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1. Introduction 

The mathematical theory of trees, as first discussed by Cayley in 1857 [3], was 

concerned in the enumeration aspect with two contrasting cases; the points (or lines) 

of the trees in question were either all alike or all unlike. For the allied subject of 

series-parallel electrical networks, R. M. Foster [5] has introduced enumerations by 

two variables, the number of elements in the network (corresponding to lines of a 

tree) and the number of these which are marked, with each mark distinct from every 

other. Two networks which differ only by a permutation of marks are counted as 

different if the differently marked elements are dissimilar, with dissimilarity as ex- 

plained in [5] and [2]. The same kind of enumeration is done here for trees, thus in- 

cluding both classical cases in one frame. The trees so marked are called labeled trees. 

A second kind of marking is also considered. This is familiar from graph col- 

oring, where each point or line of a graph is given one of c colors. Note that  every 

element (point or line) of a colored tree has some color (if uncolored elements were 

permitted, they could all be said to be colored with a new color c+  1) and that  in 

any particular coloring, any number of different colors (up to c) may appear, in con- 

trast to a labeled tree. The enumeration is by number of elements (points or lines) 

and by number of colors, or by number of elements and by number of distinct 

colors. 

I t  may be noted that  the enumerating functions for colored trees are formally 

similar to those for unmarked trees, while both differ from those for labeled trees. 

This formal similarity does not persist when tree colorings are subject to the chro- 

matic condition that  adjacent elements (points having a line in common or lines having 
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a point in common) may not have the same color, the third kind of marking con- 

sidered here. Colored trees satisfying the chromatic condition are here called chro- 

matic. 

For each of these three kinds of murking, the trees considered may be rooted 

or not, oriented or not, and the marked elements may be points or lines; hence here 

are 24 possible enumerations, all of which are carried out here. 

This large amount of material is given a unified exposition by means of a 

theorem due to Pdlya (the Hauptsatz of [8]) for rooted trees, and a combination of 

the work of Pdlya (1.e.) and that  of Otter [7] for the free (unrooted) trees. I t  may 

be noticed that  the labeled eases do not permit the use of Pdlya's theorem in its 

stated form, but the proof given by Pdlya is in fact sufficiently general to permit 

its application also to these eases; this is also the ease for the labeled series-parallel 

networks treated in [2]. I t  may be noted also that  the same procedure flows with 

equal directness for the various kinds of linear graphs in Harary [5] when these are 

marked in any of the three ways, but for brevity these results are deferred to a 

later occasion. 

Generating functions are used here, as in other combinatorial settings, for con- 

venience in expressing briefly the relationships of their coefficients, which here are 

numbers of the various kinds of trees in question. These relationships in principle 

could have been derived in a strictly finite combinatorial way. In this usage, the 

variables of the generating functions are to be regarded as indeterminates or tags 

whose powers identify the coefficients, and formal operations on the generating func- 

tions used to express coefficient relations are replacements of basic rules in an under- 

lying algebra of sequences, as in Bell [1]. 

2. Definitions 

The definitions necessary for clarity as to what is being enumerated are given 

in this section. Because they are mostly well known, they are given with a minimum 

of explanation. 

A tree is a connected linear graph without cycles (or slings), hence of nullity 

(Zusammenhangszahh Pdlya) zero. Because of the absence of cycles, the number of 

points in a tree is one greater than the number of lines, and either may be used as 

a parameter. A rooted tree is a tree in which one point, the root, is distinct from 

the others; when the root is connected to only one other point, the tree is called 

planted (Setzbaum: Pdlya). An oriented tree is a tree in which every line is directed. 
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Two poin ts  of a t ree are a d j a c e n t  if t hey  have  a line in common,  two lines if t h e y  

have  a po in t  in common.  

A branch  of a t ree a t  any  po in t  consists  of a l ine to  an  ad j acen t  po in t  and  

all  the  poin ts  and  lines which m a y  be reached  b y  pa ths  from the  given po in t  t h rough  

this  line; the  branches  a t  a roo t  are all  p l a n t e d  trees.  The  weight of a b ranch  is the  

n u m b e r  of lines i t  contains;  the  weight  of a po in t  is t he  weight  of i ts  l a rges t  branch.  

