. In  general, this is as much as can be 

said. However, for functions in $ ~  (M), we can prove the following 

THEOREM 2.1.2. Suppose that /E$~  (M). Then Singk supp (/)E SUB (M) /or every 
1~=0, 1 ..... 

Proo/. Let us first consider the case k = 0 .  In  this case, the theorem follows trivially 

from Theorem 1.2.2 as soon as we have recalled tha t  a function is continuous iff its graph 

is closed. In  fact, from this it follows tha t  x r Sing 0 supp (/) iff for some neighbourhood U 

of x, / is finitely valued on U and Gf~ ( U •  ( U •  where G I is the graph o f / .  

Hence, if we let W r be the set of points in M w h e r e / - -  +_ c~ (which is clearly subanalytic), 

then 

Sing 0 supp (/) = WsU ~ ( ~ i ~ G r )  (2.1.3) 

where g: M • R - ~ M  is the projection. Therefore Sing 0 supp (/) is subanalytie by  Theorem 

1.2.2. 

The general case will now be proved by  induction on k, using essentially the above 

simple idea applied to each derivative o f / .  Note tha t  since subanalyticity is a local pro- 

perry, we can without loss of generality assume tha t  M is an open subset of R m. 

Assume now inductively tha t  we have proved tha t  Sing~_ 1 supp (/) belongs to SUB (M), 

and moreover tha t  for each multi-index ~ with I~[ ~<k-1,  the graph of D~/ on the set 
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M~Singk_ 1 supp (/) belongs to SUB (M x R). We shall prove the same statement for /r 

instead o f / c -  1. 

Consider for each r162 ]gl = / c - I ,  and each ], l~<~<m, the set H T ' J c M x R x R  de- 

fined by 

H~" a~j {(x, t, u):t = ul-" (D~/(x + u. gj ) -  D~/(x)), u 4 = 0 and x, x + u.  gj E M~Singk_l  supp (/)} 

(2.1.4) 

where gl ...... em is the standard basis in R m. I t  then follows easily from Theorem 1.2.2 

and the induction hypothesis tha t  HT'JE SUB (M • ~ • R). Therefore also G~ 'j aejH~'JN 

(M x R x {0}) E SUB (M • R). Clearly D~/ is continuously differentiable in the @direc- 

tion ~t xEM~Sing~_ 1 supp (J) iff x has a neighbourhood U such that  G~'tfl ( U x R )  is 

the graph of a continuous function on U. If  we let A7 'j be the complement of the set of 

points with this property, then it follows that  

m 

Singk supp (/) = Singk-1 supp (/) U U U A~ J. (2.1.5) 

Hence Theorem 2.1.2 follows immediately from 

PROPOSITION 2.1.6. Let GE SUB (M xB,). Then the set A o/points xEM such that 

/or no neighbourhood U o/ x in M, G N (U • R) is the graph o/a continuous/unction on U, 

belongs to SUB (M). 

Proo/ o/ Proposition 2.1.6. Let  W = ( G N ( M z { ~ } ) ) U ( G n ( M •  and 

B={xeM:  card {~-l(x)N G}>I}.  Then it is easy to see that  

A =:~(W) U B U ~ ( 0 ~ G )  (2.1.7) 

In fact, if x t$/~ then on some neighbourhood U of x, G is a graph, which can moreover be 

assumed finitely valued if x ~ ~(W). Finally, if x Cz(G~,G) then this function can even be 

assumed continuous. This proves the inclusion c ,  and the other one is even more trivial. 

Since W is clearly subanalytic, it is enough to prove tha t  B E SUB (M) by  Theorem 

1.2.2. To see this, consider the set 

Da~M {(x, t, u )eM • R • (x, t), (x, u)EG and u>t}. (2.1.s) 

Let  C ~f~l(D) where ~1 is the projection which sends (x, t, u) to (x, u). Then B =~(C) as 

is easily seen. This completes the proof. 
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2.2. Theory of graphic points 

This section is mainly a preparation for the s tudy of the analytic singular supports of 

functions in S:~ (M) in the next  section. 

Let  T/ and ~ be complex analytic, second countable manifolds. Assume tha t  ~ is 

connected and has dimension m. Let  G: T/-+ ~ be an analytic map and let Z be the critical 

set of G, i.e. the set of points in T/where the rank of G is strictly less than  m. We assume 

tha t  Z is nowhere dense in ~/, hence has (local) codimension a t  least one everywhere, since 

is an analytic set. 

l~inally, let H be a meromorphic function on N with pole-set ~ such tha t  the map 

q) = (G, H): ~ / ~ - +  7/~ • C has rank < m  everywhere. 

Definition 2.2.1. A point uE ~/ is  said to be graphic (with respect to (I)=(G, H)) iff, 

there exists a germ of a holomorphic function F u at  G(u) such tha t  H= ~ F%Gu (the lower 

indices denote induced germs). The set of non-graphic points (with respect to (I)) will be 

denoted E( = Er in the following. 

THEOR]~M 2.2.2 (Malgrange). E is an analytic subset o/ "1l. Moreover, ~ c  E c  ~U W. 

I t  is easy to see tha t  u is graphic iff the image under ~ of some small neighbourhood 

of u is contained in the graph of some holomorphic function, defined in a neighbourhood 

of G(u); hence the name "graphic".  Moreover, the germ F ~ is easily seen to be unique 

whenever it exists. Therefore we have a well-defined map u~-->F ~ from the open set 7 / ~  E 

into the sheaf of holomorphic germs on 71/. 

Proo/. I t  is clearly no loss of generality to assume tha t  ~/ is  connected. In  this case, 

we shall actually prove tha t  E is a union of ~/~ and certain other irreducible components 

of W',  each having codimension one in 7/, where we have put  7~' ~f E U ~(9. 

I t  is obvious tha t  ~ c  E. To see tha t  E c  W',  simply observe tha t  if uq719', then on 

some neighbourhood U of u, (I) is analytic and rank ( ~ ) = r a n k  (G)=m. Hence by  the rank 

theorem, (I)(U) is an analytic submanifold of 7~ • C (for U sufficiently small), and since 

G=~o~P (g is the projection), the chain rule and the implicit function theorem gives tha t  

yt: ~P(U)--->G(U) is a diffeomorphism (again possible shrinking U). Hence qb(U) is a graph 

and the claim follows. 

To prove the rest of the theorem, first note tha t  the problem is local. We can therefore 

without loss of generality assume tha t  7~ and T/are open subsets of C m and E" respectively. 

... D ~ .  For each Now let ~ = (~1 . . . . .  gin)  be a multi-index, and let as usual D ~= D~' ~ 

a, we define a function H ~ on T / ~  E by  

H~(u) ~f D~F~(G(u)). (2.2.3) 
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I t  is easy to see tha t  H ~ is analytic on Y / ~ s  because for any  u ~ Y / ~ s  there is a neighbour- 

hood U of u such tha t  for all v ~ U, _F" is induced by  the same holomorphic function _F 

(i.e. _F" = - F ~  for all v~ U). For g- -0 ,  H ~ equals H, hence extends to a well-defined mero- 

morphic function on all of ~ .  For  a 4=0, this is also true: 

L ~ M A  2.2.4. _For each a # 0 ,  H ~ extends to a meromorphie /unction on ~.  More preci- 

sely, H ~ can be expressed as a quotient o / t w o  global holomorphic /unctions on ~I, and the 

denominator may always be chosen as a power o / the /unct ion  A(u) ~* det  {(DG)uot(DG)a(u~) 

which is zero i//  u ~ ~. 

P r o o / o / Z e m m a  2.2.4. First we shall for each i = l  ... . .  m find a certain meromorphie 

vector field X~ on ~l such tha t  for all u E 7 1 ~  

(DG)~ (X,(u)) = D,(G(u)) (2.2.5) 

(we identify D, with a vector field). In  fact, for every u we may  a t t empt  to solve equation 

(2.2.5) for X~(u). However, the solution need not in general be unique. To resolve this 

problem, we require X~(u) to be orthogonal to the kernel of (DG)u, or equivalently, we look 

for a solution of the form X,(u)=t(DG)a(~)(Y~(u)), where the new undetermined Y,: 

~ - ~ T ( ~ )  is a vector field along G. (2.2.5) then becomes 

(DG)uo~(DG)c(u)(Y~(u)) ~- Di(G(u)). (2.2.6) 

By Cramer's rule, this equation has (for u E ~ I ~ Z )  a unique solution of the form 

Y~(u) =A(u) -1- I~t where ~ is a holomorphie vector field along G (in fact, a linear combi- 

nation of D t( G(u) )' s with holomorphic coefficients). Therefore X ~(u) ~f t( DG)v~) ( Y i(u) ) = 

A(u) -1.  t(DG)a(u)(Y~(u) is a meromorphic vector field (with poles in ~) solving (2.2.5) as 

required. 

