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Some years ago, Gromoll and Meyer [15] proved tha t  if M is a complete noncompact  

Riemannian manifold with everywhere positive sectional curvature, then M is diffeo- 

morphic to Euclidean space and the exponential map expv: T M v ~ M  is for every point 

p EM a proper map.  During our recent work on noncompact  Ki~hler manifolds [9]-[11], 

we realized tha t  these and other results on such Riemannian manifolds would follow quite 

readily from one existence theorem, namely: on a complete noneompact  Riemannian 

manifold of positive curvature there is a C ~~ strictly convex exhaustion function 7, tha t  is, a 

C ~ function ~: M-~ [0, + o~) which is proper and is such tha t  all the eigenvalues of its second 

covariant differential are everywhere positive (Theorem l(a)). The function ~ can in fact be 

chosen to be (uniformly) Lipschitz continuous on all of M. The existence of a continuous 

strictly convex exhaustion function (see w 1 for the definition of strict convexity of con- 

tinuous functions) was deduced in [12] from results in [3]. Therefore the main weight of 

the present existence theorem is the possibility of choosing the function to be C~: in fact, 

the existence theorem as stated is deduced in this paper from a general theorem tha t  con- 

tinuous strictly convex functions can be approximated by  C ~~ strictly convex functions on 

any Riemanuian manifold (Theorem 2). The purpose of this paper is thus to establish the 

existence theorem and to provide a systematic exposition of the consequences which flow 

from it. 

In  the terminology of classical analysis, Theorem 2 is a smoothing theorem for strictly 

convex functions on arbi t rary Riemannian manifolds. I t  should be pointed out tha t  the 

usual procedure of smoothing in euclidean space by  convoluting with a spherically sym- 

metric kernel does not carry over to this general situation. Moreover, the analogue of 
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Theorem 2 for (not necessarily strictly) convex functions is thus far missing. For the cor- 

responding theorems in the case of strictly plurisubharmonic functions on complex mani- 

folds and subharmonic functions on Riemannian manifolds, see Richberg [25] and [13], 

[14]. 
The assertion of the existence of a C ~ strictly convex exhaustion function on any  

complete noncompact Riemannian manifold of positive sectional curvature leads to simple 

proofs of the results of Gromoll and Meyer mentioned in the previous paragraph (Theorem 

3 and Corollary (b) of Theorem 5). Moreover, this existence theorem also gives as an im- 

mediate corollary: a complete noncompact  K~hler manifold of positive curvature is a 

Stein manifold (Theorem 10(b)). This result is the main theorem of [11] although as indi- 

cated there the method of [11] actually proves the more general theorem of [9, I I I ] .  A 

refinement (Theorem l(b)) of the existence theorem is tha t  if M is a complete noncompact  

Riemannian manifold whose curvature is positive outside some compact set then there 

is a C ~ exhaustion function on M which is strictly convex and uniformly Lipsehitz con- 

tinuous outside some compact set. Using this fact, it will be shown that:  I f  ] ~ 0 is a non- 

negative subharmonic function on M then SM]= + co (Theorem 7; originally proved in 

[12]). I f  the dimension of M is 4 and ~) denotes the Gauss-Bonnet integrand then SM ~ 
exists and is less than or equal to the Euler characteristic of M (Theorem 9; announced in 

[13]). I f  M is a K~hler manifold, then M is obtained from a Stein space by  blowing up a 

finite number of points (Theorem l lb ;  see [11]). If  M is a K~hler manifold and if (in addi- 

tion to having sectional curvature positive outside some compact set) M has everywhere 

nonnegative sectional curvature then M is a Stein manifold (Theorem 12; this result is 

given for the first t ime here, not having occurred in [9] or [11]). 

The scope of this paper is actually more general in two aspects than  so far indicated. 

On the technical side, the assumption of positive curvature or positive curvature outside 

a compact set can in some instances be replaced by  assuming the existence of a continuous 

exhaustion function which is strictly convex or strictly convex outside some compact set. 

In  other instances, the positive curvature hypotheses can be replaced by  assuming non- 

negative curvature. In  w 1-5, the results are stated and proved in the maximum generality 

consistent with keeping the conceptual character of the proofs unobscured by  excessive 

technical detail. In  w 6, there is a discussion of some more general results which can be 

obtained by merely technical modification of the arguments used in w 1-5. Some related 

results from other sources are also discussed in w 6. 

On the methodological side, we hope to make a point tha t  seems to have been over- 

looked until now: a knowledge of the function theory (of the geometrically interesting 

functions) on noncompaet  Riemannian manifolds is essential for the understanding of 
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their topology and geometry. The fact that  one can almost effortlessly derive so much geo- 

metrical and topological information from the existence of one Coo strictly convex ex- 

haustion function is, we hope, sufficient to attest to the validity of this viewpoint. 

The previously known Coo strictly convex exhaustion functions on Riemannian mani- 

folds were all variants of the square of the geodesic distance from a fixed point of a simply 

connected complete Riemannian manifold of nonpositive curvature. In  this case, the mani- 

fold is already known to be diffeomorphic to Euclidean space before the convex function 

is constructed. The problems which motivated this paper were first, how to construct a 

C ~ strictly convex exhaustion function without relying on the geodesic distance function, 

and second, how to deduce geometric and topological information from the existence of 

such a function. 

The completion of this paper depended in an essential way on a remark by Professor 

S. S. Chem. I t  gives us pleasure to record here our gratitude to him. 

w 1. Approximation of strictly convex tunctions 

The principal goal of this section expressed in general terms is to show that  a strictly 

convex function on a Coo Riemannian manifold M can be globally approximated by Coo 

strictly convex functions. A Coo function on M is called strictly convex if its second deriva- 

tive along any geodesic is positive everywhere on the geodesic. An appropriate extension 

of the idea of strict convexity to arbitrary (continuous) functions on M is given in the fol- 

lowing definition: 

Definition 1. A function/:  M-~ R is called strictly convex if for every p E M and every 

Coo strictly convex function V defined in a neighborhood of p there is an e > 0 such that  

/ -  e~ is convex in a neighborhood. 

Here, as usual, a function/:  M-~ R is called convex if its restriction to every geodesic 

is convex in the one variable sense. The fact that  a function on the line is convex if and 

only if it is convex in a neighborhood of each point of the line implies that  a function on 

a Riemannian manifold is convex if and only if it is convex in a neighborhood of each 

point. 

The following lemma gives a necessary and sufficient condition for strict convexity 

in terms of difference quotients along geodesics. This lemma shows in particular that  a 

strictly convex function is convex and thus necessarily continuous. The condition for strict 

convexity given in the lemma was used as the definition of strict convexity in [12] and 

[13]; the lemma states that  the present terminology is equivalent to that  in [12] and [13]. 
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LEMMA 1. A/unction ]: M ~  R has the/oUowin9 property (1) i /and only i / i t  has pro- 

perty (2): 

(1) / is strictly convex. 

(2) For every compact set K c M, there is a (5 > 0 such that/or every arc.length parameter 

geodesic segment C: [ -~,  2]-+M with 0 <~ <(~ and C(O) EK: 

1(o(~)) +l(C(-~)) -21(o(0)) > ~ .  

Proo/that (1) implies (2). For  each point p of M, there exists a positive number  ~v 

such tha t  on the open ball of radius ~v about  p there is a C ~ strictly convex function de- 

fined. For  instance, if (x I .. . . .  x~) is a Riemannian normal coordinate system at  p (with p 

corresponding to (0 ..... 0)) then F.i~l ~ is C ~176 and strictly convex on a sufficiently small 

open ball about p. That  this function is strictly convex near p follows from the fact  tha t  

the second derivative a t  p along any  are-length parameter  geodesic through p is 2. 

Now suppose tha t  s ta tement  (2) is false for a compact set K c  M. Then there exists a 

sequence {p, l i = 1, 2 . . . .  ) of points of K, a sequence {2, [i = 1, 2 . . . .  ) of positive real numbers 

converging to 0 and a sequence {Ci: [ -~ , , 2~] -~M] i - -1 ,  2, ...} of arc-length parameter  

geodesic segments such tha t  Ci(0) e K  for all i and 

rm~ in~ ~ {t(V,(~,)) +/(O(~)) - 21(C)0))} < 0. 

By  passage to a subsequenee if necessary, it may  be assumed tha t  the sequence (p~) con- 

verges to a point p of K.  On the open ball about  p of radius ~ ,  there exists a C ~ strictly 

convex ~%. And by  the definition of strict convexity, there exists an e > 0  such tha t  / - e ~  

is convex in a neighborhood U~ of p. Let  g = / - e ~ .  Now suppose tha t  i 0 is so large tha t  

for all i > i0, the geodesic segment Ct lies in the intersection of Up with the ball around p 

of radius ~/2.  Such an i o exists because p~-~p and ~-~0 .  Then for all i > i  o 

1 [g(c~,(~,)) +g(c,(-,~,)) - 2g(c~,(0))]/> 0, 

because g is convex on U~. Also, 

~ ~[~(c,(;t,)) +~(r -2~(r 

>~ {2s • the infimum over the closed ball of radius ~ /2  

of the derivative of ~v along arc-length parameter  geodesics}. 

This is positive because ~ is strictly convex in a neighborhood of this closed ball. Denote 

this infimum by  7" Then for all i > i  0 
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• {I(C,(A,)) +](O,(-~,)) - 2 f (C, (O))}  

I = ~  {s[~,,(C,(&)) + V,,(C,(-&)) -2(p,,(C,(O))] + g(C,(&)) +g(C,(-&)) -2g(C,(O))} >~ ~ .  

Hence 

l im inf ~2 {/(C,(2~)) + J(C~( - 23) - 2/(C,(0))} ~> e~ > 0. 

This contradiction shows that  statement (2) must hold if / is strictly convex. 

Proof that (2) implies (1). Let  f be a function satisfying (2) and p be a point of M. 

Suppose that  9: U ~ R  is any C ~ strictly convex function defined on a neighborhood U 

of p. Let  V be a neighborhood of p with the closure cl V of V compact and cl V c U. Take 

K = c l  V in statement 2). Choose s >0  such that  the second derivatives of ~ along arc- 

length parameter geodesics at  p are <�88 (~ >0  being obtained from statement (2). Then 

for all geodesic segments C: [ - ~ ,  ~]-~M with 4 > 0  sufficiently small and C(0) sufficiently 

near p: 

0 < ~(c(~)) +~(c( -~))-2~(c(0))< 2-~' 

so that  

~, {/(v(;t)) +/(v(-2))  - 2/(c(0)) -~[~(c(~)) +~(c(-~))  -2~(c(0))3}/> ~ -�89 > o. 

T h u s / - e ~ v  has nonnegative second difference quotients along geodesics near p so that  

/ - ~  is a convex function on a (sufficiently small) neighborhood of p. [] 

A special role is played in geometric considerations by functions which are closely 

related to the Riemannian distance on M. One such relationship is Lipschitz continuity 

in the sense of the following definition: 

Definition 2. A funct ion/ :  M--> R is Lipschitz continuous if there exists a real number 

B such that  

If(P)-f(q)l  ~< B disM(p, q) for a l lp ,  q eM.  

(Here disM=the Riemanuiau distance function on M). Any such constant B is called a 

Lipschitz constant for f. 

