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1. Introduction

1.1. The dilatation D =1 of a differentiable topological mapping f: (x,y)— (u,v) be-

tween plane regions is determined by

2 Lo
1 wi+ul+oi+0}

D+—= =
D |u,vy~—uyvxl
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Geometrically, D) represents the ratio between major and minor axis of the infinitesimal
ellipse obtained by mapping an infinitesimal circle of center (x,y). From this interpretation
it is evident that the dilatation is unaffected by conformal mappings of the planes. Further-
more, a mapping f and its inverse /! have the same dilatation at corresponding points.

A mapping is said to be quasiconformal if D is bounded. The least upper bound of D

is referred to as the maximal dilatation.

1.2, It is known that a quasiconformal mapping of a2 +y* <1 onto u? + 22 <1 re-
mains continuous on the boundary.* Hence it induces a topological correspondence be-
tween the two circumferences. We shall be concerned with the problem of characterizing
this correspondence by simple necessary and sufficient conditions. More generally, we
shall look for conditions which are compatible with a mapping whose maximal dilatation
does not exceed a given number A > 1.

In view of the invariance with vespect to conformal mappings we may replace the

disk by the upper half-planes y >0 and v > 0. and we may assume that the points at co

1 1. AuLFORS, On quasiconformal mappings. Journal & dnalyse Mathematique, vol. 7.1
(1953/54).
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correspond to each other under the mapping. In these circumstances the boundary corre-
spondence is determined by a strictly monotone continuous function u (), in the sense that
the point (x,0) is mapped on (u (x),0). It is sufficient to consider the case of an increasing

1.3. The main theorem that will be proved in this paper is the following:

THEOREM 1. There exists a quasiconformal mapping of the half-planes with the boundary
correspondence x—u (x) if and only if

1

-<
0

EA

plart)—pE _ )
ulxy—p(x—t) =
for some constant p =1 and for all real x and t.

More precisely, if (2) ts fulfilled there exists a mapping whose dilatation does not exceed
0%. On the other hand, every mapping with the boundary correspondence y must have & maximal
dilatation =1 -+ A log o where A is a certain numerical constant (= .2284).

Condition (2), which will be referred to as the p-condition, indicates that u(x) must
possess a degree of approximate symmetry when x approaches any value from the right
and from the left. The p-condition is not invariant with respect to arbitrary linear trans-
formations, nor does the inverse mapping satisfy the same g-condition. However, the very
simple form that the condition takes when the points at oo are singled out is sufficient

reason to give preference to the formulation that we have chosen.

1.4. In Section 2 we use Theorem 1 to derive a different characteristic of quasicon-
formal mappings. In Section 3 the problem is further analyzed, and in Section 4 we prove
the easy part of Theorem 1. Section 5 deals with a class of explicit mappings and serves
to exhibit limits beyond which the estimates in Theorem 1 cannot be improved. The
complete proof of Theorem 1 follows in Section 6, and in a final section we give the answer
to an open question concerning absolute continuity.

The investigation requires rather extensive computations. In order to facilitate the
reading most of these computations are given in complete detail. A reader who is interested

only in the qualitative aspects may omit the computations in Section 4 and all of Section 5.

2. Compact Families of Mappings

2.1. In this section we show that the g-condition can also be interpreted as a com-
pactness condition. This analysis can be carried out alternatively for transformations of
the unit circle or for transformations of the line which leave the point at oo fixed. Since

the transition is very easy we shall only treat the case of the line.
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As before, u (z) shall denote an increasing function which sets up a 1-1 correspondence
of the real line with itself. The linear transformations z->ax + b, @ >0 will be denoted
by 8, T. We say that a family M of transformations u is closed under linear transformations
if all composed mappings Su T are contained in M together with u.

We shall also say that a mapping is normalized if u(0) =0, u(l) =1.

2.2. Let us consider the following compactness condition:

(@) Ewvery infinite set of normalized mappings u €M contains o sequence {u}7 which
converges to a strictly increasing limit function.

The following theorem holds:

THEOREM 2. The mappings u in a family M, which is closed under linear transforma-

tions, satisfy a g-condition, the same for all u, if and only +f condition (a) is fulfilled.

