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1. Introduction 

Let L ~ be the complex Banach algebra of bounded Lebesgue measurable functions 

on the unit circle ~D in the complex plane. The norm in L ~176 is the essential supremum over 

aD. Via radial limits, the algebra H ~176 of bounded analytic functions on the unit disc D 

forms a closed subalgebra of L ~. This paper studies the closed subalgebras B of L ~ properly 

containing H ~176 For such an algebra B we let B x denote the closed algebra generated by 

H ~ and the complex conjugates of those inner functions which are invertible in the al- 

gebra B. (An inner function is an H ~ function unimodular on OD). I t  is clear that  Bzc  B. 

1%. G. Douglas [4] has conjectured that  B = B I for all B, and consequently algebras of the 

form B I are called Douglas algebras. 

A discussion of the Douglas problem and a survey of related work can be found in 

[11]. In  particular, it is noted in [11] that  the maximal ideal space ~ ( B )  of B can be identi- 

fied with a closed subset of ~Vn(H~), and when B is a Douglas algebra, ~ ( B )  completely 

determines B. This means that  if the Douglas question has an affirmative answer then 

distinct algebras B has distinct maximal ideal spaces. That  the latter assertion is true when 

one of the algebras is a Douglas algebra is the main result of this paper. We prove that  if 

B and B 1 are closed subalgebras of L ~ containing H `~, if  ~ ( B )  = ~ ( B 1 )  and if B is a Doug- 

las algebra, then B = B r Using this theorem, D. E. Marshall [9] has answered the Douglas 

question affirmatively. 

Using functions of bounded mean oscillation, D. Sarason [13] had proved the theorem 

above in the special case when B is generated by H ~ and the space of continuous functions 

on OD. By similar means, S. Axler [1], T. Weight [15] and the author [3] had verified the 

theorem for some other specific Douglas algebras. 

Section 2 contains some preliminary definitions and lemmas. The more technical 

aspects of the proof are in section 3 and the main theorem is proved in section 4. Some 
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readers m a y  perfer reading section 4 before sections 2 and 3. I n  section 5 we describe the 

largest C*-Mgebra contained in a Douglas algebra. 

The proof of our  main  result  follows a pa t t e rn  f rom Sarason's  paper  [12]. The proof 

of Theorem 6 below uses techniques f rom C. Fefferman and E. M. Stein [6]. I would like 

to express m y  warm thanks  to  Professor D. Sarason for giving invaluable aid, and  to 

Professors R. G. Douglas and  A. Shields for very  helpful discussions. I am also grateful  to 

Professor J.  Garnet t  for re-organizing the  paper, improving the English and  giving a 

simplified proof of Lemma 2 below. 

2. Preliminaries 

For  an integrable funct ion ](t) on 0D, denote  the harmonic  extension of ] to  D by  

1 l "  
](re ~~ = - ~  J_ P(r, 0 - t) ](t) dt 

where P(r, t) = (1 - r~)/(1 - 2r cos t + r 2) is the Poisson kernel. Let  V/(re ~~ = (~]/~x(re*O), 

~//ay(re'O) ), and  I V/(re'O)]~ = ] e/ /ex(re'O) [ 2 + ] ~]/~y(re~O) ] 2. Our first lemma is a Lit t lewood- 

Paley  identi ty.  

LE•MA 1. I ] / ,  gEL s and at least one o//(0) and g(0) vanishes, then 

l f~_ /(e~t)g(e")dt=I fD 2-~ ~ V](re~~ Vg(re ~0) r log drdO. 

This lemma follows from the  Parseval  iden t i ty  after expressing the  gradients in polar co- 

ordinates. The corresponding result for the upper  half plane is in [14, p. 83]. 

The second lemma can be proved using methods  in [6] bu t  it also follows f rom an in- 

var ian t  formulat ion of Lemma 1. For  z o = r 0 e ~~176 E D, let (S(Oo, ro) = {re % ] 0 - 0 o ] ~< 4(1 - r0) , 

r o < r < l  }. 

