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Some years ago, Gromoll and Meyer [15] proved that if M is a complete noncompact
Riemannian manifold with everywhere positive sectional curvature, then M is diffeo-
morphic to Euclidean space and the exponential map exp,: TM,~M is for every point
PEM a proper map. During our recent work on noncompact Kahler manifolds [9]-[11],
we realized that these and other results on such Riemannian manifolds would follow quite
readily from one existence theorem, namely: on a complete noncompact Riemannian
manifold of positive curvature there is a C® strictly convex exhaustion function 7, that is, a
C= function 7: M —[0, 4 o) which is proper and is such that all the eigenvalues of its second
covariant differential are everywhere positive (Theorem 1(a)). The function t can in fact be
chosen to be (uniformly) Lipschitz continuous on all of M. The existence of a continuous
strictly convex exhaustion function (see § 1 for the definition of strict convexity of con-
tinuous functions) was deduced in [12] from results in [3]. Therefore the main weight of
the present existence theorem is the possibility of choosing the function to be C: in fact,
the existence theorem as stated is deduced in this paper from a general theorem that con-
tinuous strictly convex functions can be approximated by C® strictly convex functions on
any Riemannian manifold (Theorem 2). The purpose of this paper is thus to establish the
existence theorem and to provide a systematic exposition of the consequences which flow
from it.

In the terminology of classical analysis, Theorem 2 is a smoothing theorem for strictly
convex functions on arbitrary Riemannian manifolds. It should be pointed out that the
usual procedure of smoothing in euclidean space by convoluting with a spherically sym-

metric kernel does not carry over to this general situation. Moreover, the analogue of
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Theorem 2 for (not necessarily strictly) convex functions is thus far missing. For the cor-
responding theorems in the case of strictly plurisubharmonic functions on complex mani-
folds and subharmonic functions on Riemannian manifolds, see Richberg [25] and [13],
[14].

The assertion of the existence of a C® strictly convex exhaustion function on any
complete noncompact Riemannian manifold of positive sectional curvature leads to simple
proofs of the results of Gromoll and Meyer mentioned in the previous paragraph (Theorem
3 and Corollary (b) of Theorem 5). Moreover, this existence theorem also gives as an im-
mediate corollary: a complete noncompact Kahler manifold of positive curvature is a
Stein manifold (Theorem 10(b)). This result is the main theorem of [11] although as indi-
cated there the method of [11] actually proves the more general theorem of [9, TII]. A
refinement (Theorem 1(b)) of the existence theorem is that if A is a complete noncompact
Riemannian manifold whose curvature is positive outside some compact set then there
is a 0® exhaustion function on M which is strictly convex and uniformly Lipschitz con-
tinuous outside some compact set. Using this fact, it will be shown that: If =% 0 is a non-
negative subharmonic function on M then [, f= +co (Theorem 7; originally proved in
[12]). If the dimension of M is 4 and @ denotes the Gauss-Bonnet integrand then {,©
exists and is less than or equal to the Euler characteristic of M (Theorem 9; announced in
[13]). If M is a Kahler manifold, then M is obtained from a Stein space by blowing up a
finite number of points (Theorem 11b; see [11]). If M is a Kihler manifold and if (in addi-
tion to having sectional curvature positive outside some compact set) M has everywhere
nonnegative sectional curvature then M is a Stein manifold (Theorem 12; this result is
given for the first time here, not having occurred in [9] or [11}).

The scope of this paper is actually more general in two aspects than so far indicated.
On the technical side, the assumption of positive curvature or positive curvature outside
a compact set can in some instances be replaced by assuming the existence of a continuous
exhaustion function which is strictly convex or strictly convex outside some compact set.
In other instances, the positive curvature hypotheses can be replaced by assuming non-
negative curvature. In § 1-5, the results are stated and proved in the maximum generality
consistent with keeping the conceptual character of the proofs unobscured by excessive
technical detail. In § 6, there is a discussion of some more general results which can be
obtained by merely technical modification of the arguments used in § 1-5. Some related
results from other sources are also discussed in § 6.

On the methodological side, we hope to make a point that seems to have been over-
looked until now: a knowledge of the function theory (of the geometrically interesting

functions) on noncompact Riemannian manifolds is essential for the understanding of
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their topology and geometry. The fact that one can almost effortlessly derive so much geo-
metrical and topological information from the existence of one C® strictly convex ex-
haustion function is, we hope, sufficient to attest to the validity of this viewpoint.

The previously known C= strictly convex exhaustion functions on Riemannian mani-
folds were all variants of the square of the geodesic distance from a fixed point of a simply
connected complete Riemannian manifold of nonpositive curvature. In this case, the mani-
fold is already known to be diffeomorphic to Euclidean space before the convex function
is constructed. The problems which motivated this paper were first, how to construct a
C® strictly convex exhaustion function without relying on the geodesic distance function,
and second, how to deduce geometric and topological information from the existence of
such a function.

The completion of this paper depended in an essential way on a remark by Professor

S. S. Chern. It gives us pleasure to record here our gratitude to him.

§ 1. Approximation of strictly convex functions

The principal goal of this section expressed in general terms is to show that a strictly
convex function on a C® Riemannian manifold M can be globally approximated by C®
strictly convex functions. A C® function on M is called sirictly convex if its second deriva-
tive along any geodesic is positive everywhere on the geodesic. An appropriate extension
of the idea of strict convexity to arbitrary (continuous) functions on M is given in the fol-

lowing definition:

Definition 1. A function f: M- R is called strictly convex if for every p € M and every
O strictly convex function ¢ defined in a neighborhood of p there is an £>0 such that
f —&@ is convex in a neighborhood.

Here, as usual, a function f: M~ R is called convex if its restriction to every geodesic
is convex in the one variable sense. The fact that a function on the line is convex if and
only if it is convex in a neighborhood of each point of the line implies that a function on
a Riemannian manifold is convex if and only if it is convex in a neighborhood of each
point.

The following lemma gives a necessary and sufficient condition for strict convexity
in terms of difference quotients along geodesics. This lemma shows in particular that a
strictly convex function is convex and thus necessarily continuous. The condition for strict
convexity given in the lemma was used as the definition of strict convexity in [12] and

[13]; the lemma states that the present terminology is equivalent to that in [12] and [13].
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LeMMa 1. 4 function f: M— R has the following property (1) if and only if it has pro-
perty (2):

(1) f s strictly converx.

(2) For every compact set K < M, there is a >0 such that for every arc-length parameter
geodesic segment C: [ —A, A1—M with 0<1<6 and C(0)€EK:

HO@) +HC(—4)) —2/(C(0)) > 2.

Proof that (1) implies (2). For each point p of M, there exists a positive number £,
such that on the open ball of radius &, about p there is a O® strictly convex function de-
fined. For instance, if (z;, ..., 2,) is a Riemannian normal coordinate system at p (with p
corresponding to (0, ..., 0)) then X7, af is O and strictly convex on a sufficiently small
open ball about p. That this function is strietly convex near p follows from the fact that
the second derivative at p along any arc-length parameter geodesic through p is 2.

Now suppose that statement (2) is false for a compact set K < M. Then there exists a
sequence {p,|i=1, 2, ...} of points of K, a sequence {4,[¢=1, 2, ...} of positive real numbers
converging to 0 and a sequence {C;:[—A4, A]>M|i=1,2,..} of arc-length parameter

geodesic segments such that C,(0) €K for all ¢ and
N |
lim inf 2 {KOA) + (O(A) — 2/0)0))} < 0.

By passage to a subsequence if necessary, it may be assumed that the sequence {p;} con-
verges to a point p of K. On the open ball about p of radius §,, there exists a O strictly
convex @,. And by the definition of strict convexity, there exists an ¢ >0 such that f —&g,
is convex in a neighborhood U, of p. Let g=f—ep,. Now suppose that 4, is so large that
for all 4> 14y, the geodesic segment C, lies in the intersection of U, with the ball around p

of radius £,/2. Such an 7, exists because p,~p and A,—~0. Then for all i>4,
1
Py [9(C2)) +9(C( —4.) —29(C(0))] > 0,

because g is convex on U,. Also,

1
2—? el@p(C444)) +@p(Ci( —A1) —2g,(C(0))]
>{2¢ x the infimum over the closed ball of radius &£,/2

of the derivative of ¢, along arc-length parameter geodesics}.

This is positive because ¢, is strictly convex in a neighborhood of this closed ball. Denote

this infimum by #. Then for all ¢>4,
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OGN +C (-2 -24(CL00)

—_%2 {el@n(Ci(A) +@u(C i —41)) — 20,(C(0)] +9(C (A1) +9(C o — A1) —29(C(0))} = e
Hence

tm inf 3 {f(CLA) + HCL — 2) = 2H(CL0) = om>0.

This contradiction shows that statement (2) must hold if f is strictly convex.

Proof that (2) implies (1). Let f be a function satisfying (2) and p be a point of M.
Suppose that ¢: U— R is any O strictly convex function defined on a neighborhood U
of ». Let V be a neighborhood of p with the closure ¢l V of V compact and cl ¥V < U. Take
K =clV in statement 2). Choose £¢>0 such that the second derivatives of ¢ along arc-
length parameter geodesics at p are <}d/e, 6 >0 being obtained from statement (2). Then
for all geodesic segments C: [ —A4, A]->M with 1>0 sufficiently small and C(0) sufficiently
near p:

0 <@(OM) +p(0(~ D) ~2p(CO)< 3,
so that

711'2{1‘(0(1)) +H(C(—2)) - 2/(C(0)) —e[@p(C(A)) + ¢(C(— 1)) —2¢(C(0))]} = 6 — 46 > 0.

Thus f—ep has nonnegative second difference quotients along geodesics near p so that
f—ep is a convex function on a (sufficiently small) neighborhood of p. a

A special role is played in geometric considerations by functions which are closely
related to the Riemannian distance on M. One such relationship is Lipschitz continuity

in the sense of the following definition:

Definition 2. A function f: M -+ R is Lipschitz continuous if there exists a real number
B such that

| () —f(g)| < B disy(p,g) forall p, gEM.