The  cent ro id  (Massenzentrum) of a t ree is the  set of all  po in ts  of smal les t  weight;  

i t  is well known t h a t  th is  set consists  e i ther  of a single point ,  when the  t ree is said 

to  be (uni)centroidal ,  or of two a d j a c e n t  points ,  when i t  is said to  be bicentroida] .  

I t  is also known t h a t  b icent ro ida l  t rees wi th  an  odd  n u m b e r  of poin ts  are  impossible,  

while for an  even n u m b e r  of points ,  p - 2  q, the  b ranches  a t  each centroid ,  excluding 

the  one t h rough  the  other ,  have  in to ta l  q points .  These  facts  will be used  in re- 

]s t ing the  enumera t ion  of t rees  to  t h a t  of roo ted  trees.  

Two trees are isomorphic if the re  is a one to  one correspondence  be tween  the i r  

poin ts  which preserves  ad jacency .  Two roo ted  trees are i somorphic  if t h e y  are  iso- 

morphic  as trees and  the  correspondence leaves the  roo t  unchanged .  Po in t s  or lines 

carr ied in to  each o the r  b y  an  i somorph i sm are called similar.  Two labeled  trees are 

i somorphic  if t h e y  are  i somorphic  as unlabeled  trees and  the  e lements  labe led  (points  

or lines) e i ther  r ema in  unchanged  or are changed to s imilar  elements .  Similar  de- 

f ini t ions hold  for colored and chromat ic  t rees  as well as for the  corresponding ori- 

en ted  var ie tes .  

As in the  classical  case of Cayley,  all  enumera t ions  are  of nonisomorphic  t rees  

(of the  var ious  k inds  ci ted above) .  

No te  t h a t  because  label ing is done wi th  d i s t inc t  marks ,  every  i somorphism of 

a l abe led  roo ted  t ree  carries each labe led  b ranch  a t  the  roo t  e i ther  into i tself  or in to  

one of i ts  i somorphic  images,  and  never  in to  ano the r  labe led  branch.  This is to  

say  t h a t  two branches  of the  same labe led  t ree  can be i somorphic  only when each 

h.~s no labels.  
3. P61ya's Theorem 

F o r  b r e v i t y  of s t a t emen t ,  t he  t heo rem will be s t a t e d  in a l imi ted  two var iab le  

form which satisfies p resen t  needs.  Also Pd lya ' s  geometr ica l  t e rminology  will be aban-  

doned.  A few p re l imina ry  r ema rks  are necessary.  

The  theorem concerns the  re la t ions  of two enumera t ing  genera t ing  funct ions,  for 

b r ev i t y  here cal led enumera to rs .  

The  f irst  of these,  S (x ,  y), is the  enumera to r  of a. s tore of objec ts  according to 

the i r  r ank  or size wi th  respect  to  two given charac ter i s t ics  e.g. the  labe led  trees 
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enumerated by  number  of points and by  number  of labels. This enumerator in ge- 

neral is of the form S (x, y) = • Sij/~ (x) gj (y) 

with the sets of functions (/4 (x)), (gj(y))linearly independent. The form of these func- 

tions is dictated by  the given characteristics. The proper choice for labeled trees, as 

will appear, is /n ( x ) = x  n, gm (y)=y'~/m!.  

The second enumerator,  T (x, y), is the enumerator,  with respect to the same 

characteristics as tha t  of the store, of the inequivalent selections of the objects n 

at  a t ime and in order, with each object chosen independently. Thus T (x, y) is of 

the form T (x, y) = Z Tij/~ (x) gj (y). 

This leaves undefined equivalence of selections and composition of characteristics. 