L~MMA 2. Let s>O,  I~ol =ro>~1/2. I! /ei~,  II/ l l~<l and I/(~o)1 > l  -~,  then 

~/S(Oo. ro)(1 - -  r) lv112r dr dO < C~ s(1 -- r0) 

where C 1 is independent o] e and r o. 

Proo/. Let  w=(Z-Zo) / (1-2oZ)=se  i~. On s = l ,  zo=roe ~~176 dqJ=P(ro, O-Oo)dO. Let  

/(z) = F(w) = ( 2 ~ ) - ~ _ ,  P(s, t-q~) F(t)dt. Then 

(2~)-~S ] F(e'~) - F(0)  ] 2d~ = (2~)-~ S P(r o, 0 -00) ]/(e '~ ) -/(Zo)[~dO 

= (2~)-~S P(ro, 0 -0o) ] / (e 'a)  ] ~ dO - I/(~0) I ~ < 2~  
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Hence by  Lemma 1, 

l-- f lVF(w)plog~lSdSd~<2e. g~ 

Now 1 -  Iwl~=(1  - Iz012)(1- ]z]~) / I1-50z]  ~ and  when zeS(Oo, to), I 1 - 2 o z  I ~<c~(1-Iz01) 

for some constant  cl, for all z. Thus  for re~~ ro) we have 

11 _-rro ~< c2(1 - I w l  2) ~< c31og [-~1 for some constants  c~, ca. 

Because IVF(w) l~sdsdq~ = IV/(z) 12rdrdO, we have 

2 1 ffs(o.,r.)(1-r)lVl(z)l~rdrdO<c3(1-ro)ffnlVF(w)l l og~sdsde f<~Cl (1 - ro )8 .  

We thus complete the proof. 

I f  I is an arc on ~D with center e u and  length I I I = 2~, we let 

R(I)={re'~ IO-tl 

A finite positive measure It on D is called a Carleson measure if there exists a constant  c 

such t h a t  #(R(1)) <c[I[ for all subarcs I of ~D, 

LEigi~IA 3. (Carleson [2]). Let tt be a Carleson measure on D such that It(R(I)) <c[  I [  /or 

all subarc8 I o/~D. Then/or 1 <19 < co 

< CA. /I1  II 

/or all IeL~(aD), where the constant A~ depends only on p. 

Following an a rgument  in [14, p. 236] one can easily prove Lemma 3 using maximal  

functions. 

For  an  arc I c e D ,  let 5 =  ]I[-1S~/(t)dt be the average of a funct ion / over I .  For  

/ eLI(~D), define 

We say l has bounded  mean  osc i l l a t i on , / eBMO,  if 11111, < Funct ions  in BMO can be 

related to  Carleson measures by  the following 

L E M M A 4. (Fefferman and Stein). For / E L ~(aD), the following conditions are equivalent: 

(i) I e BMO 

(ii) I] dit = (1 - r) I V /(rei~ 12 r dr dO, then It is a Carleson measure. 
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Furthermore i/ 

~(R(~)) 
e =  s u p - - ,  

I.r[<2. ] I I  

then there is a constant .4 i such that 

C 
A-~ < II/ll~, <Ale .  

Lemma 4 is proved in [6] for the case of upper half spaces. The proof there can easily 

be adapted to the present case using Lemmas 1 and 3. 

3. A distance estimate 

Throughout this section we fix an non-constant inner function b(z)6H ~176 and we set, 

for 0 < ~ < 1 ,  

G~ = {z6D: Ib(~)l/> 1-(~}. 

For convenience we assume G$ c {1/2 < [z l <  1}. 

L ~ M ~  5. Let 0<e,  ~<1.  I / / e L ~ ,  II/ l l~<l  a~d I/(~)l >~1 - ~  on G~, then the measure 

tt defined by 

dtt = Za~(z)(1 -r)[V/(z)12rdrdO 

satis/ies 

sup #(R(I)) < 

where C1 is the constant in Lemma 2. 