(Here disy,, =the Riemannian distance function on M). Any such constant B is called a
Lipschitz constant for f.
The next lemma shows that Lipschitz continuity on a Riemannian manifold (with a

particular Lipschitz constant) is a local property.
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LemMma 2. A function f: M — R is Lipschitz continuous with Lipschitz constant B if and
only if: | is Lipschitz continuous with Lipschitz constant B in a neighborhood of each point
of M, i.e. for each point g€ M, there exists a neighborhood U, of q such that for every q,, ¢,€ U,

|f(Q1) —f(%)l < B disy gy, ¢9)-

Proof. Lipschitz continuity on M implies the local condition since one may take U, =M
for every g€ M. To show the converse, recall that for any p,, p, € M disy (p,, ps) =inf. {C),
where C ranges over all rectifiable arcs C: [0, 1] M with C(0) =p, and C(1)=p, and /(C) =
length of C. Thus to establish Lipschitz continuity of f with Lipschitz constant B one need

only show that for any such arc C
| (py) ~f(pa)| < BYO).

Choose a finite subdivision of [0, 1] by points 4,=0 <4, <4, <...<A4,=1 such that for all
=0, ...,1—1 C([A;; A;,,]) is contained in a neighborhood U, satisfying the condition of
the lemma for some g€ .M. Such a choice is possible because the U, form an open cover of
M. Then

-1 -1
|H(p1) — f(p2)| < Eolf(c’(li)) — (0 1))| < BzodiSM(C’(li), C(2:1)) < BYO).

The final definition needed to state the theorems of this section is the definition of an

exhaustion function.

Definition 3. A function f: M—~R is an exhaustion function if, for every A€R,

f4((— o0,A]) is a compact subset of M.

THEOREM 1. (a) If M is a complete noncompact Riemannian manifold of everywhere
positive sectional curvature, then there exists on M a O® Lipschitz continuous strictly convex
exhaustion function.

(b) If M is a complete noncompact Riemannian manifold and if there is a compact sub-
set K, of M such that M — K, has everywhere positive section curvature, then there exists
compact subset K, of M and a C® Lipschitz continuous exhaustion function @: M—R on M
such that @ is strictly convex on M —K,.

Theorem 1 will be deduced from certain results in [12] together with the following

theorem:

TaroreMm 2. (a) If M is a Riemannian manifold, if there is a strictly convex function
w: MR on M, and if ¢ is any positive real number, then there is a C strictly convex function
@: M~ R with | —y| <e everywhere on M. Moreover, if v is Lipschitz continuous with Lip-
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schitz constant B then there exists such a function @ which is Lipschitz continuous with Lip-
schitz constant B +¢.

(b) If M is a Riemannian manifold, if y: M—R is a function with the property that
there is a compact subset K, of M such that y is strictly convex o’g, M —K,, and if ¢ is any
positive number and K, is any compact subset of M with K,< K,, then there exists a O®
function p: M~ R such that |y —¢|<e¢ on M — K, and @ is strictly convex on M — K,. More-
over, if p is Lipschitz continuous on M — K, with Lipschitz constant B then there is such a
function ¢ with ¢ Lipschitz continuous on M — K, with Lipschitz constant B+e¢.

In the second statement of Theorem 2(b), the function ¢, being C* on M and Lip-
schitz continuous outside a compact subset of M, is necessarily Lipschitz continuous on
M, but perhaps with a larger constant than B+e.

Proof of Theorem 1 from Theorem 2.

1(a). It was shown in [12] that if M is a complete Riemannian manifold of positive
sectional curvature then there is a strictly convex Lipschitz continuous exhaustion func-
tion p: M~ R on M. Let ¢ be a function satisfying the requirements (including Lipschitz
continuity) of the conclusion of Theorem 2 (a) with ¢ =1. Then ¢ is necessarily an exhaus-
tion function because, for any A€ R, {p €M |p(p) <A} is a closed subset of the compact set
{p€M|y(p)<A-+1}. Thus g satisties the requirements of Theorem 1 (a).

1(b). It was also shown in [12] that if M is a complete Riemannian manifold whose
sectional curvatures are positive outside some compact set K then there exists a compact
set K’ and an exhaustion function y: M —~R which is Lipschitz continuous and strictly
convex on M — K'. If p satisfies the requirements (including Lipschitz continuity) of Theo-
rem 2(b) with ¢=1, K, =K' and K,=any compact set whose interior contains K', then ¢
is an exhaustion function because for any A€ R, {p €M |p(p)<A} is a closed subset of the
compact set K U {p €M |y(p) <A-+1}. Thus g satisfies the requirements of Theorem 1(b). O

Theorem 2(a) implies Theorem 2(b): For let K; be a compact set in M satisfying
K, < I%3CK3CI%2, where K, and K, are as in 2(b). Then apply 2(a) to p|(M —K,) to ob-
tain a C® function @,: M — K;—> R which is strictly convex and satisfies |y —y,| <e on
M — K, (and is Lipschitz continuous with Lipschitz constant B+¢ on M —~ K, in the case
that g is Lipschitz continuous with constant B on M — K,). Then by a standard extension
process, there is a C® function ¢: M~ R with ¢ =@, on M —K,. This function ¢ satisfies
the requirements of 2(b). Thus to establish Theorem 2 (and hence Theorem 1), it remains
only to establish Theorem 2 (a). For this purpose, the following lemmas will be used:

LrEMMA 3. Let 71 M — R be a continuous function and A, and A, be compact subsets of
M with A, < A,. Suppose that T is strictly convex in a neighborhood of A, and C% in a neigh-

14 — 762901 Acta mathematica 137. Imprimé le 20 Janvier 1977
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borhood of A,. Then there exists a neighborhood U of A, and a family of C® functions
{ro: U~ R|c€(0, &)}, £,>0, defined on U such that

(1) for each £€(0, &), T. has positive second derivatives along geodesics at points of As.
(2) 7,~7 uniformly on 4, as e—0+.
(3) for any positive integer r the derivatives of T, of order r converge uniformly to the cor-

responding derivatives of T on 4, as e—>0+,

Moverover, if T is Lipschitz continuous with Lipschitz constant B and if n is any positive
number, then the T, may be chosen to be Lipschitz continuous on U (relative to Riemannian

distance disy on. U) with Lipschitz constant B +7.

Proof of Lemma 3. The Riemannian convolution smoothing approximations of [10]
have the properties required. These are constructed (in summary; see [10] for details) as
follows: Let : R~ R be a nonnegative € function which has support contained in [ —1, 1],
is constant in a neighborhood of 0, and has f,¢gn J(y(”v[]) =1, where n =dim M. Define

o =3 [ a0,

e
where the integration is with respect to the measure induced on the tangent space TM,
at p by the Riemannian metric of M. There is a neighborhood of 4, on which the 7, are
defined and C® for all sufficiently small ¢. Properties (2) and (3) follow from standard
arguments (see [10; p. 646 ff.]).

Now suppose that property (1) fails for every g,>0. Then there exist sequences
{p:|p€4s, i=1,2, ..} and {&,]e,>0, i=1, 2, ...} with £;~>0* such that for each i=1, 2, ...
there exists an arc-length parameter geodesic ('; with C;(0)=p; and the second derivative
(d?/dt?)7.,(C(£)) |10 <0. By passage to a subsequence if necessary, it may be assumed that
the sequence {p;} converges to some point p in 4,. Let ¢ be a € strictly convex function
defined in a neighborhood of p such that 7 —pis convex in a neighborhood of p: the existence
of O« strictly convex functions defined in a neighborhood of p was demonstrated in the
proof of Lemma 1 and the required ¢ can be obtained according to the definition of strict
convexity by multiplying such a function by a sufficiently small positive number. Now
7,=(v —0)s +0. at all points of M for all £>0 for which all terms are defined. Let % =in-
fimum of the second derivatives at p of p along arc-length parameter geodesics through p.
Then 7 >0 and on a sufficiently small closed ball B (of positive radius) about p the second
derivatives of g along arc-length parameter geodesics are >7/2 since ¢ is C®. The second

derivatives of p, on B converge uniformly to the second derivatives of p as ¢—0+. Thus for
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all sufficiently small £>0 the second derivatives along arc-length parameter geodesics at
points of B are >7/4. Now according to [10; p. 644] the convexity of 7 —p implies that

lim m.f(lnf — (17— 0). (C(8) ] 0)>0

e>0"

where C ranges over all arc-length parameter geodesics with C(0) € B. For such geodesics C

d2

d? d? a2
AT (v~ )e () 1-0+ 230 OO -0 > 7 (7 — 0)e (C(0)|e-o + /4,

8(0 )lt 0= dtz

80 that (d2/di?)T(C(t))|i0 >0 for all ¢ sufficiently small (uniformly with respect to varia-
tion of C). This inequality contradicts the combined properties of the sequences {p,}, {¢;}
and‘{O,-}. Thus property (1) must hold.

That the 7, are Lipschitz continuous in the neighborhood U of A4, with Lipschitz
constant B +4 is established in [12; p. 285]. O

LeMMA 4. Let 0: M~ R be a strictly convex function and L, and L, compact subsets of M
with Ly L, Suppose that ¢ is C® in a neighborhood of L,. Then there exists a family
{o:M->R|c€(0, &)}, 8,>0, of strictly convex functions on M such that

(1) for each £€(0, &,) o, ts C® in a neighborhood of L,.
(2) sup |6 —0,| >0 as -0+,
M

(3) for any positive integer r, the derivatives of o, of order r converge uniformly on L, to

the corresponding derivatives of o.

Moreover, if o is Lipschitz continuous with Lipschitz constant B and if 6 is a positive num-

ber then each o, £€(0, g,), may be taken to be Lipschilz continuous with Lipschitz constant
B+é.

