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Owing to the symmetry  with respect to past  and present in the  definition of the Markov 

property,  this property is preserved if the direction of t ime is reversed in a process, but  t h e  

temporal  homogeneity is in general not. Now a reversal preserving the lat ter  is of great 

interest because many  analytic and stochastic properties of a process seem to possess 

an inner duality and deeper insights into its structure are gained if one can trace the paths 

backwards as well as forwards, as in human history. Such is for instance the case with 

Brownian motion where the symmetry  of the Green's function and the consequent reversi- 

bility plays a leading role. Such is also the case of Markov chains where for instance the 

basic notion of first entrance has an essential counterpart  in last exit, a harder but  often 

more powerful tool. Indeed there are many  results in the general theory of Markov processes 

which would be evident from a reverse point of view but  are not easy to apprehend directly. 

The question of reversal has of course been considered by  many  authors.(~) One early 

line of a t tack (see e.g., [16]) hinged on finding a stat ionary distribution for the process; 

once such a distribution is found it is relatively easy to calculate the transition probabilities 

of the stat ionary process reversed in time. A more general approach is to reverse the 

process (Xt} from a random time ~ to get a process Xt =Xa-t. Hunt  [8] considered such a 

reversal from last exit times in a discrete parameter  Markov chain. Chung [4] observed 

tha t  this could be done with more dispatch from the life t ime of a continuous parameter  

minimal chain. Going to a general state space, Ikeda,  Nagasawa and Sato [10] considered 

reversal from the life t ime of certain processes. This was extended by  Nagasawa [15], 

who reversed more general types of processes from L-times, natural  generalizations of 

last exit times, and later by  Kuni ta  and T. Watanabe  [11]. An assumption common to 
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these papers is the existence of semigroups or resolvents in duality. Some of the results in 

this direction have been neatly summarized in [2], [3], [14], [17]. 

Our approach here is quite different in that ,  having defined the reverse process Xt as 

above with g the life t ime of Xt, we derive the existence of a reverse transition function by  

showing tha t  the reverse process is indeed a homogeneous Markov process. Our assumptions 

all bear on the original process, never going beyond those for a Hun t  (or standard) process 

minus the quasi-left continuity. Our fullest result states tha t  we can always reverse such 

a process from its life t ime whenever finite to obtain a "moderately  strong" homogeneous 

Markov process, and we give an  explicit construction of its transition function. Finally, 

the restriction to life t ime will turn  out to be only an apparent  one, because any  such 

reversal t ime can be shown to be necessarily the life t ime of a subproeess. This last impor- 

t an t  point, requiring compactifications of the state space in its proof, will however not be 

proved in this paper  and will be published later by  the second-named author. 

Our method takes off from the case of reversal of a minimal Markov chain mentioned 

earlier (see also [5]). The interesting thing is tha t  this method, which is apparent ly limited 

to the special situation of a discrete state space there, can be adapted to the general setting 

by  a natural  stretching-out of the life t ime which renders the smoothness needed for 

analytic manipulations. The stretching-out is finally removed by  probabilistic considera- 

tions based on the notion of "essential l imit" leading to an "almost  fine topology". This 

notion seems to combine the advantages of separability and shift-invariance and may  

well turn  out to be an essential tool in similar investigations. However, we content ourselves 

with these remarks here without amplifying them. 

1. The finite dimensional distributions of  the reverse process 

Let (~, :~, P) be a probabil i ty space and (E, E) be a locally compact separable metric 

space and its Borel field. Let {Xt, t >~ 0} be a homogeneous Markov process with respect 

to the increasing family of Borel subfields {:~t, t>~0} of :~ and taking values in E; #t(B) 

and Pt(x, B), t >~ O, x E E, B E ,~, respectively its absolute distribution and transition func- 

tion. This means the following: 

(i) for each t and x, B ~ P t ( x  , B) is a probabil i ty measure on E; 

(ii) for each t and B, x ~ P t ( x ,  B) is in ~; 

(iii) for each s, t, x and B, we have 

P,§ (x. B) = f EPAz. dy) P, (y. B); 
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(iv) for each 8, t and.B in ~, we have with probabil i ty one: 

P{X~+t e B[7~}= Pt(X~, B). 

The terminology and notat ion used above is roughly the same as in [2; p. 14]. Condition 

(iii), the Chapman-Kolmogorov equation, m a y  be dispensed with; if so we shall qualify 

the transition function as one " in  the loose sense". We need this generalization below. 

Observe tha t  condition (iv), the Markov property,  implies with (i) and (ii) the loose version 

of (iii) as follows. For each r, s and t, we have with probabil i ty one: 

Ps+t (Xr, B) = J ePs ( Xr, dy) Pt (Y, B). (1.1) 

This often suffices instead of (iii). 

Furthermore,  we shall assume tha t  the Borel f ields {~t} are augmented with all sets 

of probabil i ty zero. Phrases such as ,%lmost surely" and "for a.e. ~o" will mean "for all 

~o except a set N E ~ with P(N) = 0". Our first basic hypothesis is tha t  all sample paths of 

the process X are right continuous. Only later in w 6 will we add the  hypothesis tha t  they  

have also l e f t  limits everywhere and finally tha t  X is strongly Markovian, I t  is of great 

importance to remember tha t  we are dealing with a fixed process with given initial distribu- 

tion, and not a family of processes with arbi trary initial values as is customary in Hunt ' s  

theory. Thus, convenient notation such as px and E x will not be used. 

An "optional t ime" T is a random variable such tha t  for each t, { T < t } E ~  t. The 

Borel field of sets A in ~ such tha t  A n : { T < t } E ~ t  for each t is denoted by  ~r+. I f  "< "  
is replaced by  "~<" in both occurrences above, T will be called "strictly optional" and 

~ r +  replaced by  ~f .  

Let  A be an "absorbing s tate"  in E, namely one with the proper ty  tha t  if a pa th  ever 

takes the value A it will remain there from then  on. There may  be more than  one such 

state but  one has been singled out. Pu t  

~(oJ) = ira ( t > 0 :  X~(o~) = A}, 

where, as later in all such definitions, the in / i s  taken to be + co when the set in the braces 

is empty.  I t  is easy to see tha t  a is an optional time, to be called the "life t ime" of the 

process. We shall be concerned with reversing the process from such a life t ime whenever 

it is finite. Observe tha t  this situation obtains i f  our process is obtained as a subprocess by  

"killing" a bigger one in some appropriate manner. 

For  each x, t-~Pt(x, A) is a distribution function to be denoted by  L(x, t). [If the:process 

start ing at  x were defined, this would be the distribution of its l i fe t ime. ]  Our method of 

reversal relies, au prdalable, o n t h e  following assumptions: 

1 5 - -  692908 Acta mathematlca 123. I m p r l m ~  le 23 J a n v i e r  1970 
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(H1) for each x=~A, L(x, t) is an absolutely continuous function of t with density 

function/t(x); 

(H2) for each x=~A, tolt(x ) is equi-continuous on (0, oo) with respect to x. 