Proo/. Let I be some arc on ~D. ]~y Lemma 2 it suffices to find points rj e *~ in G, 

such tha t  G, ~ R(I)= [JjS(Oj, rj) and such tha t  ~(1 - r j ) <  ] I [ .  

For n = 0 ,  1, 2 ... .  and 1 <k~<2 ~, let {In.k} be the parti t ion of I into closed arcs of 

length [In,k] =2-~[I[. Let T(In.k)={zeR(I~.k); 1-]z]  >~2-~-2]I]} be the top half of 

R(I~.k). We select a subfamily 3 of {In,k} by the rule IjeY if l j  is a maximal  arc among 

those I~.k for which T(I~.k)~ G,#O. Then G~ N R(I)= (J~R(Ij) and the arcs in Y have 

pairwise disjoint interiors. 

For I j  6 y choose r f ~ 6 T(Ij) A G~ with smallest modulus rj. Then G, (~ R(Ij)= S(Oj, rj) 

and 1-r j~< I I j [ .  Hence G~ ~ R(I)= [J j S(Oj, rj) and X(1 -rj) < E l lj] <. [I[. 

Now consider a function f ~vith the following property: 
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(P1) / E L  ~176 and there  exist  e and  ~, 0 < e ,  ~ < 1 ,  such t h a t  the  measure  /~, defined b y  

d#~ =Za~(z) (1 - r )  I VII ~rdrdO satisfies sup1 #8(R(I))/I I l `<~. 

For  example ,  a funct ion sat isfying the  hypothes is  of L e m m a  5 has p rope r ty  (P1). 

THI~OREM 6. There is a constant C such that i /]  has property (1)1) then 

l im sup d(/b ~ , H ~) <~ C e 1/2 . 
n--~*O0 

Proo/. Since L~/H ~ is the  dual  of H 1 = {g el l1;  g (0)=0}  we have  

d(/b ~, H~176 = sup { ] l ; /(e'~ b ~( e~~ g(e'~ dOl : g E H~, H g Hl <<. l }. (1) 

B y  a dens i ty  a rgumen t  we can assume g E H %  Moreover,  if u is the  Blaschke factor  of g 

and  k=g/u, t hen  g=k + k ( u - 1 )  where nei ther  k nor  k ( u - 1 )  has  zeros in D. Thus  in esti- 

ma t ing  d(]b n, H ~) using (1), we can assume geH~ and g=h 2, h e l l  ~176 HhH~`<I. Finally,  

replacing / b y  a] +c with  l al  ~< 1 does not  h a r m  p rope r ty  (P1), so t h a t  we can assume 

[[/[[~ ~< 1 and f(O) = O. 

Wi th  these assumpt ions  we have  by  L e m m a  1, 

1 
�9 r log ! dr 2,. 1 = f for, V(bna) dO. (2) 

Since b n and  g are analyt ic  functions,  we have  (b~g)(z)=b~(z)g(z) so t h a t  V(bng)= bnVg+ 
gVb ~ on D. 

We  now es t imate  as follows: 

l f fDV/" (b'Vg)rlog~drdO I 

.<1 I'I" Ib~l Ivll Ivglrlog~ardO 
~JJD 

_ 1~ f f  ]b~l IV/12ihl  Ih'lrlog~drdO 
xl JJD 

(l fro 1 \1 /2 /4  l'l" ~ )I/2, `<V~ Ib~l Iv/Plhprlog-drdOI l -  / /  Ih'prlog drdO 
r / \2"gj JD 

B y  L e m m a  1 the  second factor  is 

4 n "~112 ('~r~f~rtlh-h(O)12dO) ~ '8 [I,II1) 1/2 �9 (3) 

To es t imate  the  first  factor  wri te  

lffo'b =llV/l lhl rlog!araO=L+fo\o=S,+S,. 