The next  lemma shows that  Lipschitz continuity on a Riemannian manifold (with a 

particular Lipschitz constant) is a local property. 
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LEMMA 2. A/unct ion/:  M-> R is Lipschitz continuous with Lipschitz constant B i /and  

only i]: / is Lipschitz continuous with Lipschitz constant B in a neighborhood o/each point 

o/ M, i.e./or each point qEM, there exists a neighborhood Uq o/ q such that/or every ql, q2 E Uq 

it(q1) -/(q~)[ < B disM(q, q~). 

Proo/. Lipschitz continuity on M implies the local condition since one may  take Uq = M  

for every q e M. To show the converse, recall tha t  for any  Pl, P2 e M diSM (Pl, P2) = infc l(C), 

where C ranges over all rectifiable arcs C: [0, 1 ] ~ M  with C(0) =Pl and C(1) =P2 and l(C)= 

length of C. Thus to establish Lipschitz continuity of / with Lipschitz constant B one need 

only show tha t  for any  such arc C 

[/(Pl) -/(P,)[ < Bl(C). 

Choose a finite subdivision of [0, 1] by  points 20 = 0  <21 <22 <.. .  <21 = 1 such tha t  for all 

i=O, ..., l - 1  C([2t, 2~+1]) is contained in a neighborhood Uq satisfying the condition of 

the lemma for some q e M. Such a choice is possible because the Uq form an open cover of 

M. Then 
l -1  l -1  

[/(Pl) -/(P2)[ <~ 5 [/(C(~)) -/(C(2,+1))[ < B 5 disM(C('~,), C(2I+1)) • BI(C). 
t =0  i =0  

The final definition needed to state the theorems of this section is the definition of an 

exhaustion function. 

Definition 3. A function /: M->R is an exhaustion /unction if, for every AGR, 

/ -1((_  ~ ,2 ] )  is a compact subset of M. 

THEOREM 1. (a) I /  M is a complete noncompact Riemannian mani/old o/everywhere 

positive sectional curvature, then there exists on M a Coo Lipschitz continuous strictly convex 

exhaustion/unction. 

(b) I /  M is a complete noncompact Riemannian mani/old and i/there is a compact sub- 

set K 1 o / M  such that M - K  1 has everywhere positive section curvature, then there exists a 

compact subset K so/  M and a C ~ Lipschitz continuous exhaustion/unction qJ: M ~ R on M 

such that q~ is strictly convex on M - K  2. 

Theorem 1 will be deduced from certain results in [12] together with the following 

theorem: 

THEOREM 2. (a) I / M  is a Riemannian mani/old, i/ there is a strictly convex/unction 

y~: M--> R on M, and i /e  is any positive real number, then there is a Coo strictly convex/unction 

q~: M-> R with [~-~p] <e everywhere on M. Moreover, i/ y~ is Lipschitz continuous with Lip- 
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schitz constant B then there exists such a/unction q~ which is Lipschitz continuous with Lip- 

schitz constant B + e. 

(b) I / M  is a Riemannian mani/old, i/~p: M ~ R is a /unct ion with the property that 

there is a compact subset K 1 o/ M such that y~ is strictly convex on M - K 1 ,  and i/ ~ is any 
0 

positive number and K s is any compact subset o/ M with KI  = K~, then there exists a Coo 

/unction qJ: M ~  R such that ty~ -qp[ <~ on M -  K~ and q~ is strictly convex on M - K ~ .  More- 

over, i~ y) is I~pschitz continuous on M -  K x with Lipschitz constant B then there is such a 

/unction 9~ with qJ Lipschitz continuous on M - K s with Lipschitz constant B + e. 

In  the second statement of Theorem 2(b), the function ~, being Coo on M and Lip- 

schitz continuous outside a compact subset of M~ is necessarily Lipschitz continuous on 

M, hut  perhaps with a larger constant than B + e. 

Proo/ o/ Theorem 1 / tom Theorem 2. 

1 (a). I t  was shown in [12] that  if M is a complete Riemannian manifold of positive 

sectional curvature then there is a strictly convex Lipschitz continuous exhaustion time- 

tion ~o: M ~ R  on M. Let  ~v be a function satisfying the requirements (including Lipschitz 

continuity) of the conclusion of Theorem 2 (a) with e--1. Then ~ is necessarily an exhaus- 

tion function because, for any 2 E R, {p E M[q(p)<2}  is a closed subset of the compact set 

{p e M I~(P)~<X+ 1}. Thus q0 satisfies the requirements of Theorem 1 (a). 

1 (b). I t  was also shown in [12] that  if M is a complete Riemannian manifold whose 

sectional curvatures are positive outside some compact set K then there exists a compact 

set K'  and an exhaustion function yJ: M ~ R  which is Lipschitz continuous and strictly 

convex on M - K ' .  I f  q~ satisfies the requirements (including Lipschitz continuity) of Theo- 

rem 2(b) with e = l ,  K I = K '  and K s = a n y  compact set whose interior contains K',  then 

is an exhaustion function because for any 2ER, {p EM]rp(p)~<~} is a closed subset of the 

compact set K U {p EM IY(P) 42  + 1}. Thus ~ satisfies the requirements of Theorem 1 (b). [] 

Theorem 2(a) imphes Theorem 2(b): For let K a be a compact set in M satisfying 
0 0 

K 1 c K 3 c K 3 c K 2 ,  where K 1 and K 2 are as in 2(b). Then apply 2(a) to v / [ ( M - K s ) t o  ob- 

tain a C ~ function ~1: M - K a ~ R  which is strictly convex and satisfies ]v2-~l I <e on 

M - K  3 (and is Lipschitz continuous with Lipschitz constant B +e on M - K a ,  in the case 

that  ~ is Lipschitz continuous with constant B on M - K 1 ) .  Then by a standard extension 

process, there is a Coo function q: M ~ R  w i t h q  = q l  on M - K  s. This function q satisfies 

the requirements of 2 (b). Thus to establish Theorem 2 (and hence Theorem 1), it  remains 

only to establish Theorem 2 (a). For  this purpose, the following lemmas will he used: 

L~MMA 3. Let ~: M-~ R be a continuous ]unction and A 1 and A s be compact subsets o/ 

M with A I ~ A  ~. Suppose that ~ is strictly convex in a neighborhood o / A  s and Coo in a neigh- 

1 4 -  762901 Acta  mathemat ica  137. Imprim6 le 20 Janvier  1977 
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borhood of A 1. :Then there exists a neighborhood U of A2 and a family o/ C ~ /unctions 

(v~: V-~R[~e(0,  ~o)), e0 >0,  defined on V such that 

(1) fo r each e E (0, co), ~ has positive second derivatives along geodesics at points of A S. 

(2) T~-/~ uniformly on A 2 as e~O +. 

(3)/or any positive integer r the derivatives of ~ of order r converge uniformly to the cor- 

responding derivatives of 1: on A~ as e-~O +. 

Moverover, i / ~  is Lipschitz continuous with Lipschitz constant B and i f  ~] is any positiv e 

number, then the ~ may be chosen to be Lipschitz continuous on U (relative to Riemannian 

distance dis~r on U) with Lipschitz constant B 4-~. 

Proof o / L e m m a  3. The Riemannian convolution smoothing approximations of [10] 

have the properties required. These are constructed (in summary;  see [10] for details) as 

follows:' Let  ~(: R--> R be a nonnegative C ~ function which has support contained in [ l, 1], 

is constant in a neighborhood of 0, and has Sv~Rn ~((lIvII)-1, where n = d i m  M. Define 

1  (exp  v), 
~(p)  = e- ~ 

where the integration is with respect to the measure induced on the tangent space TM~ 

at  p by the Riemannian metric of M. There is a neighborhood of A 2 on which the v~ are 

defined and C ~ for all sufficiently small e. Properties (2) and (3) follow from standard 

arguments (see [10; p. 646 if:f). 

Now suppose tha t  property (1) fails for every e0>0. Then there exist sequences 

(p~[p,EA2, i - l ,  2 . . . .  ) and (e~[e~>0, i - l ,  2 ... .  } with ~-~0 + such tha t  for each i = l ,  2 ... .  

there exists an arc-length parameter  geodesic C~ with C~(0)-p~ and the second derivative 

(d2/dt~)v~(C(t))]t=o <0. By passage to a subsequence if necessary, it may be assumed tha t  

the sequence (Pi) converges to some point p in A S. Let Q be a C ~ strictly convex function 

defined in a neighborhOod of p such that  ~ - Q  is convex in a neighborhood of p: the existence 

of C ~176 strictly convex functions defined in a neighborhood of p was demonstrated in the 

proof of Lemma 1 and the required 9 can be obtained according to the definition of strict 

convexity by multiplying such a function by a sufficiently small positive number, l~ow 

% - ( ~ - 9 ) ~ + 9 ~  at  all points of M for all e > 0  for which all terms are defined. Let  rj =in-  

f imum of the second derivatives at  p of Q along arc-length parameter  geodesics through p. 

Then ~ > 0 and on a sufficiently small closed ball B (of positive radius) about p the second 

derivatives of Q along arc-length parameter  geodesics are >~/2 since 9 is C% The second 

derivatives of ~ on/~  converge uniformly to the second derivatives of Q as e-> 0 +. Thus for 
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all sufficiently small 8 > 0  the second derivatives along arc-length parameter  geodesics a t  

points o f / ]  are >~/4. l~ow according to [10; p. 644] the convexity of ~ - ~  implies tha t  

d 2 
lira inf ~inf ~ (x - ~)~ (C(t))lt=o) >~ 0, 

~ o  + \ c dt 

where C ranges over all arc-length parameter  geodesics with C(0) ~/]. For such geodesics C 

d ~ d ~ d ~ d ~ 

so tha t  (d~/dt2)ve(C(t))[t=o >0  for all e sufficiently small (uniformly with respect to varia- 

tion of C). This inequality contradicts the combined properties of the sequences {p~}, {e~) 

a n d  {C~}. Thus property (1) must  hold. 

Tha t  the % are Lipschitz continuous in the neighborhood U of A S with Lipschitz 

constant B + ~  is established in [12; p. 285]. [] 

L ]~ M ~ i  4. Let a: M ~ R be a strictly convex/unction and L 1 and L2 compact subsets o / M  

with L1c  L~. Suppose that (~ is Coo in a neighborhood o / L  r Then there exists a /ami l y  

(a~: M ~  R I~ E (0, Co)), ~o > O, o/ strictly convex/unctions on M such that 

(1)/or each ~E(O, ~o) at is Coo in a neighborhood of L~. 

(2) sup la-a~l-~0 as ~ 0 + .  
M 

(3)/or any positive integer r, the derivatives o/ a~ o/ order r converge uni/ormly on L 1 to 

the corresponding derivatives ol a. 