2.3. Suppose first that the g-condition is satisfied. If u is normalized we find
~n+l 1 -n
p(2")z 1+é pn(27")

for any =, and since u(1) = 1 it follows that

for positive and negative integers n.
For any a the function

plata)=pla)
ula+1)—pu(a)

is normalized. By (3) we have consequently

n

plata) @ = ot =@ 4 @)

as soon as 0 < x < 2-". On the other hand, if a is restricted to a finite interval, inequality

(3) with negative » yields a bound for u(a + 1) — u(a). Hence (4) constitutes an equicon-
tinuity condition on any compact set.

It follows that we can select a convergent sequence from every infinite set of norma-

lized mappings. The limit function is normalized and satisfies the g-condition. For this

reason it cannot be constant on any interval. In other words, condition (a) is fulfilled.

2.4. Conversely, suppose that (a) is fulfilled. We set

a=inf u(—1), p=suppu(—1),

9 — 563802. Acta mathematica. 96. Imprimé le 22 octobre 1956,
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where u ranges over all normalized mappings in M. There exists a sequence of y, €M such
that u, (— 1)—p. Since a subsequence converges to a strictly monotone function it follows
that f < 0. The same reasoning yields « > — oo.
Consider any u in M. The mapping
( )zu(yﬂx) — 4y
ply+t)—p(y)

is normalized and in M. Hence

uly—t)—uly
agu(yﬂ)—u(y)éﬁ
or _lgwghl.
o uy)—ply-t- B

[ 1
Clearly, this implies the p-condition for ¢ = max (~ o, —7) .

p.
2.5. Theorems 1 and 2 yield the following:
CoROLLARY. A boundary mapping u can be extended to a quasiconformal mapping
of the halfplanes if and only if the family of all mappings SuT satisfies condition (a).
Instead of relying on quantitative statements this criterion emphasizes a distinctive

qualitative feature.

3. Quantities Related to Dilatation

3.1.. If f is a differentiable mapping of the half-plane on itself we shall denote its

maximal dilatation by K. For a given boundary correspondence u we set
K{(y)=int K;,

where the infimum is with respect to all mappings f such that f =y on the real axis.
The quantity K (u) is in the foreground of our interest, but we shall also find it illu-

minating to introduce some other quantities of similar character.

3.2. A quasiconformal mapping with the maximal dilatation K has the following
property: if the real-valued functions U, and U, are related by U, (z) = U,(f(2)), then the
Dirichlet integrals of U, and U, over corresponding domains have a ratio which lies be-
tween 1/K and K.

In particular, we may confine the attention to Dirichlet integrals over the whole
half-plane. Let u, and «, be defined on the real axis and related by u, (x) = u,(u(x)). We
choose U, as the solution of Dirichlet’s problem with boundary values u,. Then the Dirich-

let integral D(U,) is given explicitly by I (u,) where
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1 [ @)
to-gn | ) e

is the well-known Douglas functional.

By use of the Dirichlet principle we find at once that
I{u) =DU,) = KD(Uy) = K1 (uy).
Sinee the same reasoning can be applied to the inverse mapping we have also I(u,) <
K I(uy).

This result leads us to introduce a quantity K, (u), defined as the least number K,
such that

. (5)

for all pairs of corresponding functions u,,u,. We have just shown that
Ky () = K ().

The quantity K,(u) may be regarded as more explicit than K{u) inasmuch as its

definition does not involve two-dimensional mappings.

3.3. In the circular representation, let «,, f; be any two disjoint arcs, and denote
their images under the mapping u by «,, f;. The extremal distance between «, and §,, to
be denoted by d(«,, f,), is a function-theoretic quantity which in this simple case can be
computed explicitly. It is equal to 1/D(U,), where U, is the harmonic function with
values 0,1 on o, #;, whose normal derivative vanishes on the complementary arcs.

The function U; minimizes the Dirichlet integral for the prescribed boundary values.