The rules for these are as follows. The first refers to the order of selection and must  

be preassigned. Two selections are equivalent if there is a permutat ion of a group 

G which sends one into the other. The group G is specified by  its cycle index 

1 ttltl....t  H ( t l ,  t 2 . . . . .  t n ) = ~ Z h t ,  i . . . .  i n , 

with i i + 2 i 2 + . . .  + n i n = n ,  h the order of G and h~,i .... tn the number  of permuta-  

tions of G having i I cycles of length one, i 2 of length two and so on. Note tha t  

Hn (1, 1 . . . . .  1) = 1, and tha t  if all orders of selection are distinct Hn =t~ ~ while if 

all are equivalent Hn is the cycle index of the symmetric group, which I write 

Cn (t 1, t 2 . . . . .  tn)/n! and take 

1 + ~ Cn (t 1, t 2 . . . . .  tn)/n! = exp (t 1 § t2//2 + . . .  + tn/n §  (1) 
1 

which can be easily verified from the explicit expression cf the Cn (P61ya [8], 

p. 162). 

The second, the composition of characteristics, applies in the case of a fixed 

order of selection, and is taken as defined by the product rule, as in Ford and Uhlen- 

beck [4]; namely, the enumerator  for two objects together with both orders of se- 

lection distinct and hence with cycle index H2=t~, say T2(x, y), must  satisfy 

T 2 (x, y ) =  S 2 (x, y). This rule and the nature of the characteristics of the objects enu- 

merated determines the functions /~ (x) and gj (y) in the enumerator,  S (x, y). 

The theorem may  n o w ' b e  s ta ted as follows: 

THEOREM (PSlya): I /  objects are chosen independently /rom a store o/ ob]ects 

having enumerator S=  S (x, y) which satis/ies the product rule, and i/ the order equi. 
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valence o/ choices o/ n is speci/ied by the cycle index H~ (tl, t 2 . . . . .  t n ) ,  then the distinct 

(inequivalent) choices o/ n have enumerator T~ (x, y ) =  Hn (S 1, S 2 . . . . .  S,.) with S~ the enu- 

merator /or choices o/ Ic identical objects (~--1 ,  2 . . . . .  S 1 = S). 

Note  tha t  the produc t  rule itself becomes a special case of the theorem, when 

H~ = t~. 

This differs f rom P61ya, firstly in t h a t  the produc t  rule is taken  as one of 

the assumptions o f  the theorem which makes it possible to use the more general kind 

of enumerators  which apply  to the labeled cases, secondly in t ha t  the conclusion is 

s tated '% stage earlier". The choices of k invar iant  for a cycle of length k are ex- 

clusively of like objects and if 

S (x, y) = Z S~s x i yJ, 

then  Sk = S  (x k, yk), which is PSlya 's  conclusion. P61ya's proof applies to this more 

general case with slight changes of formulat ion only. As noted above, a different form 

of enumerator  is required for labeled trees. 

4. Rooted Trees with Point  Labels 

Take rp, m as the number  of (nonisomorphic) rooted trees with p points, m of 

which are labeled with distinct labels, in the  way  first described above. Because the 

labels are distinct, the  enumerator  which satisfies the p roduc t  rule mus t  be taken  

in the form 

r (x, y) = ~ rp, ~n xPP Ym/m! 1 

= ~ x" Z r,, ,~ y'~/m! = Y. x ~ r~ (y) 
p = l  rn=0 

(2) 

Take r~,m(n) as the 

root, so t h a t  
p - 1  

r~, ,n = ~ rp. m (n). (3) 
n = l  

Now apply  PSlya ' s  theorem to the enumerat ion  of rp, m (n) or wha t  in the same 

thing, to  the determinat ion of the enumerator :  

rn (x, y) = • r~, ,n (n) x v ym/m!  

since the assignment of labels to two trees together  involves a binomial coefficient 

which is proper ly  accounted  for by  form (2) in a manner  familiar f rom the gener- 

at ing funct ion for permuta t ions  of objects of general specification. 

corresponding number  when there are n branches at  the 
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The stpre is the collection of p lanted  trees which m a y  be branches at  the root, hence 

has enumerator  r (x, y). I n  the form (2), r (x, y) satisfies the p roduc t  rule, as a lready 

ensured. The cycle index is C, (t 1, t 2 . . . . .  tn) /n! ,  since there is complete s y m m e t r y  in 

the n branches.  

The choices of k which remain invar iant  under  a cyclic permuta t ion  of length 

k are exclusively of like objects, bu t  by  the remark at  the end of Section 2, no two 

labeled branches at  the root  can be alike; hence Sk = r (x k, 0). 