We can now prove the lemma by  induction over Igl % f ~ .  For ~ = 0 ,  the result 

is clear since H o = H  on ~ E  as previously remarked. For an arbi tary  ~4=0, we can 

write D~=D~oD ~" for some i where I~'l = I ~ 1 - 1 .  Using (2.2.5) we obtain after a short 

verification tha t  on ~ l ~ ,  

H~(u) = X~(H ~') (u). (2.2.7) 

Using the previously derived explicit form of X~, the lemma follows by  induction. 

For each positive integer k, let Ok be the set of points in ~/where some H ~ with I ~ I ~< k 

has a pole, and let ~) ~ U~=I ~)k- We claim tha t  ~) = E. In  fact, the inclusion 0 K  ~ is 

trivial (from (2.2.3) and the remark following it). The other inclusion is an immediate 

consequence of the following result: 
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PROPOSITIO~ 2.2.8. U does not belong to  E i/ (and only i/) there exists a sequence 

{uj}~l in ~ '  converging to u such that/or every multi-index ~, (H~(uj)}~=x converge to a 

/inite limit. 

Now if u ~ ) ,  then all H~'s are holomorphic at  u, hence a fortiori continuous. Therefore 

u CE by the proposition which shows that  ~ ~ E. 

We are now reduced to showing that  ~) is a union of irreducible components of ~ '  

of codimension one in ~.  

But from classical theory of meromorphic functions, one knows that  each ~)k is an 

analytic set of pure codimension one. Since ~)k ~ ~/~' and the codimension of ~ '  is at  least 

one, it follows that  each ~k must be a union of irreducible components of ~ ' .  Moreover, 

since there are locally only finitely many components of ~ ' ,  it follows that  the increasing 

sequence of sets 

P I  C P 2  C . . . . . .  C Ok ~ ... (2.2.9) 

must be locally stationary, i.e. for each compact K c  ~,  ~ =  ~ on K if ]c is chosen large 

enough. Therefore also ~ is analytic and a union of components of ~ '  (of codimension one). 

Proo/ o/ Proposition 2.2.8. A/ormal  germ at a point in (~m is defined by an element in 

the ring of formal power series. In particular, each holomorphic germ gives rise to a formal 

germ (its Taylor series). 

I t  now makes sense to say that  a point uE T/is formally graphic iff H u ~ o G ~  for 

some formal germ ~u at  G(u). In fact, this identity means tha t  all the relations obtained by 

derivation of the equation H =~]o G, 

H(u) = V ( G ( u ) )  

D~H(u)= ~ (D,~)(G(u)). D~Gv(u), 
V=I 

i = 1 . . . . .  n ( 2 . 2 . 1 0 )  

should be satisfied if we substitute the corresponding formal Taylor coefficients ~a of ~u 

for D~(G(u)). 

T ~ O R E M  2.2.11. uEM is graphic (in the sense o/ De/inition 2.2.1) ill u is/ormally 

graphic. 

For the proof, the reader is refered to Malgrange [10] or Gabrielov [3]. 

In  view of this result, we need only check that  u is formally graphic. Let  ~u be the 

formal germ at ~(u) defined by ~--limj_~ooH~(uj). We :claim that  H~--~?uoGu. In  fact, 
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since Ec W', each point uj is graphic. Therefore we obtain by differentiating the formula 

Huj =- Fuso Guj, 

H(u3 = Fu~(G(u j ) )  

D~H(uj) = ~ D, FU,(G(uj)). D~G,(uj), i= 1 . . . . .  u (2.2.12) 
V=I 

I f  we now let j ~ o o ,  we see tha t  all the equations (2.2.10) are satisfied. This finishes the 

proof of the proposition, and hence also tha t  of Theorem 2.2.2. 

Let  us now consider the analogous real analytic situation. Hence, let W and N be real 

analytic manifolds. Assume tha t  M is connected and has dimension m. Let  g: N-~ M be an 

analytic map and let Z be the critical set of g, i.e. the set of points in N where the rank of g 

is strictly less than  m. We assume tha t  Z is nowhere dense in N, hence has (local) codimen- 

sion at  least one everywhere. Finally, let h be a real meromorphic function on N (i.e. it is 

locally expressible as a quotient of two real analytic functions with the denominator not 

identically zero) with pole set (i.e. set of points where it is not analytic) W. We suppose 

tha t  the map qJ=(g, h): N ~ W ~ M  •  has r a n k ~ m  everywhere. 

Definition 2.2.13. A point uEN is called graphic (with respect to ~=(g ,  h)) iff there 

exists a germ of a real analytic function/u at  g(u) such tha t  hu--]UoGu (lower indices denote 

induced germs). The set of non-graphic points (with respect to ~) is denoted by E( = Er 

As in the complex case,/u is necessarily unique if it exists. 

COROLLARY 2.2.14. E is a real analytic subset o /N.  Moreover, W c  E c Z  U W. 

Proo/. Let G: 7'/-+ ~ and H meromorphic on 7"/be complexifications of g: N ~ M  and 

h respectively. Then we have a commutat ive diagram 

~ t \ T Z  , ~ x c 

N \ W  q~ , M x g  

(2.2.15) 

Remark 2.2.16. We shall only apply this corollary in a slightly more special situation 

suppose tha t  ~0 = (g, h): N-+M • i~ is an analytic map  (where R is considered as a manifold 

and Z = N O  ~, W=NN'I~ and E = N N  ~ where Z, ~L ~ and E are as before. The claim now 

follows immediately from Theorem 2.2.2. 

Of course, i t  need no longer hold tha t  E has pure codimension one. 
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with boundary), and suppose that  the set W a~j {x EN: h(x) = _+ ~ }  is nowhere dense in N. 

Then h may be considered as a real meromorphic function on N with pole set W. This 

follows from the fact tha t  near infinity, the function lit  may be considered as a coordinate 

map on R. Hence the analyticity of ~ implies tha t  h o a~M 1/h is an analytic function, which 

in turn shows that  h = 1/h o is meromorphic. Therefore, if only the conditions that  rank ~: 

N ' ~ W - + M •  is everywhere less than m, and Z= { x EN:  rank g~<m} is nowhere dense 

in  N hold, we may apply Corollary 2.2.14. 

The key to the proof of Theorem 2.2.2 is the fact that  the increasing sequence of analytic 

sets in (2.2.9) is stationary. In  the next  section, we will use Theorem 2.2.2 to prove that  

Sing~ supp (/) E SUB (M) for all ] E $9: (M). However, to prove the stationarity of singular 

supports themselves (i.e. that  Sing~ supp (]) = Singk supp (/) on compacts for large enough 

k) is somewhat more delicate, in particular it does not follow in any non-trivial way directly 

from (2.2.9). To bridge this gap, we shall end this section by proving two other statio- 

nari ty results which together will give all we need. 

For each integer k>0 ,  let 

Ek %~ {uEN: ~] analytic germ ~ at g(u) such that  ( ~ o g ,  h)~ E~J~} (2.2.17) 

where ~/l~ is the kth power of the maximal ideal ~/l~ in the ring of analytic germs at u. 

Clearly E I ~  E ~  ... is an increasing sequence of sets. 

LEM~Ii 2.2.18. For each k>0,  E k is locally a ]inite union o/di//erences o] anatyt~c 

sets, i.e. sets el the form A I ~ A  2 where A1, A 2 are real analytic. Moreover, [.J~-i Ek = E. 

Proo/. The condition that  (~og-h)u~ ~ u  is clearly a condition only on the Taylor 

coefficients of ~ up to order k - 1 .  Hence if we consider some coordinate neighbourhood 

U ~ N ,  then a necessary and sufficient condition for uE U to belong to E~, is the solva- 

bility of the system of linear equations for these coefficients, obtained by putting 

D~(~og--h) (u)=0 for all ~, l al ~<k-1, and using Leibniz' rule. Hence the set E k is deter- 

mined in U by the equality of two ranks of matrices, the entries of which are analytic 

functions of u (in fact, polynomials in g, h and their derivatives). From this it clearly 

follows that  Ek is of the requested type. 

To prove the last statement, first observe that  the inclusion I.J~-i Ek C E is trivial. 

To  prove the other direction, assume that  u r [J ~~ Ek. In view of Theorem 2.2.11, we need 

only check that  u is formally graphic. This is equivalent to proving that  we can find 

formal Taylor coefficients {~7~} which satisfy the infinite system of equations, obtained by 
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putt ing D~(~og-h) (u)=0 for all ~. However, since we know tha t  each finite subsystem 

has a solution, this is just standard linear algebra. 