Moreover, i/ a is Lipschitz continuous with Lipschitz constant B and i / 5  is a positive num- 

ber then each a~, e E (0, co), may be taken to be Lipschitz continuous with Lipschitz constant 

B+& 

0 

Proof o~ Lemma 4. Let  L a be a compact subset of M with L 2 c L  a. Then let ~: M ~ R  

be a nonnegative C ~ function which is 1 on L2 and 0 ' in  a neighborhood oi the closure of 

M - L ~ .  The existence of such a function ~ is a consequence of the standard parti t ion of 
0 

unity result for the open cover { M - L 2 ,  L3}. Set ~ = Q - � 8 9  Then fix is COO on M,  = 1  on L~ 

and = - � 8 9  on a neighborhood of the closure of M - L  a. ~7ow let ((3~) be the family of func- 

t i o n s  given by  Lemma 3 with ~ of that  l e m m a = a ,  AI=L1,  and A z = L  3. Define ~/~= 

3 supL, I d - a ~  [. Then ~ 0  as 8-+0 +. Also ~ +~/~i  is > a on L~ and < a  on a neighborhood 
' 0 
of La--L a. Now define a~: M ~ R  by  

~E(P) = max(5~(p) +~ff l ,  ~(~)) for p EL 3 

a~(p) = a(p) for p E M - L a .  
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Then ~(p)  =~t(P) + ~ 0 1  in a neighborhood of L2; and, thus at is Coo on a neighborhood of 

L~. Moreover, since ~ - ~ 0  as e-~0+ and ~8 satisfies (3) of Lemma 3, ~8 satisfies (3) of Lemma 

4. sup  =sup .  <sup . sup . Thus sups, 

as 8-+0 +. 

To show tha t  each ~ is strictly convex, provided tha t  e is sufficiently small, i t  is enough 

to verify strict convexity in a neighborhood of each point p of M: Let  V be a neighbor- 
0 

hood of M - L  s on which ~8 =a;  then if p E V, at is strictly convex in a neighborhood of p 
0 

(e.g., V istself) because a is strictly convex. I f  p eL  8, then in a neighborhood of p, at is the 

max imum of a and #t + ~ 0 r  The second derivatives along arc-length parameter  geodesics 

of #~ are, for all sufficiently small e, positive and bounded away from zero uniformly as 

e-+0 + on L s, as shown in the proof of Lemma 3. Since ~ - + 0  as e-+0 +, #~+~01 is strictly 
o 

convex on L~ for sufficiently small e. Since the maximum of two strictly convex fune- 
o 

tions is strictly convex, ~ is strictly convex in a neighborhood (e.g. La) of each point p of 
0 
L s when the positive number  ~ is sufficiently small. 

That  for all sufficiently small r a~ is IApschitz continuous with Lipsehit constant 

B + 6  (if a is Lipschitz continuous with Lipsehitz constant B) foUows similarly (cf. [12]): 

According to Lemma 2, it is enough to verify Lipsehitz continuity with constant B + 6  

in a neighborhood of each point of M. On U, the Lipschitz continuity of at follows with 
0 

constant B + 6  immediately from tha t  of a (with constant B < B + 6 ) .  On L s, ~ is, for all 

sufficiently small e, Lipsehitz continuous with Lipschitz constant B + �89 Also, for e suf- 

ficiently small, ~t01 is Lipsehitz continuous on M with Lipsehitz constant �89 since ~ - + 0  

as e-+0 + and 01 is Coo with eomP0aet support. Thus, again for all sufficiently small e, #~ + 

~01 is Lipsehitz continuous on L a with Lipschitz constant B + 6 .  Since the maximum of 

two Lipschitz continuous functions with a certain Lipsehitz constant is itself Lipschitz 

continuous with tha t  Lipsehitz constant, at is Lipsehitz continuous with Lipschitz constant 
0 

B + 6 on a neighborhood of every point of La and hence on M with Lipschitz constant B + 6, 

provided tha t  e is sufficiently small. [] 

The completion of the proof of Theorem (2 a) will depend on some standard function 

space topology concepts, which will now be summarized. For further details, one can con- 

sult [21], for instance. 

Let  K be a compact subset of M; let C~176 denote the set of pairs (U, ]) where U is 

an open subset of M containing K and / is a Coo function on U. Choose a fixed covering of 

K by  a finite number  of (open) coordinate systems, say xa~: V~-+R'~ " n = d i m  M, l e A ,  

where A is a finite set. Choose then for each l e a  an open set lz~ having compact closure 

contained in V~ in such a way tha t  K ~  [ J x ~  V~. These choices are possible by the com- 

pactness of K. Then for each positive integer i and each f q C~176 the supremum 
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, , [  /maximum of the xa)-coordinate system~] 
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is finite. This supremum will be denoted by  [ttI{E.*. Define {[/{{K.o for [eC*(K) to be 

supa,~ ]/(P) I" The function d~: O~176 x C~(K)~R defined by  

+oo 

= II/-gll ,0+ 2 '  rain(l, II/-gll ,d, 
~ 1  

is a (finite-valued) pseudo-metric on C~(K). The topology on C~(K) that  it determines is 

independent of the choices made in defining the pseudometric dK even though dK itself is 

not independent of r choices. In  the following discussions, the notation d K will be used 

without explicitly noting the assumption that  appropriate choices of A, the Va' s, and the 

V~'s have to be made. In  all cases, these choices may be made arbitrarily except for the 

conditions already given. Finally, for /EC~(K) set cK(/)=infc (d~/dt~)/(C(t))lt-o where the 

infinimum is taken over all arc-length parameter geodesics C(t) having C(0)EK. 

To complete the proof of Theorem 2 (a), let {K,] i e Z +} be a sequence of compact sub- 

sets of M with ( J ,K ,=M and K ~ / ~ + I  for all iEZ +. Then define iteratively a sequence 

{~pdi=0, 1, 2 . . . .  } of functions on M as follows: 

~o 1 = a function which is strictly convex on 21/, is C m in a neighborhood of K1; and 

satisfies ]YJ0(P) -YJI(P)) <e/4 for all p eM.  

~, = a function which is strictly convex on M; is C ~176 in a neighborhood of K,; satisfies 

dK~(y~, ~-1)<e2-(~+I) and I~,(P)-YJ,-I(P)] <s2-(l+l) for every p EM; and has 

cK,_l(~,) >1 (1 - ~) c~,_1(~,,_1) 

_1 
cK,_~(Y:,) ~> ( I ~ - 3z) c~,_~(~,-2) 

i c~r,(~0,)/> \1 3 "'" 

Lemma 4 guarantees the possibility at  each stage of carrying out this construction. 
0 

For each j EZ +, the functions in the sequence {~,+1]i G Z +} are C ~ on Kt+ 1. Moreover, 

this sequence is a Cauchy sequence in the dK~ pseudo-metric. I t  follows that  the sequence 
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0 
converges to a Coo function on/~j .  Thus the sequence ( ~ )  converges uniformly on compact 

subsets of M to a C ~ function on M. Call this function ~ : M ~ R .  Clearly I ~ - ~ I  ~ 

s Z~= 2 -(~+1) < e everywhere on M. Also, since 1 - F"+~176 3-~ = �89 > 0, cK~(~ ) > 0 for every i and 

so ~0 is strictly convex on ~/. 

Finally, if ~ is Lipschitz continuous with Lipsclitz, constant B and if ~ >0,  then,  by  

virtue of the last s tatement  of Lemma 4, each ~ may  be taken successively to be Lipschitz 

continuous with Lipschitz constant B § Then the limit function ~ will be Lip- 

schitz continuous with Lipschitz constant B § [] 

w 2. The topology and exponential map oI mnnifoltls of positive curvature 

In  this section, it will be shown how the existence on a Riemannian manifold of a 

strictly convex exhaustion function (or of an exhaustion function Which is strictly convex 

outside some compact set) implies  certain topological properties of the manifold and cer- 

tain characteristics of the exponential map on the manifold. The firs~ step in the investiga- 

tion of such implications is to observe that  according to Theorem 1 there is on such a mani- 

fold a C ~ exhaustion function which is strictly convex or strictly convex outside some 

compact set: the same observation applies in the case of Lipschitz continuous exhaustion 

functions which are strictly convex or strictly convex outside some compact set. Thus 

without loss of generality, one m a y  consider only the C OO exhaustion function case. The 

theorems of this section will be stated for the general case, but  in the proofs it is as noted 

necessary to consider only the Coo case. Theorem 1 combined with Theorem 2 will show tha t  

these results apply in particular to complete manifolds whose sectional curvature is posi- 

tive or positive outside some compact set; the assumptions of this type appropriate in 

each case will be stated explicitly in the theorems. 

T ~ E O R E ~  3. (a) A Riemannian mani/old on which there exists a strictly convex ex- 

haustion/unction is di//eomorphic to' euclidean space. (b)(Gromol l -Meyer)A complete non- 

compact Riemannian mani/old o/everywhere positive sectional curvature is di//eomorphic to 

euclidean space. 

Proo/ o/ Theorem 3. The statement  3 (a) combined with Theorem 2 (a) immediately 

implies s ta tement  3 (b). To establish 3 (a), let M be a Riemannian manifold with a strictly 

convex exhaustion, function, and let ~:M--> R be a C ~ strictly convex exhaustion function 

on M, the existence of which is guaranteed by  Theorem 1 (a). The only possible critical 
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points ~of a C ~ :strictly convex function are nondegeneratc local minima, because the Hes- 

sian of  Such a fUnction (at a critical point) is clearly positive definite (see [19] for the ter- 

minology and results f rom Morse theory used in the present  and in later arguments). M 

thus haS the homotopy  type of a CW-complex containing only 0-cells, a 0-cell correspond- 

ing to each (local) minimum of ~v. Since M is connected, there can be 0nly one minimum 

and thus Only one critical point of ~, the point a t  which ~ a t ta ins  its (globally) minimum 

Value: Let  p E M  be this minimum point. Now by  the Lemma of Morse ([19;:p. 6 ] ) the re  

exists a Coordinate ~ system x: U:~ R n, where U is a neighborhood of p, 'with x (p )= (0, .... O) 

and ~ (q )=~(p )+Zl= l  (x~(q)) 2 for all q e U ,  where x(q)=(xt(q), x~(q) . . . .  , xn(q) ). L e t ~  be a 

positive number  which is small enough tha t  (@1, ..., x~)e R~]Z ~ ~1 x~ < ~ } c  x(U). Construct 
~ n  a metric G on M with G(~/~x~, a/~xj )=~j  on {qeU] ,=~ (x~(q))2<2/2}; such a metric can 

be constructed by  the standared partit ion-of-unity extension process. 

Let  S = { ( t ,  ..., t~)eR~[ZL~ t~=2/2}. Define Fi: S • + ~ ) - ~ R ~ - { ( 0 ,  ..., 0)} b y  

F1(($1 . . . . .  tn) , t)=(stl ,  ,..,st,~) where s=t�89 +... +t~)�89 F 1 is a diffeomorphism, Define 

F2: S • (0, + ~ ) ~ M - { p }  by  F~((tx . . . .  , t=), t) = C ( t - � 8 9  where C = t h e  integral curve of 

grad ~/llgrad ~ t h  C(0)=the  point  of U having x coordinates (ti, ..., t=). F 2 is also a dif- 

feomorphism: F is injective because of the uniqueness of integral curves, and F is surjec- 

t i re  because through every point of M - { p }  there is a maximal  integral curve of grad 

q/llgrad ~ I I on M - { p }  and this integral curve necessarily intersects the set x(S): For, if 

the curve is C: ( ~ , f l ) ~ M  then /~= +c~;  and as t-+~+, C ( t ) ~ p  while as t-+fl(= + ~ ) ,  

q~(C(t))-+ +c~; since M - x ( S )  has two components, one compact and containing p and 

the other noncompaet,  there must  exist ~e(~,  fl) such tha t  C(~,)Gx(S). Thus F ~ ' S •  

(0, + c~)-~M is bijective. That  F~ and Fff 1 are C ~176 follows from the standard results on 

the C ~ character of the flow generated by  a C ~ vector field ([19; p. 10]). 

