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1. Introduction

Let L® be the complex Banach algebra of bounded Lebesgue measurable functions
on the unit circle 2D in the complex plane. The norm in L® is the essential supremum over
@D. Via radial limits, the algebra H® of bounded analytic functions on the unit dise D
forms a closed subalgebra of L®. This paper studies the closed subalgebras B of L® properly
containing H®. For such an algebra B we let B, denote the closed algebra generated by
H® and the complex conjugates of those inner functions which are invertible in the al-
gebra B. (An inner function is an H*® function unimodular on &D). It is clear that B,< B.
R. G. Douglas [4] has conjectured that B= B, for all B, and consequently algebras of the
form B, are called Douglas algebras.

A discussion of the Douglas problem and a survey of related work can be found in
[11]. In particular, it is noted in [11] that the maximal ideal space JH(B) of B can be identi-
fied with a closed subset of H(H®), and when B is a Douglas algebra, M(B) completely
determines B. This means that if the Douglas question has an affirmative answer then
distinct algebras B has distinct maximal ideal spaces. That the latter assertion is true when
one of the algebras is a Douglas algebra is the main result of this paper. We prove that if
B and B, are closed subalgebras of L® containing H®, if IM(B)=M(B;) and if B is a Doug-
las algebra, then B= B,. Using this theorem, D. E. Marshall [9] has answered the Douglas
question affirmatively.

Using functions of bounded mean oscillation, D. Sarason [13] had proved the theorem
above in the special case when B is generated by H*® and the space of continuous functions
on &D. By similar means, 8. Axler [1], T. Weight [15] and the author [3] had verified the
theorem for some other specific Douglas algebras.

Section 2 contains some preliminary definitions and lemmas. The more technical

aspects of the proof are in section 3 and the main theorem is proved in section 4. Some
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readers may perfer reading section 4 before sections 2 and 3. In section 5 we describe the
largest C*-algebra contained in a Douglas algebra.

The proof of our main result follows a pattern from Sarason’s paper [12]. The proof
of Theorem 6 below uses techniques from C. Fefferman and E. M. Stein [6]. I would like
to express my warm thanks to Professor D. Sarason for giving invaluable aid, and to
Professors R. G. Douglas and A. Shields for very helpful discussions. I am also grateful to
Professor J. Garnett for re-organizing the paper, improving the English and giving a

simplified proof of Lemma 2 below.

2. Preliminaries

For an integrable function f(t) on ¢.D, denote the harmonic extension of f to D by
1 T
oy _ _
flre®) py J'_,,P(r’ 0—1t)f(t)de
where P(r,t)=(1—1r2)/(1 —2r cos t+12) is the Poisson kernel. Let Vf(re'®)=(0f/ox(re'd),
ofoy(re'?)), and | Vf(re'®)|2=|0f/ox(re'?) |2+ | of /oy (re'?) |2. Our first lemma is a Littlewood-
Paley identity.

Lemwma 1. If f, g€L? and at least one of f(0) and g(0) vanishes, then

T

J__ it it _1 i0y | i0 1
o (") g(e )dt—nfDVf(re ). Vg(re )rlogrdrdﬂ.

This lemma follows from the Parseval identity after expressing the gradients in polar co-
ordinates. The corresponding result for the upper half plane is in [14, p. 83].

The second lemma can be proved using methods in [6] but it also follows from an in-
variant formulation of Lemma 1. For zy=re"® €D, let (S(0,, 7o) = {re’®: |6 —0,| <4(1—r,),

ro<r<1}.

LemMA 2. Let £>0, |z,| =ry=1/2. If fEL®, ||fllo<1 and |f(zo)| >1—¢, then

ff (L=7)|VFrdrdf<Cye(l —r)
566, 10)
where C, is independent of ¢ and 7.

Proof. Let w=(z—z)[(1 —Z,2)=se®. On s=1, z,=r,e"®, dp=P(r,, 0—0,)df. Let
f(z) = F(w)=(2m)1f" , P(s, t —¢) F(t)dt. Then
(27)~1f | F(e'?) — F(0) |2dg = (27) 1§ P(ry, 0 —00) | f(e*) — f(zo) |2d0
= (2m)~1f P(ro, 0 —0,) | f(e')|2d0 — | f(zo) |2 <2e.
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Hence by Lemma 1,

L f | v F(w)|? 1og——L sdsdp < 2.