COROT.T.ARY 2.2.19. Suppose that K c N is a compact set. Then we can/ ind an integer 

k o such that/or all k >1 ko, E~ N K = E N K. 

Proo/. Each analytic set can be written as a locally finite union of connected analytic 

manifolds (follows from Theorem 1.1.2 for instance). I t  is therefore enough prove tha t  for 

any  such manifold F c  E, there exists an integer k' such tha t  F c  Ek.. Now from the first 

par t  of the lemma it follows easily tha t  for each k, either dim ( E k n F ) ~ < d i m F - 1  or 

dim (F~Ek)~<dim F - 1 .  Since F ~  U~~ E~ by  the second par t  of the lemma, and since 

F can not be a countable union of sets of lower dimension, the second alternative must  

occur for some integer k 1. We can now apply the same argument to the set F 1 = F ~ E k , ,  

again writing it as a locally finite union of manifolds. For each such manifold we thus get 

an integer, and if we let k~ >/kl be larger than  the maximum of all these integers, then it 

follows tha t  dim (F~Ek~)~<dim F I - 1  ~<dim F - 2 .  Proceeding in this way inductively, 

we obtain after a fhlite number  of steps tha t  dim ( F ~ E k , ) <  0 for some large enough k'. 

Hence F c Ek. which is what  we wanted to prove. 

Observe tha t  the proof of the stationaxity in Corollary 2.2.19 depends on the fact 

tha t  we already known tha t  E is an analytic set. 

We now restrict at tention to the case when M is an open subset of R ~ and the map 

g: N ~ M  is proper. Also, recall tha t  M(u)=D~/~(g(u)) is meromorphic (compare Lemma 

2.2.4). Let  

Bk~'{xEM". .g(E):  3u, vEg-~(x) and c, [a I ~<k, such tha t  h~(u)#M(v)}. (2.2.20) 

for each integer k > 0, and moreover let 

B ~ {xEM"...g(E): 3u, v Eg-l(x) and :r such tha t  M(u)#M(v)} .  (2.2.21) 

Then we clearly have a increasing chain of sets B l c  B~c  . . . . . .  c B. 

L~MMA 2.2.22. B fi SUB (M). Moreover,/or each compact K c M,  we can find an integer 

k 1 such that/or k >1 k 1, Bk N K = B N K. 

Proo]. For each k > 0 ,  let us define 

and 

Ak ~f {(u, v) fi (N'-,.E) • (AT'-..E): g(u) = g(v) and M(u) = M(v), ] :(] 4 k) (2.2.23) 

A ~f{(u, v)E(hr",,E) x ( N ~ E ) :  g(u) =g(v) and h~(u) =h~(v), V•}.  (2.2.24) 
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Then it is easily verified tha t  each A k is an analytic subset of 2 / •  N, and tha t  we have a 

decreasing sequence A 1 ~A2 D .. . . . .  ~A .  Now every such sequence must  be locally statio- 

nary  by  Frisch's theorem (see Frisch [2]). Hence, by  the properness of g, we can find an 

integer kl such tha t  for k ~> k 1, K 1 fl A = K 1 N A k, where K 1 is the compact g-l(K) x g-~(K). 

Let Dg ~ ((u, v) E ( N ~ E )  • ( b r a E ) :  g(u) =g(v)} and let g: /V •  be the projection 

onto the first factor. Then it is easy to see tha t  Bk =go~(Dg~Ak) and B=go~(Dg~A).  

Since the map gog: Do-~N is clearly proper, the lemma now follows from Theorem 

1.2.2(vi). 

2.3. Singalar supports of subanalytic functions, the analytic case 

Definition 2.3.1. Let  /eY(M). The analytic singular support o / /  (denoted by  

Sing~ supp (/)) is the complement of the set of points x in M with the property tha t  for 

some neighbourhood U of x, the restriction of / to U is real analytic. 

By  definition, Sing~ supp (/) is closed. Now observe tha t  for every / we have an 

increasing sequence of sets 

Sing 0 supp (/) = S i n g  1 supp (/) = . . . . . .  c Sing k supp (/) = . . . . . .  = Sing~ supp (/). (2.3.2) 

T ~ O R E ~  2.3.3. 

(i) Suppose that/E S~ (M). Then Sing~ supp (/)E SUB (M). Moreover,/or any compact 

K c  M, we can/ind an integer k" such that/or k>~k' 

Sing~ supp (/) N K = Sing~ supp (/) N K. 

(ii) I /  we, more restrictively, assume that /ES~ I~162 (M), then in addition we can say that 

dim (Sing~ supp (f)) ~<dim M -  1. 

Remark 2.3.4. The following proof is based on Theorem 1.2.3, hence makes strong 

use of the theory of desingularization. An alternative proof could be based on the more 

elementary stratification theory in Hard t  [4] (see for instance Theorem 4.2 of tha t  paper), 

thus pulling the problem back to semi-analytic sets instead of smooth manifolds. The 

general outline of the proof would be the same, although the details would be somewhat 

more complicated. 

Proo/o/ Theorem 2.3.3. I t  is enough to prove the theorem locally. Hence we may  

assume tha t  M is an open subset of R m, and restrict the at tention t o  some open, relatively 

compact, subanalytic subset U = M. Let  G r be the graph of / on U. Then Gf is a relatively 
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compact,  subanalytic subset of M • R. By Theorem 1.2.3 we can then find a compact 

real analytic manifold h~/and an analytic map qD = (g, h): 2~/-~M • R such tha t  ~ (M)=Gj .  

Theorem 1.2.2(iii) implies tha t  rank T ~<m. 

Let  N c  2~/be the union of all components N o of M such tha t  

(a) The analytic subset W o ~f (uENo: h(u)-~ • ~ is nowhere dense in N 0. 

(b) The set Z o ~f(uENo: rank g <m} is nowhere dense in N 0. 

Then ~: N ~ M  • R is a map to which we can apply the theory and terminology of Section 

2.2 (see Remark  2.2.16). Hence we have defined sets Z, E, Ek, B, B k c  N, real meromorphic 

functions h ~ etc. 

L ~ M A  2.3.5. Let u E N ~ Z  and suppose that x %~ g(u) r (/). Then actually 

x r supp (/), and D~/(x)=h~(u)/or all ~. Moreover, 

(Sing 0 supp (/) N U) lJ g( E) tJ B ~ Sing~ supp (/) N U ~ g(Z) U g(~l~N).  

Assuming the lemma, the theorem is proved as follows; let k' ~f max (]c o, kl} where 

k 0 and k 1 are constructed as in Corollary 2.2.19 and Lemma 2.2.22 respectively (with 

K = N). Hence, for each/c >~ k', we have tha t  E k = E and B~ = B. I t  follows tha t  

Sing~ supp (/) ;1 U ~ (Sing 0 supp (/) N U) U g(E) U B 

= (Sing0 supp (/)N U)Ug(Ek)U Bk~ Singk supp (])N U. (2.3.6) 

To see the last inclusion, first observe tha t  if x r k supp (/), then the Taylor polynomial 

of / of order k defines an analytic germ U at  x such tha t  for any u E N  with g(u)=x, 

(nog-h)~EYfJ~. Using the definition (2.2.17) we see tha t  xCg(Ek). 

On the other hand, if xEBt, then there exists u, v in N such tha t  g(u)=g(v)=x and 

h~(u) #hc*(v) for some ~, I~l ~<k. Therefore we can find sequences uj~u  and vj~v in N ~ Z  

so tha t  lira h'z(uj)#lira h~(vr I f  x~Sing 0 supp (/), then we can take the images of these 

sequences under g, and use the first par t  of the lemma to prove tha t  D~/can  not be con- 

tinuous at  x. This gives tha t  x E Sing~ supp (/) which proves (2.3.6). Combining this with 

the trivial inclusion Singk supp ( / ) c  Sing~ supp (/), we obtain tha t  Sing~ supp (/)fl U =  

Singk supp (/) N U which proves par t  (i) of the theorem in view of Theorem 2.1.2 (or alter- 

natively, using Theorem 1.2.2 and the fact tha t  the first inclusion in (2.3.6) is an equality). 

To prove par t  (ii), it is clearly enough to prove tha t  if / E S:~ ~~176 (M), then dim (r U 

g(M'~N)) <d im M - 1 (by the lemma). But  since in this case W is always empty,  condition 

(a) above on N o is trivially satisfied for every component N0~/~/. Therefore (b) implies 

tha t  rank ~7 < m on all of/~/x~N, and the same holds on Z by  its definition. This implies the 

claim. 