Therefore,
1

d (g, B1)

for the class of all function w, which are 0 and 1 on «,, 8,. But it follows from (5) that
min [ (u,) < K; min I(u,), and hence that d(a,, f,) g'Kld(ocl, By)-

= min D (U,) = min I (u,)

In the present case there is symmetry between u and its inverse mapping, for the
complementary arcs of «,, f; have the extremal distance 1/d(«;, $,). Hence the definition
Ky (u)= sup -—-= 6
o\M p d (“1, ﬂl) ( )

implies the double inequality
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We have proved that

Of these three quantities K, is the most explicit, for it is defined as the maximum

of a function rather than a functional.

3.4. For a given mapping u of the real axis we denote by g (u) the smallest value of
o such that the gp-condition (2) is fulfilled. Our efforts will be directed towards proving

inequalities of the form
O (o(u)) = Ko(u) < K (u) =¥ (0(m))

Here we may let ® and ¥ denote the best possible functions of their kind. This amounts
to setting
D (p) =inf Ko(u) for p(u)zo
W (g) =sup K(u) for o(u)=o.
The necessity in Theorem 1 will be proved if we show that lim ® (p) = oo, and the

sufficiency follows upon showing that W (p) is finite. It turns out that @ (g) can be deter-
mined explicitly, although in transcendental form, and the transcendental expression leads
to the elementary minorant mentioned in the theorem. As for ¥ (g) we prove a slightly

better inequality than ¥ (p) < ¢?, and for comparison we shall also derive a minorant of ¥".

4. Proof of the Necessity

4.1. In order to determine a minorant of K (u), defined by (6), we observe that the
extremal distance d(«y, 8,) is invariant under linear transformations, and hence a function

of the cross-ratio of the end points of «; and §,. If o, = (¢, 8,), 1 = (¢35, t) We set

taﬁtz ,t4*t3

A= :
ty—t, ti—t

and obtain d{ay, f;) = P(A), where P is a known function.
The notation is such that P(0) =0, P(co) = co. Also, since the complementary inter-
vals (ta, t3), (ty, t,) lead to the reciprocal cross-ratio, P(Z)P(1/4) =1 and P (1) = 1.

4.2. A minorant for K (u) is obtained by restricting the choice of o, f#; to intervals
of the form (x — ¢, z) and (x +t,00). In this case 4 =1, while the corresponding intervals
oy, B, determine
et —p(e).

H @) = e
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Since sup A" = p(u) it follows by (6) that
Ky =P(o).

4.3. On the other hand, let ¢ > 1 be given. The upper half-plane with vertices at
—1,0,1,00 is conformally a square, and the half-plane with vertices at —1,0,0,00 is a
rectangle whose sides have the ratio P(g). An affine mapping of the square on the rectangle
determines an extremal quasiconformal mapping of the half-plane with constant dilatation
P(p). If the induced mapping of the real axis is denoted by » we have thus K (v) =P (g),
while evidently g (v) == p. The latter inequality implies K (») = P(p), and therefore K (y) =
= K (v) = P(p). This proves:

The best lower bound ®(p) of K(u) is equal to P(p), the extremal distance between
(— L,0) and (g,00).

4.4, It is worthwhile to determine elementary estimates for P(p). The exact expres-

sion for P(p) reads

o0 1
dx dx
Plo)= . .
@) 1wa(%—l)(x-FQ) 0fV?C(lx)(fﬁL@)

On introducing the hypergeometric function

1 dx
F)=F @G, 4, 1,80)==> | — I
O=F 510 Jl/x(l—x)(l—xt)
(0]

F (1 i )
0
Plo)-—— %
1+p
A classical computation (Carathéodory, Funktionentheorie 11, p. 169) yields

1 1 \2
P(o)y==F|—-] -
o P (o) nF(g+ 1)

it is possible to write

Here F[1/(0 +1)] varies between F(0) =1 and F(}) = 1.1803. Consequently we can

write
P(o) —1=0(o) log o,

where 0(p) increases from 6 (1) =.2284 to f (c0)=1/7 = .3183.
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5. A (lass of Explicit Mappings

8.14. In this section we study a class of explicit mappings for which K (u) and p (1)
can be computed. They are used to determine a minorant of ¥ (g) (see 3.4 for the definition
of V).