Note that  condition (H2) coupled with the fact tha t  S~ lt(x)dt ~< 1 implies tha t  lt(x) is uni- 

formly bounded on compact subsets of (0, oo). These conditions seem strong but  we shall 

show later tha t  both can be entirely removed ff X is aasumed to be strongly Maxkovian 

(Theorem 6.4). Even without this assumption, their removal will still leave us meanln~ul  

and tangible results (Theorem 4.1). 

We begin with two lemmas. Throughout the paper we shall use popular concise 

notation such as P,/(x) -- SE P,(x, dy)](y). 

LEMMA 1.1. FOr each x~=A and s~>0 , t>0  we have 

/,+~ (x) = P .  ~, (*). 

Prco]. We have ff 0 < u < v, 

f ~ l,+r(x) dr ffi L(z, s + v ) - L( x,, s + u) -- f EP, (x, dy) f ~ l, (y) dr ~- f ~ P, lr(~) dr, 

where the second equation is a consequence of the Chapman-Kolmogorov equation. I t  

follows that  for each fixed x=~A and s~0 ,  

P j , ( x )  = ts+,(x) 

holds for almost all r (Lebesgue measure). Now (H2) implies tha t  both members above 

are continuous in r, hence the equation holds for all r > 0. 

LEMMA 1.2. For  each s>0 ,  t>0 ,  and sefuence t~ ~ t, lim~_~oo/,(Xa) exist~ almost surely; 
it is equal to l,(Xt) almost surely larovided that/or eavh t, ~t = ~t+. 

Prco/. Let O<t ' -$<, ;  then by Lemma 1.1, 

lax)  = P , ' - t  t . _ , . ~ ( x ) .  

I t  follows by the Markov property that  a.s. 

Z, ( X , ) =  E {l,_,,+,. (X,,) I :~,.}. 0 .2)  

If  tn ~ t, then 1,_r+t,(Xr)~l,_r+t(Xr) by (H2) and consequently the fight member above 

converges a.s. to E{/,_v+t(Xv)[:T,+}. This last step is a case of a useful remark due to 

Hun t  [9], which will be referred to later as Hunt ' s  lemma: 
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Suppose that  the sequence of random variables {Xn} converges dominatedly to X~ 

and the Sequence of Borel fields {:~n} is monotone with limit : ~ .  Then 

lira R { x .  I = E{x  I 
n 

Remark. Equation (1.2) above remains true even if the transition function of X is 

in the loose sense, as follows easily from (1.1). Thus Lemma 1.2 remains in force, and 

condition (iii) may be omitted since it will not be needed again. 

The potential measure G is defined as follows: for each A E E: 

O(A)fy:t~(A)~=E{f?la(Xt)d$}.  

Since the process need not be transient, G may not  be a Radon measure. However, we shall 

presently prove a certain finiteness for it. For each s>0 ,  define the measure Ks on ~ by  

K,(A)ffi f ?  l~[lal,]dt. 

We have by  Fubini's theorem 

i [i ] [/;1 Ks(E)=  /t0[P~/s]d$=p0 lt+sdt ~l~ ltd$ = P { s < a <  oo}~< 1. 

Hence if ] e ~ and f is dominated by  ls for some s, then G] < ~ ;  in particular G is a-finite 

on [.Is>0{x: l,(x)>0} and so another application of Fubini's theorem fields 

Ks (A) = fa G(d~) ls (x). (1.3) 

Now we define the reverse process ~: = {~:t, t>0}  as follows. Adjoin a new point A to E,  

where ~ ~ E and A is isolated in E U A: put  

if ar ~ , $ > ~ ;  

if ~ffi oo , t>O.  

(1.4) 

The sample paths of ~: are therefore just those of X with t reversed in direction, apart  

from trivial completions; hence they are left continuous. Furthermore, X never takes the 

value A and it takes the value ~ wherever it is not in E. Hence when we specify its absolute 

distributions and transition probabilities we may confine ourselves to subsets of E, as we 

do in the theorem below. 
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THEOREM 1.1. Under hypotheses (HI)  and (H2), the absolute distrit~ion o/X.~ is K~ 

P ( X ,  E A, X t E B } =  fBG(dx) f Pt-,(x, dy) I,(Y), (1.5) 

where A 6 ~, B E E. More generally, i / 0  < tl < t2 <. . .  < tn and A 1 . . . . .  An all belong to ~ we 

have 

P{~(gEAt, l ~ j < n } =  f G(dxn)f Ptn_tn_l(ggn, dXn_l)...fAPtl_ta(g~2, dggl)~tl(:rl). (1.6) 
d A n J An_ 1 I 

Note: As remarked following Lemma 1.2, the Pt's may  be transition functions in the 

loose sense. 

Proo/. We shall prove only (1.5) which contains the main argument; the proof of (1.6) 

requires no new argument  while the assertion about  absolute distributions follows from 

(1.5) if we take t=s and B = A  there. 

Let  C~ denote the class of positive continuous functions On E U A with compact 

support  and vanishing at A and /~. I t  is sufficient to prove tha t  for each / and g in C +, 

we have 

E{/(Xs) g(Xt)} = G[gPt_, (f/,)]. (1.7) 

We do this by  a discrete approximation. Set 

~n=  [ 2 n ~ +  1] 2 -n, 

where [2n~+ 1] is the greatest integer ~<2n:r then ~ > a  and ~n ~ ~ as n-~ oo. Since 

X has right continuous paths, the left number  of (1.7) is equal to the limit of 

(1.8) 

as n ~  co, where " o "  denotes composition of functions. For each integer N, write (1.8)as 

E {/o X (b 2 -n - s) . go X (k 2-~ - t); o~= b2 -~} 
2 n t ~ k ~ 2 n N  

+ E { f o X ( o ~ , - s ) . g o X ( a ~ - t ) ; N < a <  o~}. (1.9) 

The second term tends to zero as N-~ oo uniformly in n. Observing tha t  

1,oX(b2 -n - s )  dr, 

we write the kth term of the sum in (1.0) as 

given by (1.3), the joint distribution o / X ,  and Xt, O <s~<t,  is given by 
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E{foX(k2-n-s) 'goX(k2-n-t) .  lroX(k2-n-s) dr} 
_ 2 - - n  

= 2 - n # k e  - ~ -  t [ g P t - ~  ( / l ~  )] + F ~ ,  
where 

We have, 

Z 11/1111all2-'sup sup Izr(y)-z.(u)l 
2n~<~k~2r~N yEE [r-s[<~2 - n  

which converges to zero as n-+ c~ by  (H2), for each N. I t  remains to evaluate r limit 

a s  ~--> oo o f  

2-'~ t~k~-._, [g P,_8 (/ ls) ]. (1.10) 
2 n t ~ k ~ 2 n N  

Consider the function 

u-+ juu [gPt-s (//,)] = E {g(Xu) t(Xu+t-s) ls (Xu+t-s)}. (1.11) 

Clearly u~g(Xu)/(Xu+t_8) is right continuous. Since ls(x) is bounded in x by (H2), it 

follows from Lemma 1.2 and Lebesgue's bounded convergence theorem that  the function 

in (1.11) has a right limit everywhere. Hence it is integrable in the Riemann sense and 

consequently the limit of (1.10) is the Riemann (ergo Lebesgue) integral 

f f /~, [gPt-~ (//s)] du. 