Now define a mapping F: R~-->M as follows 

(i) F((0, . , ,  0)) = p ,  

(ii) F I(R~ - {(0, .... 0)}) = F2o F~ 1. 

Clearly F is bijective and F[  (R = -  {(0 ..... 0)}) is a diffeomorphism onto M - { p }  since F 1 

and F2 are diffeomorphisms. To show tha t  F is a diffeomorphism, it is thus necessary to 

show only ' that  F and F -~ are C ~ in a neighborhood of (0 ..... 0) and p,  respectively: Now 

the integral curves of grad ~/llgrad ~ll ~ near p are, when expressed iri  the x-coordinate 

system, just t he  straight lines emanating from (0 ... .  ,0) parametrized by  Z~=~ x~. And in 

the definition of F x, Z ~  (sx~)~=t if Fl((t ~ . . . . .  tn), t)=-(Sty, ..... stn). Thus  x(F((x~ .. . . .  x~))) = 

(x~i :~:, x~). Hence near.p,  F = x  -~ and near (0, ..., 0), F -~ = x  so tha t  F and F -~ are C w 

as required, [] 
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THEOREM 4. (a) .If M i8 a Riemannian mani/old on which there exists an exhaustion 

/unction which is strictly convex outside a compact subset o/ M, then M is di//eomorphic to the 

interior o~ a compact mani/old with boundary. In /act ,  there exists a compact submani/old- 

with-boundary M 1 o / M  such that there is an isotopy o/ the identity map of M to M with a 
0 

di//eomorphism o/ M onto M 1. (b) I f  M is a complete Riemannian mani/old whose sectional 

curvature is positive everywhere outside some compact subset ol M, then M is di//eomorphic 

to the interior of a compact mani/old with boundary. In/act, there exists a compact submani/old 

M 1 with boundary ol M such that the identity map of M is isotopic to a di//eomorphism of M 
0 

onto MI. 

Proo/ o/ Theorem 4. The s ta tement  (a) implies s tatement  (b) in view of Theorem 2 (b). 

To prove statement  (a), and hence (b) also, suppose tha t  a Riemannian manifold M satis- 

fies the hypotheses of (a) and let ~: M - ~ R  be a C ~ exhaustion function on M which is 

strictly convex on M - K 1 ,  where K 1 is a compact subset of M; the existence of such a 
0 

function ~ is guaranteed by  Theorem 1 (b). Let  K2 be a compact subset of M with K l ~  K~. 

Since ~ is convex on M - K 1 ,  it has only nondegencrate critical points there (see the proof 

of Theorem 3). By  a result of Morse theory ([20; pp. 12-16]) there exists a C ~ function T: 

M ~ R  which has no degenerate critical points on M and which equals ~ on M - K ~ .  Since 

~=~0 on M - K  s and ~ is an exhaustion function, T is an exhaustion flmction, also. Another 

result of Morse theory ([19; p. 20]) is tha t  if an exhaustion function on a manifold has no 

degenerate critical points then the manifold has the homotopy type of a CW-complex with 

one cell of dimension k for each critical point of the function of index k. Since every critical 

point of ~ of index i> 1 is contained in K S and nondegenerate critical points are isolated, 

has only finitely m a n y  critical points  of index k ~> 1. Since M is connected, T has then only 

finitely many  critical points of index 0, as well: for a connected CW-complex cannot con- 

tain infinitely many  0-cells if i t  contains only finitely many  cells of dimension greater than  

0 (in fact, if it contains only finitely many  cells of dimension 1). Thus ~ has only finitely 

m a n y  critical points. 

Let  2 be a real number  which is larger than  any of the (finitely many) critical values 

of 7. Set M l = T - l ( ( -  co, 2+2]) .  Then M 1 is a compact submanifold-with-boundary of M: 

compact  because T is an exhaustion function and a submanifold-with-boundary because 

2 + 2 is not a critical value of T. 

To construct an isotopy of the identi ty map of M to itself with a diffeomorphism of 
0 

M onto M1, note tha t  if M~ = {q EMIT(q)=2 + 1} then M s is a compact submanifold (with- 

out boundary) of M since 2 + 1 is not a critical value of 7. Moreover, there is a diffeomor. 

phism of M 2 • (0, + ~ )  onto M - ~ - I ( (  - ~ ,  2]) =~-I((2, + ~ ) )  which maps M s • (0, 1) onto 
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~-1((~, ~+1)): such a diffeomorphism F: M~ • (0, + ~ ) ~ - 1 ( ( ) , ,  +co)) is given by  setting 

F(q, t)-=Cq(t-1), where Cq=the integral curve of gradw/llgradd ~ t h  ~o(0)=q. F is 

injeetive because of the uniqueness of integral curves. F is surjective because the integral 

curve of grad ~/ ]l grad q~ll 2 through a poinf~ of v-x((2, +co)) of v-~((~, + ~ ) )  necessarily 

intersects M~. That  F and its inverse are C ~ follows from the standard results on the C ~ 

character of the flow generated by  a vector field ([19; p. 10J). 

Let  h: [0, 1] • +r + ~ )  be an isotopy with h(0,. ) = t h e  identity map of 

(0, + ~ )  to (0, + co) and h(1,. ) = a  diffeomorphism of (0, + co) onto (0, 2). The isotopy h 

can and will be assumed to be chosen so that  h(t, s )=s  for all tE[O, 1] and se(0,  1). Now 

define H: [0, 1] xM~ • (0, + ~)-*M~ • (0, + ~ )  by  

H(t,  q, s) = (q, h(t, s)) q M s  • (0, + r162 

And define//1: [0, 1] • M ~ M  by 

H~(t, q) = q if z(q) <,1,  

H~(t, q) = F-~(R(t, F(q))) if ~(q) >,~. 

Since, for all rE[0, 1] Hl(t , q')=q" if ~(q') < ~ + I ,  H 1 is C ~176 in a neighborhood of [0, 1] • 

if ~(q) =~: for Hi(t, q')=q' for all re[0, 1] and all q' sufficiently near q. H 1 is clearly C ~ 

elsewhere on [0, 1] • M. H 1 is the isotopy required in s tatement  (a) of the theorem. [] 

The terminology introduced by the following definition will be used in stating some 

of the results on the asymptotic behavior of geodesics to be given presently. 

Definition. A semi-infinite geodesic C: [0, + ~ ) - + M  on a Riemannian manifold M is 

unbounded if for every compact subset K of M there is a t~[O, + co) such that  C(t) E M - K .  

The geodesic C converges to infinity if for every compact subset K of M there is a 

rE[0, + ~ )  such that  if s > t  then C(s) E M - K .  

A semi-infinite geodesic C: [0, + c~)-+M converges to infinity if and only if C is a 

proper mapping (in the usual sense that  if K is any compact subset of M then C-I(K) 

is a compact subset of [0, + ~)) .  Thus if the exponential map T M v ~ M  is a proper map- 

ping for a point p E M  then any semi-ir~inite geodesic C: [0, + ~ ) - + M  with C(0)=p con- 

verges to infinity, because the composition of proper mappings is a proper mapping and 

C = the  mapping of [0, + ~ )  into T M  v as a straight line (parametrized proportional to arc 

length) through the origin composed with the exponential map at p. 

THEOREM 5. I /  M is a complete R~emannian man#old on which a strictly convex ex- 

haustion function exists, then the exponential map exp,: TMv-+M is for each p E M a proper 
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~u~ping; and in particular allsemi:infinite geodesics converge to infinity( More precisely, i/  

~: M ~ R is a strictly convex exhaustion ]unction on M and i / p  is a point o / M  then there are 

constants t o and B >0 such that i/ C: [0, + o o ) ~ M  is any arc-length parametrized semi-in- 

finite geodesic with C(O) =p then q~(C(t)) >~ Bt /or any t >~to~ 

COROLLARu (a) I f  M is a (necessarily complete} noncompact Riemaunian mani/old 

on which a Lipschitz continuous strictly convex exhaustion/unction exists, then the exponential 

map at each point of M is a proper mapping. And in/act  i / p  is a point o / M  there are con- 

stants t o and B > 0 such that, ]or any arc-length parametrized geodesic C: [0, + oo)-~M with 

C(O) =p, dis (p, C(t)) > Bt /or all t >~ t o. (b) I] M is a coznplete noncompact Riemannian mani- 

]old whose curvature is everywhere positive then the exponential map at each point o] M is a 

proper mapping. And in/act i f  p is a point o / M  then there are constants t o and B > 0 such that, 

/or any arc-length parametrized geodesic C: [0, + c~).--~M with C(O)=p, dis(p, C(t)) >~ Bt ]or 

all t >~ t o. 

Proo] o/ the corollary, Theorem 5 being assumed. Statement (b) of the corollary fol- 

lows immediately from statement (a) and the fact that  there is a Lipschitz continuous 

strictly convex exhaustion function on any complete Riemannian manifold whose curva- 

ture is positive everywhere ([12; p .  292] and Theorem 2 of  the present paper). TO prove 

statement (a), note tha t  if vf(C(t))>~ Bt for all t>~t o then, f o r  all t>~max{t0, 2B-I~(C(O))}, 

~(C(t))-~(C(0)) >~ �89 Then if B 1 is a Lipschitz constant for r 

dis(C(t), G(O)) ~> (�89 

for all t ~> max {t o 2 B-lq0(C(O)) }. 

Proo/ o/ Theorem 5. Properness of the exponential map at a point implies convergence 

to infinity of all semi-infinite geodesics emanating from that  point. Furthermore, the exi- 

stence of constants t o and B >  0 with the properties indicated implies properness of the 

exponential map; for then,: if K is a compact subset of M, (exp~)-lK is a closed subset of 

the compact set 

{v e TM, Jl[vll m a x  (to, B- (sup 
K 

Thus to prove the theorem, it is now necessary to establish only the last statement of the 

theorem. Furthermore, it is enough to establish the last statement in the ease of C ~ strictly 

convex exhaustion functions. Fo r ,  if .~: M-~ R is ~ny strictly convex exhaustion function 

then according to TheOrem 1 (a) there  is a Coo strictly convex exh~usti0n funct ion v: M-~ R 
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such tha t  I~0-~1 <1 everywhere on M. Suppose B > 0  and t o are such tha t  for any geo- 

desic C: [0, + oo ] - .M parametrized by  arc length and having C(0)=p  

Then if t > max (to, 2B-1), 

~(C(t))>Bt for t~>t  o , 

cp(C(t)) > ~(C(t)) - 1 > �89 if t ~> t o. 

So suppose now tha t  ~: M ~ R  is a Coo strictly convex exhaustion function and p is 

a point of M. Let  fl =infc(d2/dt2)qj(C(t)) I t ~ o  with C ranging over all arc-length parameter  

geodesic segments having C(0) e {q e M l~(q ) ~<~(p) + 1~. Since this last se t  is compact and 

is strictly convex, fl is a positive number. Let  ~ = in fx (X~)wi th  X ranging over the unit 

vectors in TM~; then - o o < ~ < 0 .  Let  A=the  unique positive number  such tha t  ~ +  

�89 Suppose tha t  C: [0, t]--->M is aa  are-length parameter  geodesic segment with 

C(O) = p  and C [0, t]) c {q e M lcp(q) ~< qJ(p) + 1 }. Then 

t d 2  

21(;) >/~o(p) + ~ + #d~ d8/> ~o(p) + ~t + �89 2. 