For any given a > 0 we consider
ulx) =sgn x-|z|* (7)
A corresponding mapping is obtained by setting |f(z)|=|z|* arg f(z) = arg z. In terms of
s =log z and ¢ =log f(z) the mapping is affine,

c=aRes+7Ims,

and we see at once that the dilatation is constantly equal to o if o =1 and 1/ if & < 1.
It follows that K (u) < max («, 1/a).

5.2. In order to determine K (u) we consider the intervals (—r, —1/7)and (1/7, #)
for r > 1. Their extremal distance is given by P (47%/(r2 — 1)*), and the image intervals have
the extremal distance P (47°*/(+** — 1)2). From the asymptotic development P (f) ~ 77/log(1/1)

for small £ we obtain

p 4.r? n s oo
(=12 2logr
4 2= 7
P ~ oo
((r2°‘— 1)2) 2« log 7 e

and hence the ratio tends to «. We conclude that K (u)= max(«,1/a). Together with
Ky(u) < K(u) <max («,1/a) it follows that

Ky(u) = K (u) = max (o, 1/ ).
5.3. Because u(kx) =sgn k| k|* u(x), the ratio

u(x+t) —u(x)

@) —p(@—1)
takes the same values as
p(l+8)—1
pAZTY T2, 8
1—p(l—t) ®)

We must therefore study the maximum of (8) in its dependence on the parameter «. The

cases & = 1 and o < 1 will be treated separately.
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5.4. Suppose first that « > 1. For 0 < <1 (8) takes the form

(L4t -1

1—(1=1)* @

A look at the graph of 2 shows that [(1 +#)* — 1] /¢ increases and [1 — (1 — t)*]/f decreases
with increasing ¢{. Hence (9) is increasing and attains its maximum for ¢ = 1, its minimum
1 for ¢ =0.

For t > 1 (8) becomes

A simple calculation shows that ¢’ (t) has the same sign as
p@E) =@+ 1)-*+ (¢ — 1) —2.

But p(t) decreases from oo for £ =1 to —2 for { = oo. Therefore ¢ (f) has a single maximum

which is attained at the root f, of the equation
(I - D=2,
The value of the maximum equals

q(ts) = (i‘“_r i)a_1=2(t¢+ 111, (10)

From what we have said it follows also that the values of (8) are >1 for ¢ >0, and
hence <1 for ¢t <0. We conclude that o(u) = q(t.).

5.5. As a—1 it is clear that t,—}'2. To obtain an elementary bound for gq(f,) we
observe that p (}/2) >0 for the simple reason that (V2 + 1) and (V2 —1)1—* are reci-
procals. This implies Z, >)/2, and by (10) we find that

0 () = q(ta) = (V2 + 1)2x-D),

We know that K (u) =« and are thus able to conclude that

log o
Yig)zl+——s—- (11)
¢ 2 log (V2+1)
5.6. For large values of p the estimate (11) can be replaced by a much better one
which we find by choosing « =1/K < 1. The corresponding value of g () can be calculated
in the same way as above, with the difference that (8) is now < 1 for positive ¢. Accordingly,

we find that o(u) =1/g(t,) where ¢ () and ¢, have the same meaning as before.
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This time we are interested in small values of «, and it is easily seen that
ty ~ 1 +alog 2 for a— 0. We shall show in a moment that p(1 + « log 2) > 0, provided that
o is sufficiently small. Since p(f) is now increasing this implies £, <1 + « log 2.

By use of (10) we obtain

22 ]+« log 2
Gt)=2(2+alog 21 —12 PR S|
o [v.4
1+ log 2 1+- log 2

-
+
N |
f—
Q
[6:9]
|8

2
¥ ()= 2 21 (12)

which is valid for sufficiently large o.
To prove our contention that p(l + «log 2) >0 we make use of the inequalities

ezl +zand (1 +2)"*=1— ax. We obtain

(2+alog 2)~*=(2+alog2)2= (1 +§ log 2)~

. 2
22+ alog 2) (1 -« log z)(l—% log 2)

iv

2—alog 2—o?(1+ log 2) log 2
and further
(e log 2)1* = « log 2 (« log 2)~*

Z o log 2 (1 — o log « — o log log 2).
When these inequalities are added we find that p(l + « log 2) = 0 as soon as
log1/a =1 +log 2 +loglog 2,

1
2elog 2

IA

ie. if o

Hence the estimate (12) is valid for o > 4e + 1.