7TtJo |
Now 1—|w|2=(1—|z|?(1—|2]|2)/|1—Z2|2 and when z€S8(By, r,), |1—Zp2| <cy(1=|2%))
for some constant ¢;, for all z. Thus for re'? € S(0,, 7,) we have

1—r
17y

<l —|wlh)< ey log|%l for some constants ¢y, ;.
Because |VF(w)|2sdsdp=|Vf(z)|2rdrdf, we have

ff (1—7) | Vi@)rrdrdd <c,(1 — ro)fj | VF(w)? logLsds dp < Cy(1—ry)e.
SBo 7o) D |w|

We thus complete the proof.
If I is an arc on @D with center ¢” and length |I| =26, we let

R(I)={re': |0—t| <6,1-8<r<1}

A finite positive measure u on D is called a Carleson measure if there exists a constant ¢
such that u(R(I))<c|I| for all subares I of oD,

Lemma 3. (Carleson [2]). Let u be a Carleson measure on D such that u(R(I))<c|I| for
all subarcs I of D. Then for 1 <p <o

[ 1 due <ca, il

for all f€ELP(8D), where the constant A, depends only on p.
Following an argument in [14, p. 236] one can easily prove Lemma 3 using maximal
functions.
For an arc 1<aD, let f,= |I|-1f,f(t)dt be the average of a function f over I. For
fELY8D), define
17l sup o [ 11—t

11|<2n

We say f has bounded mean oscillation, f€ BMO, if ||f||« < c°. Functions in BMO can be

related to Carleson measures by the following

Lemma 4. (Fefferman and Stein). For f € LY0D), the following conditions are equivalent:

i) feBMO
) If du=(1—r)| Vf(re'0)|2rdrdf, then u is a Carleson measure.
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Furthermore if

_ p(B))
¢ IISIZI;?! III ’

then there is a constant ‘A, such that
—<|lf B < 4ye.
A, *

Lemma 4 is proved in [6] for the case of upper half spaces. The proof there can easily

be adapted to the present case using Lemmas 1 and 3.

3. A distance estimate
Throughout this section we fix an non-constant inner function b(z) € H* and we set,
for 0<6<1,
Gy ={z€D: |b(z)| =1—-6}.

For convenience we assume G,<{1/2< |z| <1}.

Leuua 5. Let 0<g, 6<1. If fEL®, ||f]|o<1 and |f(2)| =1 —¢ on Gy, then the measure
u defined by
du = yes(2) (L —1)| V(2)|2rdrdb
satisfies

R(I
s 4240)

< Cye,
where C s the constant in Lemma 2.

Proof. Let I be some arc on 8D. By Lemma 2 it suffices to find points 7, % in G
such that G5 N R(I)< U ,8(0,, r,) and such that Z(1 —r;)< | I|.

For n=0,1,2, ... and 1<k<2", let {I, ,} be the partition of I into closed arcs of
length [I, .| =27"|I|. Let T(I, ,)={2€R(I, ,); 1—|z| >2"""%|I|} be the top half of
R(I, ;). We select a subfamily J of {I, ,} by the rule I,€J if I,is a maximal arc among
those I, ; for which 7(I, ;) N Gs+@. Then G5 N R(I)c U,R(I,) and the arcs in J have
pairwise disjoint interiors.

For I,€J choose r,e'% € T(I;) N G5 with smallest modulus 7;. Then G4 N B(I,)<=S8(6;, ;)
and 1—7,<|I;|. Hence Gy N R(J)= U, 8(0,,,) and (1 —r) <Z|I;| <|I|.