Since ~(p)§247189 if t>2, t must  be -~<2, Thus if C: [0, +oo) ->M is a semi- 

infinite geodesic with C(0)=9 then there exists a positive number  tc with t o < 2  such tha t  

~(C(tc))=q)(p) 31.  Since t~q~(C(t)) is (strictly) convex on [0, + co), ~(C't))>~(p)+(t/tc) if 

t >~ t c. Hence 
>~ t 

~(C(t)) ~ r + • if t >~ 2. 

Finally, if t>~ max(4, 241~(p) l), ~(C(t))~t/(22), so tha t  the last s tatement  of the theorem 

holds with t o = max (4, 24~(~)) and B = (22) -1. 

The existence on a manifold of a convex exhaustion function which is not necessarily 

strictly convex does imply special properties of the  geodesics on the manifold even though 

it is not necessarily true for such a manifold tha t  the exponential map at  a given point is 

a proper map. For instance, the two-dimensional :cylinder R2/{(x, y),.~ (x', y') if x' - x  e Z} 

is an example of a complete l~iemannian manifold on which a C oo convex exhaustion func- 

tion (the coordinate y) is defined but  which does not have a proper expOnential map at 

any point, 

The behavior of the geodesics of this example is a special case of the behavior described 

in the following theorem: 
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T H v . O R ~  6. I / M  is a Riemannian mani/old on which an exhaust ion/unct ion exists 

which is convex outside some compact subset o/ M ,  then any geodesic which is unbounded 

converges to in/inity.  Specl/ically, i/q~: M ~ R is an exhaust ion/unct ion which is convex out- 

side some compact set and i/  C: [0, § c ~ ) ~ M  is a semi-in/inite geodesic which is unbounded, 

then there are constants Q and B > 0 such that 

~(r Bt  i l  t > to. 

COROLLARY. (a) I/  M $8 a Riemannian  mani/old on which there is a Lipschitz 

continuous exhaustion /unction which is convex outside a compact subset o/ M and i/  

C: [0, + ~) -+  M is a semi-in/inite arc-length parameter geodesic on M which is unbounded, 

then there exist constants t o and B > 0 such that 

dis (C(O), U(t)) >i Bt  i~ t >~ t o. 

(b). I /  M is a complete Riemannian  mani/old whose curvature is nonnegative outside 

some compact subset o/ M and i/  C: [0, + ~)--->M is a semi-in/inite unbounded arc-length 

parameter geodesic then there are constants t o and B > 0 such that 

dis(C(0), C(t)) >1 Bt  i / t  >1 t o. 

Proo/ o~ the corollary, Theorem 6 being assumed. Since on a complete Riemannian  

manifold whose curvature  is nonnegat ive outs ide  a compact  set there is a Lipschitz con- 

t inuous exhaust ion funct ion which is convex outside some compact  set ([12; p. 292]), 

s ta tement  (b) of the corollary is implies by  the  s ta tement  (a) of the corollary. To verify 

s ta tement  (a) let e#: M-+/~ be an  exhaust ion funct ion of the sort  indicated. Then  b y  pa r t  

(b) of the theorem for some t o and B > 0  

Then 

if 

For  such t 

C(~(t)) >i B t  if  t >i to. 

C(q~(t)) - C(~(0)) >~ �89 

2c(q~(o)) 
t > max  t o - 

dis(C(0), C(t)) 1> (1BB~I) t  

where B 1 = a Lipschitz constant  for ~. [] 

Proo/ o/ Theorem 6. Let  ~: M-> R be an exhaust ion funct ion which is convex on M - K ,  

K being a compact  subset of M, and C: [0, + oo)-+M be an  unbounded  semi-infinite geo- 

desic. Set 2 0 = l + s u p K  ~ and 21=max{20,  1 § Then  since ~ is an exhaust ion 
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function and C is unbounded,  the  set {tE[0, +~)l~0(c(t))~>2} is not  empty .  Set t l = i n -  

f inum of this set. Since ~(C(0)) <21, tl >0 .  Now in a neighborhood of t 1, t ~ ( C ( t ) )  is a con- 

vex function; and  since ~o(C(t))<~(C(tx) ) =21 if t < t  1 the convex funct ion t ~ ( C ( t ) )  near 

t 1 is a str ict ly monotone  increasing funct ion near t 1 and in part icular  r for t> t  1 

but  t sufficiently close to  t 1. 

Suppose tha t  for some t2>t 1, ~(C(t~))=21. Then, if t~= the  iuf imum of the  set of t2 

such t h a t  q~(C(t~))=21 and t z > h ,  cf(C(t~))=21 but  ~(C(t))>21 for  all t E (t 1, tz). I n  part icular  

t~cf(C(t)) is convex and  noncons tan t  on (tl, t2) bu t  a t ta ins  a max imum value a t  some 

point  of (t 1, t2), contradict ing the  max imum principle for convex functions. Thus  cp(C(t)) 

must  be >21 for all t > h,  so tha t  cf(C(t)) E M - K  for all t > t 1 and  t ~q~(C(t)) is a convex func- 

t ion on [tl, + co). 

P u t  t~ = t 1 + 1. Then because t--->cf(C(t)) is convex on [tl, + oo), 

if t 7> t~. Hence if 

then 

~(c(t))  >1 ( t - t~ ) .  {~(c(t~)) -~(c(tl))} +~(c( t l ) )  

t>~t~ + 21~(o(tl))l 
~(c(t~)) - ~(C(tl))' 

~(~(t)) >/�89 to) {~(c(t~)) -~(r 

so tha t  Theorem 6 holds for 

and 

t0=t$§ 21~(C(tl))1 
~( C(t;) ) - ~(C(t))' 

B=~(C(~))-~(C(h)). 

w 3. Integrals ot noimegative subharmonie [unctions on manifolds ot positive curvature 

I f  S is a closed convex hypersufface in Eucl idean space R n and $8 is the hypersurface 

obta ined b y  displacing each point  of S distance s along the exterion uni t  normal  to  S a t  

t ha t  point,  then the (n-dimensional) volume enclosed between S and  S e is greater t han  

x the ( n -  1)-dimensional volume of S. This fact  is in agreement  with the  intuit ive no- 

t ion t h a t  the  exterion normals of a convex surface diverge. The following theorem is a 

result of similar na ture  in a more  general setting: 

THEOREM 7(a). I] M is a Riemannian manl/old and q~: M - ~ R  is an exhaustion/unc- 

tion which is C ~ on M and strictly convex outside some compact subset o/ M and which is 
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Lipschitz continuous on M and i/ /: M ~ R  is a Coo nonnegative subharmonic /unction which 

is not identicalby zero, then there is a positive constant A s such that 

f {qtMI q~(q)<~ ~}/ ~ As~ 

/or all su//iciently large ~ E R. Here the integral is taken relative to the measure induced On M 

by its Riemannian metric. 

(b) I / M  is a complete noncompact Riemannian mani/old whose sectional curvature is 

positive outside some compact subset, then the integral over M o/ any nonnegative C ~ subhar- 

monic /unction which is not equal to zero is (positively) in/inite and in particular the volume 

o/ M is in/inite. 

Proo/. By virtue of Theorem 1, 7 (a) implies 7 (b). To prove 7 (a), first note tha t  it is 

enough to consider the case of oriented manifolds M, since the result for a nonorientable 

manifold follows from that  case by consideration of the orientable double covering. So 

suppose from now to the conclusion of the proof that  M is oriented, and let g2 be the Rie- 

mannian volume form on M. Let dim M = n. 

According to part  of the proof of Theorem 4 (a), there is a X1 such that  ~0 has no critical 

points such that  ~0(p) ~> 21. Consider from here on only 2 which are ~>2. Then (by a standard 

argument: see [19]; also cf. the proof of Theorem 4(a) of the present paper): the set 

{q E MlqJ(q ) =2} is a compact (embedded) submanifold of M of dimension ( n -  1) and this 

submanifold is the topological boundary of {qeMlq~(q)<2}. The set {qeMlq~(q ) <~,~} will 

hereafter be denoted by M~ and the set {q e M [~(q)=~t} by ~M~. 

The submanifold OM3 has smoothly varying distinguished unit normal at each point, 

namely grad ~0/[[grad VII- Thus ~M~ inherits an orientation from the orientation of M. Let  

eo~ be the volume ( n -  1)-form on ~M~ determined by this orientation and by the induced 

Riemannian metric on ~M~. Then 

~ = (~o~/~/x (g~/llg~ad 

This equality is verified by evaluating both sides on an n-tuple of orthonormal vectors in 

T M  v of the type (el, ..., en-1, grad ~/Hgrad ~01[), the e/s being then necessarily tangent to 

~Mi. 
The integral curves of the vector field grad ~i]lgrad ~ol[ 2 emanating from t h e  points 

of ~M~, generate a diffeomorphism H: OM~, • R+-~ {q E M [~(q) ~> 21} (here It+ = {t E R(t ~> O}); 

specifically, H(p, t )= the  point with parameter value t along the integral curve of 

grad  /llgrad  112 which has parameter value O a t p  (see [19, p. 13] and the proof of Theorem 
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4(a) of the present paper) Note that  qg(H(p, t))=t so that  from the formula for f2v in the 

previous paragraph and Fubini's theorem it follows that  for any 2 >~21 

~ = Ja, t Jo . ,  Ilgra-d wll 

Suppose ~v is Lipschitz continuous on M with Lipschitz constant B(>0)  on M. Then 

Ilg rad wll < B everywhere so 

fM ~ ~ [~/> 1 x 

I t  will now be shown that  the integral Ie~?/llgrad ~11~, is nonzero for some value of t>~  1. 

Because [ is subharmonic, there is no point p EM such that  [(p) = supq~M ](q) unless [ 

is constant on M. Hence if K is any compact subset of M there is a point q E M -  K such 

that  ](q)>0; for if ] I ( M - K )  were = 0  then there would be a point pEK w i t h / ( p ) =  

supq~M [(q) SO that  [ would be constant and so ~ 0  on M. Since M~, is compact and M -  

M~, = U t>~ ~Mt ~, there is a point p E OMT with [(p)> 0. Since [Igrad ~11 is nowhere zero on 

M-Ma~,, for some 22 

fOMr, ~11 >o. /Hgrad 

If, for all t~>2~, 

fOM~/llgrad II >~ JeM~]llgrad II 

/ .  
69 t 9~ 

then for ~t >~ ~ 

from which the conclusion of (part (a) of) the theorem follows. Thus to complete the proof 

of the theorem, it is enough to show that  

f~,M~ f ll grad ~ll ~o, >1 f~M~=/11 grad q~[] ~oa.. 

For notational convenience, let I(t) denote the integral S~/llgrad~ll~,. Aaso, aet H~: 

~M~,~gMT, t>~21, be defined by Ht (p )=H(p ,  t) where H: ~M~., • R+-~{qeMl~(q)~>21} is 

the diffeomorphism defined previously. Then 
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z(t) = j ~ ,  (/(H,(p))II (grad q)H,(v)H H* cot(p). 