Letting h r ~  ~ we obtain the right member of (1.7), which is finite by the remarks pre- 

ceding (1.3), q.e.d. 

2. The transition function of  the reverse process 

We prove in this section that  the reverse process is temporally homogeneous and 

exhibit a loose transition function Pt(Y, A) for it. If such a function exists, it must be the 

Radon-Nikodym derivative 

P{X, edy} 

The problem is to define this measurably in y and simultaneously for all A in ~. Doob [6] 

has given a similar procedure in connection with conditional probability distributions in 
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the wide sense which has been extended by Blackwell [1] to a more general space. We shall 

indicate a simpler argument using the functional approach. 

Define the function h on E by  

h(x) = .L-e-% (~) de. 

We have by Lemma 1.1, 

P,h-- foe-'Pj, defet f f  e-%as<e'h, 

from which it follows that  h is 1-excessive with respect to (Pt). Furthermore, h(x)=0 if 

and only if ls(x) =0  for all s by  the continuity of s~l~(x). Next,  recalling (1.3), we define the 

measure K on E by 

K(A)= f ;  e-'K.(A)~= f O(&)h(~). (2.1) 

Since K,  (E) ~< 1 for each s we have K(E) < 1. 

Now for each t we define a function lit on product Borel sets of E x E by  

I t  fonows from (2.1) that 

lit(A,B)= fa a(a~)L Pt(~,av) h(y). (2.2) 

l i t  (A, E) < YA G(dx) eth(x) <. et K (A ); 

on the other hand, since OP t ~ G, we have 

(2.3) 

l "  
II, (E, B) <~ ) B G (dy) h(y) = K (B). (2.4) 

lit(A, .) and l i t ( ' ,  B) are both measures which are absolutely continuous Consequently 

with respect to K ( < < K). 

THEORI~M 2.1. The reverse process (~:t, $ > 0} is a homogeneous Markov la~'ocess taking 

values in E U A, with a version o/the Radzm-Nikodym derivative 

I I ' (A 'dy )=Pc(y ,A) ,  t>~O, 
K(dy) 

as its transition/unction in the loose sense. 

~ote: Po(U, a )  = e, (u). 
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Proo/. Let D O be a countable dense subset of CK. Let  D be the smallest class of func- 

tions on E containing D e and the constant 1 which is closed under addition and multiplica- 

t ion by  a rational number.  D is countable and contains all rational constants. Fix t > 0 ;  

for each / in D and B in E, we put  

IIt  (l, B) = f l ( x )  II~(dx, B). 
JE 

As a signed measure Ht(/, �9 ) < < K( . )  by  (2.4). Let  L(/, y) denote a version of the R a d o n -  

Nikodym derivative IIt(/, dy)/K(dy) such tha t  y-~L(f, y) is in E for e a c h / E D .  There is a 

set Z in E with K(Z) =0,  such tha t  if yEE--Z, then 

(a) L(I, y)>~O if lED,/~>0; 
(b) L(0, y)=0; 
(c) L(c/, y) =cL(/, y) if [ED and c/ED where c is real; 

(d) L(/ +g, y)=L(f, y)+L(g, y) if lED, gED; 

(e) IL(I, Y)I < II/ll if leD. 

The proofs of these assertions are all trivial. E.g., to show (c), we write for each BE ~, 

fs L(cl, y) K(dy) = He (a/, B) = cYIt (t, B) = fBcL(], y) K(dy) 

and take B to be (y: L(c/, y) >eL(~, y)) or (y: L(c/, y) <eL(~, y)). I t  follows tha t  the relation 

in (c) holds for each pair / and c / in  D, for K-a .e .y .  Since D is countable, this establishes (c). 

l~or y E E - Z ,  and ]ECK, we define 

L([, y) = lira L(fn, y), (2.5) 

where (/n} is any  sequence in D which converges to [ in norm. I t  follows from (e) tha t  the 

limit above exists and does not depend on the choice of the sequence. I t  is trivial to verify 

tha t  L(- ,  y) so extended to CK is a linear functional over the real coefficient field with norm 

~< 1. To see tha t  it is positive, let [ E CK, / >7 0; then for every rational e > 0, we have [ +e/> e. 

Hence ff [[/n-/ll-~0, then  [,+e>~O for sufficiently large n. I t  renews from (a) above and 

(2.5) tha t  L ( /+e ,  y) ~> 0, and hence, by  linearity and (c), tha t  L(f, y) >~0. 

Thus the linear functional L(- ,  y) defined in (2.5) is a Radon measure on ~ with total  

mass ~ 1. We now put  for y E E - Z  and A E ~: 

Pt(Y, A) = L(A, y), 

p,(y ,  7~) = 1 - L ( ~ ,  y); 
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for yE Z and A E E: Pt(y,A) = e{~l(A); 

finally Pt (~', {h}) = 1. 

Then for y E E U {/~}, A-* Pt (Y, A) is a probability measure on Es the Borel field gener- 

ated by  s and &; Y~-Pt(Y, A) is in ~ for each A E E; and we have 

IIt (A, B) = f sPt(y ,  A) K(dy). (2.6) 

Thus Pt (Y, A) will be a transition function in the loose sense for X provided we can verify 

the relation corresponding to (iv) at the beginning of w 1, namely that  we have with prob- 

ability one: 

P{'X,+tE A [~,} = Pt(X,, A); (2.7) 

where for each t > 0, :~, is the Borel field generated by {Xr, 0 < r < s} and augmented with 

all sets of probability zero. 

Equivalently, we may verify that  the finite-dimensional distributions of ~: obtained 

in Theorem 1.1 can be written in the proper form by means of K s and/5  t as shown below. 

We begin with the following lemma which embodies the duality relation mentioned in the 

introduction. 

LEM•A 2.1. For every positive g in E x E such that g vanishes on the set E x {y: h(y) = 
0}, we have 

f 
Proo/. If g(x, y) = 1A (x) ln(y) h(y), A EE, BE ~, then the left member of (2.8) is just 

fAG(dx)fP~(x,  dy)h(y)=HdA, B)=fB ' t (Y ,A)K{dy)  

by (2.6), which reduces to 

Hence (2.8) is true for g of the specified form, and so is true for all positive g of the form 

/h, where /E s x ~, by a familiar monotone class argument. Now it is trivial tha t  this 

coincides with the class of g stated in the lemma, q.e.d. 

