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1. Introduction

The mathematical theory of trees, as first discussed by Cayley in 1857 [3], was
concerned in the enumeration aspect with two contrasting cases; the points (or lines)
of the trees in question were either all alike or all unlike. For the allied subject of
series-parallel electrical networks, R. M. Foster [5] has introduced enumerations by
two variables, the number of elements in the network (corresponding to lines of a
tree) and the number of these which are marked, with each mark distinct from every
other. Two networks which differ only by a permutation of marks are counted as
different if the differently marked elements are dissimilar, with dissimilarity as ex-
plained in [5] and [2). The same kind of enumeration is done here for trees, thus in-
cluding both classical cases in one frame. The trees so marked are called labeled trees.

A second kind of marking is also considered. This is familiar from graph col-
oring, where each point or line of a graph is given one of ¢ colors. Note that every
element (point or line) of a colored tree has some color (if uncolored elements were
permitted, they could all be said to be colored with a new color ¢+ 1) and that in
any particular coloring, any number of different colors (up to ¢) may appear, in con-
trast to a labeled tree. The enumeration is by number of elements (points or lines)
and by number of colors, or by number of elements and by number of distinct
colors.

It may be noted that the enumerating functions for colored trees are formally
similar to those for unmarked trees, while both differ from those for labeled trees.
This formal similarity does not persist when tree colorings are subject to the chro-

matic condition that adjacent elements (points having a line in common or lines having
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a point in common) may not have the same color, the third kind of marking con-
sidered here. Colored trees satisfying the chromatic condition are here called chro-
matie.

For each of these three kinds of marking, the trees considered may be rooted
or not, oriented or not, and the marked elements may be points or lines; hence here
are 24 possible enumerations, all of which are carried out here.

This large amount of material is given a unified exposition by means of a
theorem due to Pélya (the Hauptsatz of [8]) for rooted trees, and a combination of
the work of Pélya (l.c.) and that of Otter [7] for the free (unrooted) trees. It may
be noticed that the labeled cases do not permit the use of Pélya’s theorem in its
stated form, but the proof given by Pélya is in fact sufficiently general to permit
its application also to these cases; this is also the case for the labeled series-parallel
networks treated in [2]. Tt may be noted also that the same procedure flows with
equal directness for the various kinds of linear graphs in Harary [5] when these are
marked in any of the three ways, but for brevity these results are deferred to a
later occasion.

Generating functions are used here, as in other combinatorial settings, for con-
venience in expressing briefly the relationships of their coefficients, which here are
numbers of the various kinds of trees in question. These relationships in principle
could have been derived in a strictly finite combinatorial way. In this usage, the
variables of the generating functions are to be regarded as indeterminates or tags
whose powers identify the coefficients, and formal operations on the generating func-
tions used to express coefficient relations are replacements of basic rules in an under-

lying algebra of sequences, as in Bell [1].

2. Definitions

The definitions necessary for clarity as to what is being enumerated are given
in this section. Because they are mostly well known, they are given with a minimum
of explanation.

A tree is a connected linear graph without cycles (or slings), hence of nullity
(Zusammenhangszahl: Pélya) zero. Because of the absence of cycles, the number of
points in a tree is one greater than the number of lines, and either may be used as
a parameter. A rooted tree is a tree in which one point, the root, is distinct from
the others; when the root is connected to only one other point, the tree is called

planted (Setzbaum: Pélya). An oriented tree is a tree in which every line is directed.
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Two points of a tree are adjacent if they have a line in common, two lines if they
have a point in common.

A branch of a tree at any point consists of a line to an adjacent point and
all the points and lines which may be reached by paths from the given point through
this line; the branches at a root are all planted trees. The weight of a branch is the
number of lines it contains; the weight of a point is the weight of its largest branch.
The centroid (Massenzentrum) of a tree is the set of all points of smallest weight;
it is well known that this set consists either of a single point, when the tree is said
to be (uni)centroidal, or of two adjacent points, when it is said to be bicentroidal.
It is also known that bicentroidal trees with an odd number of points are impossible,
while for an even number of points, p=2¢, the branches at each centroid, excluding
the one through the other, have in total ¢ points. These facts will be used in re-
lating the enumeration of trees to that of rooted trees.