From this formula it is clear by differentiation under the integral sign that  I(t) is a C r func- 

tion of t (for t~>2~). Since the one parameter family Ht is generated by grad q/Hgrad ~][2, 

it follows that  for any t >2x 

I'(t) = f~MT IIg rad(grad ~~ z r  ] I g  raa" ~ IIg radl l wll~, + jo,~i wtI,D~,~IIg rad ~11~, + j a.~,~,/llgrad ~11~, 

where ~r = the  variational derivative of the ( n -  1)-form cot relative to the variation vector 

field grad ~/llgrad ~IP and D~ao~llgrad ~11 =the result of appl~ng the veetor field grad~ 
to the function Ilgrad ~ll" The standard variation of area formula (see, for instance, [27]) 

gives tha t  

~= -</\ II g~ad grad q~ ~l" wt.= - ii gra d ~ ii ~ (K~) o~* 

where K = the mean curvature vector of ~MT at the point at which ~t is being evaluated. 

That  is, K =-1 =~=1  (De~e~) N where: e 1 ..... en_ 1 is an orthonormal (n-1) - f rame defined in a 

neighborhood in M of the point of aM[ at issue and each e~ is tangent to aMT at every point 

of ~M~ at  which it is defined; D is the eovariant operator on M; and ( )N denotes the com- 

ponent normal to ~Mt ~. 

Now for any vector field defined on an open set on which ~ is C ~176 and convex V(V~v) - 

(D v V)~ >/0. (This standard fact is estabhshed by  checking that  the value of the left-hand 

side at a point p depends only on the value V v of V at p and then choosing a vector field 

W with Wv= Vv and DwW=O. Then W(WqJ)-(DwW)cp= W(WqJ)=the second derivative 

at p of ~ along the geodesic through p whose tangent at  ~o = W v. This second derivative is 

nonnegative if ~0 is convex). Hence 

(Dete~)c,v ~< e~(e~0) = 0: 

here e~(e,T)=0 because e ~ 0  along aM~. Thus 

K~ = E (D,, e,)Nq = E (De, e,) q ~< 0 
l g 

and zr t is therefore a nonnegative (n -1 ) - fo rm on OM~. So 

f~/11 grad ~oll ~, >i o. 
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Pu t  N=grad~/llgrad~ll. Then since N<N,N>=O, <DNN, N>=O and hence 

/,DUN, grad ~o> = 0  or (DNN)qJ =0.  Thus tha t  N(Ncp) - (DNN)ep >~0 implies tha t  N(Nq~) >~0. 

Since D~llgrad wll = llg rad ~11 D~,llgrad @l = llg rad ~IIN(<N, grad ~>) = llg~ad ~IIN(N), 
D,~a,, II grad ~ II ~> O. Consequently 

Ilgrad ~11 ~D`,'~llgrad ~ll~t~>0" 

Finally by  Stokes' theorem 

faMT (grad ~ ) /  . }}grad ~11' I gra~ ~ I I ~, = f~r Aid 1> 0 

since A/>/0. Thus I'(t) is the sum of three nonnegative terms and so l(t) is a nondecreasing 

function of t for t ~ i "  [~ 

I t  is more natural  to estimate the growth O f an integral as a function of its domain of 

integration in terms of its value on Riemannian balls than  on the sublevel sets of more 

or less arbi trary exhaustion functions. The following theorem gives an estimate of this 

more natural  sort. In  this theorem, B(p; r) denotes the open Riemannian ball about  p of 

radius r. 

T ~ E O R E ~  8(a). 1/ M is a noncompact Riemannian mani/old on which there exists an 

exhaustion/unction q~: M ~ R Which is C OO and Lipsehitz continuous and which is strictly 

convex outside some compact subset o/ M and i/ /: M ~  R is C ~ nonnegative subharmonic 

]unction which is not identically zero on M, then' there exists a positive ~constant Br such that 

]or every p E M 

/or all su//iciently large 2 E R. 

(b) I / M  is a complete noncompact Riemannian mani/old whose sectional curvature is 

positive outside some compact subset o / M  and i / / :  M ~ R  is an C a nonnegative subharmonic 

/unction which is not identically zero on M, then there exists a positive constant B t such that 

/or every p E M, 

/or all su//iciently large 2 E R. 

1 5 -  762901 Acta mathematica 137. Imprim6 le 20 Janvier 1977 
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Proo[. As before, part (a) implies part (b) by virtue of Theorem 1 (b). As in the proof 

of Theorem 7 (a), let ~1 be a real number such tha t  for no critical point of p is ~0(p) >/)t 1. If  

C is an integral curve of grad ~0/ ]l grad ~]]~ with C(O)E~Mq~, (the notations of the proof 

of Theorem 7 (a) are continuing to be used here) then C is defined on all of R+ and 

II(gradw) (O(t))ll, teR+, is a nondecreasing function on R+: the first of these assertions 

was established in the proof of Theorem 4 (a) and the last assertion follows immediately 

from the fact established in the proof of Theorem 7 (a) that  

compact so such a choice 

by virtue of the estimate 

B(p; r) D M~,+a ..... ) so that  

D  llgradwl I >/o. 

Since {qEMIv(q)>~A1} is a union of integral curves of grad r wll 2 emanating from 

~ML 
inf ]l(grad v) ll > inf ]](grad w),ll>o. 

(In fact, the two infima are equal since the reverse inequality between them holds a priori). 

Let e =~. .~ , . )~a. l lgrad w)olI- For any integral curve C: R+-~M of grad ~/llgrad VII ~ with 

C(O)EOM~., the length of C[[O, t] is 

f~ ['O'(T)"d~= f2 ,,(grad ~ (C(T))],d~' 
which is ~<r So for any qEM with cp(q)>~, dis(q, OM~,)<.e-~(q~(q) - ~ ) .  

Now let A t be a positive constant satisfying the conclusion of Theorem 7 (a). And let 

p be any point of M. Choose a positive real number r o such that  B(T; r0)_~ M~, (M~, is 

is possible). Then for any 2~>2x, M ~ N ( p ;  ro+e-l(~-21)) 

which concludes the previous paragraph. Hence, for r>~ro, 

For r sufficiently large 

f .  l >f 1. (p;r) J M~x+~(~_vo ) 

f / AI(]t 1 e(r re) ) �89 + 
MA~+,(r-ro) 

the first inequality holding by Theorem 7 (a) and the second by elementary considerations. 

Thus for r sufficiently large 

fB(p:n / �89 Ater i> 

so that  the positive constant �89 is an acceptable choice for the B t required for Theorem 

S(a). 
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w 4. The total curvature of monifolds of positive curvature 

I t  is a well-known result of Cohn-Vossen [5] tha t  if the total curvature integral SMKdA 

on a complete orientable two-dimensional Riemannian manifold M is absolutely convergent 

then SMKdA ~<z(M): here z ( M ) = t h e  Euler characteristic of M, K = t h e  Ganssian curva- 

ture, and dA = the measure induced on M by the Riemannian metric. I t  can be shown by 

examples ([24]) that  a corresponding extension of the higher-dimensional analogue of the 

Gauss-Bonnet theorem ([1], [4]) to the ease of noncompact manifolds does not  hold in 

general (even in even-dimensions: The failure in case of odd dimension is obvious, since 

in that  case the generalized Gauss-Bonnet integrand is zero). The purpose of this section is 

to state and prove such an extension for four-dimensional manifolds whose curvature is 

positive outside some compact set. The argument used to prove this result for four- 

dimensional manifolds also provides a simple proof of the Cohn-Vossen inequality in the case 

of the eurvature's being positive outside some compact set. Related results for four- 

dimensional manifolds, in which however the curvature is required to be nonnegative 

everywhere on the manifold, are given in [23] and [28]. 

THEOREM 9. I / M  is a complete oriented Riemannian mani/old o] dimension/our whose 

sectional curvature il positive outside some compact subset ol M, then the integral ~MO 01 the 

generalized Gauss-Bonnet integrand ~) is (absolutely) convergent and 

MO < g(M). 

The Euler characteristic z(M) of M is necessarily defined and finite by virtue of 

Theorem 4 (b). Since the integrand O is positive at any point of M at  which all sectional 

curvatures are positive (Chern's theorem, cf. [23], [28]), the integral's absolute convergence 

and the required inequality follow if a uniform upper bound SvO <~Z(M) is known, where 

U varies over some increasing family of closure-compact open subregions of M whose 

union = M. The following lemma will be used to obtain such a bound. 

LEMMA 5. Suppose that U is an open set with compact closure and C ~ boundary in a 

lout-dimensional oriented Riemannian mani/old M and that the sectional curvature o I M is 

positive in a neighborhood o/the boundary o/ U. Suppose also that there ks a C ~ /unction ~: 

M ~ R such that 

(a) U = {p~M[~(p) <0}, 

(b) grad ~ [ p ~ 0 / / ~ ( p )  =0 ,  

(c) ~ is geodesicaUy convex in a neighborhood o/any point p EM having q~(p)=0. 
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Then 

j 
The proof of this lemma is obtained by  modification of the classical argument  in 

[4] to include the terms arising from the fact tha t  U has (possibly) nonempty  botindary. 

Proo]. Let Y be a C ~ unit vector field defined everywhere in a neighborhood of U 

except perhaps at some isolated points and equal to (grad )/llgrad l I in a neigh- 

borhood of the boundary of U. Such a vector field may  be obtained for instance by  first 

observing tha t  there is a C ~ function ~': M-+R with isolated nondegenerate critical points 

on M which agrees with q in a neighborhood of the boundary of U ([20; pp. 12-16]) and 

then taking Y = g r a d  ~v'/]lgrad r The vector field Y extends in an obvious way to a 

vector field Y on the double ~ of U: if ~ = U 1 U U 2 with U 1 = U then ~" = - Y on U S. 

Since the antipodal map on the 3-sphere has degree + 1, the index of a singularity of ~" 

on U2 equals the index of the corresponding singularity of Y on U ( =  U1). Thus Z(~), 

which equals the sum of the indices of the singularities of ~" on ~,  equals twice the sum 

of the indices of Y on U, On the other hand, z ( U ) = 2 z ( U  ). Hence z ( U ) = t h e  sum of the 

indices of the singularities of Y (on U), 

Let  to 1 ..... eo 4 be a local orthonormal oriented coframe field on M, Define the cermet. 

tion forms w~j and curvature forms ~ j  by  

4 

dw, = ~. w~ A ~ , ,  
1=1 

4 

k = l  

The generahzed Gauss-Bonnet integrand 6)is  given by 

= .~-1_2 (~1~/~ ~s4 - ~lS A ~ 4  + ~ s  A ~14). 6) 

(For this formula and all the following related results see [4]). The form 6), which appears  

to depend on the choice of the local oriented orthonormal coframe eo 1 ... . .  0)4, can be shown 

by  computation to be independent of this choice and thus to be a well-defined C ~176 form on 

M. Considered as a form on the bundle of oriented orthonormal frames, 6) is exact  (where- 

as 6) is in general not exact considered as a form on M): namely, 

0 =dH, 
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where 

and 

-} 

~o = ~ 1 4  A co24 A (2)34 , 

(])1 ~ ~"~12 A (.034 - -  ~~13 f ~D24 -~- ~~23 f 0)14. 

The form H m a y  be considered to  be a form on the (sphere) bundle of uni t  vectors in the 

tangent  bundle of M;  precisely, if x EM and e 1 .. . . .  e4 and el . . . . .  e~ are two oriented ortho- 

normal  frames a t  x then 
r ! 