Returning to the proof of Theorem 2.1, let us define for 0 < tl < ... < tn and arbitrary 

xl . . . . .  xn in E: 
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kl (Xl) = Zt, (Xl), 

k n ( X . ) =  ~ P$n_ln_l(ggn, dXn_l)~ ~ Pt,_t,(x2, dXl) gtx(ggl), n ~ 2 .  
d An__ 1 d Aa 

I t  follows from Lemma 1.1 that  

k, (x~) < Pl,- ~,-1... Pt,-t, lc, (xn) = l~ (xn) 

so that  kn vanishes where h does. We have therefore by repeated application of Lemma 

2.1 to the right member of (1.6): 

fA G(dxn) f Pt,-t~-l(xn, dxn-1) ]cn-l(Xn-1) 
n J An--1 

= fA. _ 1 G(dxn-1) ]cn-1 (•n--1) P in-  In -- 1 (Xn--1, A n) 

= f ~._ a(dX~-l) f A~_f i.-~-t.-~(xn-, axn-~) k~-~(xn-~) Pi.-c.-~ (Xn-l, An) 

= s  G(dxn-2) kn-2 (xn-2) s dx,-1) P~-t~-l (x,-1, An) 

= ... = f A G(dxi) lt, (xi) f A ist,-c, (xi, dx2) 

fA.__lPtn--1- tn--2 (Xn--2, dxn-1) Pin-  ta-1 (~ An). �9 �9 �9 

Comparing this with Theorem 1.1 we see that  2~ has indeed Pc as a version of its transi- 

tion function and Theorem 2.1 is completely proved. 

3. A regularity property of the reverse transition function 

We shall show that  an arbitrary collection of versions of the Radon-Nikodym deriva- 

tives {Pt, t >0} obtained in Theorem 2.1 has certain regularity properties and use these to 

construct a "standard modification" that  is vaguely le/t continuous in t. This results from 

the fact tha t  Pt(Y, A) is the loose-sense transition function of a homogeneous Markov 

process whose sample paths are all left continuous, and will be stated in this general 

form, using the notation Xc and Pc instead of Xc and Pt. 

From now on we write R for [0, oo) and Q for an arbitrary countable dense subset 

of R. To alleviate the notation we shall reserve in this section the letters r and r' to denote 
members o/Q. Thus, ]or instance, r-->t means rGQ and r--->t. The notation s--->t + means 
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s> t  and s-~t, similarly s - ~ t -  means s < t  and s-~t. If  Xt is a Markov process with absolute 

distributions/~t, a set Z in the completion of E with respect to all {Pt, t>0}  such that  

/~t(Z) =0  for all t > 0  will be called "insignificant". 

THEOREM 3.1. Suppose { X t, t>0}  is a homoyeneous Markov process taking values in E 

and having left continuous sample paths. Suppose Pt(x, B) is its transiti~m /unction in the 

loose sense and pt(B) its absolute distribution. Then the following two assertions are true. 

(a) For each Q there is an insignificant set Z such that/or every x ~ Z  and/ECE, we have 

Vt > O: lira Pr/(x) e~/sts. 
t - > t -  

(b) For  each t>O, there is an insi~ificant set Z~ such that for every x~Z~ and rECK, we 

have 
lira e , l (x )  = P,l(x). 

r - ~ t  - 

Remark. There is an obvious analogue if X has right continuous paths. 

Proof of (a). Let  e > O, J E CE and put  

H = {(t, x): lira P , / ( x )  < lira P,J(x) - e}.  (3.1)  

If  H denotes the projection of R • E, we have 

II(H) ={x: 3 t > 0 :  lim P,/(x)<lira P , / ( x ) - e } .  
a-->t - $--~ - 

(3.2) 

To prove (a) it is sufficient to show that  II (H) is insignificant and this will be done by  a 

capacity argument due to P. A. Meyer [12]. We sketch the set-up below; note tha t  a 

"h-analytic" set below is an "analyt ic" or "Sonslin" set in the classical sense. 

Let  ~ be the Borel field of R, C the class of compact sets of R, k the class of compact 

sets of E. I t  is easy to see that  H E R  • E because Q is countable (cf. e.g., [5; pp. 161-2]), 

hence H(H) is h-analytic and so measurable with respect to the completed measure /q .  

LEMMA 3.1. I[ S>0, there exists L e E ,  such that L c I I ( H )  wish #8(L)=p,(II(H)), and 

a strictly positive E,measurable/unction ~ de/ined on L whose graph 

{(x, T(~)): x~L} 
is contained in H. 

This is a particular ease of Meyer's theorem but can be proved quickly as follows. 

For  every subset A of R • E define 
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~(H) =/~*(II(H)), 

where/~* is the outer measure induced by ~u,. Then ~ is a capacity and H is analytic, both 

with respect to the class of compact sets of the product space R x E. Hence H is r 

table and there is a compact subset K x of H such that  ~(Kx) >~0(H)/2. Now define vl on 

i I =l-[(K1) by  
Ti(x ) = inf {t: (t, x)EK1}. 

The compactness of K 1 implies, first that  (x, zl(x))EK 1 and second tha t  for each real c, 

the set {x: zl(x)~<c) is closed so that  zl is G-measurable, indeed lower semi-continuous. 

[We owe Professor Wendell Fleming the last remark which replaces a longer argument.] 

If we choose an increasing sequence of compact K ,  with q~(Kn) ~ q)(H) and define the cor- 

responding L n and Vn as above we see that  the set L = I.J nLn and the function ~ such that  

T(x) =~,(x) for x E L , - L n _  1 (with L 0 = O  ) satisfy the requirements, q.e.d. 

I t  follows from the lemma that  for every xE L, we have 

lim P~/(x)< lira P~/(x)-e. (3.3) 
r--~T(z)-  r - ~ ( x )  - 

Hence if we define two subsets of Q as follows: 

F I (x )=  rEQ:P , / ( x )>  lim PT. / (x)- -~ ,  
r ~  - -  

r "-"~'T(z) - 

then for every x EL, z(x) is an accumulation point from the left of both Fl(x) and Ps(x), 

namely that  for every ~ >0,  we have (T(x) -~ ,  v(x)) N Fi(x) =~O, i =1,  2. I t  follows from this 

tha t  for either i we can construct G-measurable functions an on L, taking values in F~(x), 

and such tha t  a,~(x)~(x) - for all x in L. This is a familiar construction of which a more 

elaborate form will be stated in w 6. Assuming this, we are ready to prove (a). Let  {an} 

and ( ~ }  be the {an} just mentioned corresponding to F x and F~ respectively, and let 

(vn} be the alternating sequence (a~, a~, a~, a~ . . . .  }. We have then for every xEL: 

8 P,'j~)/(x) > P,~(~)I (x) - ~. (3.4) 

Now consider the equation 

fLla, (dx) P,,(~)/(x) = {X, E L; /o X(s + ~n (X,))}, (3.5) E 

which is a consequence of the Markov property of X since v. is eountably-valued. The 
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right member  of (3.5) converges as n ~  c~ to the limit obtained by replacing vn with z there, 

since X has left continuous paths. But  by  (3.4) the left member  cannot converge unless 

#,(L) =0.  This must  then be true and so #,(H(H)) = 0  by  Lemma 3.1. Since s is arbitrary,  

H(H) is insignificant. Writing Hf(e) for this H,  letting / run through a countable set D 

dense in CK, and setting Z = UI~DUn.IHI(n ), we obtain (a). 

The proof of (b) is similar but  simpler. For  a fixed t > 0, consider 

Ht = {x : lim Pr /(x) < Pt /(x) - e}. 
r~V- 

Ft (x) ={r E Q : Pd(x) < P~/(x)-2}. 