Proof of Lemma 4. Let L, be a compact subset of M with chloza. Then let g: M~ R
be a nonnegative O function whieh is 1 on L, and Dina neighborhood of the closure of
M — L. The existence of such a function g is a consequence of the standard partition of
unity result for the open cover {M —L,, ia}. Set 9, =0 —1. Then g, is C* on M, =% on L,
and = —3% on a neighborhood of the closure of M —L;. Now let {5,} be the family of func-
tions  given by Lemma 3 with 7 of that lemma =0, 4,=L,, and A,=L;. Define 5 =

3 supg, [a 0. Then 7e—0 as >0+, Also G,+,0, is >0 onL,and <o on aneighborhood

of L,- L Now define ¢,: M~ R by

0,(p) = max (6,(p) + 1,0, 0(0)) - for p€L,
o(p) = a(p) for p€ M —Ls.
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Then o,(p)=6.(p) +%:0, in a neighborhood of L,; and, thus ¢, is C* on a neighborhood of
L,. Moreover, since 17,0 as ¢—0+ and &, satisfies (3) of Lemma 3, ¢, satisfies (3) of Lemma
4. Also supy |o,—o|=sup;, |0, —0c| <supy, |6,—0c| +n, supz, [o;|. Thus supy|s,—a|—>0
as g—~0+.

To show that each o, is strictly convex, provided that ¢ is sufficiently small, it is enough
to verify strict convexity in a neighborhood of each point p of M: Let V be a neighbor-
hood of M —2}3 on which g,=0; then if p€V, g, is strictly convex in a neighborhood of p
(e.g., V istself) because ¢ is strictly convex. If p G}/:,, then in a neighborhood of p, ¢, is the
maximum of ¢ and &, +7,0,- The second derivatives along arc-length parameter geodesics
of &, are, for all sufficiently small ¢, positive and bounded away from zero uniformly as
£—>0% on L, as shown in the proof of Lemma 3. Since #,~0 as ¢—~0+, &, +7,0, is strictly
convex on }13 for sufficiently small ¢. Since the maximum of two strictly convex fune-
tions is strictly convex, o, is strictly convex in a neighborheod (e.g. 2}3) of each point p of
23 when the positive number ¢ is sufficiently small.

That for all sufficiently small ¢, o, is Lipschitz continuous with Lipschit constant
B+6 (if ¢ is Lipschitz continuous with Lipschitz constant B) follows similarly (cf. [12]):
According to Lemma 2, it is enough to verify Lipschitz continuity with constant B+4d
in a neighborhood of each point of M. On U, the Lipschitz continuity of gs follows with
constant B +J immediately from that of ¢ (with constant B<B+4). On L,, &, is, for all
sufficiently small ¢, Lipschitz continuous with Lipschitz constant B+ 16. Also, for ¢ suf-
ficiently small, 7,0, is Lipschitz continuous on M with Lipschitz constant 3§ since 7,~0
as e—=+0+* and g, is C® with comI())a,ct support. Thus, again for all sufficiently small ¢, &, +
7.0, is Lipschitz continuous on L, with Lipschitz constant B+J. Since the maximum of
two Lipschitz continuous functions with a certain Lipschitz constant is itself Lipschitz
continuous with that Lipschitz constant, o, is Lipschitz continuous with Lipschitz constant
B+ on a neighborhood of every point of 10}3 and hence on M with Lipschitz constant B+4,
provided that ¢ is sufficiently small. u]

The completion of the proof of Theorem (2a) will depend on some standard function
space topology concepts, which will now be summarized. For further details, one can con-
sult [21], for instance.

Let K be a compact subset of M; let (°(K) denote the set of pairs (U, f) where U is
an open subset of M containing K and f is a € function on U. Choose a fixed covering of
K by a finite number of (open) coordinate systems, say #®: V;—R* n=dim M, A€A,
where A is a finite set. Choose then for each A€ A an open set V3 having compact closure
contained in ¥, in such a way that K< (J;.4 V;. These choices are possible by the com-
pactness of K. Then for each positive integer ¢ and each f€C®(K) the supremum
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S (maximum of the 2®-coordinate system
,15/11) pe V'AI; x \partial derivatives of f of order i at p

is finite. This supremum will be denoted by [[f|[x,.. Define [|fliz o for fEC™(K) to be
Sup,ex | f(p)|- The function dg: C®(K) x C*(K)~> R defined by

+00
delf, ) =1l —9llxo+ iZI 27" min(L, ||/ —g||x.),

is a (finite-valued) pseudo-metric on C*(K). The topology on C®(K) that it determines is
independent of the choices made in defining the pseudometric dy even though d itself is
not independent of these choices. In the following discussions, the notation dx will be used
without explicitly noting the assumption that appropriate choices of A, the V;’s, and the
V5’ s have to be made. In all cases, these choices may be made arbitrarily except for the
conditions already given. Finally, for f€C0®(K) set cg(f) =infe (d?/di2) {(C(£)) |s-0 Where the
infinimum is taken over all arc-length parameter geodesics C(t) having C(0) €K.

To complete the proof of Theorem 2 (a), let {K;|i€Z*} be a sequence of compact sub-
sets of M with U, K;,=M and K,c K},, for all ;€Z+. Then define iteratively a sequence
{9i|=0, 1,2, ...} of functions on M as follows:

Yo=79y.
¥, = a function which is strictly convex on J; is C® in a neighborhood of K,; and
satisfies |yy(p) —vy(p)) <ef4 for all p€EM.

; = a function which is strictly convex on M; is C® in a neighborhood of K ; satisfies
A s Pimy) <627V and |py(p) —y;a(p)| <e27¢*P for every p€M; and has

ex,_ () = (1—§)eg, (pi1)

1 1
Cx,~2(¢i) 2 (1 T3~ '3“2) CK;_2(1I)i—2)

1 1
cm('l’:) > (1 - g Teed T F) cKl(wl)

Lemma 4 guarantees the possibility at each stage of carrying out this construction.
)
For each j€Z*, the functions in the sequence {y;,,|i€Z+} are C® on K,,. Moreover,

this sequence is a Cauchy sequence in the dy, pseudo-metric. It follows that the sequence
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converges to a C* function on I% ;- Thus the sequence {y;} convergesuniformly on compact
subsets of M to a C* function on M. Call this function (p:\M —R. Clearly |¢p—y|<
£ 2% 27D <¢ everywhere on M. Also, since 1 — X% 37 =4>0, cx (¢) >0 for every ¢ and
50 g is strictly convex on M.

Finally, if ¢ is Lipschitz continuous with Lipsclitz constant B and if § >0, then, by
virtue of the last statement of Lemma, 4, each v, may be taken successively to be Lipschitz
continuous with Lipschitz constant B+4§(1 —2-f). Then the limit function ¢ will be Lip-
schitz continuous with Lipschitz constant B +4. |

§ 2. The topology and exponential map of manifolds of positive curvature

In this section, it will be shown how the existence on a Riemannian manifold of a
strictly convex exhaqstion function (or of an exhaustion function which is strictly convex
outside some compact set) implies certain topological properties of the manifold and cer-
tain characteristics of the exponential map on the manifold. The first step in the investiga-
tion of such implications is to observe that according to Theorem 1 there is on such a mani-
fold a O® exhaustion function which is strictly eonvex or strictly convex outside some
compact set: the same observation applies in the case of Lipschitz continuous exhaustion
functions which are strictly convex or strictly convex outside some compact set. Thus
without loss of generality, one may consider only the O® exhaustion function case. The
theorems of this section will be stated for the general case, but in the proofs it is as noted
necessary to consider only the C® case. Theorem 1 combined with Theorem 2 will show that
these results apply in particular to complete manifolds whose sectional curvature is posi-
tive or positive outside some compact set; the assumptions of this type appropriate in

each case will be stated explicitly in the theorems,

THEOREM 3. (a) A Riemannian mantfold on which there exists a strictly convex ex-
haustion function is diffeomorphic to euclidean space. (b) (Gromoll-Meyer) .4 complete non-
compact Riemannian manifold of everywhere positive sectional curvature is diffeomorphic to

euclidean space.

Proof of Theorem 3. The statement 3(a) combined with Theorem 2(a) immediately
implies statement 3 (b). To establish 3(a), let M be a Riemannian manifold with a strictly
convex exhaustion function, and let ¢: M — R be a O strictly convex exhaustion function

on M, the existence of which is guaranteed by Theorem 1(a). The only possible critical
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points of a C®strictly convex function are nondegenerate local minima, because the Hes-
sian of such a function (at a critical point) is clearly positive definite (see [19] for the ter-
minology and results from Morse theory used in the present and in later arguments). M
thus has the homotopy type of a CW-complex containing only 0-cells, a 0-cell correspond-
ing to each (local) minimum of ¢. Since M is connected, there can be only one minimum
and. thus only one critical point of ¢, the point at which ¢ attains its (globally) minimum
value. Let p €M be this minimum point. Now by the Lemma of Morse ([19; p. 6]) there
exists a coordinate system x: U->R", where U is a neighborhood of p, with z(p)=(0, ..., 0)
and @(g) =@(p) + i1 (x,(g))* for all g€U, where x(g) =(24(9), Ta(q), -, Tx(g)). Lt 4 be a
positive number which is small enough that {(zy, ..., x,) € B*| Zp.; af <A} <(U). Construct
a metric G on M with G(0/ox;, 8/éx;)=0;; on {g€U|Ziy (2,(g))? <A/2}; such a metric can
be constructed by the standared partition-of-unity extension process.

Let S={(t;, ..., t,) ER"|Bi.1 & =4/2}. Define Fy: S x (0, + o)~ R*—{(0, ..., 0)} by
Fi((ty, o tn), t)=(Sty, ..., $t,). Where s=8/(8]+...+5)t. F, is a diffeomorphism. Define
Fy: 8% (0, +0)y=>M —~{p} by Fy(ty, ..., t,), t) =C(t —}A) where C=the integral curve of
grad ¢/||grad ¢||? with C(0) =the point of U having # coordinates (¢, ..., t,). F is also a dif-
feomorphism: F is injective ‘because of the uniqueness of integral curves, and F is surjec-
tive because through every point of M —{p} there is a maximal integral curve of grad
@/||grad @||2 on M —~{p} and this integral curve necessarily intersects the set 2(S): For, if
the curve is C: (e, )= M then f= + oo; and as t—>«t, O()—>p while as t—p(= + ),
@(C(t))—> 4 oo; since M —x(8S) has two components, one compact and containing p and
the other noncompact, there must exist p€(e, f) such that C(y)€x(S). Thus F,: 8x
(0, +c0)—>M is bijective. That F, and F3! are C® follows from the standard results on
the C® character of the flow generated by a C® vector field ([19; p. 10]).