1](e 1 .. . . .  e4) = II(el ..... e4) 

if e 4 = e~. This fact  is again demonst ra ted  by  a computat ion.  On the bundle of uni t  t angent  

vectors it of course remains t rue tha t  0 = d I I .  

Let  x I . . . . .  xk be the  isolated points of U at  which Y is not  defined. These points  are 

necessarily finite in number  since Y is defined in a neighborhood of the  boundary  of U 

and  U has compact  closure. The limit 

lim fo Y*Y~ 
~.->0 + B(X/; e) 

exists and is finite (where Y*YI ="pu l l - back"  of H under  the map  Y of U - { x  1 . . . .  , xk} 

into the bundle of uni t  tangent  vectors and  ~B(xz; e) = t h e  boundary  of the Riemannian  

ball of radius s about  xl). Denote  this limit by  Sx~ Y*II. Then  Stokes'  theorem yields 

The minus sign in the  final expression arises as usual f rom the fact  t ha t  the exterior nor- 

mal  of U - B ( x z ;  e) is the interior normal  of B(xz; e). As in [4], the  integral Sx~- Y*H = 

the index of Y at  x z. Thus 

fue= f vY*rI + x(u). 
To establish the lemma, it thus  remains to be shown only tha t  ~ v  Y*II ~<0. 

Let  x be a point  of the boundary  ~U of U. Choose uni t  tangent  vectors el, e2, e 3 at  x 

in such a way  tha t  el, e2, %, Y(x) is an oriented or thonormal  frame at  x and t h a t  the se- 

cond fundamenta l  Sy form of ~U (relative to  the  normal  Y to  ~U) is diagonal, i.e. 

Sr(ei, ej) = % ~ u  for some 2tER. 
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The second covariant differential D~(e~, e~) equals by  definition ~,(~,~)-(De,6,)T where 

g~ is any extension of e~ to a vector field near x; it  is nonnegative because ~ is convex near 

x. On the other hand, if the vector field g~ is taken to be tangent near x to ~U then g~(6~) =0  

at x so that  

0 < D~f(e~, e~) = - ( D ~ ) ~ .  

But 

--(D~,~)q~ = - ( D ~  g,, grad ~)  = --[[grad q~ll(D~ ~,, Y) = - [ [grad liSt(e,, e~). 

Hence 

and so 

Also 

o < -][grad q~[lSy(e,, e,), 

2~<0  for e a c h i = l ,  2,3.  

Now (I) o and (I)l, being 3-forms, are multiplies of the volume form ~U when restricted 

to a U. Specifically, if ~ = the volume for m of ~ U then 

(I)o = (I)o(el, e2, ea)~ and r = (~)l(el, e2, ea)~ 

because 

v/(e 1, e~, e3) = 1, 

and 

C o ( e .  e~, e3) = (~o14 A oJ2~ A ~o34) (el, e~, e~) = 2 1 2 ~ 3  

since eo~4(ej)=~j.  Since each ~ <~0, (1)0(el, e~, e3)~0. I~ext, 

r  e2, e3) = ( + ~1~ A w34 - ~1~ A w~4 + ~2~3 A o~14 ) (el, e~, e3) 

= 23~12(el ,  e2)=22~-~13(el, e 3 ) + 2 1 ~ a ( e 2 ,  e3). 

Since ~(e~,  e~)=the negative of the sectional curvature of the 2-plane spanned by  e~ and 
e~(i~]), ~(e~,  e~)~<0 at  x by hypothesis. Again since each 2~ ~<0, (I)l(e ~, e~, e3)~>0. Finally 

1 
( Y* I-I) (~, e~, e~) = ~ {�89 r  - �89 r  (el, ~, ~) < 0. 

Hence 

f~ Y*I-I<~O. 
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Proo/ o/ Theorem 9. Let  ~: M-~R be a Coo exhaustion function on M which is strictly con- 

vex outside some compact subset of M: the existence of such a function is guaranteed by 

Theorem 1 (b). According to (the proof of) Theorem 4(a) there is a ~ e R  such that  

(a) ~ is strictly convex on ~-1((20, + c~)) 

(b)~v has no critical points in ~ - 1 ( ( 2 0 , + ~ ) ) a n d  (hence) for  any 2 E(2 0 ,+~) ,  

~v-l(( - ~ ,  2]) has the homotopy type of M. 

0 
For each 2e (~ ,  + oo), the interior M~ of M~=~0-1(( - ~,~])  satisfies the hypotheses (for 

U) of Lemma 5 with ~ of the lemma = th e  present ~ - 2 .  But  also x(M~)=z(M) since M~ 

has the homotopy type of M. Thus for any 2 e (20, + ~ )  

f~  < Z(M~) Z(M). | 

0 
Since [J ~ M~ = M, the conclusions of the theorem now follow from the remarks made im- 

mediately after the statement of theorem. [] 

To prove the analogue of Theorem 9 for two-dimensional manifolds, one need only 

establish the analogue for the case of two dimensions of Lemma 5 by  reasoning similar to 

but  simpler than that  needed in the case of four dimensions. The proof of the theorem 

as given then applies to the case of two dimensions. 

w 5. Function.theoretic properties of noneompact Kiihler mnnifolds 
ot positive curvature 

The purpose of this section is to state and prove some results on the function theory 

of K~hler manifolds which have an exhaustion function which is strictly convex (or strictly 

convex outside some compact set); these results then apply to K~hler manifolds whose 

curvature is everywhere positive (or positive outside some compact set). The basic source 

of the relationship between strictly convex functions and function theory is the following 

lemma: 

Lv .M~x  6. Let/:  M->R be a C ~ /unction on a Kghler mani/oId M; if / is convex then / 

is plurisubharmonic and i / / i s  strictly convex then / is strictly plurisubharmonir 

This lemma in fact holds without the assumption tha t  / is C ~, as shown in [10]. 

Proo/o /Lemma 6. Let  L I denote the Levi form of / defined by 
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where (z I ..... z~) is a local holomorphie coordinate system (it is easily verified by a computa- 

tion that  L s thus defined locally is independent of coordinate choice so that  L I is in fact 

globally defined). The form L I is nonnegative definite (on the holomorphie tangent spaces 

of U) if and only if / is plurisubharmonie and positive definite if and only if / is strictly 

plurisubharmonic. 

Let  p be a point of M and V be a unit holomorphic tangent vector at p. There exists 

a holomorphie normal coordinate system (z I ..... Zn) centered at p such that  ~/~z 1 = V. Let  

the corresponding real coordinate system be (xl, Yl ..... xn, Yn) where z~=x~ + ~----ly~. Then 

D~l~x~/~x[~=O and D~l~x~/~yl~=O as well as Do/~(~/~y)[p=O ]. In such a coordinate 

system 

~Xl\~Xl] p~'-(Do/(OxD~) p/At ~YI\~Yl] p--(D~176 p/ 

\ Yl Yl/I~ 

where D~ is the second covariant derivative of / .  D~ is nonnegative definite when / is con- 

vex and positive definite when / is strictly convex. Thus Lf  is nommgative definite when 

/ is convex and positive definite when / is strictly convex. [] 

THEOREM 10(a ). I / M  is a Kghler mani/old which has a strictly convex, exhaustion 

/unction then M is a Stein mani/old. (b) 1 / M  is a noncompact complete Kghler mani/old 

with everywhere positive sectional curvature, then M is a Stein mani/old. 

Proo/. In view of Theorem 1 (b), p a r t  (a) implies part  (b). In part  (a); it is sufficient 

by Theorem 2 (a) to consider t he  case in which the strictly convex exhaustion function is 

C ~176 Lemma 6 then  implies that  the exhaustion function is strictly plurisubharmonic, 

Since any complex munifold with a strictly plurisubharmonic exhaustion function is ne- 

cessarily Stein manifold (see [8], [17]) part  (a) follows. [] 

If a Ki~hler manifold has an exhaustion function which is strictly convex outside some 

compact set, but  not everywhere on the manifold, then the manifold need not be a Stein 

manifold. However, such a manifold is "a Stein manifold outside some compact set" in a 

sense made precise by the following theorem. 

THEOREm l l (a) .  I /  M is a noncompact Kdhler mani/old which has an exhaustion 

/unction which is strictly convex outside some compact set, then M can be obtained/rom a Stein 

space by blowing up a/inite number o/ points to compact subvarieties. (b). 1 / M  is a complete 
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noncompact Kghler mani/old which has positive curvature outside some compact set then M 

can be obtained/rom a Stein space by blowing up a finite number o/ points to compact sub- 

varieties. 

In  both par t  (a) and par t  (b), it need not be assumed tha t  the metric on M is a K~hler 

metric everywhere on M. I t  is sufficient in par t  (a) to assume tha t  M has a Ki~hler metric 

defined outside some compact subset of M such tha t  the exhaustion function is strictly 

convex outside some compact set relative to this metric. Similarly in par t  (b) it is sufficient 

to assume tha t  M has a complete Riemannian metric which has positive curvature outside 

some compact set and which is a Kiihler metric outside some compact set. The proof to 

be given now of the theorem as stated also applies to these more general hypotheses. 

Proo/o~ Theorem 11. As in previous cases par t  (a) implies part  (b) by  virtue of a previ- 

ous theorem (Theorem lb) in this case). In  par t  (a), Theorem 2 (a) implies tha t  there is a 

Coo exhaustion function which is strictly convex outside some compact set. By  Lemma 6, 

this exhaustion function is strictly plurisnbharmonic outside some compact set. Par t  (a) 

now follows from the following theorem of Narasimhan. 

THEOREM. I]  a noneompact complex mani/old M has a Coo exhaustion /unction which is 

strictly plurisubharmonic outside a compact set then M can be obtained/rom a Stein space 

by blowing up a finite number o/ points to compact subvarieties. 

In  this theorem, the hypothesis tha t  the exhaustion function be Coo can be weakened: 

(see [22] and [25]), but  the version given is sufficient for the purpose at  hand. For  the con- 

venience of the reader, a brief sketch of the prooi of Narasimhan's  theorem will be given. 

The proof is given in detail in [22] and some related results, which would also suffice to 

complete the proof of Theorem 11 are given in [26]. 

Let ~: M->R be an exhaustion function which is strictly plurisubharmonic outside 

some compact set KI Set ~ = l + s u p ~ .  The Set M~={pEM[q~(p)<--.,~} is compact, since 

is an exhaustion function; and K c  M~ so tha t  ~ is strictly plurisubharmonic on M - M ~ .  

I f  V is a compact connected subvariety of positive dimension of M then V N (M - M ~ )  =•.  

For if V N (M - M ~ )  ~=O then the maximum of ~ on V is at tained a t  a point of V N ( M - M ~ )  

at  which point ~ is strictly plurisubharmonic. Such an occurrence would violate the maxi- 

mum principle for strictly plurisubharmonie functions (see [16], :for example). 