86 SUN-YUNG A. CHANG 

Since G~ c {]z I/> 1/2} we have log 1/r ~< c(1 - r )  on G~. Using (1)1) and Lemma 3 we then have 

$1 < cA~llhH~ < ~A~lfg]ll. (4) 

Also 

$2< ( 1 - d )  2nl ffD IV/l~lhl2r log!drdO. 

Since ]]/]]. < 2 H/I] ~ < 2, Lemmas 3 and 4 give 

S 2 < (1 -cS)2n8A1A2[]gHI . (5) 

Combining (3), (4) and (5) gives 

lffDV].bn~grlog~drdO]<C(8112+(1-c~)n)]lg][ 1 (6) 

for a universal constant C. 

We now estimate 

~" ffV/'gVb"rlog!drdO=~+ ~\a =S3+S.. 7g 

Write 
1 1 \~zu/1 1 \~/2 

]Sa[< (~ffa~ [V/]Z[h]~r l~ (~ ffa~ IVbnlzlhl2rl~ " 

Since IIb-II, 42, the~e two factors can be bounded as were Sx and Sg so that  

]Sal <~ 4Axe~/2Az I]g]ll. (7) 
7~ 

For S a we again use the Schwartz inequality to get 

iS41<(ff D iV/12[hlerlogldrdO~l/2((( ~ ~ 1 \112 \o~ r / \aj.\o~lVb"l~lhl~rl~ " 

As with the estimate for $2, the first factor is dominated by (8A~A2[[gU~)a/2, and since 

IW"l < ~(~ - ~)"~ IWl on D\G~, the ~econd factor does not e~ceed ~(X - ~)" 1(8A~ As IIgH~)i'~. 
Combining our bound for S 4 with (7) gives 

f f V/.gVb"rlog~drdO < C3(sa/2 +n(1-~)"-')[[gH1. 

for a universal constant C 3. 

With (6) and (2) this inequality implies 

1 f/(e,O ) bn(e,O ) g(e,O ) dO < G(s ''2 + n(1 - -  0) n-x) Ilalh 
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whenever  g ~ H ~ has  no zeros. B y  (1) and  our remarks  abou t  g immedia te ly  following (1) 

we have  
d(/b n, H ~176 <. 3C(e ~/~ +n(1  - 6)~,1), 

and  this proves  the  theorem.  

4. A characterization of Douglas algebras 

Before proving  the  ma in  theorem we mus t  make  some observat ions  abou t  max ima l  

ideal spaces. Fu r the r  details are in [11]. Because H ~176 is a logmodular  subalgebra  of L ~176 

[8], each ~0 E ~ ( H  ~ has a unique represent ing measure  m~ suppor ted  on ~(L~176 For  a n y  

/ E L  ~176 we can define f(~o)= S/dmr and b y  the  uniqueness of m~, f is cont inuous on ~(Hr176 

Of course, if for all gEH ~176 q)(g)=g(z) with z e D ,  then  f (T)=[(z)  f o r / e L  ~176 I f  H~176  B c L  ~176 

t hen  ~ ( B )  = {~ E 7~I(H~176 f(~v) ~(~0) = (/g) ̂  (q)) for all /, g E B}. I f  / e (L~176 -1 (i.e. / is an  in- 

ver t ible  e lement  of L ~176 and if ]/] = 1 a.e., t hen  we d e n o t e / - 1  = [. I f  B is a Douglas  algebra,  

then  ~ (B)={q~:  Iq0(b)[ = 1  whenever  b is inner  and  SeB} (c.f. [11], [4]). 