Now define a mapping .F: R*—~M as follows

(i) F((0, ..., 0) =p,
(ii) F|(R"—{(0, ..., 0)}) = Fyo Fi'.

Clearly F is bijective and F|(E"—{(0, ..., 0)}) is a diffeomorphism onto M —{p} since F;
and F, are diffeomorphisms. To show that F is a diffeomorphism, it is thus necessary to
show only-that F and F-! are C® in a neighborhood of (0, ..., 0) and p, respectively. Now
the integral curves of grad ¢f|grad ¢||2 near p are, when expressed in the z-coordinate
system, just the straight lines emanating from (0, ..., 0) parametrized by Zi_; «7. And in
the definition of F,, 2.1 (sx;)2=¢ if Fi((ty, ..., £,), 8) = (sty, «.., 8t,). Thus z(F({xy, ..., 2,))) =
{xy; i 2,). Hence near p, ¥ =x-t and near (0, ..:, 0), F1=x so that -F and F-) are O®

as required. o
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THEHEOREM 4. (a) If M is a Riemannian manifold on which there exists an exhaustion
function which is strictly convex outside a compact subset of M, then M s diffeomorphic to the
interior of a compact manifold with boundary. In fact, there exists a compact submanifold-
with-boundary M, of M such thot there is an isolopy of the identity map of M to M with a
diffeomorphism of M onto J(l)l 1- (b) If M is a complete Riemannian manifold whose sectional
curvature is positive everywhere outside some compact subset of M, then M is diffeomorphic
to the interior of a compact manifold with boundary. In fact, there exists a compact submanifold
M, w(@;th boundary of M such that the identity map of M is isotopic to a diffeomorphism of M
onto M,.

Proof of Theorem 4. The statement (a) implies statement (b) in view of Theorem 2(b).
To prove statement (a), and hence (b) also, suppose that a Riemannian manifold M satis-
fies the hypotheses of (a) and let ¢: M >R be a C* exhaustion function on M which is
strictly convex on M —K,, where K, is a compact subset of M; the existence of such a
function ¢ is guaranteed by Theorem 1 (b). Let K, be a compact subset of M with K, < 10{2.
Since ¢ is convex on M — K,, it has only nondegenerate critical points there (see the proof
of Theorem 3). By a result of Morse theory ([20; pp. 12-16]) there exists a C® function 7:
M- R which has no degenerate critical points on M and which equals ¢ on M — K,. Since
v=¢ on M — K, and ¢ is an exhaustion function, 7 is an exhaustion function, also. Another
result of Morse theory ([19; p. 20]) is that if an exhaustion function on a manifold has no
degenerate critical points then the manifold has the homotopy type of a CW-complex with
one cell of dimension & for each critical point of the function of index k. Since every critical
point of 7 of index >>1] is contained in X, and nondegenerate critical points are isolated, 7
has only finitely many critical points of index £>1. Since M is connected, T has then only
finitely many critical points of index 0, as well: for a connected CW-complex cannot con-
tain infinitely many 0-cells if it contains only finitely many cells of dimension greater than
0 (in fact, if it contains only finitely many cells of dimension 1). Thus = has only finitely
many critical points.

Let A be a real number which is larger than any of the (finitely many) critical values
of 7. Set M, =7"1((— o, A+2]). Then M, is a compact submanifold-with-boundary of M:
compact because 7 is an exhaustion function and a submanifold-with-boundary because
A+2 is not a critical value of 7.

To cé)nstruct an isotopy of the identity map of M to itself with a diffeomorphism of
M onto M,, note that if M,={q€M|z(q)=A+1} then M, is a compact submanifold (with-
out boundary) of M since A+1 is not a critical value of 7. Moreover, there is a diffeomor-
phism of M, x (0, + o) onto M —7~L{{— o0, A]) =1t~ L{{4, + o)) which maps M, x (0, 1) onto
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74, A+1)): such a diffeomorphism F: M, x (0, + o0)—>7-Y(4, + o)) is given by setting
F(g, t)=Ct—1), where C,=the integral curve of grad ¢/|grad ¢||2 with C,0)=¢. F is
injective because of the uniqueness of integral curves. F is surjective because the integral
curve of grad g/||grad ¢||* through a point of 7=Y((4, + =)} of 77((4, + o)) necessarily
intersects M,. That F and its inverse are C= follows from the standard results on the O®
character of the flow generated by a vector field ([19; p. 10]).

Let k: [0, 1] x(0, 4 o)~ (0, 4+ o°) be an isotopy with k(0,.)=the identity map of
{0, + o0} to (0, + o°) and A(1, . )=a diffeomorphism of (0, + o) onto (0, 2). The isotopy A
can and will be assumed to be chosen so that h(f, s)=s for all £€[0, 1] and s€(0, 1). Now
define H: [0, 1] x M, x (0, + o0)=>M, X (0, + o) by

Hit, q, 8) = (¢, b(¢, 8))EM4x (0, 4 o).
And define H,: [0, 11 x M~M by

Hit,q)=q if 7(q) <4,
H\(t, q) = F-XH@, F())) if ©(g) > A

Since, for all t€[0,1] H,(¢, ¢')=¢ if ©(¢’) <A+1, H, is C* in a neighborhood of [0, 1] x¢
it 7(g) =A: for H,(i, ¢')=¢' for all $€]0, 1] and all ¢' sufficiently near ¢. H, is clearly O
elsewhere on [0, 1] x M. H, is the isotopy required in statement (a) of the theorem. 0

The terminology introduced by the following definition will be used in stating some
of the results on the asymptotic behavior of geodesics to be given presently.

Definition. A semi-infinite geodesic C: [0, + o)~ on a Riemannian manifold M is
unbounded if for every compact subset K of M there is a t€[0, + oo} such that O)€M — K.
The geodesic C' converges to infinity if for every compact subset K of M there is a
£€[0, + o) such that if s>¢ then C(s)€M — K.

A semi-infinite geodesic C: [0, + «0)—~+M converges to infinity if and only if C is a
proper mapping (in the usual sense that if K is any compact subset of M then C-1(K)
is a compact subset of [0, + o0)). Thus if the exponential map 7M,~M is a proper map-
ping for a point p €M then any semi-infinite geodesic C: [0, + o°)~+M with C(0)=p con-
verges to infinity, because the composition of proper mappings is a proper mapping and
C =the mapping of [0, + o) into T'M,, as a straight line (parametrized proportional to arc
length) through the origin composed with the exponential map at p.

TaroREM 5. If M is & complete Riemannian manifold on which a strictly convex ex-
haustion function exists, then the exponential map exp,: TM,—~M is for each pEM a proper
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mapping; and in particular all semi-infinite geodesics converge to infinity. More precisely, if
@: M~ R is a strictly convex exhaustion function on M and ¢f p is a point of M then there are
constants ty and B>0 such that if C: [0, +o0)—M 1is any arc-length parametrized semi-in-
finite geodesic with C(0)=p then @(C(t)) = Bt for any &t >4,.

CorROLLARY. (a) If M is a (necessarily complete) noncompact Riemannian manifold
on which a Lipschitz continuous strictly convex exhaustion function exists, then the exponential
map at each point of M is a proper mapping. And in fact if p is a point of M there are con-
stants t, and B>0 such that, for any arc-length parametrized geodesic o [0, + o)~ M with
C(0)=p, dis(p, C(t)) > Bt for all t >t,. (b) If M is a complete noncompact Riemannian mani-
fold whose curvature is everywhere positive then the exponential map at each point of M is a
proper mapping. And in fact if p is a point of M then there are constants t, and B>0 such that,
for any arc-length parametrized geodesic C: [0, + oo)->M with C(0)=p, dis(p, C())= Bt for
all t=t,.

Proof of the corollary, Theorem 5 being assumed. Statement (b) of the corollary fol-
lows immediately from statement (a) and the fact that there is a Lipschitz continuous
strictly convex exhaustion function on any complete Riemannian manifold whose curva-
ture is positive everywhere ([12; p- 292] and Theorem 2 of the present paper). To prove
statement (a), note that if (C(t))=> Bt for all £>¢, then, for all ¢t >max {t,, 2B-'¢(C(0))},
p(C(t)) —@(C(0)) = 1 Bt. Then if B, is a Lipschitz constant for ¢,

dis(C(t), G(0)) = (1 BBt
for all £>max {t,2 B-1¢(C(0))}. O

Proof of Theorem 5. Properness of the exponential map at a point implies convergence
to infinity of all semi-infinite geodesics emanating from that point. Furthermore, the exi-
stence of constants {, and B>0 with the properties indicated implies properness of the
exponential map; for then, if K is a compact subset of M, (exp,) 1K is a closed subset of
the compact set

{v€TM,||v|| < max(ty, B‘l(ggp N}

Thus to prove the theorem, it is now necessary to establish only the last statement of the
theorem. Furthermore, it is enough to establish the last statement in the case of 0 strictly
convex exhaustion functions. For, if ¢: M —~ R is any strictly . convex exhaustion function
then according to Theorem 1 (a) there is a 0% strictly convex exhaustion function z: ¥~ B
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such that |¢—7| <1 everywhere on M. Suppose B>0 and £, are such that for any geo-
desic C: [0, + oo]—M parametrized by arc length and having C(0)=p

o(CE) > Bt fort >4,
Then if ¢t >max (¢, 2B-1),
@(C(t) >7(C(t)—1> 4Bt ift >,

So suppose now that ¢: M~ R is a C® strictly convex exhaustion function and p is
a point of M. Let f§=inf;(d?/dt*)@(C(f))|s~0 with C ranging over all arc-length parameter
geodesic segments having C(0) € {g€ M |p(q) <g(p)+1}. Since this last set is compact and
@ is strictly convex, § is a positive number. Let o =inf;(Xg) with X ranging over the unit
vectors in TM,; then —oo<x<0. Let A=the unique positive number such that «i+
4pA%=1. Suppose that C:[0,t]>M is an arc-length parameter geodesic segment with
C(0)=p and C [0, t])< {g€ M |p(q) <g(p)+1}. Then

t t S 2
o) =g+ | LoCendszom)+ | (et | Logod)de)ds
0 ds df

] 0
(3

>q)(p)+f (oc—l— f:ﬂdf) ds = p(p) -+ ot + 1B

0

Since ¢(p)+ot +12>p(p)+1 if £>4, t must be <A Thus if C: [0, +o0)>M is a semi-
infinite geodesic with C(0) =p then there exists a positive number #, with {, <A such that
@(Ctc)) =@(p) +1. Since t—@(C(t)) is (strietly) convex on [0, + o), ¢(C'8)) = p(p) + (¢t if
t=2t.. Hence

POW) > (o) +5 iH 6>

Finally, if ¢>max (4, 24|¢(p)|), @(C(t)) =¢/(24), so that the last statement of the theorem
holds with £, =max (A, 2A¢(p)) and B=(24)"L. o

The existence on a manifold of a convex exhaustion function which is not necessarily
strictly convex does imply special properties of the geodesics on the manifold even though
it is not necessarily true for such a manifold that the exponential map at a given point is
a proper map. For ingtance, the two-dimensional cylinder R*/{(x, y)~ (', ') if o' —x€Z}
is an example of a complete Riemannian manifold on which a 0® convex exhaustion func-
tion (the coordinate y) is defined but which does not have a proper exponential map at
any point.