The root  m a y  be labeled or unlabeled, hence contributes x ( l + y )  to  the enu- 

meration.  By  this remark  and the theorem 

rn (x, y) = x (1 + y) C~ (r (x, y), r (x ~, O) . . . . .  r (x ~, O))/n! 

and finally, by  (3) and (1), 

r(x ,  y ) =  ~ . r ~ ( x , y ) = x ( l §  (r(x,  y ) § 2 4 7 2 4 7 2 4 7  (4) 

where for b rev i ty  r ( x  k, O)- -r (xk) .  Noting t h a t  

r (x, 0) = r (x) = x exp (r (x)) § r (x2)/2 + ... + r (xk)/k § ...), (5) 

which is a well-known result  (P6lya [8], equat ion 1', p. 149) and hence a verification, 

equat ion (4) m a y  be given the symmetr ical  form 

r (x, y) exp r (x) = (1 + y) r (x) exp r (x, y). (4 a) 

Equat ion  (4) consti tutes the complete enumerat ion of nonisomorphic rooted trees 

with point  labels, and to emphasize its importance is summarized in 

T H E O R E M  1. The numbers rp,n o/ rooted trees with p points, m o] which have 

distinct labels, are completely determined by the enumerator identity (4) with 

r (x, y) = Z r~m x p yP/m! 

For  ease of evalution of these numbers  it is helpful to develop some consequences 

of equat ion (4). 

Denot ing part ial  derivatives by  the usual suffix notat ion,  equat ion (4 a) has as 

immediate  consequenses: 

a (x) rx (x, y) = (1 § y) ry (x, y) = r /(1 - r) (6) 

with r = r (x, y) and a (x) = r (x) /r '  (x) (1 - r (x)), 

the prime denoting a derivative. Since r (x) is a power series with integral coefficients 
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so is r (x)/(1 - r (x)) which is equal  to r (x) § r 2 (x) + .-- . I t  then  follows b y  recurrence 

f rom i ts  def ini t ion t h a t  a (x) is also; indeed b y  d i rec t  ca lcula t ion  

a (x )  E a n x  ~ - x - x  3 - x  4 - 2 x  5 §  6 3 x  7 §  s - x  9~ x 1 ~  

Not ice  t h a t  the  first  half  of (6) corresponds  to the  recurrence 

(1 § y) rp (y) = kr~ (y) ap+l -k (7) 
k 1 

with the  pr ime  denot ing  a de r iva t ive  and r ,  (y) def ined b y  the  las t  form of (2); as- 

suming r p : r ,  (0) compu ted  i nde pe nde n t l y  (by equa t ion  (5) e.g.) th is  seems to be the  

s imples t  comput ing  formula .  

F o r  concreteness i t  m a y  be no t iced  t h a t  

r ( x , y ) = x ( l + y )  ~ x  2 ( l + 2 y §  a ( 2 § 2 4 7 2 4 7  

+ x 4 (4 § 13 y + 34 ye /2  + 64 ya /6  § 64 y4/24) + 

+ x 5 (9 + 35 y + 119 y~/2 + 326 y3/6 § 625 y4/24 § 625 y5/120) § . . . .  

These numer ica l  resul ts  are consis tent  wi th  r n ~ - n "  1, which is a resul t  due to  

Cayley.  I t  is in te res t ing  to see how (4 a) leads to i ts  proof.  Make the  subs t i tu t ion  

x = x ;  x y - z  in (2) and  (4a) ;  (2) m a y  be r ewr i t t en  

r (x, z) = R 0 (z) + x R i (z) + ... + x p Rp (z) + ... (8) 

Rp  (z) = ~ rp+,~, m z'~/m! 
m=0 

and  (4 a) becomes 

r (x, z) exp r (x) = (x ~-z) (r ( x ) / x )  exp r (x, z). (9) 

Since r ( x ) / x =  1 § x +  . . . ,  i t  follows f rom (9) t h a t  

r (0, z) = R 0 (z) - x exp  R 0 (z), (10) 

which is P61ya's  equa t ion  (l.c. (2.37) p. 200) from which he es tabl ishes  Cay ley ' s  

result .  