THEOREM 7. I /  B and B 1 are closed subalgebras o / L  ~176 containing H ~176 i/ ~ ( B ) =  

7In(B1) and i ] B  is a Douglas algebra, then B = B r 

Proof. T h a t  B c B 1 is not  difficult. I t  reduces to  showing t h a t  5 E B 1, whenever  b is an 

inner  funct ion invert ible  in B. Bu t  since ~ ( B )  = ~ ( B 1 )  , b has  no zeros on ~ ( B 1 )  and  as 

bEH~176 b is invert ible  in B 1. Hence  b = b  -1 is in B r 

To prove  B l c  B suppose B is genera ted  b y  H ~176 and a fami ly  {bz} of conjugates  of in- 

ner  functions.  For  any  finite set  F of the  index set {2}, let b F = H F  b~, and  let BF be the  

algebra genera ted b y  H ~~ and Sv- Clearly b~ e By if % e F.  Wri te  G~(bF) = {z E D: I bF(z) I >~ 

1 - ~ } ,  0 < ~ < 1 .  

Le t  g e B  I. Adding  a constant ,  we can assume geB11. Let  hE(H~176 -1 sat isfy Ihl = ]g[ 

a.e. and  let ]=gh- lEB1 . T h e n / e B ;  ~ and  [][ = 1  a.e. I t  suffices to  prove  ] E B  1. 

Since B is a Douglas algebra,  ~ ( B ) - - N  { ~ ( B v ) :  F ~  {bx}, F finite}. Since If[ = 1 on 

~ ( B 1 )  = ~ ( B ) ,  compactness  implies t h a t  for a n y  e > 0  there  is a finite set  F c { $ x }  such 

t h a t  Ill > 1 - e / 2  on :~l(B~). This  means  ]](z)l > 1  - e  on some region Ge(bv), 6 > 0 .  Indeed ,  

if there  were z~eal/~(bF) with [/(zn) [ ~ < l - e ,  then  any  cluster po in t  ~0 of {zn} in ~ t ( H  ~176 

would sat isfy [~(bv)[ = 1  so t h a t  ~0e~(B~) .  Bu t  since ] is cont inuous on ~(H~176  We 

would have  a contradict ion.  Decreasing ~, we can assume Ge(bv)c {Iz I > 1/2}. F r o m  L e m m a  

5 and  Theorem 6 we now have  

d(/, B) < d(/, By) < d(/, b~ H ~) = d(/b~, H ~ < Ce ~/~ 

for su i tably  large n. Because B is closed this means  /~  B. 
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5. A description of the largest C*-algebra contained in a subalgebra 

Suppose B is a closed subalgebra of L ~ properly containing H ~176 The largest C*-algebra 

contained in B is the algebra B N/~ w h e r e / ]  denotes the space of complex conjugates of 

functions in B. The proof of Theorem 7 yields a description of the functions in B (I/~ 

when B is a Douglas algebra. I n  view of the paper [9] this description of B f//~ is valid 

whenever H ~ c B c L ~ 

T~V~OREM 8. Suppose B is a Douglas algebra. L e t / E L  ~. T h e n / E B N  B i / and  only i/ 

/ satis/ies 

(P~) /or every s > 0  there is an inner/unction b e B  -1 and there is (~, 0 < 8 < 1  such that the 

measure d/z =Zc~(b)(z)(1 - r) I V/12rdrdO satis/ies /z(R(I)) <~e I I I / o r  all subarcs I o/~D. 

Proo/. Suppose / satisfies (P~). Then for any  s > 0 there is b E B -1 so tha t  b y  Theorem 

6, d(/, bnH~176 1/2 when n is large. H e n c e / E B .  Since [ also satisfies ( P 2 ) , / E B  N B. 

On the other  hand,  if / E B N/~ and I / I = 1, then  the proof of Theorem 7 shows t h a t  / 

has (P~). Being a C* algebra, B N/~ is the closed linear span of the unimodular  functions in 

B N/~. And  by  L e m m a  4 and the inequali ty IigiI.~<21[gll~, the space of functions in L ~176 

having  (P2) is uniformly closed. Hence each / E B N/~ has (P2). 

I n  the  special case b =z ,  the  closed algebra generated by  H ~ and ~ is actual ly the  space 

H ~176 + C ([7], [11]). Theorem 8 then  gives the  description from [12] of (H ~ + C) N (H~176 C) 

as VMO N L% 
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