Two trees are isomorphic if there is a one to one correspondence between their
points which preserves adjacency. Two rooted trees are isomorphic if they are iso-
morphic as trees and the correspondence leaves the root unchanged. Points or lines
carried into each other by an isomorphism are called similar. Two labeled trees are
isomorphic if they are isomorphic as uulabeled trees and the elements labeled (points
or lines) either remain unchanged or are changed to similar elements. Similar de-
finitions hold for colored and chromatic trees as well as for the corresponding ori-
ented varietes.

As in the classical case of Cayley, all enumerations are of nonisomorphic trees
(of the various kinds cited above).

Note that because labeling is done with distinct marks, every isomorphism of
a labeled rooted tree carries each labeled branch at the root either into itself or into
one of its isomorphic images, and mnever into another labeled branch. This is to
say that two branches of the same labeled tree can be isomorphic only when each
has no labels.

3. Pélya’s Theorem

For brevity of statement, the theorem will be stated in a limited two variable
form which satisfies present needs. Also Pdlya’s geometrical terminology will be aban-
doned. A few preliminary remarks are necessary.

The theorem concerns the relations of two enumerating generating functions, for
brevity here called enumerators.

The first of these, §(z, y), is the enumerator of a_store of objects according to

their rank or size with respect to two given characteristics e.g. the labeled trees
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enumerated by number of points and by number of labels. This enumerator in ge-
neral is of the form Sz, y) =28 fi (x)g; (y)

with the sets of functions (f; (x)), (g;(y)) linearly independent. The form of these func-
tions is dictated by the given characteristics. The proper choice for labeled trees, as
will appear, is f, () =2", gn (y)=y"/m!.

The second enumerator, 7 (z, y), is the enumerator, with respect to the same
characteristics as that of the store, of the inequivalent selections of the objects =»

at a time and in order, with each object chosen independently. Thus 7' (w, y) is of
the form Tz, y)=2XTf (%) g;(y).

This leaves undefined equivalence of selections and composition of characteristics.
The rules for these are as follows. The first refers to the order of selection and must
be preassigned. Two selections are equivalent if there is a permutation of a group

G which sends one into the other. The group & is specified by its cycle index

1
H(t, ty ..., ty) =72 hys,..

== thg  fin
r

with & +24,+ - +ni,=n, h the order of G and A, ,,.,;, the number of permuta-
tions of G having 4, cycles of length one, i, of length two and so on. Note that
H,(1,1,...,1)=1, and that if all orders of selection are distinct H,=1¢] while if
all are equivalent H, is the cycle index of the symmetric group, which I write
Oy (ty, ty ..., tz)/n! and take

142 Coltyy by .y ta)/nl=exp (b, +2,/2+ - +tp/n+ ), (1)
1

which can be easily verified from the explicit expression of the C, (Pdlya [8],
p.- 162).

The second, the composition of characteristics, applies in the case of a fixed
order of selection, and is taken as defined by the product rule, as in Ford and Uhlen-
beck [4]; namely, the enumerator for two objects together with both orders of se-
lection distinct and hence with cycle index H,=t, say T,(z, y), must satisfy
T, (x, y) =82 (z, y). This rule and the nature of the characteristics of the objects enu-
merated determines the functions f; (x) and g¢;(y) in the enumerator, S(z, y).

The theorem may now'be stated as follows:

THEOREM (Pdlya): If objects are chosen independently from a store of objects
having enumerator S=8 (x, y) which satisfies the product rule, and if the order equi-
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valence of choices of n 1s specified by the cycle index H, (4, ty, ..., tn), then the distinct
(tnequivalent) choices of n have enumerator Ty (x, y) = H, (81, Sy ..., S») with Sy the enu-
merator for choices of k identical objects (k=1, 2, ..., 8;=21).

Note that the product rule itself becomes a special case of the theorem. when
H,=1t.

This differs from Pélya, firstly in that the product rule is taken as one of
the assumptions of the theorem which makes it possible to use the more general kind
of enumerators which apply to the labeled cases, secondly in that the conclusion is
stated “‘a stage earlier”. The choices of k invariant for a cycle of length k are ex-

clusively of like objects and if
Sz, y) =X 8,2y,

then 8= (2", ¢*), which is Pdlya’s conclusion. Pélya’s proof applies to this more
general case with slight changes of formulation only. As noted above, a different form

of enumerator is required for labeled trees.

4. Rooted Trees with Point Labels

Take 7, ,, as the number of (nonisomorphic) rooted trees with p points, m of
which are labeled with distinct labels, in the way first described above. Because the
labels are distinet, the enumerator which satisfies the product rule must be taken
in the form

7 (%, y) =2 1p,m 2" y"/m!