6. The Sufficiency Proof

6.1. It remains to find an upper bound for K when p is given. To this end we must
construct explicit quasiconformal mappings with a given boundary correspondence u.

We define & mapping f(z, y) =u(x, y) +iv(z, y) by
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u(z, y)= (iKl(x;t) le Ju(x+yt)d i
oom -oﬁw :, (]3)
1 -1
v(x, y)= f?;Kz(x—y—f)‘u(t)dt=r sz(t)lu (x+yt)d J

for —1<x<1

1
l(z) . | ] - K, (x) = K, (x) sign x.
or (x| =

We observe that f(x,y) is defined by a linear operation on the boundary val-

ues ufz),

e, y)=

S_ﬁs

1 —t
K(——) (tydt, (K=K, +irK,.
y y M 1 2
The constant r > 0 is a parameter which we shall use later to make the dilatation as small
as we can.
Without use of the notations K;, K, the definition can be rephrased as
1
1
u(x, y) =3 { [w(x-Hty)+p(x—ity)ldt
0
1

v (x, y)=é~ f [ple+ty)—u(x—ty)ldt

0

6.2. The following properties are evident: » and v are defined and continuous in the
closed half-plane y = 0,9 >0 for y >0, and u(x,0) = u(z), v(z,0) = 0. Hence f(z) has the
right boundary values.

As to the behavior at co we see that u(x, y)—> + cofor x— + co and u (x, y)—> — o
for z— — co, uniformly in y. Similarly, v(z, y) = + co for y— -+ co, and the convergence
is uniform when «x is restricted to a finite interval. We conclude that f(z) — oo for z—>oco.

It will be seen that the Jacobian of the mapping is always positive. In view of this
fact, and by virtue of the boundary correspondence, it is a simple matter to show that
the mapping is automatically topological, and that the image of the half-plane, y >0 is
the whole half-plane v > 0.

6.3. We shall have to determine the partial derivatives of u and v at a point (xy,%,),
Yo > 0. It is easy to prove that the derivatives of a convolution of the form used in (13)

are given by
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8 1

— - t
Py JK(t)[u(x—i—yt = fK t)du(x+yt)
aFK(t)(th 1fth +yt).
o x - x

o | p(x+yt) v plxt+y

Consequently, if we introduce the notations

1 0

1 1

o= fd‘u(xo—‘ryot), p=-- fdy(xo+y0t)
Yo 5 Yo -

(15)

1 0

1
o' =— ftd,u(xo'i'?/ot); B = _317 J-td!‘(x0+?/ot)
0

0
-1

we obtain

’

U =a+p, uy=o' —f
v =1 (00— f), vy=r (¢ + ).

On substituting these values in (1) we find

Do Ll (a4 2o’ B) (117

D 2r{af +a' f) (16)

It is to be noted that «, B, o', 8’ are all positive. This substantiates our claim that
WUy — Uy ¥, =27 (e f + o’ ) >0.

6.4. Since v (t) = pu(x, + y, t) satisfies the same p-condition as x4 () we lose no generality
if we choose #y =0, y, =1 in (15). In other words, it amounts merely to a change of nota-

tion if we replace (15) by

o= J.d‘u fdlu
0
1
thdlu = — ftd,u
0 -

By means of the p-condition

IA

1_p@tt)—plx)
o p(@-—pulz—1

we obtain at once a/p=<pf oo (18)
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6.5. Corresponding estimates of o'/ and f'/f are a little less obvious. We prove in
this respect:

LemMa. The ratios o' /o and B'/f lie between 1/(p -+ 1) and o/{o --1).