The behavior of the geodesics of this example is a special case of the behavior deseribed

in the following theorem:
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THEOREM 6. If M is a Riemannian manifold on which an exhaustion function exists
which is convex outside some compact subset of M, then any geodesié which is unbounded
converges to infinity. Specifically, if @: M— R is an exhaustion function which is convex out-
side some compact set and if C: [0, + 0)—>M is a semi-infinite geodesic which is unbounded,
then there are constants t, and B >0 such that

@(C) =Bt ift>t,

CoROLLARY. (a) If M is a Riemannian manifold on which there is a Lipschitz
continuous exhaustion function which is convex outside a compact subset of M and if
C: [0, 4+ o0)> M is a semi-infinite arc-length parameter geodesic on M which is unbounded,
then there exist constants t, and B >0 such that

dis(C(0), Ct)) = Bt if t>t,.

(b). If M is a complete Riemannian manifold whose curvature is nonnegative outside
some compact subset of M and if C:[0, +o0)—>M is a semi-infinite unbounded arc-length

parameter geodesic then there are constants 8, and B>0 such that
dis(C(0), C(t)) = Bt if t =1,

Proof of the corollary, Theorem 6 being assumed. Since on a complete Riemannian
manifold whose curvature is nonnegative outside a compact set there is a Lipschitz con-
tinuous exhaustion function which is convex outside some compact set ([12; p. 292]),
statement (b) of the corollary is implies by the statement (a) of the corollary. To verify
statement (a) let ¢: M~ R be an exhaustion function of the sort indicated. Then by part
(b) of the theorem for some ¢, and B>0

Clplt)) > Bt ift>t,

Then
Olg()) —Clg(0)) > $ B,
if
2C(@(0))
> —_—
t>max §, B
For such ¢
dis (C(0), C(t)) > (3 BBr")t

where B, =a Lipschitz constant for ¢. o

Proof of Theorem 6. Let ¢: M — R be an exhaustion function which is convex on M — K,
K being a compact subset of M, and C: [0, + o0})—>M be an unbounded semi-infinite geo-

desic. Set y=1-supxe and A, =max{}), 1+¢(C(0))}. Then since ¢ is an exhaustion
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function and C is unbounded, the set {t€[0, + =°)|@(C(¢))>4} is not empty. Set ¢, =in-
finum of this set. Since ¢(C{0)) <4, t; >0. Now in a neighborhood of ¢,, i—+@(C(¢)) is a con-
vex function; and since @(C(f)) <@(C(t))=4, if t<i#, the convex function ¢—¢(C(f)) near
t, is a strictly monotone increasing function near ¢, and in particular ¢(c(t)) >4, for ¢ >¢;
but ¢ sufficiently close to ¢,.

Suppose that for some t,>#;, @(C(f,)) =4;. Then, if {; =the infimum of the set of #,
such that ¢(C(t;)) =4, and t,>¢,, p(C(t2)) =4, but p(C(t)) >4, for all tE(¢,, £,). In particular
t—=@(C(t)) is convex and nonconstant on (¢, f,) but attains a maximum value at some
point of (¢, ¢,), contradicting the maximum principle for convex functions. Thus ¢(C(¢))
must be >4, for all ¢ >1#,, so that ¢(C(t)) €M — K for all t>¢, and t->¢(C(t)) is a convex fune-
tion on [t;, + o).

Put ty=¢, + 1. Then because {—>¢@(C(¢)) is convex on [¢;, + °),
P(C(1)) > (t—to) - {g(Clto)) —p(C(t)} +9(C(t1))

if ¢ >t;. Hence if
2| p(C(t))|

b=t O — p(C@)

then
P(C(1)) = 3t —£0) {p(Clts)) —(C(t:))},
so that Theorem 6 holds for
_py 2leC@)]
h=tot L Cite) — plC®)’

and
B =g(Cto)) —@(C(ty)). o

§ 3. Integrals of nonnegative subharmonic functions on manifolds of positive curvature

If Sis a closed convex hypersurface in Euclidean space B and S, is the hypersurface
obtained by displacing each point of § distance ¢ along the exterion unit normal to § at
that point, then the (n-dimensional) volume enclosed between S and S, is greater than
ex the (n—1)-dimensional volume of §. This fact is in agreement with the intuitive no-
tion that the exterion normals of a convex surface diverge. The following theorem is a

result of similar nature in a more general setting:

TrEOREM 7(a). If M is a Riemannian manifold and ¢: M —~R is an exhaustion func-

tion which is C® on M and strictly convex outside some compact subset of M and which is
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Lipschitz continuous on M and if f: M—R is a C® nonnegative subharmonic function which

is not ide&iticalky zero, then there is a positive constant A, such that

f f= 4,2
{faeM]p@< 4}

for all sufficiently large 2 €R. Here the integral is taken relative to the measure induced on M
by its Riemannian metric.

(b) If M is a complete noncompact Riemannian manifold whose sectional curvature is
positive outside some compact subset, then the integral over M of any nonnegative C® subhar-
monic function which is not equal to zero is (positively) infinite and in particular the volume
of M s infinite.

Proof. By virtue of Theorem 1, 7(a) implies 7 (b). To prove 7 (a), first note that it is
enough to consider the case of oriented manifolds M, since the result for a nonorientable
manifold follows from that case by consideration of the orientable double covering. So
suppose from now to the conclusion of the proof that M is oriented, and let Q be the Rie-
mannian volume form on M. Let dim M =n.

According to part of the proof of Theorem 4 (a), there is a A, such that ¢ has no critical
points such that @(p) > 4,. Consider from here on only A which are >4. Then (by a standard
argument: see [19]; also cf. the proof of Theorem 4(a) of the present paper): the set
{g€ M |p(g)=4} is a compact (embedded) submanifold of M of dimension (r—1) and this
submanifold is the topological boundary of {g€M |gp(g) <A}. The set {g€M |p(g) <A} will
hereafter be denoted by M% and the set {qGM |p(g) =A} by oM5.

The submanifold 8% has smoothly varying distinguished unit normal at each point,
namely grad ¢/||grad ¢||. Thus &M% inherits an orientation from the orientation of M. Let
w; be the volume (n—1)-form on éM% determined by this orientation and by the induced

Riemannian metric on o M%. Then
Q, = (@), A (dgp/||grad #lDs-

This equality is verified by evaluating both sides on an n-tuple of orthonormal vectors in
TM, of the type (e, ..., e,y, grad g/||grad ¢||), the e;’s being then necessarily tangent to
oM5,.

The integral curves of the vector field grad ¢/|grad ¢||? emanating from the points
of &M%, generate a diffeomorphism H: oM%, x R+—>{q€M |p(g) >1,} (here R+={tER( >0});
specifically, H(p, t)=the point with parameter value ¢ along the integral curve of
grad /|| grad ¢||? which has parameter value 0 at p (see [19, p. 13] and the proof of Theorem
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4(a) of the present paper). Note that p(H(p, t))=t so that from the formula for Q, in the
previous paragraph and Fubini’s theorem it follows that for any A>1,

h A
S
fM;’_Mg;f 1 \Jowp [lgrad o]l “*

Suppose @ is Lipschitz continuous on M with Lipschitz constant B(>0) on M. Then

[lgrad ]| < B everywhere so

1 v
f wg-ml, =g J z(f éM',”ngrad 7l w‘) o

It will now be shown that the integral f,,¢f|/grad ¢||w, is nonzero for some value of ¢ >4,.

Because f is subharmonie, there is no point p €M such that f(p) =supgx f(g) unless f
is constant on M. Hence if K is any compact subset of M there is a point g€ M — K such
that f(g)>0; for if f{(M —K) were =0 then there would be a point p€K with f(p)=
SUPgen f(g) s0 that f would be constant and so =0 on M. Since MY, is compact and M —
M8, = Uy, OMY, there is a point p €6MF with f(p)>0. Since ||grad ¢|| is nowhere zero on
M —M%, for some A,

f fllgrad glls, >0.
aMh '
If, for all t = 4,,
[ Memavlio | flgad glon,
an! oM

A2

then for A=A,

1 (/[ 1
J;uf fa= fo—MZ’l fa= B LI(LM?ngrad <PH wt) d= (A=) (E2 LMZ f”grad” wlg) ’

from which the conclusion of {part (a) of) the theorem follows. Thus to complete the proof

of the theorem, it is enough to show that

[ e glocz [ fllerad pllon,
om? anf,

For notational convenience, let I(f) denote the integral [yypf|grad gllow,. Also, let H,:
oML —>oMY, t=),, be defined by H(p)=H(p, t) where H: 0M3 x R+—>{q€ M |p(g) >4,} is
the diffeomorphism defined previously. Then
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I() =f v (HH )| (grad @)aml| HY w(p).
pe aMlx

From this formula it is clear by differentiation under the integral sign that I(f) is a C* func-

tion of ¢ (for ¢>4,). Since the one parameter family H, is generated by grad ¢/||grad ¢||2,

it follows that for any ¢>4,

) (grad ¢) / 1 f
It=f s ||grad @|| w, + =D, rad ¢||w, + fllgrad @||«

() aMg’llgrad ol llgrad ¢[l o, aMg’fIIgrad M eraa o || 8Tad @ | oy on? [|grad ¢l|2,
where «;=the variational derivative of the (n—1)-form w; relative to the variation vector
field grad ¢/||grad @||? and Dgpq »||grad ¢]| =the result of applying the vector field grad ¢
to the function ||grad ¢||. The standard variation of area formula (see, for instance, [27])

gives that

grad ¢ > 1
=~ g P K D= =3 (Kp) @
*= " \Jlerad ol &/ @ " [lgrad oIt He ¢

where K =the mean curvature vector of M7 at the point at which «, is being evaluated.
That is, K =37 (D,e;)" where: ey, ..., ¢, ; is an orthonormal (n—1)-frame defined in a
neighborhood in M of the point of 2MY at issue and each e, is tangent to 0MYT at every point
of 9MY at which it is defined; D is the covariant operator on M; and ( ) denotes the com-
ponent normal to oMY.