. n . 2)
=p§1x zzorp,m?/ /m3=zx 75 (%)

since the assignment of labels to two trees together involves a binomial coefficient
which is properly accounted for by form (2) in a manner familiar from the gener-
ating function for permutations of objects of general specification.

Take 7, ,(n) as the corresponding number when there are » branches at the

root, so that

p-1
Tp,m= gl Tp,m (). (3)

Now apply Pélya’s theorem to the enumeration of 7, ,(n) or what in the same

thing, to the determination of the enumerator:

o (2, Y) =1y, m (n) 27 Y™ /m!
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The store is the collection of planted trees which may be branches at the root, hence
has enumerator r(x, ). In the form (2), r(x, y) satisties the product rule, as already
ensured. The cycle index is C, {t;, t,, ..., t,)/n!, since there is complete symmetry in
the » branches.

The choices of k which remain invariant under a cyclic permutation of length
k are exclusively of like objects, but by the remark at the end of Section 2, no two
labeled branches at the root can be alike; hence Sy =r (2, 0).

The root may be labeled or unlabeled, hence contributes z (1 +y) to the enu-

meration. By this remark and the theorem
(@, y)=2(1+y) 0, (r(x, y), 7(@% 0), ..., r(z", 0))/n!
and finally, by (3) and (1),

r(, y):,glrn (@, y)=x(L+y)exp (r(x, y)+r(@®)/2+ - +r@")/k+-), (4

where for brevity r(z*, 0)=r («*). Noting that
r{x, 0)=r(x)=x exp (r (2))+ 7 (@®)/2+ - +r (") /k+ ), (5)

which is a well-known result (Pdlya [8], equation 1°, p. 149) and hence a verification,

equation (4) may be given the symmetrical form
r(z, y) exp 7 (x) = (1 +y)r (x) exp 7 (z, ¥). (4 a)

Equation (4) constitutes the complete enumeration of nonisomorphic rooted trees

with point labels, and to emphasize its importance is summarized in

TueorEM 1. The numbers r,, of rooted trees with p points, m of which have

distinct labels, are completely determined by the enumerator identity (4) with
7 (@, y)=Zrpn 2" y"/m!

For ease of evalution of these numbers it is helpful to develop some consequences
of equation (4).
Denoting partial derivatives by the usual suffix notation, equation (4 a) has as

immediate consequenses:
a(@)r: (v, y)=1+y)ry(z, y)=r/(1-7) (6)
with r=r{(z, ¥} and a(@)=r(x)/r (x) (1 —7r(z)),

the prime denoting a derivative. Since r (x) is a power series with integral coefficients



THE NUMBERS OF LABELED COLORED AND CHROMATIC TREES 217

so is 7 (x)/(1 —r(x)) which is equal to r(x)+7*(z)+ ---. It then follows by recurrence

from its definition that a (x) is also; indeed by direct calculation
a(@)=Sa,a"=v—"—a*—225+2° 32" +42> — a2 + 20+ .- .

Notice that the first half of (6) corresponds to the recurrence
, y4
d+y)rp (y):k21krk (y)ap+1-x (7

with the prime denoting a derivative and 7, (y) defined by the last form of (2); as-
suming r,=r, (0) computed independently (by equation (5) e.g.) this seems to be the
simplest computing formula.

For concreteness it may be noticed that

rx, =21 +y)+22(1+2y+29*/2)+2° 2 +5y+95/2+94%/6) +
+at (44 13y +34y%/2+644/6+64y*/24) +
425 (9+35y+1199%/2 + 326 4°/6 + 6254 /24 + 6254°/120) + - .

These numerical results are consistent with 7,, =»" !, which is a result due to
Cayley. It is interesting to see how (4 a) leads to its proof. Make the substitution

x=ux; xy==z in (2) and (4a); (2) may be rewritten

7 (%, 2) =Ry (2) + T B (&) + - +a" Ry (2) + - (8)

By@)= 3 ryomme”/ml
and (4a) becomes -
7 (2, 2) exp r (x) = (x4 2) (r () /) exp r (2, 2). )
Since 7 (z)/x=1+x+---, it follows from (9) that
(0, z2) = R, (z) = exp R, (2), (10)

which is Pdlya’s equation (le. (2.37) p. 200) from which he establishes Cayley’s
result.