S U B A N A L Y T I C  SETS I N  T H E  CALCULUS OF V A R I A T I O N  183 

Proo] o / L e m m a  2.3.5. If  x ~ Sing 0 supp (/), then it follows that  for some small enough 

neighbourhood V of x, GIN (V•  (V• (VxR) .  Moreover," the fact 

tha t  u E N ~ Z  and the argument in the beginning of the proof of Theorem 2.2.2 shows that  

some small neighbourhood of u is mapped onto the graph of some analytic function [u on V 

(possibly by shrinking V further). I t  follows that  Gf~ N (V • R) ~ G I N (V • R), hence we 

must have equality and p-= [ on V since both sides are graphs of functions. This proves that  

] is analytic at x, and the fact that  D~/(x)=h~(u) is just the definition of h a. I t  remains to 

verify the inclusions. 

I. Le~ zE U~(S ing  0 supp ([) U g(E) U B). Then as above, we can find a neighbourhood 

V of x such that  GIN (V • R) =~(h4) N (V x R) =q~(N) N (V x R), where the last equality 

follows from compactness of N, the continuity of [ on V and the fact tha t  dim ( ~ ( ~ N )  

(V • I t ))~<m-1.  (This is exactly the same argument as the concluding part  of the proof 

of Theorem 2.3.3.) Since x Cg(E), for each uEg- l (x )  we have an analytic germ /u at x. 

We claim that  any two such germs must be equal. In fact, since x CB we have for any 

and u, v G g-:(x) that  

D~/U(g(u)) ~fh~'(u) = h~'(v) ~f D~/'(g(v)). (2.3.7) 

If we let /x denote this unique germ, then it follows (with V sufficiently small) that  

GfN (V • R) =~(N) N (V • R) =~(~)  N (V x R) =GfN (V • R) where ~ is a small neighbour- 

hood of g-:(u). Hence [-=[~ on V which proves that  [ is analytic at x, i.e. x ~ Sing~ supp ([). 

II.  This proof is similar. In fact, if x r g(Z) U g(/~/~N) then it again follows as in the 

beginning of the proof of Theorem 2.2.2 that  for each u Eg-:(x), some small neighbourhood 

of u is mapped by ~ onto the graph of some meromorphic function (in fact, of some analytic 

function except in the special case when h(u) = • ~ ) .  We easily conclude that  

Gj, N (VxR)  =qJ(N) n (VxR)  = U Gf~ (2.3.8) 
l 

where each/~ is meromorphic on V. However, Theorem 1.2.2 (iii) implies (since Gf is a 

graph) that  this is possible only if all [/s are equal to [ I v, which in turn implies tha t  [ is 

analytic on V, 

Hence the proof of Theorem 2.3,3 is complete. 

COROLLAaI 2.3.9. Suppose / E $ ~  (M). Then we can find a simultaneous strati/ica. 

tion o[ Sing~ supp (/) and Sing s supp  ([)/or all k >~ O. More precisely, we can [ind a strati/ica- 

tion o/Sing~0 supp ([) = U ~zFa and an increasing sequence o/subsets o[ I ,  I o c I :  ~ . . . . . .  ~ I s, = 

Ik,+: . . . . . . . .  I ,  such that /or  each k, Sings supp ([)= [.J~Ex~ F~. 

12 - 802908 Acta mathematica 146. Imprim6 le 24 Juin 1981 
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Proof. By the stat ionari ty claim in Theorem 2.3.3, the collection of sets, Ao= 

Sing 0 supp (f), A 1 = Sing 1 supp ( / ) \ S i n g  0 supp (/) .. . . .  Ag = Sing k supp (/)~Singk_ 1 supp (/), 

... is locally finite. Moreover, by  Theorem 2.1.2, each Ak is subanalytic. Hence by  Theorem 

1.2.2 (iv), we can find a subanalytic stratification of A = (J ~~ Ak = Sing~ supp (f), compat- 

ible with each Ak. This implies the claim. 

2.4. The singular set o |  a subanalytic set 

In  this section, we shall prove the earlier announced result (Theorem 1.2.2 (v)) about  

the regular and singular sets of a subanalytie set. 

Definition 2.4.1. Let A c M  be a set. For each integer q, 0 ~ q ~ m = d i m  NM, the set 

o/(analytic) q-regular points o /A  (denoted by  rq(A)) is the set of all x C A such tha t  for some 

neighbourhood U of x in M, A N U is a q-dimensional analytic submanifold of M. The set 

of regular points of A (denoted by r(A)) is the union [A~=o rq(A). The singular set o] A (de- 

noted s(A)) is the complement of r(A) in A. 

Clearly, r(A) and rq(A) are analytic submanifolds of M. 

Similarly, one m a y  define regular and singular sets mod C g for each integer /c > 0  

(denoted r~(A), rg(A) and sk(A)) in analogy with Definition 2.4.1, by  considering the sets 

of points in A around which A is or is not a submanifold of class C k. We shall, however, be 

very little concerned with these sets, which motivates the simple notation r(A) . . . .  instead 

of the perhaps more adequate r~(A) .. . . .  

T~EOR:~M 2.4.2. Suppose A e SUB (M), then also r(A ), rq(A ) (/or 0 <~ q <~ m) and s(A ) 

belong to SUB (M). Moreover, dim s(A) ~<dim A - 1 (unless A =•) .  

Remark 2.4.3. The same results hold for rk(A), r~(A) and sk(A), and the proof is identi- 

cal, except tha t  we must  use Theorem 2.1.2 instead of Theorem 2.3.3. Moreover, it can be 

proved tha t  for any compact K c M ,  r~(A)N K=r(A)~ K for large enough k and so on. 

Proof. I t  is enough to prove tha t  rq(A) E SUB (M) for each q, since r(A) and s(A) are 

obtained from these sets by  Boolean operations. Also observe tha t  the claim is entirely 

local; hence it is no loss of generality to assume tha t  M is an open subset of R m, and to 

restrict at tention to a small open cube Q c  c M with sides parallel to the coordinate hyper- 

planes (i.e. the hyperplanes spanned by subsets of the standard basis in Rm). 

For each coordinate plane E of dimension q, let r(A; E) be the set of all points x in 

A ~ Q  such that ,  for some neighbourhood U of x in M, A fi U is an analytic submanifold, 
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and the orthogonal projection z~: Rm-~E induces a diffeomorphism of A N U onto an open 

subset of E. I t  is then easy to see tha t  

rq(A) N Q ~ [.J r(A; E) (2.4.4) 
E 

where the union is over all possible coordinate planes E (there are ( q )  of them). In  fact, 

if xErq(A), then there must  be a coordinate plane E such tha t  D~: Tx(A)-~E is an iso- 

morphism, which implies the claim by  the implicit function theorem. 

I t  is therefore enough t o prove tha t  for each E, r(A; E) E SUB (M), The idea of the 

proof is now to use the fact tha t  r(A; E) is, roughly speaking, locally like the graph of some 

section of g from E to R m, and to apply Theorem 2.3.3 to eaeh component of this section. 

At this point, it is very convenient to make use of Theorem 1.3.4. Hence, choose a 

simple subanalytic stratification of ~: R m-+ E on A N Q, say A N Q = U ~ ~ z F~ and E = [J ~ + j A~. 

Over each s t ratum Ap, there may  lie any finite number  of stratas F~ such tha t  ~(F~) =Ap. 

However, if we let ff be the family of all possible sections a of z~ on ~(A N Q) such tha t  

a(~(A N Q)) is a union of s trata F~, then ff is finite by the relative compactness of Q and 

the local finiteness of the stratifications. In  the following, we consider each a to be extended 

by  ~ = + c~ on E ~ ( A  N Q). Now, it is trivial to see tha t  r(A; E)c  LJ,~z Gr where G~ =a(E). 

Moreover, if we let G~ ~fr(A; E)N G~, then the following conditions are easily seen to be 

both necessary and sufficient for x EG~ to belong to G~: 

(1) For some neighbourhood U of x, A N U=Gr U. 

(2) For some neighbourhood V of z~(x) in E, a: V-+R m is analytic. 

I f  we denote by  G~ and G~ the sets of points in Gr satisfying (1) and (2) respectively, 

then clearly r(A: E)= [J~+~ G~= [J~(G~N G~). Hence it  suffices to prove tha t  G~ and G~ 

belong to SUB (R ~) for each o. 