Now consider a function f with the following property:



A CHARACTERIZATION OF DOUGLAS SUBALGEBRAS 85
(P;) f€L* and there exist ¢ and 4, 0<e, §<1, such that the measure u; defined by
dus =ycs(z) (L —r)| Vf|2rdrdl satisties sup; us(R(I)/{I| <e.
For example, a function satisfying the hypothesis of Lemma 5 has property (P,).
THEOREM 6. There is a constant C such that if f has property (P,) then
lim supd(fb”, H®) < C &',
T->00

Proof. Since L*/H® is the dual of Hj={g€H?*; 9(0)=0} we have

d(fo", H") =sup{ = f )b g(e) d6| :g€H, |lglh < 1}- (1)

By a density argument we can assume g € H®. Moreover, if u is the Blaschke factor of ¢
and k=g/u, then g=Fk+k(u—1) where neither k nor k(u —1) has zeros in D. Thus in esti-
mating d(fb", H®) using (1), we can assume g€EH*® and g=h?, h€H>, ||h||;<1. Finally,
replacing f by af-+c¢ with |a| <1 does not harm property (P,), so that we can assume
Il <1 and f(0)=0.

With these assumptions we have by Lemma 1,

1
27

[resprengenan=1 [ vi-veariogtara. @

Since 4" and g are analytic functions, we have (67g)(z) =b"(2)g(2) so that V(b"g)=b"Vg+
gVb" on D,

We now estimate as follows:

1 . 1
‘?zf DVf-(b V!])Hog;drd@
<L [{ 1711971 1wl og aras

T D r

V2 . / I
= U |67] | vf|2[p| |#|rlog-drds
D

<V§(lff | 62" |Vf|2|h|2rlog1drd0 . éJ‘f |h'|2r10g1drd0)1/2.
S \wJ )b : r 7JJo r

By Lemma 1 the second factor is
4 (" o o\ 12 -
—| 1a=RO)Pd0) <8]g|l)™. (3)

To estimate the first factor write

—l-ff 14! |V]‘[2|h|2rlog1drd0=f +f =8,+8,.
TJJp r G5 D\Gj
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Since Gy < {|z] =1/2} we have log 1/r <¢(1 —r) on G4. Using (P,) and Lemma 3 we then have

8y < cAyel|h|3 < cAzelg|s 4)
Also

;S'2<(1——6)2"1—ff IVf|2|h|2rlog-1—drd0.
7Jj)p r

Since ||f]|« <2||/f||c <2, Lemmas 3 and 4 give
S, <(1 —5)2”8A1A2”g”1. (5)

Combining (3), (4) and (5) gives
i
%H Vi-b"ygr 10g%drd6]<0(e”2+ =8 lgll (6)
D

for a universal constant C.

We now estimate

l‘J‘fV)’-ng"rloglulrdf)=‘f +f =S;+8,.
w r Gs D\Gy

1 2(7 |2 ! (1 2] 72 Too & "
|Ss]<{= (VIR |R|Prlog=drdf) (= Vo™ B|h|Prlog=drdf) .
7 JJes r 7 )J)e, r

Since ||b"|[ <2, these two factors can be bounded as were §; and S, so that

Write

A
|S3'<4—7;131/2A2”9”1~ (7)

For §,; we again use the Schwartz inequality to get

1/2 1/2
B (H \vf|2|h|2r10g1drde) (H |vbn|2]h|2rlog1drde) .
D\Gys r D\Gg r

As with the estimate for S, the first factor is dominated by (84,4,|lg|l,)*/%, and since
| V8" | <n(l—8)"1|Vb| on D\Gy, the second factor does not exceed n(1 —8)" (84, A,||g]l,)"'.
Combining our bound for S, with (7) gives

}tff Vf.gvb"rlog%drdﬁ'<03(81’2+n(1—6)"‘1)“gl|1.
D

for a universal constant C,.
With (6) and (2) this inequality implies

<O+ n1—8)"")glls

|55 [Henrenaeras
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whenever g € H® has no zeros. By (1) and our remarks about g immediately following (1)
we have
d(fo™, H®) < 3C(e¥2 +n(1 —§)"1),

and this proves the theorem.