For completeness it may be noted that
xa(x)r, (2, 2)=(®+xz—2a ()7, (z, 2), (11)
which implies a recurrence in R, (z) and its derivatives. An instance of this is

R, (2) =Ry (2),



218 JOHN RIORDAN

which verifies the identity r, ,_ =74, appearing in the numerical results and other-
wise evident by a simple argument.
Turning now to the colored case, the number of colors ¢ may be regarded as

fixed; the enumerator of rooted trees with colored points is taken as
q(z; 0) =gy () + 2" gy (c) + - (12)

with ¢ as parameter. Note that ¢ (x; 1)=r(z) in the notation appearing above.

Consider the colored rooted trees with n branches at the root. The store enu-
merator is that of planted trees, hence is ¢(z; ¢), and S () =gq (z*; ¢). The cycle
index, as above, is C,(#;, t,, ..., t.)/n! The root may be colored in ¢ ways. Hence
by the theorem and (1)

q(x; c)=zc exp (q(x; c)+q (=% c)/2+ - q (2% ¢)/k+--). (13)

It may be helpful to summarize this result also in

THEOREM 2. The numbers q,(c) of rooted trees with p points, each of which
may be colored with any of ¢ colors, are completely determined by the enwmerator
identity (13) with

q(x; c) =2 2" gy (0).

It may be noted for numerical evaluations of the coefficients that
2. (5 ) =g (%5 ) [1+2¢: (%5 ¢)+ 2" ¢ (3% o) + -+ + 2% gz (&5 ) + -], (14)

The recurrence obtained from this may be used to evaluate the functions g, (c) as
polynomials in ¢ in the manner familiar from the evaluation of the coefficients 7,
of r(x).

These polynomials in their turn determine the Newton series

qn (c)anlc+Qn2 (;) + e an (;)’ (15)

which is of interest because the coefficients Q.. are the numbers of rooted trees with

n points and k specified colors. Note that @ui=7,0="7n, Qnn="na. The first few re-

c c
g =c¢ q3=26+10(2)+9(3)
c

c c ¢
q2—c+2<2) q4=4c+44(2>+102(3)+64(4)-

sults are
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For the chromatic case, take p (x; ¢) for the enumerator, with ¢ again a para-
meter, and consider again the rooted trees with n branches at the root. The root
again may have any one of ¢ colors but none of the (planted) trees at the root
may have the root color on the point adjacent to the root. The number of rooted
trees with any given root color is the same as that with any other given color.

Hence the store enumerator is ((c—1)/c) p(z; ¢) and it follows at once that
-1
p(x; c)=xc exp c—~c—(p (;¢) +p(a® ¢)/2+ - +p (¥ e)/k+ ) (16)
and, for the recurrence relations,
c—-1 2 2 K k
zp; (x; ¢) = p (x; ¢) L+ == (@p: (%5 ) + 2" pe (a7 ¢) + - " pe (@75 €) )| -

The first few values of the Newton series are

e ns(9)+0(2)
me2(3)  mms(g)eaa(g) co(]):

Notice that in a notation corresponding to (15), Pra=27,9(n>1), Pnn=7s,, which

serve as verifications.

4. Rooted Trees with Line Labels

The procedure of course is the same as above, and only points of difference will
be noticed.

For the labeled case, take r* (z, y) as the enumerator by number of lines and
number of labels with r*(x, y)=1+2z7f (y)+:--.  The store for the theorem now has
enumerator z(1+y) " (z, y) since a line at the root may be labeled or not, and con-
nected to any line labeled rooted tree. But by shifting point labels to lines from the
outer points in, it is clear that the store enumerator is also r(z, y). Hence the es-

sential relation is
z(l+y) r* (x, y)=r(z, y) (17)

which of course implies that r, (y) has a factor (1-+y).
For the colored case, take ¢* (z; ¢) as the enumerator with ¢* (x; ¢) =1+ 2 ¢ (c) +

x*q3 (¢)+ -+ ; then, just as above

zeq® (z; ¢) =g (3 c). (18)
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The chromatic condition introduces essential differences. Take p* (x; ¢) as the
enumerator for tooted chromatic trees with = lines at the root with p* (x; ¢)=
1+2pf(c)+ -+, and ¢ again a parameter. With » branches at the root, no two of
the lines at the root of these branches, which are stems of planted trees, may have
the same color since they have the root as common point. Take g, (¢) as the number
of chromatic planted trees with ¢ line colors, n 41 lines, and a given color on the

stem. Then the store enumerator in the theorem is
xg(r; e)=x[1+xg, (c)+atg,{c)+ -] (19)