The first s tatement  is an immediate consequence of the trivial topological formula 

G~ = G~ N ( R ~ ( A ~ G ~ ) )  N A e SUB (R~). (2.4.5) 

The second is a consequence of Theorem 2.3.3; in fact, a is analytic at  g(x) iff each 

component a~ of a = (al ..... am) is analytic at  ~(x). Let  S~ de~ [j  ~nl Sing~ supp (a~). Then we 

see tha t  
G~ = a( E ~  S~). (2.4.6) 

Now the graph of a is subanalytic by  construction, hence so is the graph of each 

~, since it  is obtained from the graph of a by  projection. Therefore Theorem 2.3.3 implies 

tha t  Sing~ supp (a,) E SUB (E) for each i, which implies tha t  also G~ E SUB (R ~) by  (2.4.6) 

and Theorem 1.2.2. 
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The dimension statement  finally, is a trivial consequence of Theorem 1,2.2 (iv). In  

fact, if we consider any stratification~of A = (J~•  F~, then any F~ of maximal  dimension 

(i.e. such tha t  dim Fa =d im A) must  belong to r(A) by the topological properties of strati- 

fications. Hence s(A) is contained in a union of F~'s of dimension at  most dim A -  1. 

Consequently s(A) itself can have dimension at  most dim A -  1 which completes the proof 

of the theorem. 

In  addition to being interesting in its own right, Theorem 2.4.2 can be used to give a 

more precise description of the singularities of functions in S:~ (M) a s  follows; for each 

funct ion]  E :~(M), we define inductively sets St(/), i = 1, 2 ... . .  by 

$1(] ) def Sing~ supp (]) (2.4.7) 

St(]) ~f Sing~ supp (/[r(s~_l(r))) for i ~> 2. (2.4.8) 

These definitions clearly make sense, since for any set A c M ,  r(A) is an analytic (sub-) 

manifold. We now have the following 

T ~ o R ~  2.4.9. 

(i) Suppose that ] E S:~ (M). Then/or  all i, S~(]) E SUB (M). 

(ii) I] / E S~  ~~176 (M), then in addition we can say that/or i <~ dim M, dim St(/) ~ dim M - i 

and /or i > d i m M ,  S~(/)=O. 

Remark 2.4.10. There are of course anMogous results which involve Sing~ supp (]) 

(and rk(A)) which the reader m a y  wish to formulate for himself. 

PROPOSITION 2.4.11. Let ~ be an analytic submani/old o/ M which also belongs to 

SUB (M). Then we have that 

(i) Suppose / E Sf f  (M). Then Sing~ supp (] I a) E SUB (M). 

(ii) / / ]  E S~ 1~176 (M), then in addition we get that dim (Sing~ supp (/i a ) ) ~  dim ~ -  1. 

I t  is clear tha t  Proposition 2.4.11 together with Theorem 2.4.2 implies Theorem 2.4.9 

by  induction. Hence we need only prove Proposition 2.4.11. 

Proo] o/Proposition 2.4.11. The dimension statement  (ii) is an immediate consequence 

of Theorem 2.3.3 (ii). Hence we are left with (i). 

The proof of (i) is in many  respects similar to tha t  of Theorem 2.4.2. Again we may  

assume tha t  M ~  R ~ and tha t  we are working in some open cube Q. 

In  the present situation, r(~2)=rq(~)=~-~, where q =d im ~,  since ~ was assumed regu- 

lar. Formula (2.4.4) now becomes 

~2(1 Q = [J r(~2; E) (2.4.12) 
E 
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in the notation of the previous proof. Let  r(/[ a) ~r s163 supp (1 [ a). Clearly it is enough 

to prove that  r(/[ a) E SUB (R~). We now have that  

r(/[a) N Q-~ [J P(/; E) (2.4.13) 
E 

where P(/; E) by definition is the set of points xEr(~2; E) such that  for some small neigh- 

bourhood U of x, g: ~2 n U-~ E gives a homeomorphism of ~ N U onto some open subset 

of E, and furthermore, ~(x)~Sing~ supp (/o(~lanv)-l) .  Hence we need only prove that  

each P(/; E) E SUB (Rm). By the previous proof we have that  r(~; E) = [ .J ,~ G~. I t  follows 

that  P(]; E ) =  Ll,~z H~ where H , c  G~ by definition is the set of points x such that  :~(x)r 

Sing~ supp (/oa), i.e. 
U ,  = G r ~ a  (Sing~ supp (/oa)). (2.4.14) 

From the proof of Theorem 2.4.2 we know that  G~ E SUB (R~). Moreover, it is easily verified 

that  /oa  is a subanalytic function. Hence by Theorems 1.2.2 and 2.3.3, we see that  

HCE SUB (R ~) which finishes the proof. 

3. Calculus of variation 

3.1. Definitions in infinite dimensional differential geometry 

The purpose of this section is to introduce a class of infinite dimensional real analytic 

manifolds and some related concepts, which are suited for our applications in the calculus 

of variation later on. 

A norm.space is a topological vector space with a distinguished continuous norm 

defined on it. The weak topology on a norm-space is the topology defined by this norm. 

Hence, if (V, I] "]]) is a norm-space, we can define the concept of weak Cauchy sequence in V, 

and form the completion V w of V. If (V, I[ "I]) and (V', ]] "[[') are norm-spaces, then we let 

LrW( V, V') be the space of all (weakly) continuous r-linear maps from (VW) ~ ( = V w • V ~ • • V w) 

to V '~. Lw(v, V') becomes a new norm-space with the norm 

IITll  fsup {[IT(w1 . . . . .  II JH < 1, j = l  ..... r). (3.1.1) 

Now let (I): ~ 2 ~ '  be a map, where ~ c  V and ~ ' c  V' are open (in the usual topology). 

We assume t h a t  (I) is weakly continuous. 

De/inition 3.1.2. ~P is said to be wealcly di//erentiable iff 

(i) For each ~ ,  there is a (unique) map DO~ in L[(V, V') such that  HO(~) -O(~) -  

/)o~(~'~)[l '=o([l~-~[[  ) when ~ e ~  tends weakly to ~. 

(ii) The  map D(I): ~-+L[(V, V') defined by ~-->D~P~ is weakly continuous. 
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Inductively we define (I) to be r times weakly di//erentiable, iff (I) is weakly differentiable, 

and DffP: ~ L r ( V ,  l/') is r -  1 times weakly differentiable. Also, the r th weak differential 

of qb at  ~ is defined to be the element in Z~(V, V') given by Drq5~(~l . . . .  , ~ )  ~f 

(Dl(Dr-l~P)$(~x))(~e ..... ~r) where /)r-l(I): ~-~Lr~_~(V, W) is already defined. 

De/inition 3.1.3. ~p: ~-->~' is said to be weakly analytic iff 

(i) (I) is infinitely weakly differentiable. 

(ii) For each $ E~, we can find a neighbourhood U of ~ in s and a constant C such that  

for all ~ E U, 
[[ Drqbd] r < C(Cr) r, r = 1, 2 . . . . .  

Remark 3.1.4. 

(i) I t  can be verified that  the composition of two weakly analytic maps is weakly 

analytic. 

(ii) Also, if both V and V' are Hilbert spaces, then weak analytieity is equivalent to 

analyticity in the usual sense. 

Let  us from now on restrict our attention to inner product spaces, i.e. norm-spaces 

where the distinguished norm is given by a continuous non-degenerate scalar product: 

We then define a weakly analytic inner product mani/old (WI-manifold for short) to 

be a topological Hausdorff space with an atlas ((UT, ~ ) } ~ i  of coordinate systems, where 

each ~c~ is a homeomorphism of the corresponding U~ onto some open subset of an hmer 

product space, such that  all compositions ~ o ~  1 are weakly analytic. Moreover, it is 

clear what should be ment by a weakly ~nalytic map between WI-manifolds. 

Let  ~ be a WI-manifold, and let s ~, A sequence (~s}~l in is said t o  be dominated 

by ~ iff we can find s 0 such that  ~0cs  and integer ?'0 such that  ~jE~ 0 for J~>]0. 

A sequence is a weak Cauchy sequence iff it is dominated by some coordinate neighbour- 

hood U~, and the image of the sequence under the corresponding coordinate map ~v is a 

weak Cauehy sequence (with respect to the scalar product norm). 

A WI-manifold can in some sense be thought of as a "pre-Hflbert manifold". How- 

ever, one should beware of taking this analogy to far. For instance, it is not true in general 

tha t  WI-manifolds can be completed to Hflbert manifolds in any natural way with respect 

to their weak topologies. The completion will in general be just some topological space 

(let for example ~ = {/e C(S~): / > O} with the scalar product </, g> = ~ / .  gdt on C(S1). Then 

the completion is {/EL2(S1): / > 0}). 

De/inition 3.1.5. Let .~. and ~! be WI-manifolds, and let (I): ~ . - ~ '  be ~ continuous 

map. (I) is a submersion iff for every ~ E ~, we can find neighbourhoods U and U' of ~ and 



S U B A N A L Y T I C  SETS I1~ T H E  CALCULUS OF V A R I A T I O N  189 

~P(~) respectively, and weakly bi-analytic homeomorphisms q0 and ~ of U and U' onto 

open subsets ~ and ~2' of V|  W and V, where V and W are inner product spaces, such that  

~v-~or is the natural (orthogonal) projection. ~ and ~v are said to give a trivialization 

of qb on U. 