Since all ~ the compact connected positive-dimensional subvarieties of M are con- 

tained in the compact  set M r ,  it follows tha t  the set  of maximal connected positive- 

dimensional subvarieties is finite~ Let  ~ = the analytic space obtained by  "blowing down" 

these subvarieties to points and let ~ v ,  ~7 >~, be the space obtained by  the same process 

from M , ( = { p 6 i [ q ~ ( p )  <V})' 



240 R. E.  G R E E N E  AND H.  W U  

Each of the spaces Mr, ~2 >2, is holomorphically convex by  a theorem of H. Cartan 

[2] on holomorphic equivalence relations. Since each such M r clearly has no compact posi- 

tive-dimensional subvarieties, each is a Stein space. Thus ~ =  [-Jn>n/1~ is an increasing 

union of a one-parameter family of Stein spaces and is hence a Stein space ([6]). [] 

I t  follows from (the proof of) Narasimhan's  theorem tha t  a noncompact  complex mani- 

fold which has an exhaustion function which is strictly plurisubharmonic outside some 

compact set and which has no compact subvarieties of positive dimension is a Stein mani- 

fold (in tha t  case, the Stein space 21~=the manifold M, which is thus necessarily a Stein 

manifold). In  particular, if such a manifold is a K/~hler manifold which is diffeomorphic 

to Euclidean space, then it has no compact positive-dimensional subvarieties and so is a 

Stein manifold: for any  such subvariety would be homologous to zero and a compact sub- 

variety of a K/ihler manifold cannot be homologous to zero. These observations lead to 

the following theorem. 

THEOREM 12. I / M  is a complete noncompact Kdhler mani/old whose curvature is every- 

where nonnegative and whose curvature is positive outside some com10act set then M is a Stein 

mani/old. 

Proo/. As shown in the proof of Theorem 11, M has a C a exhaustion function which 

is strictly plurisubharmonic outside some compact set. Furthermore,  it has been shown 

by  Cheeger and Gromoll ([3, w 3]) tha t  a Riemarmian manifold of everywhere nonnegative 

sectional curvature and positive sectional curvature outside a compact set is diffeomorphic 

to euclidean space. Tha t  M is a Stein manifold now follows from the remarks preceding 

the s tatement  of the theorem. [] 

w 6. Some generaliTatious ot the restdts of the previous sections 

Many of the preceding results were stated and proved in less than  maximum generality 

so tha t  the central concepts of the proofs would not be obscured by  excessive technical 

detail. In  this section, some generalizations will be discussed which can be proved by  es- 

sentially the same methods; the modifications of the previous arguments necessary to 

prove these generalizations will be briefly outlined. Each generalization and modified argu- 

ment  will be listed according to the section in which the original theorem appeared. 

w 1. The approximation result for strictly convex functions, Theorem 2, can be ge- 

neralized to the larger class of functions described by  the following definition. For  this 

definition, let M be a Riemannian manifold and for each p E M  let dr: M - ~ R  be the func- 

tion whose value a t  q E M is the square of the Riemannian distance from q to 1o. 



C ~176 C O N V E X  F U N C T I O N S  A N D  M A N I F O L D S  O F  P O S I T I V E  C U R V A T U R E  241 

Definition: Let  0: M-~R be a continuous function. A function ~: M-+R is O-convex 

if for every p E M the function ~ -  ~(p)d~ is strictly convex in a neighborhood of p. 

I f  0 = 0  then 0-convexity is equivalent to strict convexity. The function d~ is C ~ and 

strictly convex in a neighborhood of p: its second derivative at  p along any  arc-length 

parameter  geodesic through p is 2. Thus the 0-convexity condition is, for C 2 functions ~, 

the condition tha t  the second derivative a t  p along such geodesics be greater than 0(p). 

The argument used to prove Lemma 3 can be used to show tha t  a 0-convex function can 

be approximated in a neighborhoods of compact sets by  G ~~ 0-convex functions (with Lip- 

schitz constants being approximated).  Then the proof of Theorem 2 can be easily modified 

to prove tha t  Theorem 2 still holds if "strict  convexity" is replaced by  "0-convexity" 

(for any  fixed continuous function 0: M-~R) throughout. The original s ta tement  of Theo- 

rem 2 corresponds then of course to 0--0.  

A convex function is 0-convex for any  everywhere negative 0. Thus the following ge- 

neralization (Theorem 1') of Theorem 1 follows from the generalized version of Theorem 

2 together with the facts: on any  complete (noncompaet) Riemannian manifold of non- 

negative curvature there is ~ convex exhaustion function ([3]) and on any  complete (non- 

compact) Riemannian manifold whose curvature is nonnegative outside a compact set 

there is an exhaustion function which is convex outside some compact set ([12]). 

THEOREM 1'. (a) If M is a complete noncompact Riemannian mani/old o/ nonnegative 

curvature and i~ O: M ~ R  is any everywhere negqtive continuous/unction, then there exists a 

Lipschitz continuous C ~~ exhaustion/unction q): M ~ R which is O-convex. 

(b) I] M is a complete noncompact Riemannian mani/old whose sectional curvature is 

nonnegative outside a compact subset K 1 o / M  and if O: M ~ R is any everywhere negative con- 

tinuous/unction, then there exists a Lipschitz continuous C ~ exhaustion/unction q~: M - + R  

and a compact subset K s ol M such that q~ is O-convex on M - K 2 .  

The method used in w 1 of obtaining C ~ approximations on all of the manifold from 

C ~~ approximations in neighborhoods of compact sets applies not only to strictly convex 

(or more generally 0-convex) functions but  also to other classes of functions: in particular, 

i t  applies to strictly subharmonic and (on a complex manifold) plurisubharmonic functions. 

Some of the theorem resulting from this method are given in [13], and a discussion of the 

method in a general setting is given in [14]. 

w 2. The usual product metric on the manifold S 1 • R is a complete metric of nonnega- 

t ive (in fact, identically zero) curvature; also, the projection map S 1 • R-~R is a C ~ func- 

tion which is convex relative to this metric, and the square of this function is a C ~ convex 

exhaustion function. Thus, in Theorem 1 (b) the positive curvature hypothesis cannot be 
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replaced by the hypothesis of nonnegative curvature, and in Theorem 1 (a) the strict 

convexity hypothesis cannot be replaced by  the hypothesis of (not necessarily strict) 

convexity. However, a result giving a strong topological restriction on complete non- 

compact manifolds of nonnegative curvature does hold (see [3] and [23]). 

TEEOR~M (Cheeger-Gromoll). I / M  is a complete noncompact Riemannian mani/old 

o] nonnegative curvature, then there exists a compact totally geodesic submani/old S o/ M 

with the property that M is di//eomorphic to the total space o/ the normal bundle o/ S in M.  

The method of proof of this theorem given in [23], which uses the convex exhaustion 

function constructed in [3], can be modified to apply to the exhaustion function constructed 

in [13J on a complete noncompact manifold whose curvature is nonnegative outside a 

compact set: this exhaustion function is convex outside some compact set. This modified 

argument yields the extension up to homotopy type of Theorem 4 (b) to the case of curva- 

ture nonnegative (rather than positive, as originally assumed) outside a compact set. 

w 3. In Theorem 7, the restriction of the statements to the integrals of C ~ nonnegative 

subharmonic functions / can be weakened: the theorem remains true for continuous non- 

negative subharmonic functions. The proof follows from application of an appropriate 

method of approximating continuous subharmonic functions by C ~ ones; this method is 

discussed in [13]. I t  is also shown in [13] that  it is enough in Theorem 7 (b) to assume that  

M has nonnegative, not necessarily positive, curvature outside some compact set. A related 

result of S. T. Yau [29] is that  the volume of a complete noncompact manifold of non- 

negative Ricci curvature is infinite. 

The role played in Theorem 7 by convexity of the exhaustion function can in fact 

be played nearly as well by a subharmonic exhaustion function as the following theorem 

([12; p. 288]) shows: 

T~E  OREM (Greene and Wu). Let M be a noncompact oriented C ~ Riemannian mani/old 

on which there exists a continuous exhaustion/unction q~: M ~ R and a compact set K~c  M 

such that 

(a) 9 ] ( M - K r  is C 2, 

(b) q) I ( M - K r  is (uni/ormly) Lipschitz continuous, 

(c) q~](M-Kr is subharmonic. 

Then, i / / i s  a continuous nonnegative subharmonic /unction such that {p EMIl(p) > O, q~(p) > 

max K~, grad ~(p)~=0} ~=O, there exist constants AI>  0 and t o such that 

~,~/>1 A A t  - to), 

and in particular ~ / =  + oo. 
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Finally, S.-T: Yau has demonstrated a number of results on integrals of nonconstant sub- 

harmonic functions on arbitrary complete Riemannian manifolds without any curvature 

assumptions [29]. 

w 4. In  Theorem 9, the hypothesis that  M have positive sectional curvature outside 

some compact set can be replaced by  the hypothesis that  M have nonnegative sectional 

curvature outside some compact set. The method of proof of this stronger result differs 

from the proof given for Theorem 9 in technical detail only. Specifically, the exhaustion 

function q: M ~ R  constructed in [12] on any complete noncompact manifold M whose 

curvature is nonnegative outside some compact set has the property that  for all sufficiently 

large ~ the sublevel set q-l(( _ 0% A)) has the homotopy type of M. This fact can be shown 

using the method of [3] or [23] developed to prove the same fact in the case that  M has 

everywhere nonnegative curvature. Thus to complete the proof of the generalization of 

Theorem 9 it need only be shown that  

f~-'((-oo. ~)) 0 ~< Z(~-~( - oo, A)) 

for all sufficiently large 2. The convex set ~ - - 1 ( ( _  oo, )~)) need not have C ~ boundary so 

that  Lemma 4 cannot be applied directly. However, by approximating ~ by the convolu- 

tion smoothings ~8 discussed previously, approximations of ~-1(( _ ~ ,  2)) are obtained in 

the sense that  the measure of the symmetric difference Of ~0-1(( - c ~ ,  ~)) and ~1( (  _ cr ~)) 

goes to 0 as e-~0+. Moreover, the domains ~1 ( (  _ ~ ,  2)) approach being convex in an ap- 

propriate sense. Then the required inequality on Sv-l((_~.a))O follows from Lemma 4 by a 

limit argument. A detailed discussion of the reasoning to be used is given in [23], where 

the case of everywhere nonnegative curvature is discussed. 

The restriction of Theorem 9 to manifolds of dimension (two and) four is a consequence 

of the fact that  the algebraic Hopf conjectur e fails in general for manifolds of dimension 

six or greater ([7]; see also [18]). But  in dimension six a partial result is available: the 

boundary terms have in this case the sign required to make the inequality of Lemma 3 

hold (cf. [23]). But, since the integrand O need not be nonnegative, only the following 

result is implied: If M is a complete noncompact manifold of dimension six whose sectional 

curvature is nonnegative outside some compact set and if q~: M-~R is the exhaustion func- 

tion on M constructed in [12] (which is convex outside some compact set), then 

f 
lira sup | O X(M). 

~-~+oo J~-1((-oo. ~)) 
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w 5. Theorem 10(b) was or ig inal ly  d e m o n s t r a t e d  in  [11] b y  much  more  compl i ca t ed  

me thods  t h a n  those  employed  here.  Theorem 11 was also discussed in [11]. Some add i -  

t iona l  resul ts  closely re la ted  to  Theorems 10, 11 and  12 are  given in [9], [13], a n d  [25]. 

Added in proo]. (November 3, 1976); R.  W a l t e r  has  po in t ed  ou t  to  us t h a t  L e m m a  5 

of the  p resen t  p a p e r  also follows f rom Theorem 4.2.2. of his pape r  [28]. 
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