4. A characterization of Douglas algebras

Before proving the main theorem we must make some observations about maximal
ideal spaces. Further details are in [11]. Because H® is a logmodular subalgebra of L®
[8], each ¢ € N(H®) has a unique representing measure m, supported on FN(L*®). For any
f€L® we can define f(g)=f fdm, and by the uniqueness of m,, f is continuous on M(H®).
Of course, if for all g€ H®, p(g) =g(z) with z€ D, then f(p)=f(z) for f€L®. If H*< B<L®,
then T(B)={p€ MEH=): fg)d(g)=(fg)" (¢) for all j, g€ B}. I fE(L=) (ie. [ is an in-
vertible element of L®) and if |f| =1 a.e., then we denote f~1=f. If B is a Douglas algebra,
then M(B)={p: |p(b)| =1 whenever b is inner and b€ B} (c.f. [11], [4]).

TureorEM 7. If B and B, are closed subalgebras of L® containing H®, if M(B)=
M(B,) and +f B is a Douglas algebra, then B= B,.

Proof. That B< B, is not difficult. It reduces to showing that b€ B, whenever b is an
inner function invertible in B. But since JH(B) = M(B,), b has no zeros on M(B,) and as
beH®< By, bis invertible in B;. Hence 5 =b—1 is in B,.

To prove B, < B suppose B is generated by H® and a family {b,} of conjugates of in-
ner functions. For any finite set F of the index set {A}, let by=11.b,, and let By be the
algebra generated by H® and b;. Clearly b,€ By if A€ F. Write Gy(bz)={2€D: |bs(2)| =
1-4}, 0<d<1.

Let g€ B,. Adding a constant, we can assume g€ By, Let h€(H®) ! satisfy |k| =g
a.e. and let f=gh—1€ B;. Then f€ Bi* and |f| =1 a.e. It suffices to prove f€ B,.

Since B is a Douglas algebra, TH(B)=N{M(B;): F<={b;}, F finite}. Since |f| =1 on
M(B,) = M(B), compactness implies that for any >0 there is a finite set F<{b;} such
that |f] >1—¢/2 on M(By). This means |f(z)| >1—e& on some region G4(by), 5>0. Indeed,
if there were z,€Gy,(br) With |f(z,}| <1—e¢, then any cluster point ¢ of {z,} in M(H>)
would satisfy |p(bp)| =1 so that @€ M(B;). But since f is continuous on M(H®). We
would have a contradiction. Decreasing d, we can assume G;(b;)< {|z| >1/2}. From Lemma

5 and Theorem 6 we now have
d(f, By<d(f, B) <d(f, bz H®) = d(fb}, H*) < O

for suitably large ». Because B is closed this means f€ B.
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5. A description of the largest C*-algebra contained in a subalgebra

Suppose B is a closed subalgebra of L® properly containing H®. The largest C*-algebra
contained in B is the algebra BN B where B denotes the space of complex conjugates of
functions in B. The proof of Theorem 7 yields a description of the functions in BN B
when B is a Douglas algebra. In view of the paper [9] this description of BN B is valid

whenever H*< B< L™,

THEOREM 8. Suppose B is a Douglas algebra. Let fEL®. Then f€ BN B if and only if

f satisfies
(Py) for every £>0 there is an inner funciion b€ B~! and there is 8, 0<5<1 such that the
measure dy = yesn(2) (1 —r) |Vi|2rdrdf satisfies p(R(I))<e|I| for all subarcs I of &D.

Proof. Suppose f satisfies (P,). Then for any ¢>0 there is b € B! so that by Theorem
6, d(f, b»H®) <CeV2 when n is large. Hence f€ B. Since f also satisfies (P,), f€EBN B.

On the other hand, if f€ BN B and |f| =1, then the proof of Theorem 7 shows that f
has (P,). Being a O* algebra, BN B is the closed linear span of the unimodular functions in
BN B. And by Lemma 4 and the inequality ||g||«<2||g||«, the space of functions in L*
having (P,) is uniformly closed. Hence each f€ BN B has (P,).

In the special case b=z, the closed algebra generated by H* and Z is actually the space
H*+C ([7], [11]). Theorem 8 then gives the description from [12] of (H*+C)N (H®+ ()
as VMONL®.
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