Since each planted tree at the root has a different stem color symmetry is lost;

instead the cycle index is {7 and since n colors for the stems may be chosen from
. ¢ . P o € n o ng. 7
¢in | | ways Py (x5 €)= w) (x; ¢). (20)

Hence p*(aey=1+ > pf(x; ¢)=[1+2g (x; )" (21
: n-1
On the other hand g¢(z;¢c) may be enumerated in terms of p*(x; ¢), since a

planted tree is formed by adding a stem to a rooted tree; thus exactly as above

c—n
g (x; ¢)=14+%—— p; (2; ¢)
(%3 ¢) P (22)

c—-1

=[1+zg(x; c))

,Al /o
The factor (¢c—n)/c= (c )/(C) is required because none of the n lines joined
n,

n
to the stem may have the stem color.

Equations (21) and (22) completely determine both enumerators p* (z; ¢) and
g (z; ¢); thus e.g. ¢(x; 1)=1 and p* (x, 1)=1+2, while g (v; 2)=1+2g(z; 2)=(1~a)™"
and p* (x; 2)=¢% (x; 2)=(1— )%

To determine the polynomials pj (c) and their Newton series defined as in (15),

the following development is helpful. First by differentiation of (22) it follows that
C o) — -2y 9 o, ;
g,(x,c)—[c 1+( 5 )xax]g(m,c) (23)
and from (21) and (22)

P (@ e)=[1+2g(x; 0)]g (a: ). (24)

These lead to the recurrences
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2n gy (c)=[(n+1)c—2n]gn,,1,2(c)‘ (25)
2npn(c)=m-+1)cgn 1.2(c) j

with ¢us (c) defined by Gy e)=1+2 2" gua (¢)
n=1
or by its consequence

Gnz (€) =gn-1(c) gy (c) + gn2(c) gy (c)+ -+ g5 (¢) gn1{c)

These lead to a serial computation, the first few results of which in Newton series

$=1 s—a(S)16(2
gt es(d)
* " c ¢ c
= = 7 +12
pree B 5(2)+ 5(3) 5(4)
* Cc * [ .9 C i . [# P C .
P2 3(2) Ps 6(2)1 ~79(3) {»1296(4)+1296(5)

5. Trees

form are

l

For unlabeled trees, enumerated by number of points by t(z)=t, x+t, 2%+ -,

it is known (Otter [7]) that

t(yc)zr(ac)w%r2 (x)+%r(x2) (26)
where 7 (z) is the corresponding enumerator for rooted trees. Pélya [8] has proved an
equivalent, though less compact, result by a procedure which is easily adapted to the
marked cases.

Briefly this consists of dividing the enumeration by considering separately the
centroidal and bicentroidal trees defined above, and relating these enumerations to
those for rooted trees, following the obvious suggestion of the pictures of these trees.
As a remainder for the reader, note again that bicentroidal trees with an odd number
of points are impossible, while for an even number (p=2¢q) the branches at each cen-
troid, excluding the one through the other, have in total ¢ points; the picture is of
two rooted trees joined by a line. The centroidal trees with p points have branches
at the centroid having at most [(p—1)/2] points.

For labeled points take f(x, y) as the enumerator; as before

t(z, y) =zt (y) +* t(y)+--= 2 Zzotpm ?/m/m! (27)
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Also, for the division into centroidal and bicentroidal trees, write
t(x, y)=t (z, y)+t"’ (x, y). (28)

By the remarks above and by the theorem the bicentroidal trees are completely

enumerated by
rr 1 2
taq () = 5 [re (y)+7,(0]

té:H-l (y)=0.

For the centroidal trees, those rooted trees having more than [(p—1)/2] points
in any branch at the root must be subtracted from the total and after some simpli-

fication it turns out that

trg (4) = T2q (¥) —T2q-1 (4) 11 (¥) = T2a2 (®) 72 (¥) — - — 72 (%)
téa+1 () =rogs1 (@) —r2e W) 11 (Y) —T2q-1 @) T2 () — - — T2 @) e (y)-

Summing these on p results in

1 1
t(z, y)=r(z, .?/)—57’2 (2, y) + 57 (). (29)
For y=0, this is Otter’s formula (equation (26) above).
With a (x) as in (6) and a prime denoting a derivative the results corresponding
to (6) are
a(@)t: (x,y) =1z, y)+za(@)r (@)

(30)
(L+y)t, (z, 9) =7 (2, y)=a (@) t: (x, y) — xa (@) r' (7).

By the last of these iy (x, 0)=r (),

which is the same as ¢, =r,, i.e. the number of trees with just one label equals the
number of rooted trees, another verification.