Now for any vector field defined on an open set on which ¢ is C* and convex ¥ (Vg) —
(Dy V)@ =0. (This standard fact is established by checking that the value of the left-hand
side at a point p depends only on the value ¥, of V at p and then choosing a vector field
W with W,=V, and D, W =0. Then W(Wg)—{(DyW)p=W(Wp)=the second derivative
at p of ¢ along the geodesic through » whose tangent at p = W,. This second derivative is

nonnegative if ¢ is convex). Hence
(De,e0)p < esfe;p) =0:
here e,(e;) =0 because e;p =0 along 0Mf. Thus
‘Klp = iz (De; el)N(p = Z (De; &) < 0
K4

and e, is therefore a nonnegative (n —1)-form on oMf. So

f Wf”gra,d @|le.=0.
oM
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Put N =grad p/|grad ¢||. Then since N(N,N)>=0, {(DyN,N)>=0 and hence
{DyN; grad ¢> =0 or (DyN)p=0. Thus that N(Neg)—(DyN)p >0 implies that N(Ng) >0.

Since Diraaol|grad || =[|grad ¢[| Dy|lgrad ¢f| = flgrad || NN, grad ¢) = ||grad [N (N),
Dgraayllgrad ¢|| =>0. Consequently

1
LM?J‘WDmWIIgrad @|| w;=0.

Finally by Stokes’ theorem

J‘ (grad ¢) f
0

vz llgrad plellered el fMg AfQ>0

since Af >0. Thus I'(t) is the sum of three nonnegative terms and so I(t) is a nondecreasing
function of ¢ for £>1,. 0

It is more natural to estimate the growth of an integral as a function of its domain of
integration in terms of its value on Riemannian balls than on the sublevel sets of more
or less arbitrary exhaustion functions. The following theorem gives an estimate of this
more natural sort. In this theorem, B(p; r) denotes the open Riemannian ball about p of

radius 7.

TuroreM 8(a). If M is a noncompact Riemannian manifold on which there exists an
exhaustion function @: M— R which is C® and Lipschitz continuous and which is strictly
convex outside some compact subset of M and if f M-=+R 1is C® nonnegative subharmonic
function which is not identically zero on M, then there exists a positive constant B, such that
for every pEM

f f=BA
B(p,4)

for all sufficiently large AER.

(b) If M is a complete noncompact Riemannian manifold whose sectional curvature is
positive outside some compact subset of M and if f: M —+R s an C® nonnegative subharmonic
function which is not identically zero on M, then there exists a positive constant B, such that
for every p€M,

f f>Ba
B(p:d)

for all sufficiently large A€R.

15—762901 Acta mathematica 137. Imprimé le 20 Janvier 1977
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Proof. As before, part (a) implies part (b) by virtue of Theorem 1(b). As in the proof
of Theorem 7 (a), let 4, be a real number such that for no critical point of p is p(p) >1,. If
C is an integral curve of grad ¢/|grad |2 with C(0)€2MY, (the notations of the proof
of Theorem 7(a) are continuing to be used here) then C is defined on all of Rt and
|l(grad @) (C(#))]|, t€R™, is a nondecreasing function on R+: the first of these assertions
was established in the proof of Theorem 4(a) and the last assertion follows immediately
from the fact established in the proof of Theorem 7(a) that

Dypogo)jgrade] = 0.

Since {g€M|p(g)=2,} is a union of integral curves of grad ¢/||grad ¢||?> emanating from
oM3,
inf ||(grad ¢),J|> inf |(grad ¢),]|>0.
39D =k

GBeDzh
(In fact, the two infima are equal since the reverse inequality between them holds a priori).
Let & =infy, ) 1,]lgrad @) ||. For any integral curve C: R+->M of grad ¢/||grad ¢||? with
C(0)€oM?, the length of C|[0, #] is

[howhas= [ 5o
N ENE= | igrad (0] “™

which is <e-%. So for any g€ M with p(g) =4,, dis(g, OME) <& Yp(g) —4,).

Now let 4, be a positive constant satisfying the conclusion of Theorem 7 (a). And let
p be any point of M. Choose a positive real number r, such that B(p; ro) 2 M3, (MY, is
compact so such a choice is possible). Then for any A=4,, M{S N(p; ro+eYA—Ay))
by virtue of the estimate which concludes the previous paragraph. Hence, for r>r,,

'l (1771 ): ‘Zu11+2(1’ To) 80 blla‘b
fB(pJ > J;M
) 1+&(T—70)

f f= A A +e(r—ry) =% Aer,
Mlx+s(r—r,,)

For r sufficiently large

the first inequality holding by Theorem 7 (a) and the second by elementary considerations.
Thus for r sufficiently large

f f=4A4,er
Bpin)

so that the positive constant $4 ¢ is an acceptable choice for the B, required for Theorem
8(a). a
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§ 4. The total curvature of manifolds of positive curvature

It is a well-known result of Cohn-Vossen [5] that if the total curvature integral {, KdA4
on a complete orientable two-dimensional Riemannian manifold M is absolutely convergent
then [, KdA<y(M): here y(M)=the Euler characteristic of M, K =the Gaussian curva-
ture, and dA4 =the measure induced on M by the Riemannian metric. It can be shown by
examples ([24]) that a corresponding extension of the higher-dimensional analogue of the
Gauss-Bonnet theorem ([1], [4]) to the case of noncompact manifolds does not hold in
general (even in even-dimensions: The fajlure in case of odd dimension is obvious, since
in that case the generalized Gauss-Bonnet integrand is zero). The purpose of this section is
to state and prove such an extension for four-dimensional manifolds whose curvature is
positive outside some compact set. The argument used to prove this result for four-
dimensional manifolds also provides a simple proof of the Cohn-Vossen inegnality in the case
of the curvature’s being positive outside some compact set. Related results for four-
dimensional manifolds, in which however the curvature is required to be nonnegative

everywhere on the manifold, are given in [23] and [28].

THEOREM 9. If M is a complete oriented Riemannian manifold of dimension four whose
sectional curvature if positive outside some compact subset of M, then the integral §,® of the
generalized Gauss- Bonnet integrand © is (absolutely) convergent and

LG)gx(M).

The Euler characteristic y(M) of M is necessarily defined and finite by virtue of
Theorem 4(b). Since the integrand @ is positive at any point of M at which all sectional
curvatures are positive (Chern’s theorem, cf. {23], [28]), the integral’s absolute convergence
and the required inequality follow if a uniform upper bound [0 <y{(M) is known, where
U varies over some increasing family of closure-compact open subregions of M whose
union = M. The following lemma will be used to obtain such a bound.

LemMa 5. Suppose that U is an open set with compact closure and. C® boundary in a
four-dimensional oriented Riemannian manifold M and that the sectional curvature of M s
positive in a neighborhood of the boundary of U. Suppose also that there is a C® function ¢:
MR such that

(@) U={peM|p(p) <0},
(b) grad ¢|,=0 if g(p) =0,
(¢) @ is geodesically convex in a neighborhood of any point p € M having ¢(p)=0.
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Then
f O <x(U).
U

The proof of this lemma is obtained by modification of the classical argument in
[4] to include the terms arising from the fact that U has (possibly) nonempty boundary.,

Proof. Let Y be a C® unit vector field defined everywhere in a neighborhood of U
except perhaps at some isolated points and equal to (grad ¢)/||grad ¢|| in a neigh-
borhood of the boundary of U. Such a vector field may be obtained for instance by first
observing that there is a C* function ¢’: M —R with isolated nondegenerate critical points
on M which agrees with ¢ in a neighbofhood of the boundary of U ([20; pp. 12-16]) and
then taking ¥ =grad ¢'/||grad ¢'||. The vector field ¥ extends in an obvious way to a
vector field ¥ on the double U of U: if U — U,U U, with U;=U then Y=—Yon U,.
Since the antipodal map on the 3-sphere has degree +1, the index of a singularity of ¥
on U, equals the index of the corresponding singularity of ¥ on U(=U,). Thus %(0),
which equals the sum of the indices of the singularities of Y on U, equals twice the sum
of the indices of ¥ on U. On the other hand, y(U)=2x(U). Hence y(U)=the sum of the
indices of the singularities of ¥ (on U).

Let w,, ..., w4 be a local orthonormal oriented coframe field on M. Define the connec-
tion forms w;; and curvature forms Q;; by

4
doy= > ;N\ Wy,
j=1

4

Qy=dwy— 2 wg A oy
P

The generalized Gauss-Bonnet integrand @ is given by
1
0 =3T7t2 (s A Qgg — Oy3 A Qg + Qo3 A Q).

(For this formula and all the following related results see [4]). The form ®, which appears
to depend on the choice of the local oriented orthonormal coframe w;;, ..., w,, can be shown
by computation to be independent of this choice and thus to be a well-defined €= form on
M. Considered as a form on the bundle of oriented orthonormal frames, ® is exact (where-

as © is in general not exact considered as a form on M): namely,

@ =4dll,
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where

1
H = ;CE{%(DO_ %(Dl}:
and

Dy = w1y N Wgg A 34,
O, = Oy A gy — L3 A wag + Qo3 N gy

The form IT may be considered to be a form on the (sphere) bundle of unit vectors in the
tangent bundle of M; precisely, if x€M and e, ..., ¢, and ey, ..., ¢; are two oriented ortho-

normal frames at x then

ey, ..., &) = Tl(e, ..., €1)

if e;=ey. This fact is again demonstrated by a computation. On the bundle of unit tangent
vectors it of course remains true that ® =dlI.