Then HtE E (no capacity argument  is needed here), and there exist ~-measurable func- 

tions Tn defined on Ht, taking values in F t (x), and increasing to t as n-~ ~ .  I t  follows that  

= E{X,  e Ht; loX(s + Vn (X,))} ~ E {X, e Ht; IoX(s + t)} = f l ip  , (dx) Pt l(x) �9 

Hence ,us(Ht)= 0. Together with a symmetric argument  on the upper limit, this estab- 

lishes (b). 

TH~OR]~M 3.2. Under the hypotheses o/Theorem 3.1, there exists a transition/unction 
P~ (x, B) in the loose sense/or the process X such that/or each /E C~: we have 

Ps t - e t t .  V t > 0 ;  l i r a  * - * 
8--~t -- 

This means: for each x, t -~P~ (x, �9 ) is vaguely left continuous as measures. We shah 

write a vague limit in this sense as " v  lim" below. 

Proo/. In  view of (a) of the preceding theorem, we may  define 

Vt>O,x~.Z: P ~ ( x , . ) = v l i m  Pr(x,') 

Yt >0 ,  x e  Z: P~(x, ' )=~x( ')=P~(x, ' ) .  

For  each /E GK, x-~P~/(x) is in E. By (b) of the theorem, we have for every s almost 

surely 
(X,, l) = Pt (X,, l), 
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and consequently P* as well as Pt  serves as a transition function in the loose sense. Finally, 

from P~]=limt~,_ Pr/(rEQ!) it follows tha t  t~P* ] is left continuous, q.e.d. 

Applying Theorem 3.2 to the reverse process X in Theorem 2.1, we conclude tha t  its 

transition function P,(y, �9 ) m a y  be modified to be vaguely left continuous in t for each y, as 

defined above. 

4. The removal of assumptions (HI) and (1t2) 

The preceding results were proved under (H1) and (H2). I f  the life t ime a of the given 

process does not satisfy these conditions, it will now be shown in what  sense the results 

may  be carried over. Roughly speaking, they  remain true provided tha t  "reversed t ime"  

be liberally interpreted as beginning at  some fictitious (but by  no means nebulous) origin. 

Or else if this is not allowed, then the results are still true provided tha t  an exceptional set 

of reversed t ime of zero Lebesgue measure be ignored. Finally we shall show in w 6 tha t  all 

fiction or exception may  be dropped provided tha t  the given (forward) process is assumed 

to be strongly Markovian instead of merely Markovian as we do now: This however lies 

deeper. 

For the present a little device suffices: one simply extends the life t ime from a to a* 

by  adding exponentially distributed holding times until the distribution of a*, being the 

convolution of tha t  of a with smooth densities, achieves the kind of good behavior required 

by  ( t t l )  and (H2). In  fact, this device will make the distribution of a* as smooth as one 

may  wish as a function of t, but  only mildly so as a function of x. This will be sufficient 

since we need only a certain uniformity with respect to x in (H2). Now we can reverse the 

prolonged process from the new life t ime a* by  the preceding theorems. The true reversal 

from a will then appear  as the portion of the reversed prolonged process starting from 

a * - a ,  which is an optional t ime for it. Hence if the last-mentioned process is moderately 

strongly Markovian - as we shall prove in w 6 - the true reverse process will behave in like 

fashion. 

Let  fl,, i = 1, 2, 3, be three random variables independent of one another and of the 

Borel field generated by  {X,, t~>0}, and having the common distribution with density 

~e-~*dt, 2>04  Adjoin three distinct new points A,, i = 1, 2, 3 to E and define the prolonged 

process as follows: 

Yt 

We shall regard 2 as fixed, 

i t if t <  a, 

A 1 if ~-<~<~-~-fll, 
A ,  if ~ + fl~ <<. t < ~ + fl~ + fl,,  

put  
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#=#~+#~+t~,, 

and denote the density of/~ by 

b(0 = 2-12s# e -~, 

Thus the distribution of ~* is given by 

~*--~+#, 

t>~0. 

L*(x, t) = L(x, s) b(t - s) de 

f2 with the density /*(~, t) --- L(x, 8) b'(t -8 )  de. 

f0 Since I/*(x, 01 "<< Ib'(s)lde< 2-a2Sl2t-tZle-a"d~< oo, 

and [~ t*(z, Ol <. f2 ,b'(,)l de < f ;  2-W12-4at + 22,le-~dt < oo , 

l*(z, 0 is uniformly bounded in all x and t and t--> l*(z, t) has a derivative bounded uniformly 

in z and t and hence is equi-continuous in t with respect to all x. This means (HI) and (H2) 

hold. 

The parameter 2 will play no role below, but let us remark tha t  as 2--> 0% yt..~Xt for 

all t almost surely. Now we define the reverse process to Y from ~* just as we did the reverse 

to X from ~ in (1.4): 

~'t= if ~*< oo,t >~*, 

if ~* = oo, t>O. 

Then ]~t=Xt-B if t>jL Since Y satisfies (H1) and (H2), ~" satisfies the conclusions of 

Theorems 1.1 and 2.1. 

The independence of ~ * - ~  and {Xt, t~>0 } should be formalized by considering the 

product measure space (f2 x R, ~ x/~, P x v) where v is the measure with density b on R. 

If  we regard the Y process as defined on this space and write ~ =(oJ, (o'), Y(t, ~ )=X( t ,  ~o) 

if t < ~((o'), etc., then the following lemma is not only obvious but even true (it may be false 

otherwise). 

LEMMA 4.1. Let / j ,  1 <~ j < n, be boundS, E-measurable funaions vanishing ~ At, i -- 

1 , 2 , 3 .  Th~7~/or ~ b  t0 < t l :  

B f  < t 0 ; - -  (~r ) l  / ,_lSi / t't. f " - 1 =Jo Ei,I-I-,f'(X*'-s)~b(s)de" (4.1) 
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We now state and prove the result accruing from Theorem 2.1 after the removal of 

(HI) and (H2). 

THEOREM 4.1. Let (Xt, t>~0} be a homogenco~ JMarkov ln'oc~s with right vontinuaus 

paths and li/e time ~. Let {X~,t>0)  be the reverse process defined by (1.1), and ~ , (A )=  

P ( X t e A ) /or ACE.  Then there exists P t( x, A ), t>~0, x e E ,  A e ~ ,  eatis/ying conditions (i) 

and (it)/or a transition [unction given at the beginnin~ o[ w 1, such that t~P~(x, ") is vagudy 

left continuous/or each x, with the [ollowing property. Given 0 <~h <... <• and Ao, A t, ..., An 

in g, we have/or almost every (Lebesgue) t o in (0, t): 

P(2, eA,.O<,<n)= fA. ,(dZo) (4.2) 

Remark. The proof will show how to calculate Pt and Pt. 