In  the following definitions, we consider a fixed (weakly analytic)submersion r  
E - ~ , .  

Definition 3.1.6. Let  F: ~ -~R be a function. F is said to be gradientiable (with respect 

to ~)  at ~ E ~ iff we can find a trivialization ~, ~v of r on some neighbourhood U of ~ as in 

Definition 3.1.5, and a weakly analytic map VaF:  ~-~ W such that  for all SE~  and 7 E W, 

D(F~)~ (7) = (V~ F(~), 7), where F~ ~f Fo~0 -1. 

Remark 3.1.7. Clearly the gradient V F  is unique if it exists. Also observe tha t  if 

and .~.' are open subsets of Hilbcrt spaces, and ~D is a linear map, then V~' is given by the 

classical formula VF(~) = ~zDF(e~)"  ea where {ea}~ El is some orthonormal basis for ker (r 

Definition 3.1.8. F: ~-->R is said to be regularizing (with respect to ~P) at  ~E~ iff F 

is gradientiable and, in addition, for some trivialization as in Definition 3.1.6, every weak 

solution in ~ of the inhomogeneous Euler-Lagrange equation V~ F(.) =~?, ~? E W, converges 

to an element in ~.  

A weak solution o~ V ~ F ( . ) = 7  in ~ is a weak Cauchy sequence {~j}~=l which is domi- 

nated by ~ such that  for every ~ E W, lim~_~ (Va F(~),  ~ ) =  (7, ~). 

Definition 3.1.9. F: ~ E R is said to be non-degenerate (with respect to ~P) at  ~ E ~ iff, 

in addition to what is said in Remark 3.1.4 and Definition 3.1.6 above, the Hessian of F 

at ~ (i.e. D2F~ considered as a quadratic form) is non-degenerate on W. By this we mean 

that  there is an orthogonal decomposition of W = T'|  T", and a constant c >0  such that  

(i) T '  is finite dimensional, (ii) for all 7 E T ", ] D2_~(~?, 7) 1 ~> c" (7, 7).  

With all these definitions at hand, we are finally ready to proceed to the main results 

of this paper in the next  section. 

3.2. Abstract calculus of variation 

In this section, we shall study a general class of~extreme value  problems depending 

on parameters, and prove that  the corresponding extreme value functions are subanalytic. 

The theorems will only be formulated in terms of infima, but  the reader may  formulate the 

completely analogous results for suprema himself. 

Let  ~ be a WI-manifold, and let r  ~ -~M be a surjeetive (weakly analytic) sub- 
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mersion onto the finite dimensional real analytic manifold M, Moreover, let F: E-~R be 

continuous and weakly analytic. Then we can define an extreme value function / on M by 

/(x) ~f inf  {E(4): 4E(I)-~(x)}, xqM, 4E. ~,. (3.2.1) 

Also, let 
E ~r {4E~: F(4) =]((I)(~))). (3.2.2) 

Hence, E is the set of points in 7~ where the infimum in (3.2.1) is actually attained. We 

now have the following 

THV.OREM 3.2.3. Suppose in addition that 

(i) at each point 4 E E, _~ is gradientiable, regularizing and non.degenerate (with respect 

to 4)). 
(ii) The restricted map O: E ~ M  is proper and sur]eetive. Then/ES:~~ 

Except  for the continuity of / ,  this theorem is actually a special case of a more general 

result which we shall now fomula te .  

Let  us consider a sequence of WI-manifolds and surjective submersions 

(1)k _ @k-i (1)i _ ~o 
~'k ' '~'k-i ' �9 . . . . .  ' ~0 , M, (3.2.4) 

where as before M is finite dimensional. Moreover, suppose that  for each i=O, 1, ..., k, 

we are given a continuous, weakly analytic function Fi: E~-~R. We can then inductively 

define extreme vMue functions/~ on M and sets E~= .~ by 

/o(x) ~finf {F0(4): 4e(I)ffX(x)) (3.2.5) 

E0 %f (4 e S0: Fo(~ ) = /0~  @0(4)} (3.2.6) 

]~(x) ~finf {F~(4): 4E(qboO(I)io...offP~)-X(x) and qb~(4)EEi_l} (3.2.7) 

E~ ~f {4 E.~: F~(4) =/io~Poo(I)lo...oCI)~(4) and (I)~(4) EE~_i} (3.2.8) 

Hence,/~ is the infimum of Ft  over the fibers of 4PoO(I)lO...o(I)~ under the condition that,  

losely speaking, all previous F~'s are also minimized. 

THeOReM 3.2.9. Suppose in addition that/or each i=O, 1 ..... k, 

(i) at each point 4EEt, F~ is gradientiable, regularizing and non-degenerate (with re- 

spect to ~P ). 

(ii) The restricted map ~Poo(I)lo...o(b~: E ~ M  is proper and surjective. 

Then/o, h, ..., ]k all belong to S~1OO (M). 
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Remark 3.2.10. I f  ~ and '~0, E~ .... .  ~ in Theorems 3.2.3 and 3.2.9 are all finite di- 

mensional, then conditions 3.2.3(i) and 3.2.9(i) are trivially satisfied. Furthermore,  in 

this case both theorems are rather  straight forward consequences of Proposition 1.3.7. 

Remark 3.2.11. The proof of the continuity in Theorem 3.2.3 is a standard verification 

which we shall omit. I t  uses only the continuity of F and (I), assumption 3.2.3(ii) and the 

fact tha t  (I) factors locally as a projection. However, it is easily seen from examples tha t  

the/~ 's  in Theorem 3.2.9 need not be continuous for i ~> 1. 

Proo/o/ Theorem 3.2.9. The fact tha t  the/~ 's  are locally bounded is a trivial conse- 

quence of condition 3.2.9(ii). In  fact, if K c  M is a compact, then /~ is clearly bounded 

from above and below on K by the sup and the inf respectively, of F~ on the compact 

E~ N X~I(K), where we have introduced the notation Z~ ~ r176 ~ ""~ Hence it is enough 

to prove tha t  the/~ 's  belong to ~ (M). 

Next  we shall reduce the problem to a local situation. 

LEM~A 3.2.12. Suppose ~EE~. Then we can/ind a neighbourhood gs o/ ~ i~ .~ and a 

subset S c ~ such that 

(i) E~n ~ c S .  

(ii) g(x) %f inf {F,(~): ~ EZ;I(x) N S and O,(~) e E,_~} e $~ (M). 

I f  we assume the lemma, Theorem 3.2.9 can be proved as follows: I t  is enough to 

prove that /~lvE S~ (U) for some neighbourhood U of an arbi tary point in M, since sub- 

analyticity is a local properly.  For any  relatively compact open set U c  M, we can cover 

Z~I(U) N E~ by finitely many  open neighbourhoods ~a, ~ E J ,  as in the lemma (by condition 

3.2.9(ii)). Let  g~, ~EJ ,  be the corresponding functions as in Lemma 3.2.12(ii). Then it is 

easy to see tha t  on U, / i = i n f  {g~: aEJ} .  In  fact, it is trivial tha t  ga>~/~ for each ~EJ .  

On the other hand, for each x E U there is (again by  Lemma 3.2.12(ii)) a ~E E~ such tha t  

Z~(~) =x. I f  we choose ~ E J such tha t  $ E ~a, then the definition of E~ together with Lemma 

3.2.12(i) and (ii) imply tha t  g~(x) =/~(x). This proves tha t  we have equality, and the theorem 

now follows from Corollary 1.3.8. 

Proo/o/Lemma 3.2.12. Since we are now in a local situation, we see tha t  since all the 

r are submersions, it is no loss of generality to assume tha t  M and the ~.i's are open 

subsets of direct sums of inner product spaces, M c R  m and ~cR '~)Vo |174  

and tha t  the (I)i's are the projections. Moreover, we can let ~ =0.  

Now from the non-degeneracy condition 3.2.9(i) it follows tha t  for each n =0,  1 ... . .  i, 
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we can find a decomposit ion Vn = V'n@ V ~ n such tha t  Vn is finite dimensional and D2(Fn)o 

V ~ is non,degenerate  on n- We shall now choose ~ as a p roduc t  neighbourhood 

~2=U•215215215215215 ~ ,  ( 3 . 2 . 1 3 )  

' U '~ c where U~ M, U '~  V~ and n V'~, such t h a t  the following conditions are fulfilled: 

V' (CI) UE SUB (M) and UnE SUB ( n )  for each n=O, 1 ..... i. (This makes sense since 

the  Vn's are finite dimensional vector  spaces.) 