Finally with z=2y as in (8) and

t(x,2)=Ty(2)+ 2Ty (2)+ -~ (31)
with Ty(2)=2tpsm mz"/m!
it follows from (x+2)t, (x, 2)=r(x, 2), (32)

that Ty_1(2)+ 2T, (z) = R, (2), (33)
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which entails in particular z T (z) =R, (2) or passing to coefficients, ntu, =7, =n""",

80 tnn=n""2, another of Cayley’s results, and hence a verification.

For trees with colored points there is no essential change from the unlabeled

case and if u (; ¢) is the enumerator
1, L
u(@0)=q(x; )57 (¥ o) +59(%0) (34)

For point chromatic trees take v (x; ¢) as the enumerator. The bicentroidal trees

are required to have different colors at the two centroids, hence
1 c— 1
Vg (C)=TP§ (c).
A similar adjustment is required for centroidal trees with the final result that

0@ 0)=p (@ o)~ 3 9 (25 0 (35)

For line marks, the same notational procedure as for rooted trees is followed:
a superscript star denotes the line marked case.

For line labeled trees t* (x, y) is the enumerator, but for convenience ¢} (z, y) and
ty (r, y) are the enumerators of centroidal and bicentroidal trees, respectively. Remem-

bering that z is the variable for number of lines, the results for bicentroidal trees are

t;, 2¢ (¥)=0
152041 (¥) = (1L +9) [(T ())* + 15 (0)]/2.

Adjusting similarly for centroidal trees, it is found that

1 1
@ y)=r" (2 y) =52 (L+y) (" (=, ) T 5o (L+y)r" (7). (36)
It is worth noting that

* 1 2
2 (1+9)8 (@ 9)=r (@ 9) =57 @ 9)+3 (1 +9)*r (&)

=t(x, y)+ (y+y°/2)r (2*). 37

For line colored trees, u”* (z, ¢) is the enumerator and by an argument like that

above

w* (5 0)=a" (&5 ) — 5 20 (d” (@ O+ 70" (2 0 39)
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1
zeu® (x; ¢)=q (x; c)—éq2(x; c)+§q(x2; )

(39)
—u(z; 0)+ 5 a (@ o)
For line chromatic trees, v* (x; ¢) is the enumerator and
* * 1 2 1 2
v (x; c)=p (; c)~§xcg (x; c)+§xcg(x;c) (40)

with ¢ (x; ¢) the enumerator defined by (19).

6. Oriented Rooted and Free Trees

These differ from the trees above only by having each line oriented in one of
the two possible directions. As is to be expected the enumerations differ only in minor
details, so this section is mainly a compendium. Greek letters are used for the enu-
merators, o, 7, and » for rooted trees and v, v, and @ for trees, with a star as be-
fore distinguishing the line labeled cases.

For the point labeled case the results are
o(x, y)=x(1+y) exp 2(o (x, y)+0(@)/2+ - +o (&) /k+ ), (41)
T(z, y)=g (@ y)— 0" (@, ). (42)
For the point colored case
a(x; ¢)=zcexp 2 (mw(z; ¢) +a (2% ¢)/2+ - + 7 (a" ¢)/k+ ), (43)
v (x; )= (23 ¢) — 7* (25 c). (44)

For the point chromatic case
c—1 2
v(x; c)=xc exp 2 - (v (x5 ¢) +» (2% ¢)/2+ ), (45)

D (x; ¢)=v (x; ¢) —C: ! v (x; ¢). (46)

For line labels

x(1+y)p* (z, y)=0(x, ¥), (47)

x(1+y) ™ (z, y)=7(@, y). (48)
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For line colors
xer® (x; ¢)=m (x; ¢),

xcv® (x; ¢)=v (; ¢).
For the line chromatic case
v (@ 0)=p" 2w ),

O (x; ¢)=v" (2x; ¢).
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The point labeled case has a development like its unoriented correspondent which

is omitted to save space; it has been used to obtain the numbers appearing in

o(x,y)=x(l+y)+a®(2+4y+4y*/2)+2*(T+19y+364%/2+364°/6)+

+2* (26+ 94y + 264 y*/2+ 5124 /6 + 512 ¢*/24) + ---

(e, y)=ac(l+y)+2 1+2y+292/2)+22 B+Ty+12¢%/2+124°/6) +

+a* (8+26y+68y%/2+1284°/6+ 128 ¢*/24) + --- .
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