Proof. L e t / j  be as in Lemma 4.1. Since ~" satisfies the conclusions of Theorems 2.1 

and 3.1, let P* be its transition function in the loose sense having the stated regularity 

property. We have then for t--~t0: 

{ " } ~ ~ < t ; j~J j (Yt j )  -- E{~  < ~; (/o~') ( f . ) } ,  (4.3) 

where 

Using Lemma 3.1 in both members of (4.3), we obtain 

f~dsb(s)E{ ,~of , (Xt~- , )}=f~dsb(s)E{([o~)  (~:t.-,)}. (4.4) 

This being true for all t < t 0, and b(s) > 0 for s > O, we conclude that  the two expectations 

in (4.4) are equal for almost all s < t 0. Since t o is arbitrary, it  follows tha t  given t I < . . .  < in, 

we have 

E {fo(X,) O [j(X~)}--~ E {('oqP) (-X,)} 

for almost all t < t 0. This implies (4.2). Note that  the loose-sense transition for ~: may  be 

taken to be tha t  of ~ for any  2 > 0, and that  its absolute distribution/~t is determined 

by the equation below, valid for t > 0, A E E; 

We end this section with some examples to illustrate the possibilities and limitations: 
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a d 

5 e 

b c 

Fig .  1. 

Example 1. The state space consists of the two diagonals ac and bd of a square with 

side length V2 and center e, together with two outside points 0 and A, The process starts 

at 0 which is a holding point (with density e-tdt for the holding time distribution), then 

jumps to a or b with probability �89 each. From either point it moves with unit speed along 

the diagonal until it reaches c or d, and then jumps to the absorbing point A. This process 

is Markovian but not strongly so, as the strong Markov property fails at the hitting time 

of e. The reverse process is not Markovian at t = 1, when it is at the state e. Observe that  the 

transition probabilities for the forward process do not satisfy the Chapman-Kolmogorov 

equation P~(x, d) =Pl(X, e)Pl(e, d) for both x = a and x = b, no matter how Pl(e, d) is defined. 

Example 2. This is an elaboration of the preceding example, i n  which the reverse 

process is not Markovian at an uncountable set of t (but of measure 0 in accordance with 

Theorem 4.1). Let / be a nonnegative continuous function on [0, 1], whose set of zeros is 

the Cantor set. The state space consists of the graphs of / and of - I .  The process starts 

at (0, 0) which is a ::holding point, then follows either the graph of t or the graph of - t  

with probability �89 each until it reaches (0, 1) which is the absorbing point. This process 

is Markovian but not strongly so, and the reverse process is not Markovian, for the Markov 

property fails at all t in the Cantor set. 

Example 3. This example shows that  even if the forward process is strongly Markovian, 

the reverse one need not be so. Let the process be the uniform motion on the line starting 

at - 1 ,  moving to the right un t i l i t  hits 0 which is a holding point, after which it jumps 

to A. The,reverse process is Markovian but not strongly so, since i~ has continuous paths 

and yet starts at a holding point. 

5. Essential limits 

Let R = [0, c~) and let "measure" below be the Lebesgue measure on R, denoted by m. 

For an extended real-valued function f on R, we say that  "its essential supremum on a 
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measurable set S exceeds c" iff there is a subset of S of str ict ly positive measure on which 

f > c; the supremum of all such c is the  ess sup of f on  S, unless the  set of v is e m p t y  in  which 

case the  ess sup is t aken  to  be - oo. Next,  e.g., 

ess lira s u p / ( s )  
s.-~t + 

is defined as the  inf imum of the ess sup of / on  (t, t + n  -I) as n-~oo; ess inf and  ess lira inf 

are defined in a similar way. W h e n  ess lira sups-~+/(s)  and  ess lira infs-,t+/(s) are equal 

we say t h a t  ess lims.,t+ /(s) exists and is equal to  the common  value. We can of course 

define the  lat ter  directly bu t  we need the other  concepts below. 

Some of the  properties of ess lims_~t+/(s) are summarized in the next  lemma, whose 

proof is omitted,  being elementary analysis. 

L ~ z ~ A  5.1. Suppose that/or every t in R, q~(t) =ess  lims-~t+/(s) exist~s. Then q~ is right 

continuous everywhere, f =q9 except/or a set Z of measure zero, and we have 

Finally, we have 

Vt: ess l im/(s)= l im/ (s ) .  
8....~t + $--~t + 

s ~ Z  

Vt:~( t )=  lim 2e-~f($+s)ds= lim 1 ft+a 
~-~oo a ~ o ~ 1(~) " 

(5.1) 

The next  two propositions resemble the  main lemmas for separabil i ty of a s tochast ic  

process due to  Doob [6]. 

LEMMA 5.2. Suppose $1~ HE B • ~ (the product Bord field of R x ~)  and ~ /or 

each S E R: 
H ( 0  = { ~ :  (t, ~ )  e H} .  

{/; } Let A = co: 1H(t, eJ) dt>O 

and let Z be an arbitrary subset o] R with re(Z)=0.  Then there exists a countable dense 

subset D = {t~, n >~ 1} o / R  such that 1) N Z = 0 and 

P { A ~  U H(t , )}  = o, (5.2) 
n 

where " A "  denotes the symmetric diHerenc~. 

Proof. B y  Fubini ' s  theorem, [R • (~  - A)] N H has m • P measure zero and  there 

exists Z ' c  R with m(Z') = 0 such t h a t  if t ~ Z '  then  P ( H ( t ) ~ A )  = 0. Le t  

16 - 692908  Acta maShema$ica 123. I m p r l m d  lo 26 J a n v i e r  1970 
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= {t~ R: P(H(t))  > 0} 

and consider the class of sets of the form 

U H(t), 
t e C  

where C is a countable dense subset of R, disjoint from Z U Z'. A familiar argument shows 

that  there is a set in the class whose probability is maximal. Call this set A and we will 

show that  P ( A ~ A )  =0. Otherwise let A ~ A  =A0, P(A0) >0.  Then H fl (R • A0) has strictly 

positive m •  measure by definition of A and Fubini's theorem. Hence by the same 

theorem there exists some t CZ U Z'  such that  P(H(t) N A0) > 0, which contradicts the maxi- 

reality of A since A tJ H(t) would be in the class above and have a strictly greater proba- 

bility than A. Finally, by the definition of Z'  and the choice of C, it is clear that  P ( A ~ A )  = 0. 

THEOREM 5.1. Let ( Y~, tER} be an extended real-valued Borel measurable stochastic 

process in (~, 5, P). There exists ~o in ~ with P(~o) = 1 and a countable dense set D o / R  

with the following property. _For each w ~ )  o and every nonempty open interval I o /R ,  we have 

(i) ess sup Y(t, to) = sup Y(t, w) 
t e l  $ e l r I D  

(if) ess inf Y(t, to) = inf Y(t, w). 
~ e l  t e l f l D  

Such a set D will be referred to as an "essential limit set for Y". 