For the purpose of proving the Lemma we may assume that ¢ (0) =0, u(1) == 1. Then

1
a':l—f;uit,
1]

and we have to prove that
1

< fﬂdt L (19)

o+1

_1 -
+1

17

o
~+

v

0

Let C, be the family of all g which are normalized by ©(0) =0, (1) =1 and satisfy
(17) for points x — ¢, x, ® +t contained in the interval (0,1). We set

M (x) =sup u(x).

uel,

It is clear that M(}) <g/(o +1). Furthermore, it follows from the definition of
M (z) that

M@x)y<M3YMQ2x), O0<zx<i
ME+a)s M@ +(1-ME)MR2), 0=zl
Hence M@E)+ M3 +z)s M(3)+MQ2x)
1 1/2 1
and [M@)de= | [M(@)+M(G+2)]dasi M)+ [ M(2)da.
0 0 0

We conclude that

f,udté fM(w)dxéM(%)é
b

0

The left-hand inequality in (19) follows on replacing u(t) by 1 — (1 —¢t). The same
bounds for §'/8 are found when we replace u(t) by —pu(—¢).

6.6. We simplify (16) by writing o' =&«, §'=%f. Then

11 [fi= Bli,e - N
D+D_2r(£+77){[ﬁ(1+52)+a(1+’7)](”’2)”(1 En) (1=r),

and the point (&, #) is restricted to the square

1 .0
et 1= S,
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Because of the symmetry we may suppose that £ = 7. Under this condition our expression

has its largest value when o/ attains its maximum g¢. Hence we find that

Dy <FE ) (20)
where F (& ) =a—(‘§7’l)+b(§’ nr,
et 1)t eE—n) _(e= 14 (&t
(& 2@y 0 O ey

The functions a(&, 5) and b(&, n) are seen to be convex (from below) for & +# > 0.

Hence the maximum of F (&, ) in the triangle under consideration can only be attained
at one of the vertices

e ) fah) o e g h)
0+1’ p+1)7 \p-+1"p+1 o+1 p+1

We denote the values at these points by F,, F,, Fj respectively, and set F; =a;/r + b;r.

6.7. We have already proved that the dilatation is bounded, for it follows from
(20) that
1
D+E < max (Fy, Fy, Fy).
It remains to determine an explicit bound by suitable choice of r.

In order to treat this technical question we compute

(0—1)(0*+30+4)
4(p+1)

(e—1) (®—0—4)
4(9+1)2

Ay — Q=

by — by=

(0—1)(0*+30°+80°+30+1)
40%(0+1)

ay — 3=

(-1 (°—e*+3p+1)
40°(0+1)°

by — by=

It is seen that a, —a, and b, — b, are both =0 for g =1, and hence F, > F, for all r.
Consequently, we need only compare ¥, and F,.
The inequality F, > F, holds if

(ay — ay) + (by = by)r* = 0.
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The minimum of F, is attained for r = l/al'/—l?l, and we conclude that this minimum is greater
than the corresponding value of F, if
(@ = ag) by + (by —by) a4, 2 0.
After a lengthy computation one finds that this expression equals

(0—1)%(0°+50* +119°+90*—6)

8(o+1)* '

and hence that it is indeed positive.

Accordingly, we have proved that

1 -
K+2= min F,=2Va, b,,

and hence that K=Va,b,+Va b, —1.

We prefer to replace this complicated result by the simpler inequality K < p? announced

==

in the theorem. To obtain it, it is sufficient to show that

1 2
4a,b = (92+f2) )
i
Explicitly, this inequality reads
(0 —1)(30" + 0% +80° +12p* — 49 —4) =0,

and it is obviously satisfied for all p = 1.

7. Absolute Continuity

7.1. It has been an open question whether the boundary correspondence induced
by a quasiconformal mapping is always given by an absolutely continuous function .
Our Theorem 1 reduces this question to one that deals only with monotone functions of
a real variable. The answer is in the negative, and even the following stronger statement

is true:
THEOREM 3. There exists a quasiconformal mapping of the half-plane on itself whose

boundary correspondence s given by a completely singular function p with o (u) arbitrary

close to 1.1

! We wish to acknowledge that Mr. Errett Bishop has also constructed a function which
satisfies a @-condition without being absolutely continuous. The construction that we shall use is
essentially different from his.
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From a function-theoretic vantage point the most striking consequence of this theo-
rem is that the distinction between sets of zero and positive harmonic measure is not

preserved under quasiconformal mappings.