F o r  completeness  i t  m a y  be no ted  t h a t  

x a  (x) rx (x,  z) = (x ~ § x z - z a  (x)) r~ (x,  z), ( l l )  

which implies  a recurrence in Rp (z) and  its der iva t ives .  An  ins tance  of this  is 

R,  (z) = R0 (z), 
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which verif ies the  i d e n t i t y  r~, ~ 1 = rn~ appea r ing  in the  numer ica l  resul ts  and  other-  

wise ev iden t  b y  a s imple a rgumen t .  

Turn ing  now to the  colored ease, t he  n u m b e r  of colors c m a y  be rega rded  as 

fixed; the  enumera to r  of roo ted  t rees  wi th  colored po in t s  is t a k e n  as 

q (x; c) = x q l  (c) + x 2 q~ (c) + . . .  (12)  

with  e as pa ramete r .  No te  t h a t  q (x; 1 ) = r  (x) in the  n o t a t i o n  appear ing  above.  

Consider the  colored roo ted  t rees  wi th  n branches  a t  the  root .  The s tore  enu- 

me ra to r  is t h a t  of p l an t ed  trees,  hence is q(x; c), and  Sk (x)=q(xk; c). The cycle 

index,  as above,  is C~ (t 1, t 2 . . . . .  tn)/n! The roo t  m a y  be colored in c ways.  Hence  

b y  the  theorem and  (1) 

q (x; c) = x c exp (q (x; c) -§ q (x2; c)/2 + ... q (x~; c)/k +. . . ) .  (13) 

I t  m a y  be helpful  to summar ize  th is  resul t  also in 

THEOREM 2. The numbers qp(c) o/ rooted trees with p points, each o] which 

may be colored with any o/ e colors, are completely determined by the enumerator 

identity (13) with 

q (x; c) = Z x" q~ (e). 

I t  m a y  be no ted  for numer ica l  eva lua t ions  of the  coefficients t h a t  

xq~(x; c)=q(x;  c ) [ l+ xq x (x ;  c)+x2q~(x2; c )+ . . .+xkqx(xZ;  c ) +  . . . ] .  (14) 

The recurrence ob ta ined  f rom this  m a y  be used to  eva lua te  the  funct ions  q~ (c) as 

po lynomia l s  in c in the  m a n n e r  fami l ia r  f rom the  eva lua t ion  of t he  coefficients r~ 

of r (x). 

These po lynomia l s  in the i r  t u r n  de te rmine  the  N e w t o n  series 

which is of in te res t  because  the  coefficients Q~k are  t he  number s  of roo ted  t rees  wi th  

n po in ts  and  /~ specified colors. No te  t h a t  Qnl = rn0= rn, Qn,~ = r,,~. The f i rs t  few re- 

sul ts  are  
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For  the chromatic  case, take p (x; c) for the  enumerator ,  with c again a para- 

meter,  and consider again the rooted trees with n branches at  the root. The root  

again m a y  have a n y  one of c colors bu t  none of the (planted) trees at  the root  

m a y  have the root  color on the point  adjacent  to the root. The number  of rooted 

trees with any  given root  color is the same as t ha t  with any  other  given color. 

Hence the store enumera tor  is ( ( c - 1 ) / c )  p (x; c) and  it  follows at  once tha t  

c - 1  
p (x; c) = x c exp ~ -  (p (x; c) + p (x2; c)/2 + ... + p (xk; c)/k  + ...) (16) 

and, for the recurrence relations, 

xpx (x; c) = p (x; c) [1 + c ~ 1  (~p~ (x; ~) + x 2 px (x2; c) + . . .  x k p~ (xk; c) +...)]. 
L c ] 

The first few values of the Newton  series are 

(;) (;) Pl = c P8 = 4 + 9 

Notice t h a t  in a no ta t ion  corresponding to  (15), P~2 = 2 r.0 (n > 1), P ~  = r~., which 

serve as verifications. 

4. Rooted Trees with Line Labels 

The procedure of course is the same as above, and only points of difference will 

be noticed. 