_Proo/. For each I with rational endpoints, consider the set 

{(t, to): t6 I; Y(t, to) < ess inf Y(s, to) or Y(t, to) > ess sup Y(s, to)}. 
s e l  s ~ l  

This has m x P measure zero by Fubini's theorem, hence there is a subset Z(I) of I with 

measure zero such that  if t 61  - Z ( I )  then for almost every w: 

ess inf Y(s, to) <~ Y(t, to) <~ ess sup Y(s, to). (5.3) 
s e l  t e l  

Let Z be the union of Z(I) over all such I.  Next, for each rational r, consider 

H = {(t, to): tE I ;  r(t, co) >r} 

and define A corresponding to H as in Lemma 5.2. I t  follows that  there exists a count- 

able dense set (tn, n>~ 1}, disjoint form Z, such that  (5.2) is true. Observe that  A is the 

set of o) where ess suptEzY(t , to) >r ,  while UnH(tn) is the set of o) where supn Y(tn, m) > r .  
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Hence if we denote by / )1  the countable set obtained by  uniting the sequences {t~} over 

all I and r, D 1 is disjoint from Z and we have for almost every m: 

ess sup Y(t, ~) <. sup Y(t, ~o). 
$~1 SeD1AI  

Similarly, there is a countable set D 2 disjoint from Z such tha t  for almost every ~o: 

ess inf Y(t, w) >t inf Y(t, m). 
t e l  ~eDsA1 

Then if D = D 1 U D2, we have for almost every w and every I :  

inf Y(t, co) <~ ess inf Y(t, w) < ess sup Y(t, w) <~ sup Y(t, co). 
t e D A I  t e I  t e I  t e D A I  

But since D N Z =(~, the first and last inequalities above can be reversed by  (5.3), proving 

the theorem. 

I t  will appear in our later applications of Theorem 5.1 to Theorems 6.1 and 6.3 tha t  

we shall not need its full strength but  merely the existence of a countable dense set D 

such tha t  if almost all paths have left and right limits along D then they have essential 

left and right limits. Thus it is sufficient to have the equations in (i) and (if) above replaced 

by  "~<" and ">~" respectively. Doob has pointed out tha t  Theorem 5.1 can be circum- 

vented by  arguing with separable versions, see the end of proof of Theorem 6.1. 

6. The moderately strong Markov property of the reverse process 

In  this section we assume tha t  the given process X is strongly Markovian relative to 

right continuous fields {:~t, t ~> 0}, whose paths are not only right continuous on 0 ~< t < 

but also have left limits everywhere on 0 < t < ~. Thus for each optional T, t > 0 and bounded 

C-measurable/ ,  we have almost surely 

~{l(x~+,) I :~+} = Pt (x~, 1). 

We shall use the "shift  operator" 0 in the usual way but we remind the reader tha t  we are 

dealing with a process with a fixed initial distribution and not a family of processes start ing 

a t  each x. 

Let  {Y~, t>~0} be the extended process with lifetime ~ * = ~ + ~  as defined in w 4. Let  

{:~t, t > 0} be the Borel field generated by the reverse process { Yt, t > 0} and P,  its transition 

function. As we have seen, P~ acts like a transition function of ~: as well. A random variable 

(or simply " t ime")  T will be called "reverse-optional" iff for every t > 0, we have { T < t} e ~t; 

it is "str ict ly" so iff {T< t}  is replaced by  {T<t} .  This distinction is necessary as the 
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fields :~,, .nlil~e :~t, are not necessarily right continuous. The Borel fields :~r+ and :~r are 
defined in the usual way as in w 1. T is said to be "reverse-predictable" iff there exists a 

sequence of reverse-optional times {Tn} such that  T n < T  and Tn t T almost surely; in 

this case we have 

~r_=V ~r.+, 
n 

where for an increasing family of Borel fields {~t, t >0} and an arbitrary random variable 

T, ~r -  is the Borel field generated by the class of sets of the form {T > $} N A with A E ~t. 

See [13] for a general discussion of the notion. 

We begin with a useful lemma, whose proof is omitted as being intuitively obvious 

and technically familiar. 

LEMMA 6.1. Let D be a countable dense subset o / R = [ 0 ,  oo). Let T be an optional time 

(with respect to {:~t}) with the/oUowing property. I f  T(oJ)< oo then there is a subset G(eo) o[ 

D such that/or each t, the set {co: t6C(eo)} 6 ~:, and/or  each ~>0,  

(T(oJ), T(m) +~) n C(o~) + 0. (61) 

Then there exists a sequence of strictly optional times {T,,} such that/or each n: 

T.(~) e C(~), Tn(~) > T(~) 
and T n Je T on { T <  oo}. 

Let T be pred/c2x~le and (6.1) be replaced by 

(T(eo)-8, T(o~))n C(o~) +0, /or O<T(~o)<oo. 

Then a similar conclusion is true if " > "  and " 4 " are replac~ by " < "  and " % ", and 

{T<~} by {0<T<~}. 

THEOREM 6.1. Let D be a countable dense subset o[ R, t > 0  and /6C~ .  Then almost 

surely the path 
s-~Pdo Ys, 

has left and r~ht limits along D everywhere. In  particular, it has left and ri4Iht essential limits 

everywhere. 

Proo/. Let {Tk} be a sequence of D-valued strictly reverse-optional times decreasing 

to a limit T. Notice that  on {T <fl}, /~(Tk)6 {A, U A s U As} for all large enough/r Since ~r 

is Markovian as proved in w 4, the strong Markov property holds at  any discrete strictly 

reverse-optional time such as T~, hence 
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E { / .  Y(Tk +t); ~',, >/~1 .~',} = l(rt>p). ]Jt/o ~"(T~). (6.2) 

Since the paths of X have left limits except possibly at  g, those of ~" have right limits 

except possibly at ft. Thus / o Y ( T k + t  ) converges as k-~c~ on the set (T>~fl}, while 

:~r~ ~ Ak:]r~. Therefore by Hunt ' s  lemma cited in w 1, the first member of (6.2) converges 

almost surely. Similarly if Tk t . Writing for short 

g =PJ, 
we have proved that  almost surely 

hm go ]~(Tk) (6.3) 

exists for any monotone sequence {Tk} as specified above. Note that  if T k t ~ ,  then 

Y(Tk) =Tk for all sufficiently large k. 

Let  a <b and put  

T' = inf ( reD:  g(/~,) <a}, 

T " =  inf ( reD:  g(Y~)>b}, 

where we may suppose that  0 ~ D. Define inductively 

S O = 0 ,  ~1 = T', S~ = ~1 "-~ T " o  0.~i, 

"o >12. $2~-1 = $2n-2 + T ' o  Os~,_~, S ~  = $2~_ 1 + T Os~,-1, n 

These are all reverse-optional times not necessarily D-valued. I t  is possible tha t  S o =$2, 

but  we have Sn <Sn+~ almost surely for n ~> 1. For otherwise on the set {S, = Sn+ I = Sn+~} 

we have 

lim g(~'~) ~< a < b ~< lim g(~Z). 

rED teD 

By Lemma 6.1 we can then construct D-valued, reverse-optional {T~} such that  T k ~ S= 

on the set above and 

g o ]z(Tk) ~< a, g o ~'(Tk+l)/> b, (6.4) 
contradicting (6.3). 

Next, we show that  Sn -> c~ almost surely. For on the set {Sn ~ S < c~ } we can construct 

as before D-valued, strictly reverse-optional times {Tk} such that  Tk r S and (6.4) holds, 

again contradicting (6.3). The fact that  Sn t o o  almost surely shows that  there is no point 

in R at which the oscillation on the left or on the right of go Ys, sED, exceeds b - a .  If we 

consider all rational pairs a <b, we conclude that  s-->go Y8 must have left and right limits 

along D, everywhere in R. Taking D to be the essential limit set for ~z in Theorem 5.1, 
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we see tha t  the existence of such limits is equivalent to the existence of left and right 

essential limits, q.e.d. 