(CII)  On some neighbourhood of ~ ,  we have a weakly analyt ic  gradient  

= ' 0 '  0"" = V '  V" VF~=On ( n, ~ ) : ~ - ~ V n  . Q  ~, n = 0 , 1  .. . . .  i, 

with the nota t ion ~ %f U • Uo • Uo • ... • Un. Moreover every weak solution of VFn(- ) =~,  

E Vn, in ~ actual ly  belongs to  ~n. 

(CII I )  For  each n = 0 ,  1 . . . . .  i, we have t h a t  D2Fn is uniformly str ict ly positive defi- 

nite on V~, i.e. for all ~ E ~  n and ~ E V:, D2(Fn); (~, ~)>~ c.(~,  ~} where c is independent  of 

$, ~. Moreover, we can assume t h a t  for every point  a in En %f ~n-1 • U'n 

inf (Fn(a, u): ue U "~ ~ < i n f  {Fn(a, u): ue~Un}. (3.2.14) 

To see t h a t  this is possible, first observe tha t  we can choose the factors in (3.2.13) in 

the order U~', U~, U~'-I . . . . .  U, Now the condition (CI I I )  is clearly satisfied a t  a = 0  for a 

suitable choice of U~', since the non-degeneracy assumption implies t h a t  F~] ~, is a convex 

function. Hence it also holds if we let a va ry  in some small neighbourhood of 0. We can 

now go on to  choose U~'-I and so on. (CII)  will follow as soon as we choose ~ small enough, 

b y  the  assumption tha t  the Fn 's  are gradientiable and regularizing. To guarantee  (CI) 

finally, we simply observe tha t  we can choose U and the U'~'s as small spheres, for instance. 

We can now define S as follows: 

S ~ {~E~:  O~oOn+loOn+2o...oOt(~) = 0 for n =0 ,  1 . . . .  , i}. ( 3 . 2 . 1 5 )  

(In the case n=i,  the  equat ion is s imply 0~(~)=0.) Wi th  this definition, the inclusion 

E~ N ~ c  S is s imply a consequence of the well-known lemma in the  calculus of var ia t ion 

which states t ha t  a point  where the extreme value is a t ta ined is s tat ionary.  I n  fact,  if 

~EE~, then  for each n = 0 ,  1 . . . . .  i, t h E E  n where ~n=(I)n+lO...o(I)~, as follows f rom the 

definition (3.2.8), which implies t h a t  DFr for all ~E Vn. Hence 0n(~n)=VFn($n)=0 

which implies the  claim. 

I t  remains to  prove t h a t  g, defined as in Lemma 3.2.12(ii), belongs to $:~(M). The idea 

of the  proof is now, roughly  speaking, to th row away  all the variables corresponding to  
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n the spaces V"n, hence obtaining a finite dimensional problem on W def= U • U~ • U~ • ... • U~ 

to which we can apply Proposition 1.3.7. 

To make this precise, we shall need to prove the following two claims: 

Claim I. _For each n = O, 1 ..... i, we can/ind a weakly analytic map an/rom some neigh- 

bourhood o/ ~n to Un such that O~(a, an(a)) =0/or  all aEZ,~, and 

(~e ~n: On(~) = 0} = (~ = (a, T) e Z  n x U~: % = an(a ) and 0~(a) = 0}. 

(Here Zn = U • U~ • Ug • ... • U'=.) We can now define functions Gn: W =R by (w = 

(u, Uo, u l  . . . . .  u,))  

Gn(W ) clef _F,(U, UO, (~o(U, UO) , Ul,  ~I (U,  U0, 0C0(U , U0) , Ul)  , U 2 . . . . .  0~n(...)). ( 3 . 2 . 1 6 )  

Similarly, we define maps Hn: W-." V',~ by 

Hn(w) oo~= vntu,~" Uo, ao(U, Uo), Ul, al(u, Uo, ao(U, Uo), ul), u2, .-., ~n(...)). (3.2.17) 

Finally, let ~: RInG V~| V ~ . . . |  V~->R m be the projection, and let T =  W be defined by  

T %f {wE W: Hn(w) = 0  f o r n = 0 ,  1 ... . .  i and Gn(w) =/~(7e(w)) f o r n = 0 ,  1 ... . .  i - l ~ .  

(3.2.18) 

Claim I I .  g(x)=inf (Gl(w): wEr~-l(x)N T~. 

Assuming claims I and I I ,  Lemma 3.2.12 is proved as follows: 

Inductively we m a y  assume tha t  we have proved tha~/~ E $:~ (M) for n - -0 ,  1 ... . .  i -  1. 

Since the _F~'s, the O'~'s and the an'S (by claim I) are weakly analytic, and since weak 

analytieity in finite dimension reduces to usual analyticity, it follows tha t  the functions 

G n and the maps Hn are real analytic on a neighbourhood of W. Therefore T E SUB (W), since 

on any  finite dimensional manifold, a set which is defined by a finite number  of equations 

hj=g~, ]=1 ..... q, where the h /s  and g/s  are subanalytie functions, is subanalytic as is 

easily seen. Moreover, if we (re-)define G~ to be § c~ outside W, then GiE $:~ (M), and the 

formula in claim I I  is still valid. Combining claim I I  with Proposition 1.3.7 now immedi- 

ately gives the lemma. Therefore it is enough to prove claims I and I I .  

Proo] o] claim I. First we shall prove the existence of a map :on: Zn ~ U~ such tha t  

for each a e Zn, an(a) is the unique solution in U~ of the equation 0~(a, v) = 0. (Hence 0n(a, T) = 0 

is equivalent to T = ~,(a) which implies the last par t  of the lemma.) 

This is equivalent to s h o ~ n g  tha t  for each fixed aEZ~, the function ~-->_Fn(a, ~) has a 

unique stat ionary point in U~. The uniqueness follows easily from the convexity property 

in (CII I )  above. To prove the existence, note tha t  (CIII )  also implies tha t  if we choose a 
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sequence {~j}~l in U~' such that  l imj_~ F~(a, ~j)=inf {F=(a, ~): ~eU~} then {~}~=1 is a 

weak Cauchy sequence. Moreover, since V~ is finite dimensional, we can assume that  
! oo ! {0=(~j)}j=l converges to some vector ~ in V~, and the fact that  the sequence F~(a, ~r tends 

to the infimum implies that  limj_~<0~@j), 9> = 0 for every ~ E V~. I t  follows easily that  the 

sequence {(a, ~s)}~l defines a weak solution in ~= of the equation VF~(.) = (0, ~). Hence by 

(CII), the sequence actually converges to an dement  on ~= which gives the existence. 

I t  remains to prove that  ~= is weakly analytic on (some neighbourhood of) Z=. To see 

this, we differentiate the formula <V/~=(~), ~>=D(F~)~(~]) with respect to $ and obtain 

<D(VF=)~ (~'), ~> = D2(F.)~ (~, ~'). (3.2.19) 

The uniform positive definiteness of D2F= on V~ now implies tha t  for each ~ E ~ ,  

D(VF~)~=D(O~)~: V ~ V ~  is invertible as a map in L~(V~, V~), and the norms of these 

inverses are uniformly bounded. If  we now differentiate the previously obtained formula 

0~(~, ~ ( a ) ) = 0  and argue as in the usual proof of the implicit function theorem, we easily 

obtain the estimate (ii) in Definition 3.1.3 for ~= which proves claim I. 

Remark 3.2.20. Observe that  we need the assumption that  F n is regularizing in order 

to guarantee the existence of ~ ,  since the implicit function theorem is certainly not  valid 

in general for arbitary inner product spaces. 

Proo/ o/ claim I1. This is essentially just a checking of the definitions. In fact, suppose 

tha t  ~ E S = ~ .  Then it follows from claim I tha t  there is a unique point w in W , w =  

(u, u 0 ..... u~) such that  ~ = (u, u o, ZOo(U, %), ul, ~(u ,  u o, ~o(U, %), ul), u2, ..., ~(...)) and that  

this point must satisfy the equation H=(w)=0 for n =0,  1 ..... i. Moreover, clearly G~(w)= 

F~(~). Finally, from the definitions (3.2.6) and (3.2.8), we see that  the condition that  

qg~(~)EE~_ 1 is equivalent to requiering that  F=o~P~+~o...or for n = 0 ,  1 ..... 

i - l ,  which is equivalent to G~(w)=]~(~(w)) for n = 0 ,  1 ..... i - 1 .  Combining this with the 

definition in Lemma 3.2.12(ii), we obtain the claim. 