For  the  labeled case, take  r* (x, y) as the enumerator  by  number  of lines and 

number  of labels with r* (x, y ) =  1 § x r~ (y )§  . . . .  The store for the theorem now has 

enumera tor  x (1 + y )  r* (x, y) since a line at  the root  m a y  be labeled or not,  and con- 

nected to a ny  line labeled rooted tree. Bu t  by  shifting point  labels to lines f rom the 

outer  points  in, it is clear t h a t  the  store enumerator  is also r (x, y). Hence the  es. 

sential relat ion is 

x ( l + y )  r* (x, y ) = r ( x ,  y) (17) 

which of course implies t ha t  r~ (y) has a fac tor  ( l + y ) .  

For  the colored case, take q* (x; c) as the enumera tor  with q* (x; c) = 1 + xq~ (c) + 

x~q * (c)+ . . . ;  then,  just  as above 

xcq* (x; c ) = q  (x; c). (18) 
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The chromatic  condition introduces essential differences. Take p* (x; c ) a s  the 

enumera tor  for rooted chromatic  trees with n lines at  the root  with p* (x; c )=  

1 +xp'~ (c)+.. . ,  and c again a parameter .  Wi th  n branches at  the root, no two of 

the lines at  the root  of these branches, which are stems of planted trees, may  have 

the same color since they  have the root  as common point.  Take g,~ (c)as the number  

of chromatic  planted trees with c line colors, n q-1 lines, and a given color on the 

stem. Then the store enumerator  in the theorem is 

xg (x; c ) - x  [1 + xg 1 ( c ) + x  ~g~(c) + ...]. (19) 

Since each planted tree at the root  has a different stem color symmet ry  is lost; 

instead the cycle index is t~ and since n colors for the stems may  be chosen from 

Hence p * ( x ; c ) = l +  ~ p* (x; c) = [l + x g (x; c)] c. (21) 
r ~ :  J. 

On the other  hand g(x; c) may  be enumerated  in terms of p* (x; c), since a 

planted tree is formed by adding a stem to a rooted tree; thus exactly as above 

C--n , } 
g (x; c) = 1 + E - - -  p~ (x; c) 

c 

= [1 § xg (x; c)] c 1. 
(22) 

The factor  (c n ) / c = t C n l ) / t n  ~ / -  \ / / r ~ x  is required because n o n e o f t h e  n l i n e s j o i n e d  

to the stem may have the stem color. 

Equations (21) and (22) completely determine both enumerators p*(x; c)and 

g(x; c); thus e.g. g(x; 1 ) = 1  a n d p * ( x ,  l ) = l + x ,  wh i l eg (x ;  2 ) = l + x g ( x ; 2 ) = ( 1 - x )  -1 

and p* (x; 2) - g2 (x; 2) = (1 x) -2. 

To determine the polynomials p* (c) and their Newton  series defined as in (15), 

the following development  is helpful. First  by  differentiation of (22) it follows tha t  

gx (x; c) = I c -  l + (C~22) X ~x] g2 (x; c ) (23) 

and from (21) and (22) 

p* (x; c) = [1 + xg (x; c)] g (z: c). (24) 

These lead to the recurrences 
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2 n gn (c) = [ (n  + 1) c - 2 n]  g~_ 1, 2 (c) t (25)  

2 n p *  ( c ) = ( n §  l ) cg~_ l .2 (c )  ) 

with gn2 (c) defined by  g2 (x; c) = 1 § ~ x ~ g~2 (c) 
n = l  

or by  its consequence 

gn2 (C) - - g n - 1  (C) g l  (C) § gn 2 (C) ~2 (C) -] . . . .  § g l  (C) gn 1 (C), 

These lead to a serial computat ion,  the first few results of which in Newton  series 

form are 

p~ '=3  2 p ~ = 6  2 \ 3 ]  § 1296 

5.  T r e e s  

For  unlabeled trees, enumerated  by number  of points by  t (x) = t 1 x ~ t 2 x 2 ~i ... , 

it is known (Otter [7]) t ha t  

1 2 1 
t (x) = r (x) - ~ r (x) § ~ r (x 2) (26) 

where r (x) is the corresponding enumerator  for rooted trees. PSlya [8] has p roved  an 

equivalent,  though  less compact,  result  by  a procedure which is easily adapted  to the 

marked cases. 