Let #,, ..., #; be the isolated points of U at which Y is not defined. These points are
necessarily finite in number since Y is defined in a neighborhood of the boundary of U

and U has compact closure. The limit

lim Y*T1

e~>07F J 0Bz )

exists and is finite (where Y*II =‘pull-back” of II under the map ¥ of U—{x,, ..., &}
into the bundle of unit tangent vectors and 0B(x;; &) =the boundary of the Riemannian
ball of radius & about ;). Denote this limit by fx, Y*II. Then Stokes’ theorem yields

f@=f 0= Y*H—zf 7+T1.
U U—{Z1, o0n, ) ou 1l Jg

The minus sign in the final expression arises as usual from the fact that the exterior nor-
mal of U — B(x); ¢) is the interior normal of B(z;; ). As in [4], the integral j',l —Y*[I =
the index of Y at x;. Thus

f®=f Y*[T+1(U).
U oU

To establish the lemma, it thus remains to be shown only that [,y Y*I1<0.
Let = be a point of the boundary 8U of U. Choose unit tangent vectors e,, e,, e; at
in such a way that e, e,, e;, Y (%) is an oriented orthonormal frame at x and that the se-

cond fundamental Sy form of 8U (relative to the normal Y to 8U) is diagonal, i.e.

Syles e;) =A;6;; for some A,€R.
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The second covariant differential Dp(e,, ¢;) equals by definition &(¢,p) —(De,é;)p where
é; is any extension of ¢; to a vector field near x; it is nonnegative because ¢ is convex near
z. On the other hand, if the vector field ¢, is taken to be tangent near x to 8U then é,(¢;p) =0
at x so that

0 < D?ple;, e)) = *(Dé‘éi)tp-

But
—(Ds,8)p = —{Dg,;, grad @) = — ||grad ¢||<{ D¢, &;, ¥ = — |grad ||Sy(es, €,)-
Hence
0 < —[lgrad || Sy(e, e,
and so
A <0 foreachi=1,2,3.
Also

A0 =Syle, e)) = <Déféi’ Y5 =wyuley).

Now @, and ®,, being 3-forms, are multiplies of the volume form U when restricted
to oU. Specifically, if ¢ =the volume for m of U then

D, = Dyley, €5, ¢5)p and @, = Dyley, €5, e5)y

because

w(el’ €9 es) =1,

and

Dy(ey; €3, €5) = (014 A\ Wy A 3y) (€1, €3, €5) = Ay Aa5
since wyle;) =2,8;;. Since each 4,<0, Dyle,, ¢;, €;) <0. Next,

@, (ey, €g, 3) = (+ Q2 N gy — Qg A g + L2053 A 014) (€4, €2, €3)
=3 Q15(ey, €3) =12 Qy5(ey, €3) +2A; Qgles, €5).

Since €(e;, e;) =the negative of the sectional curvature of the 2-plane spanned by e, and
e,(i==7), Qj(e;, €,) <O at x by hypothesis. Again since each 4,<0, ®,(e,, e,, €5) 0. Finally

(Y*H) (31’92,33):7%{%(1)0"%@1} (91,32y 63)<O.

Hence

f Y*[I<o. ]
eu
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Proof of Theorem 9. Let ¢: MR be a (= exhaustion function on M which is strictly con-
vex outside some compact subset of M: the existence of such a function is guaranteed by
Theorem 1(b). According to (the proof of) Theorem 4 (a) there is a 4o €R such that

(a) @ is strictly convex on ¢—((4y, + )
(b) ¢ has no ecritical points in ¢=1((4y, +°°)) and (hence) for any A€(4,, + ),
@~1(( — °°,4]) has the homotopy type of M.

0
For each A€(4,, + o), the interior M, of M ;=g 1((— oo,4]) satisfies the hypotheses (for
U) of Lemma 5 with ¢ of the lemma =the present ¢ —A. But also (M ;) =yx(M) since M,
has the homotopy type of M. Thus for any A€(4,, + o)

f O < (M) = 2(M).
MA

0
Since U ;M ; =M, the conclusions of the theorem now follow from the remarks made im-

mediately after the statement of theorem. o

To prove the analogue of Theorem 9 for two-dimensional manifolds, one need only
establish the analogue for the case of two dimensions of Lemma 5 by reasoning similar to
but simpler than that needed in the case of four dimensions. The proof of the theorem

as given then applies to the case of two dimensions.

§ 5. Function-theoretic properties of noncompact Kiihler manifolds
of positive curvature
The purpose of this section is to state and prove some results on the function theory
of Kahler manifolds which have an exhaustion function which is strictly convex (or strictly
convex outside some compact set); these results then apply to Kéhler manifolds whose
curvature is everywhere positive (or positive outside some compact set). The basic source
of the relationship between strictly convex functions and function theory is the following

lemamas:

LeMMmA 6. Let f: M—R be a C? function on a Kihler manifold M; if f is convex then f
1s plurisubharmonic and if f s strictly convex then f is strictly plurisubharmonic.
This lemma in fact holds without the assumption that f is C?, as shown in [10].

Proof of Lemma 6. Let L, denote the Levi form of f defined by

L4521 4. 0
T Goner T
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where (2, ..., 2,) is a-local holomorphic coordinate system (it is easily verified by a computa-
tion that L, thus defined locally is independent of coordinate choice so that L, is in fact
globally defined). The form L is nonnegative definite (on the holomorphic tangent spaces
of U) if and only if f is plurisubharmonic and positive definite if and only if f is strictly
plurisubharmonie.

Let p be a point of M and V be a unit holomorphic tangent vector at p. There exists
a holomorphic normal coordinate system (zy, ..., 2,) centered at p such that 98z, = V. Let
the corresponding real coordinate system be (zy, ¥, ..., %,, ¥,,) Where z;=x,+ V_—l—;, Then

Dyyp,0/02],=0 and Dy 0/0y|,=0 as well as Dj;5,(0/8y)|,=0|. In such a coordinate
system

] 0 & & &
LV, V)=Lf(—— e )= —f_ =—£ —]2(
21|y 024]p 02, 0Z1|p, O%ilp OWilp
o (of ) 0 0 6]‘) ( 0 )
0%, (6x1) ? ( a/(azl)axl) pf o (3% » oreevn %0 pf
0 0 o 0
o), ),
! oz, 01/ |y ¢ oY, O/ |p

where D} is the second covariant derivative of f. D? is nonnegative definite when f is con-
vex and positive definite when f is strictly convex. Thus L, is nonnegative definite when

f is convex and positive definite when f is sti'ictly convex. O

TreEOREM 10(a). If M is a Kdhler manifold which has a strictly convex. exhaustion
function then M is a Stein manifold. (b) If M is a noncompact complete Kihler manifold

with everywhere positive sectional curvature, then M is a Stein manifold.

Proof. In view of Theorem 1(b), part (a) implies part (b). In part (a), it is sufficient
by Theorem 2(a) to consider the case in which the strictly convex exhaustion function is
C®. Lemma 6 then implies that the exhaustion function is strictly plurisubharmonic.
Since any complex manifold with a strictly plurisubharmonic exhaustion function is ne-
cessarily Stein manifold (see [8], {17]) part (a) follows. ]

If a Kéhler manifold has an exhaustion function which is strictly convex outside some
compact set, but not everywhere on the manifold, then the manifold need not be a Stein
manifold. HoWever, such a manifold is “a Stein manifold outside some compact set’” in a

sense made precise by the following theorem.

TEHEOREM 1l(a). If M is a noncompact Kihler manifold which has an exhaustion
function which is strictly convex outside some compact set, then M can be obtained from a Stein

space by blowing up a finite number of j)oints to compact subvarieties. (b). If M is a complete
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noncompact Kiihler manifold which has positive curvature outside. some compact set then M
can be obtained from a Stein space by blowing up a finite number of points to compact sub-
varieties.

In both part (a) and part (b), it need not be assumed that the metric on M is a Kihler
metric everywhere on M. It is sufficient in part (a) to assume that M has a Kahler metric
defined outside some compact subset of M such that the exhaustion function is strictly
convex outside some compact set relative to this metric. Similarly in part (b) it is sufficient
to assume that M has a complete Riemannian metric which has positive curvature outside
some compact set and which is'a Kéahler metric outside some compact set. The proof to

be given now of the theorem as stated also applies to these more general hypotheses.

Proof of Theorem 11. As in previous cases part (a) implies part (b) by virtue of a previ-
ous theorem (Theorem 1b) in this case). In part (a), Theorem 2(a) implies that there is a
(O exhaustion function which is strictly convex outside some compact set. By Lemma 6,
this exhaustion funection is strictly plurisubharmonic outside some compact set. Part (a)

now follows from the following theorem of Narasimhan.

THEOREM. If a noncompact complex manifold M has a O® exhaustion function which is
strictly plurisubharmonic outside a- compact set then M. can be obtained from a Siein space
by blowing up a finite number of points to compact subvarieties.

In this theorem, the hypothesis that the exhaustion function be C*® can be weakened:
(see [22] and [25]), but the version given is sufficient for the purpose at hand. For the con-
venience of the reader, a brief sketch of the proof of Narasimhan’s theorem will be given.
The proof is given in detail in [22] and some related results, which would also suffice to
complete the proof of Theorem 11 are given in [26].

Let ¢: M—R be an exhaustion function which is strictly plurisubharmonic outside
some compact set K. Set 1 =1-supg . The set M, ={p€M |p(p)<A} is compact, since
@ is an exhaustion function; and K< M, so that ¢ is strictly plurisubharmonic on M — M ;.
If V is a compact connected subvariety of positive dimension of M then VN (M —M;)=2.
Forif V 0 (M — M ;)= then the maximum of ¢ on V is attained at a point of V N (M —M;)
at which point ¢ is strictly plurisubharmonic. Such an occurrence would violate the maxi-
mum principle for strictly plurisubharmonic functions (see [16], for example).