Instead of using Theorem 5.1 as in the last sentence above, we may  conclude in the 

following way as suggested by  Doob. Let  Y' be a separable version of I 7 with separability 

set D' such tha t  almost surely 17(s)= Y'(s) for all sED. Then almost all paths of Y' have 

left and right limits along D' and consequently by  separability have left and right limits 

without restriction. By Fubini 's  theorem, almost every pa th  s-+ 17~(eo) differs from the 

corresponding pa th  s ~  Y~(w) on a set of s of Lebesgue measure zero. I t  follows tha t  the 

former has essential left and right limits. 

COrOLLArY.  The assertion o/the theorem is also true/or almost every path 

For  the essential right limit, e.g., a t  s, o f / s t / o  Y. (co) is just the essential left limit of 

P t / ~  ]). (co) a t  a*(~o) - s, since ~'8 = Y~*-s for all 0 < s ~< a*. 

Recalling tha t  (Pc) is the transition function of X, we put  

Ra = e-~tP tdt, 2> 0 

as its resolvent. We shall use this operator only as a familiar way of integral averaging. 

A set in ~ which is hit by  X with probabil i ty zero will be called "polar" .  

THEOREM 6.2. Le~ g be bounded, E-measurable and suppose thatalmostsurelythe path 

s-~ g( X,) 

has essential right limits everywhere. Then the/ollowing limit 

g(X) def ~ 2R~g(x) ( 6 . 5 )  
)~-. oo 

exists except possibly/or a polar set; and we have almost surely 

u s >i 0: ess lim g(X,) = ~(X,). (6.6) 
r--~$ + 

Proo]. Pu t  Z, = ess lim g(X,); 

without loss of generality we may  suppose tha t  this limit exists everywhere on ~ .  The 

process (s,o))--*Z(s, co) is measurable since by  Theorem 5.1 the essential limit m a y  be 

replaced by  tha t  on a countable set. I t  is also right continuous and hence well-measurable 
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in the sense of Meyer. Let  Us complete the definition of ~ by  setting it to be a constant 

greater than  an upper bound of g wherever the limit in (6.5) fails to exist. Since ~E E, 

~(X) is well-measurable with X, and consequently the set 

H = ((s, w): Z(s, m):~ ~(X(s, co))} (6.7) 

is well-measurable. Let  I I (H)  be its projection on ~ .  I f  P(I I (H))  >0,  then  a theorem by  

Meyer [12; p. 204] aserts tha t  there exists an optional t ime T such tha t  P ( T  < co } > 0  and 

(T(c0), ~)eH so tha t  ZT~=~(Xr) on ( T < ~ ) .  But  (almost surely in the third and fifth 

equations below) 

So o Zr  = ess lim g(Xs) = lim 2e-atg(Xr+t) dt 
s - ~  T + 2---~ r 

{ Z } Z  = lira E ,t.e-~tg(Xr+t) dtl ~r+  -- lira .~e-~E [g(Xr+t) I~r+]  dt 

// ~ X  = lira 2e-~tPtg(Xr) dr= lim~.R,~g(Xr) = g ( r ) ,  

which is a contradiction. Hence P( I I (H)}  = 0  and (6.6) follows. Let  A denote the set of x 

for which the limit in (6.5) fails to exist. Then on (TA<c~ } there exists s>~0 such tha t  

Zs<~(X~). Thus (TA< o o ) c  I I (H)  and A is a polar set. 

Recalling tha t  X is an initial portion of Y, we may  apply Theorem 6.2 to g = P t / o n  

account of the Corollary to Theorem 6.1. Thus for each t > 0 there exists a polar set A such 

tha t  for all ]ECK, x E E - A ,  the following limit 

Pt [(v) ~ lim 2 R~ (Pt [) (x) (6.8) 

exist. Set -Pt/(x) =0 if xEA.  The operator/5 t may  be extended to a kernel in the usual way. 

We state this as follows. 

COROLLARY. For each t > 0 and [6 GK, we have almost surely 

Vs.>O: ess lira P t / o X ~ = ~ t / o X s .  (6.9) 
r-~8 + 

I n  particular, s ~ 15t [ o X 8 is almost surely right continuous. 

The last sentence above would amount  to the fine continuity of x-~/~tf (x) in  the 

customary set-up where the process X is allowed to star~ at  an arbi t rary  x. 

T H E o R E ~ 6.3. Zet T be a reverse.predlctable time. Then each t > 0 and / e OK, we have 

~{/o ~" (T + t) l :~r-} = P , / o  ~'(T). (6.10) 



250 X. L. uiIuNG AND J. B. WALS]K 

Proo!. Since 1;, = Y~._,, it  follows from (6.9) extended trivially to Y that  we have 

almost surely 

Vs > O: ess lira Pt!o ];r =Ptf  ~ Y,. (6.11) 

Since T is reverse-predictable, there exists reverse-optional times {T,} such that  T~ < T, 

T~ f T almost surely. I t  follows from Hunt 's  lemma and the left continuity of the paths of 

that 

E {! o ~'(T,, + t) [ ~r,,+ ) "~ E {.f o li;(T + t) I :~-- }. (6.12) 

Let D be an essential limit set for the process {Pt!o ~rs, s>~O). By Lemma 6.1 we can find 

an increasing sequence of reverse-optional times {T~}, D-valued and such that  T,  ~ T~ < T 

for all n. The strong Marker property holds at  T~ since 1~ is Markovian, so tha t  the left 
t member of (6.12), after T.  is replaced by T~, becomes/ht!o Y(T,). By (6.11), the latter 

converges as n-~ co to 

ess lira P, ! o ~(s) = P,l o ~(T). 

Thus (6.12) becomes (6.10), q.e.d. 

T E E O R ~  6.4. The equation (6.10) remains true i / Y  is replaced by X and T is predictable 

with respect to { ~ ,  t>0} where ~t is the Borel /ield generated by (Xs, O<s<~t). In particular 

is a homogeneous Markov process with {Pt, t > 0 )  as transition/unction in the loose sense. 

Proo[. Recall the fl in w 4 such tha t  ~z+~ =~:t, t > 0 .  If T is predictable relative to 

0t  as stated, then fl + T is reverse-predictable. Furthermore, we have 

0T- C :~r (6.13) 

To see this we observe first that  Y~+~e :;p+t be left continuity of paths, hence ~ t c  :~+~ 

and so if A e 0,, then for each q, {q > fl + t) A A 6 :~. Hence for each t, 

{T>t} n a-- U [{~+T>q} n {q>P+0 n h] 
qGQ 

belongs to ~r since each member of the union does, by definition of the field. This 

proves (6.13) by definition of (Jr-. Substituting fl + T for T in (6.10) we obtain 

s{/o 2(T + 01 ~+ ~,- } = P,! o ~(T); 

together with (6.13) this implies the first assertion of the theorem. Now take T to be a 

constant t o > 0, and observe that as ~u- = ~t. by the left continuity of paths, the result. 

ing equation then implies the second assertion of the theorem. 
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