Briefly this consists of dividing the enumerat ion by  considering separately the  

centroidal and bicentroidal trees defined above, and relating these enumerat ions to  

those for rooted trees, following the obvious suggestion of the pictures of these trees. 

As a remainder  for the reader, note again tha t  bicentroidal trees with an odd number  

of points are impossible, while for an even number  ( p =  2 q ) t h e  branches at  each cen- 

troid, excluding the one through the other,  have in total  q points; the picture is of 

two rooted trees joined by  a line. The centroidal trees with p points  have branches 

at  the centroid having at  most  [ ( p - 1 ) / 2 ]  points. 

For  labeled points  take t (x, y) as the enumerator;  as before 

P 
t (x, y) = x t 1 (y) § x 2 t~ (y) § . . . .  ~ x ~ ~ tpm ym/m!  (27) 

m~0 
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for the division into centroidal and bicentroidal  trees, write 

t (x, y) = t' (x, y) + t 1' (x, y). (2s) 

By the remarks  above and by  the theorem the  bicentroidal trees are completely 

enumerated  b y  

t2q (y) = ~ [r2q (y) § rq (0] 

t~'q+ 1 (y) = 0. 

For  the centroidal trees, those rooted trees having  more  t h a n  [ ( p - 1 ) / 2 ]  points  

in a ny  branch at  the root  mus t  be subtracted f rom the  tota l  and after some simpli- 

fication it turns  out  t ha t  

2 
t~q (y) = r2q (y) - r2, 1 (Y) rl (Y) - r2,-2 (y) r2 (y) . . . . .  rq (y) 

t' ~q+l (Y) = r~q+l (y) - ruq (y) r 1 (y) - r 2 q _ i  (y) r~ (y) . . . . .  r q + l  (y) rq (y). 

Summing these on p results in 

I S 1 t (x, y) = r (x, y) - ~ r (x, y) § ~ r (x2). (29) 

For  y = 0, this is Otter 's  formula  (equation (26) above). 

Wi th  a (x) as in (6) and  a prime denot ing a derivative the results corresponding 

to (6) are 

a (x) t~ (x, y) = r (x, y) § x a  (x) r' (x ~) (30) 

(1 § y) ty (x, y) = r (x, y ) = a  (x) tx (x, y) - x a  (x) r" (x2). 

By the last of these t~ (x, 0 ) =  r (x), 

which is the same as tpl = rr, i.e. the  number  of trees with just  one label equals the 

number  of rooted trees, another  verification. 

Final ly with z = x y  as in (8) and 

t (x, z)  = T O (z) + x T 1 (z) + . . .  (31)  

with T~ (z) = Z t~+m. m zm / m !  

it follows from ( x +  z) tz (x, z) = r (x, z), (32) 

t h a t  T'n 1 (Z) § z T  n ( z )  = R~ (z), (33) 



T H E  N U M B E R S  OF L A B E L E D  COLORED AND CHROMATIC T R E E S  223 

which entails in par t icular  z To (z)=R 0 (z) or passing to coefficients, n tnn = rnn =n ~-1, 

so tnn =n n-u, another  of Cayley's  results, and hence a verification. 

For  trees with colored points there  is no essential change from the unlabeled 

case and if u (x; c) is the enumera tor  

1 
q 2 ( x ; c ) + ~  (x~;c) (34) u (x; c) = q (x; c) - ~ q 

For  point  chromatic  trees take v (x; c) as the  enumerator .  The bicentroidal  trees 

are required to  have different  colors a t  the  two centroids, hence 

(c )  = (c ) .  

A similar ad jus tment  is required for centroidal trees with the final result  t ha t  

l c - 1  
- - - -  p~ (x;  c)  ( 3 5 )  v (x; c) = p (x; c) 2 c 

For  line marks,  the same notat ional  procedure as for  rooted trees is followed: 

a superscript  star denotes the  line marked  case. 