Since all the compact connected positive-dimensional subvarieties of M are con-
tained in the compact set M, it follows that the set of maximal connected positive-
dimensional subvarieties is finite. Let M —the analytic space obtained by ‘‘blowing down”’
these subvarieties to points and let J,, >4, be the space obtained by the same process

from M, (={p€M|p(p)<n}).
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Each of the spaces M,, >4, is holomorphically convex by a theorem of H. Cartan
[2] on holomorphic equivalence relations. Since each such M, clearly has no compact posi-
tive-dimensional subvarieties, each is a Stein space. Thus M = U, M, is an increasing
union of a one-parameter family of Stein spaces and is hence a Stein space ([6]). o

It follows from (the proof of) Narasimhan’s theorem that a noncompact complex mani-
fold which has an exhaustion function which is strictly plurisubharmonic outside some
compact set and which has no compact subvarieties of positive dimension is a Stein mani-
fold (in that case, the Stein space M =the manifold M, which is thus necessarily a Stein
manifold). In particular, if such a manifold is a Kéahler manifold which is diffeomorphic
to Euclidean space, then it has no compact positive-dimensional subvarieties and so is a
Stein manifold: for any such subvariety would be homologous to zero and a compact sub-
variety of a Kéhler manifold cannot be homologous to zero. These observations lead to

the following theorem.

TrEOREM 12. If M is a complete noncompact Kihler manifold whose curvature is every-
where nonnegative and whose curvature is positive outside some compact set then M is a Stein

manifold.

Proof. As shown in the proof of Theorem 11, M has a € exhaustion function which
is strictly plurisubharmonic outside some compact set. Furthermore, it has been shown
by Cheeger and Gromoll ([3, § 3]) that a Riemannian manifold of everywhere nonnegative
sectional curvature and positive sectional curvature outside a compact set is diffeomorphic
to euclidean space. That M is a Stein manifold now follows from the remarks preceding

the statement of the theorem. |

§ 6. Some generalizations of the results of the previous sections

Many of the preceding results were stated and proved in less than maximum generality
so that the central concepts of the proofs would not be obscured by excessive technical
detail. In this section, some generalizations will be discussed which can be proved by es-
sentially the same methods; the modifications of the previous arguments necessary to
prove these generalizations will be briefly outlined. Each generalization and modified argu-
ment will be listed according to the section in which the original theorem appeared.

§ 1. The approximation result for strictly convex functions, Theorem 2, can be ge-
neralized to the larger class of functions described by the following definition. For this
definition, let M be a Riemannian manifold and for each p €M let d,: M—R be the func-
tion whose value at g€ M is the square of the Riemannian distance from q to p.
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Definition: Let 6: M —~R be a continuous function. A function p: M—>R is d-convex
if for every p € M the function ¢ —36(p)d, is strictly convex in a neighborhood of p.

If §=0 then §-convexity is equivalent to strict convexity. The function d, is C® and
strictly convex in a neighborhood of p: its second derivative at p along any arc-length
parameter geodesic through p is 2. Thus the d-convexity condition is, for C? functions ¢,
the condition that the second derivative at p along such geodesics be greater than §(p).
The argument used to prove Lemma 3 can be used to show that a §-convex function can
be approximated in a neighborhoods of compact sets by C® §-convex functions (with Lip-
schitz constants being approximated). Then the proof of Theorem 2 can be easily modified
to prove that Theorem 2 still holds if “strict convexity” is replaced by “d-convexity”
(for any fixed continuous function §: M —-R) throughout. The original statement of Theo-
rem 2 corresponds then of course to d=0.

A convex function is §-convex for any everywhere negative §. Thus the following ge-
neralization (Theorem 1) of Theorem 1 follows from the generalized version of Theorem
2 together with the facts: on any complete (noncompact) Riemannian manifold of non-
negative curvature there is a convex exhaustion function ([3]) and on any complete (non-
compact) Riemannian manifold whose curvature is nonnegative outside a compact set

there is an exhaustion function which is convex outside some compact set ([12]).

THEOREM 1. (a) If M is a complete noncompact Riemannian manifold of nonnegative
curvature and if 8: M—R is any everywhere negqtive continuous function, then there exists a
Lipschitz continuous C® exhaustion function ¢: M —~R which is d-convex.

(b) If M is a complete noncompact Riemannian manifold whose sectional curvature is
nonnegative outside a compact subset K, of M and if 6: M—R is any everywhere negative con-
tinuous function, then there exists a Lipschitz continuous C® exhaustion function o: M—R
and a compact subset K, of M such that ¢ is d-convex on M — K.

The method used in § 1 of obtaining C* approximations on all of the manifold from
CO> approximations in neighborhoods of compaect sets applies not only to strictly convex
(or more generally §-convex) functions but also to other classes of functions: in particular,
it applies to strictly subharmonic and (on a complex manifold) plurisubharmonic functions.
Some of the theorem resulting from this method are given in [13], and a discussion of the
method in a general setting is given in {14].

§ 2. The usual product metric on the manifold S* xR is a complete metric of nonnega-
tive (in fact, identically zero) curvature; also, the projection map 8! x R—R is a C* func-
tion which is convex relative to this metric, and the square of this function is a C® convex

exhaustion function. Thus, in Theorem 1(b) the positive curvature hypothesis cannot be



242 R. E. GREENE AND H. WU

replaced by the hypothesis of nonnegative curvature, and in Theorem 1(a) the strict
convexity hypothesis cannot be replaced by the hypothesis of (not necessarily strict)
convexity. However, a result giving a strong topological restriction on complete non-

compact manifolds of nonnegative curvature does hold (see [3] and [23]).

TurorREM (Cheeger-Gromoll). If M is a complete noncompact Riemannian manifold
of nonmnegative curvature, then there exists a compact totally geodesic submanifold S of M
with the property that M is diffeomorphic to the total space of the normal bundle of S in M.

The method of proof of this theorem given in [23], which uses the convex exhaustion
function constructed in [3], can be modified to apply to the exhaustion function constructed
in [13] on a complete noncompact manifold whose curvature is nonnegative outside a
compact set: this exhaustion function is conveﬁ outside some compact set. This modified
argument yields the extension up to homotopy type of Theorem 4 (b) to the case of curva-
ture nonnegative (rather than positive, as originally assumed) outside a compact set.

§ 3. In Theorem 7, the restriction of the statements to the integrals of * nonnegative
subharmonic functions f can be weakened: the theorem remains true for continuous non-
negative subharmonic functions. The proof follows from application of an appropriate
method of approximating continuous subharmonic functions by C*® ones; this method is
discussed in [13]. It is also shown in [13] that it is enough in Theorem 7 (b) to assume that
M has nonnegative, not necessarily positive, curvature outside some compact set. A related
result of 8. T. Yau [29] is that the volume of a complete noncompact manifold of non-
negative Ricei curvature is infinite.

The role played in Theorem 7 by convexity of the exhaustion function can in fact
be played nearly as well by a subharmonic exhaustion function as the following theorem
([12; p. 288]) shows:

THEOREM (Greene and Wu). Let M be a noncompact ortented 0° Riemannian manifold

on which there exists a continuous exhaustion function g: M—R and a compact set K,= M
such that

() | (M —K,) is C2,

(b) ¢ | (M - K,) is (uniformly) Lipschitz continuous,

() @|(M —K,) is subharmonic.
Then, if f is a continuous nonnegative subharmonic function such that {p€M|f(p)>0, gp(p)>
max K, grad gp(p)=£0}=£0, there exist constants-A;>0 and. &, such that

f ‘Ptf? At — 1),
I\lt

and in particular §yf= + 0.
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Finally, S.-T. Yau has demonstrated a number of results on integrals of nonconstant sub-
harmonic functions on arbitrary complete Riemannian manifolds without any curvature
assumptions [29].

§ 4. In Theorem 9, the hypothesis that M have positive sectional curvature outside
some compact set can be replaced by the hypothesis that J/ have nonnegative sectional
curvature outside some compact set. The method of proof of this stronger result differs
from the proof given for Theorem 9 in technical detail only. Specifically, the exhaustion
function ¢: M —R constructed in [12] on any complete noncompact manifold M whose
curvature is nonnegative outside some compact set has the property that for all sufficiently
large 4 the sublevel set p—1(( — oo, 4)) has the homotopy type of M. This fact can be shown
using the method of [3] or [23] developed to prove the same fact in the case that M has
everywhere nonnegative curvature. Thus to complete the proof of the generalization of

Theorem 9 it need only be shown that

f 0 <1(g(— o0, )
¢~ L((~00,2y)

for all sufficiently large A. The convex set ¢—1({— oo, 1)) need not have ¢ boundary so
that Lemma 4 cannot be applied directly. However, by approximating ¢ by the convolu-
tion smoothings ¢, discussed previously, approximations of p~1({— oo, 1)) are obtained in
the sense that the measure of the symmetric difference of p—1(( — 0, 1)) and ¢; ((— °°, 1))
goes to 0 as >0+, MOreovér, the domains @;!((— oo, 1)) approach being convex in an ap-
propriate sense. Then the required inequality on f,-i(c,1,® follows from Lemma 4 by a
limit argument. A detailed discussion of the reasoning to be used is given in [23], where
the case of everywhere nonnegative curvature is discussed.

The restriction of Theorem 9 to manifolds of dimension (two and) four is a consequence
of the fact that the algebraic Hopf conjecture fails in general for manifolds of dimension
six or greater ([7]; see also [18]). But in dimension six a partial result is available: the
boundary terms have in this case the sign required to make the inequality of Lemma 3
hold (cf. [23]). But, since the integrénd ©® need not be nonnegative, only the following
result is implied: If M is a complete noncompact manifold of dimension six whose sectional
curvature is nonnegative outside some compact set and if ¢: M R is the exhaustion func-

tion on M constructed in [12] (which is convex outside some compact set), then

lim supf O < x(IM).
@~ Y((~00, A))

A +o0
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§ 5. Theorem 10(b) was originally demonstrated in [11] by much more complicated

methods than those employed here. Theorem 11 was also discussed in [11]. Some addi-

tional results closely related to Theorems 10, 11 and 12 are given in [9], [13], and [25].

Added in proof. (November 3, 1976); R. Walter has pointed out to us that Lemma 5

of the present paper also follows from Theorem 4.2.2. of his paper [28].
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