3.3. The general program 

The terminology and statements of the previous sections are quite involved. In this 

section we shall therefore ask, in a less formal way, what conditions have to be imposed 

on an extreme value problem in order to apply the previous results. 

Suppose that  we are given some "sufficiently analytic" extreme value problem depend- 

ing on parameters, with extreme value function 

/ (Z)  d~-ef in-f {F (~ ) :  ~ ( I ) - l ( x ) } ,  zeM,  ~e ,~.., (3 .3 .1)  
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F: ~-~ R, (I): ~-~M, as in the previous section. Suppose furthermore that  we are interested 

in a description of the singularities o f / .  In order to conclude that  / is subanalytie, hence 

that  its singularities are amenable to the rather detailed analysis in Chapter 2 (notably 

Theorem 2.3.3 and Corollary 2.3.9) ,we have to verify that  the conditions in Theorem 3.2.3 

are satisfied. If  F is gradientiable (which is a rather natural  condition in view of Remark 

3.1.7), we are left with the verification of the following four conditions: 

(R1) (I): E ~ M  is surjeetive. 

(R2) (I): E ~ M  is proper. 

(R3) F is regularizing on E. 

(R4) F is non-degenerate on E. 

For practical purposes however, these four conditions can be replaced by a methodo- 

logical recipe in three steps: 

The general program. 

(GP1) To p~ove an existence theorem. 

(GP2) To prove a regularity theorem. 

(GP3) To prove an index theorem. 

Here (GP1) means to verify tha t  the extreme value is actually attained, which is 

another way to formulate (R 1). For example, in the case of Riemannian geometry, which 

we shall study in Section 3.5, this corresponds to verifying that  in a connected, complete 

Riemannian manifold there is always a geodesic of shortest length between two arbitary 

points. 

(GP2) means to prove a (rather weak) regularity theorem for the Euler-Lagrange 

equation, corresponding to our extreme value problem. This will in particular take care 

of the requirement (R3). Also it will take care of (R2). In fact, the set of extreme values 

E can essentially be computed from the Euler-Lagrange equation, hence if we know that  

all solutions of this equation have some regularity, then we can usually prove (R2) using 

standard arguments in analysis (compare for instance, the Rellieh lemma in the theory of 

Sobolev spaces). In  the Riemannian case already mentioned above, it is for instance 

enough to prove that  each geodesic has three continuous derivatives. 

(GP3) finally, means to prove an index theorem for the Hessian of F.  This is essenti- 

ally just a reformulation of (R1). However, we note tha t  if we again take Riemannian 

geometry as example, then (GP3) can be interpreted as (a special case of) the Morse Index- 

Theorem. In fact, this theorem states, among other things, that  there are at most finitely 



196 M. T ~ M  

many  directions along which we can vary  a geodesic without making it  longer (namely the 

Jacobi  vectorfield). 

Remarks 3.3.2. 

(i) The same general program applies to the more general Theorem 3.2,9 (with ob- 

vious modifications). 

(ii) In  case we are dealing with Hilbert  manifolds, the situation simplifies somewhat. 

Not  only is the gradientiabflity more or less automatic,  and weak analyticity reduces to 

analyticity in the usual sense, but  also the condition (1~3) is unnecessary. 

In  the last two sections of this paper, we shall consider (without proofs) some examples 

of situations where these general ideas can be applied. 

3.4. Example  I;  A special class of variat ional  problems 

Let X be a compact Hausdorff space, X be a positive finite measure supported on X 

and let M be a finite dimensional real analytic manifold. Moreover, let U and S be real- 

valued functions on M • X • X and M • [0, ~ [  respectively, such tha t  the following con- 

ditions are fulfilled: 

(E 1) U is a continuous function on M • X • X (which without loss of generality can 

be assumed symmetric in the two X-variables), which is analytic when considered as a 

map from M to the Banach space L ~ ( X  • X) .  

(E2) S is analytic on M• ~[ .  Moreover, S is continuous on M •  ~ [  and 

S(u, 0 ) = 0  for all u E M .  

(E 3) S is a strictly convex function of t (i.e. (~2/~t~) S(u, t) > 0 for all (u, t) e M • ]0, oo D. 

(E 4 )The  following two limits hold uniformly for u varying over compact subsets of M: 

(a) limt.~0+ t -1 �9 S(u,  t) = - r 

(b) limt-,r t -1" S(u, t) = + r 

With this set up, we can define a functional P on M • L+(X),  where L+(X) is the set 

of non-negative functions in L~o(X), by 

de=  v(u, x, u) d (y) + fx  (3.4. 

Moreover, we define a function [ on M by  

/ ( u ) ~ i n f { F ( u , q ~ ) : q ) E L + ( X )  and ~ v d ~ = l } .  (3.4.2) 
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THEOREM 3.4.3. /E $~~ Hence, Sing~ supp (/) E SUB (M). 

This can be seen to be a consequence of Theorems 2.3.3 and 3.2.3; we let .~. be the 

product M x ~'0, where ~'0 is the space of functions in L~(X) with strictly positive lower 

hounds and integral one, and let (I): M x ~.0->M be the projection. However, the verifica- 

tions are rather  lengthy. 

Remark 3.4.4. Conditions (E 1)-(E4) are in particular satisfied if we choose X to be 

T n (the n-dimensional torus withits usual measure), M--R2+ (the first quadrant),  u = (fl, ~), 

U(u, x, y)=~2flU(x-y) and S(u, t)=~t log t. This example has a certain interest in sta- 

tistical mechanics (in the so called Van der Waals model). In  particular, Sing~ supp (/) 

can be interpreted as the set of phase transitions. 

3.5. Example II; Cut loci in Riemann an geometry 

In  this section we shall assume tha t  M is a finite dimensional, connected, complete, 

real analytic Riemannian manifold. 

Let ~ be the space of continuously differentiable (directed) curves on M and let 

(I): ~ - > M  • M be the map which sends each curve ~, onto the pair of its endpoints, (70, 71). 

Moreover, let L be the function on .~ which on each curve ~ evaluates its length. Then we 

can define the distance/unction d on M • M by  d ~f (d2) 1/~ where 

d2(p, q)~finf{L2(r):TEO-l(p, q)}. (3.5.1) 

I t  can now again be verified tha t  this is the kind of extreme value problem to which we 

can apply Theorem 3.2.3. Since the square-root of a subanalytic function is easily seen to 

be subanalytie, we have 

THEOREM 3.5.2. dE$:~~215 

For  each pEM, we may  also consider the distance/unction on M with base point p, 

defined by  d~, ~f d(p, "). Combining with Theorem 2.3.3 we get 

COROLLARY 3.5.3. For each p 6 M, d~ 6 $:~ ~ (M). Hence Sing~ supp (d~)6 SUB (M). 

Remark 3.5.4. Sing~ supp (du) can be interpreted as the cut locus of p (see [7]). Hence, 

we have proved tha t  the cut locus of p is a subanalytie set (in particular it is stratifiable 

and triangulable by  Theorem 1.2.2(iv). (This has previously been proved by  Buehner (see 

[1]), using a more direct geometric method.) 
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I t  is tempting to t ry  to generalize these results to higher dimensions, using the more 

general Theorem 3.2.9. For simplicity we assume tha t  M is simply connected, and consider 

only the case of two-simplices. 

Let  D c M  •  •  be the set of geodesically dependent points, i.e. triples (p, q, r) 

such tha t  one of the points lies on a minimal geodesic segment, joining the other two. 

Let  N = M  • M • M ~ D .  Moreover, let 7~: be the space of continuously differentiable 

two-simplices in M with ordered vertices in N, and let ~0 be the subspace of ~ x ~. • ~, 

consisting of triples (7', 7", 7 '" )  such tha t  (7')1 =(7")0, (7"): = (7'")0 and (7'")1 =(7')0. We 

then get a sequence 

E: (b: ~ Eo (I)o , N (3.5.5) 

where (I): and qb 0 a~e defined in the obvious way, sending each simplex onto its sides and 

the sides onto the corners. Finally, we have natural  functions ~v: and F 0 on '~1 and ~0 

respectively which represent area-evaluation and evaluation of the sum of the length of the 

sides. Hence, in this situation the extreme value function/1 (see (3.2.7)) is the function 

which to each triple (p, q, r) in N associate the area of the minimal geodesic triangle which 

they span. 

T ~  ~ o ~ M  3.5.6. /1 e $:~:~176 (N). Consequently, Singo supp (/1) e SUB (~V), 

Remark 3.5.7. Sing~ supp (/1) can be thought  of as the second order cut locus of M. 

Hence Theorems 3.2.9 and 2.3.3 together give a method to prove triangulabflity of higher 

order cut-loci. 
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