For  line labeled trees t* (x, y) is the enumerator ,  bu t  for convenience t* (x, y) and 

t~ (x, y) are the enumerators  of centroidal and bicentroidal  trees, respectively. Remem- 

bering tha t  x is the variable for  number  of lines, the results for  bicentroidal trees are 

t* 8. ~q (Y) = 0 

t~. 2q+1 (y) = (1 + y) [(r* (y))~ + r* (0)]/2. 

Adjusting similarly for  centroidal trees, it  is found tha t  

1 
t* (x, y) = r* (x, y) - ~ x (1 + y) (r* (x, y)) § ~ x (1 § y) r* (x~). (36) 

I t  is wor th  noting t ha t  

1 ~ 1 
x ( l  § (x, y)=r(x ,  y ) - ~ r  (x, y ) §  § 2) 

= t (x, y) § (y § yV2)  r (x~). (37) 

For  line colored trees, u* (x, c) is the enumera tor  and by  an argument  like tha t  

above 
1 1 

u* (x; c )=q*  (x; c ) - ~  xc  (q* (x; c))~ + ~ xcq* (x~; c) (38) 
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] q2 (X; C) C x c u* (x; c) = q (x; c) - ~ + ~ q (x~; c) 

C - - 1  
= u (x; c) + ~ -  q (x~; c). 

For  line chromatic  trees, v* (x; c) is the enumerator  and 

1 ~ 1 
v*(x;  c ) = p * ( x ;  c)-2xcg (x; c)+2xcg(x~; c) 

with g (x; c) the enumerator  defined by  (19). 

(39) 

(40) 

§ v (x2; c)/2 + . . . ) ,  (45) 

x (1 + y) q* (x, y) = ~ (x, y), 

x ( l + y ) ~ * ( x ,  y ) = ~ ( x , y ) .  

(43) 

(44) 

(46) 

(47) 

(48) 

v (x; c) = z (x; c) - u s (x; c). 

For  the point  chromatic  case 

v(x; c ) = x c  exp 2 Cc  1~ (v (x; c) 

(1) (x; c) = v (x; c) - c - 1 v2 (x; c). 
v 

For  line labels 

6. Oriented Rooted and Free Trees 

These differ f rom the trees above only by  having each line o r ien ted  in one of 

the two possible directions. As is to be expected the enumerat ions differ only in minor  

details, so this section is mainly a compendium. Greek letters are used for the enu- 

merators,  ~, ~r, and v for rooted trees and 3, v, and (I) for trees, with a star as be- 

fore distinguishing the line labeled cases. 

For  the point  labeled case the results are 

e (x, y ) = x  (1 ~ y ) e x p  2 (e (x, y ) + ~  (x~)/2 + . - .  + e  ( x k ) / k + ' ' ' ) ,  (41) 

T (x, y) = e (x, y) - ~2 (x, y). (42) 

For  the point  colored case 

(x; c) - x c exp 2 (n (x; c) ~ ~r (x2; c)/2 + . . .  + :~ (xk; c) /k  ~ . . . .  ), 
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F o r  l ine colors 

xc~* (x; c)=~ (x; c), 

x c v* (x; c) = v (x; c). 

:For t h e  l ine c h ro ma t i c  case 

v* (x; c) = p* (2 x; c), 

(I)* (x; c) = v* (2 x; c )  
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(49) 

(50) 

(51) 

(52) 

T h e  p o i n t  l abe led  case has  a d e v e l o p m e n t  l ike i ts  u n o r i e n t e d  c o r r e s p o n d e n t  which  

is o m i t t e d  to  save  space; i t  has  b e e n  used  to  o b t a i n  the  n u m b e r s  a p p e a r i n g  in  

e (x, y) = x (1 + y) + x 2 (2 + 4 y + 4 y~/2) + x a (7 + 19 y + 36 y2/2 + 36 y3/6)  + 

+ x 4 (26 + 94 y + 264 y2/2 + 512 ya /6  + 512 y4/24) § . . .  

T (x, y) = x (1 + y) + x 2 (1 + 2 y + 2 ye /2)  + X a (3 + 7 y + 12 y2/2 + 12 yS/6) + 

+ x 4 (8 + 26 y + 68 y2/2 + ]28 ya/6 ~- 128 y4/24) + . - - .  
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