7.2. Let p =1 be given. We choose an increasing sequence of numbers g,, 1 < g, <p,
and a fixed number 4, 0 <4 <(g, —1),(p, +1).

We are going to construct an infinite sequence of integers 0 <n, <mn, <--- with the
property that the functions u, (), defined by

z

U (x)=f [T+ 2 cos %, x) dx,
o i=1

satisfy o(u,) <o, and converge to a singular function u () with o{u) <o.
To simplify the notation we shall use the same symbols u, and u for the correspond-

ing interval and set functions. Since

Jey ()= ‘ (1424 cosn, 2)u (x)d

0

/uv+1 (U))

— <1+
My (w

we have 1—-4<

for any interval w. For any pair of intervals w, w’ we obtain

1-2_ (@) pm(w) 1474 1)
LA (@) (o) 1—4

IA

7.3. We can choose an arbitrary n, > 0, for it is obvious that g (u;) < (1 +4)/(1 — 2)

< p,. Suppose that n,...,7n, have been determined. If
My t1 >Nv: Z Ny,
i1
2x
then f ,u,' (x) cos n xdx=0.
0

For this reason, and by Riemann-Lebesgue’s Lemma,
x
Lu; (%) cos n, . xdx—0
0
when n, ;1 —oco, uniformly for all . Hence y,., tends uniformly to u,.
Let w and o’ denote two neighboring intervals (x —¢, ) and (x,  +t) of length ¢.

Since lu; (#) is uniformly continuous we can find %, > 0 so that
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i—i—i 1 é‘u,,(w/)gl—ley+1
—A01 wlw) 1+2

whenever ¢ <#,. Together with (21) it follows that

1 — i1 (w)

Ov+1 ,uv+1 (wlj

A

I

Or+1 (22)

under the same condition on ¢.
Because .. tends uniformly to u,, and because g(u,) < ¢, < g,+1, We can choose
7y.1 80 that (22) is also true for ¢ = #),. In other words, we can choose n,., so that ¢ (u,,1)

< 0,+1- In addition, we can and will make sure that

1
| tyi1 (@) — o ()| <v2—N,, (23)
for all z.

7.4. For v—>oo the sequence {u,} converges uniformly to a non-decreasing limit
function u. It is clear that p(0) =0, u(x + 27) = u(x) + 27, and p(u) = 0. We claim that
¢ 18 purely singular.

To see this we write
g (x)= log (1-+2 cos )= > vy e,

2

1
where y0=§flog (1+Acosz)de= —a<0

0

and 2 |yi|<oo. We determine ¢ so that

< =
IEJWI 5
o itz
Then g(x)< —5+ e
< 1glkize
/ < va ! iknoz
and 1ogyv(x)=2g(njx)<~~9~+ > (Zyke/"f ) (24)
i=1 ~  1g|kl=q \j=1
va
= -5 1t (@)

The Fourier expansion of ¢, contains at most 2 ¢» different powers, and in each term

the coefficient is
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<8= 3 |yil-
- o0
‘.1~:1
Hence T{ drdx=2qv 8
2,

0

As a result the subset of (0,27) on which ¢, >av/4 is of measure <c/v, where ¢ is
a constant that depends only on 2. Because of (24) this set contains the set K, defined
by the inequality

awv

p(@)>e -

Consequently the measure m(E,) of the latter set tends to O, while on the other hand
w(E)—>2a7.
We make use of the fact that i, (z) is a trigonometric polynomial of degree < N, =

=> n;. For this reason E,, considered on the unit circle, consists of at most N,

arcs. From (23) we obtain |u(x) —u,(2)| <1/( —1)N,, and we conclude that
(B —uw(B) <1/(» —1). Hence u(E,)—>2n, and since m(E,)—0 it follows that u

is purely singular on (0,2:), and consequently on the whole real axis.



