THE INHOMOGENEOUS MINIMUM OF A TERNARY
QUADRATIC FORM (1II)

BY

E. S. BARNES

1. Let @Q(x, y, 2) be an indefinite ternary quadratic form with real coefficients

and determinant D =0. For any real numbers z,, y,, z, we write
M (Q;xy, yo, 2)= g1b. |Q(x, y, 2|, (1.1)
where the lower bound is taken over all sets
X, Y, 2 =%y, Yy, % (mod 1).
Then M(@Q)=Yub. M (Q; x5, ¥y, 2), (1.2)

over all sets xy, y,, 2, is called the inhomogeneous minimum of Q.

In a recent paper [1] I showed that
M Q<) |D)} (1.3)

unless ¢ is equivalent to a multiple of one of

Q=r"—y -2 rry—Tyz+zx (1.4)
or Q=22 —y*+152% (1.5)
while M (@)= (| D)1, M (Qz) = (5| D), (1.6)

the upper bound (1.2) being attained only when z,, y,, 20=4%, 4, 3 (mod 1).
These results were an extension of those given by Davenport [5], who showed
that there existed a constant §>0 such that

M@Q)<(1-9)(&]|D|)*

5~ 563802. Acta mathematica. 96. Imprimé le 20 octobre 1956.
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unless @ is equivalent to a multiple of @,, while M (Q,)=(Z|D|)! (and is an
attained upper bound).

At the end of [1] I mentioned the possibility of extending the method and
finding more complete results. Such an extension has in fact proved possible and
leads to:

TuesoreEM 1. () If Q(x, y, 2) is not equivalent to a multiple of either of the
forms Q,, @, of (1.4), (1.5), then

M@ =#ID) (L.7)

(ii) For the special forms Q,, Q,, we have.

M(Qi; 24, 9o, 2)< (}|D)? (1=12) (1.8)

unless 2y, Yo, 2%g=3%, £, 5 (mod 1); further
M@ 3 4 H=E DD =M (Q), (1.9)
M@ 4, 8, ) = (5| DD =M (Qy). (L.10)

This theorem has the same statement as [1] Theorem 1, save that the constant
4 there has been replaced by 1 in (1.7), (1.8). The constant ; was found veryr
simply by Davenport [5] to correspond to the precise upper bound of M (Q) fo
zero forms @ and which, by analogy with corresponding results for binary quadratic
forms and the product of three real linear forms, might be regarded as the ‘“‘natural”

constant for this problem. Davenport’s example ([5], Theorem 2) of the form
Qy=22—yf +47° (1.11)
for which M(Qy; %, 4, H)=1=(}|D|)} (1.12)

shows explicitly that Theorem 1 becomes false if } is replaced by any smaller
constant.

Using Davenport’s result for zerg forms, and the proof of (1.9), (1.10) given in
[1], § 2, we can reduce the proof of Theorem 1 to that of

THEOREM 2. If Q is not a zero form and
M(Q’ xO) ?/o, Zo)> (ilDD*’ (1.13)

then Q is equivalent to a multiple of either Q, or Q, with x4, Yo, 2,=%, 4, 3 (mod 1).
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It would be very interesting to know whether or not the sequence of “‘succesive
minima” continues below (}|D[)}. This problem appears to be of a much greater
order of difficulty and would almost certainly need a different technique from that

used in this paper [which would break down at the proof of Lemma 2.5].

2. For the proof of Theorem 2, we may assume that D <O (considering — @

in place of @, if necessary). Let a be any value properly represented by ¢ and
satisfying

0<a<(|D|); (2.1)

1
that such a value exists follows from Barnes [2], Theorem 1. Then (;Q(x, Y, 2) is

equivalent to a form
f@ gy, 2)=(x+hy+g2)®—¢(y, 2), (2.2)
where ¢ (y, z) is indefinite, of diseriminant

4|D|

A== 23, (2.3)
For any such form f we define
d=d(f)=(} A}, (24)
so that, by (2.3),
d>@)>1-144. (2.5)

Now (1.13) of Theorem 2 is equivalent to the assertion that*

M(f; 2o, Yo, 20)> (A = d. (2.6)

Defining x>0, v>0 by
uA=3d-14, (2.7)
vA=4d+}[d], (2.8)

we see as in [1] Lemma 4 that (2.6} certainly cannot hold if there exists a solu-

tion of

~uA<¢(y, 2)<vA, Y, 2==Y,, 2z, (mod 1). (2.9)

We may therefore suppose henceforward that (2.9) cannot be satisfied.

* The sets x), y,, 2, in (1.13) and (2.6.) are of course not necessarily the same; we adopt the
convention, as in [1], that when we pass to (2 multiple of) an equivalent form, any particular set
%5 Yo, 2 18 subjected to the same transformation as the variables z, y, 2.
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The form (y, z), of discriminant 1/4® with y, 2=y,, 2, (mod 1), runs

1
ud?
over the values of & corresponding to an inhomogeneous lattice L:

§=ay+ﬁz}’ Y, 2=y, , 2 (mod 1)

nN=yy+0dz
in the £, n-plane, of determinant A(L)=1/u. For any m>1 we denote by R, the
region

—1<én<m.

In the usual terminology, we say that a lattice £ is admissible for R, if £ has no
point in the interior of R,; and we define D, , the (inhomogeneous) critical deter-
minant of R,, to be the lower bound of A(L) over all lattices £ admissible for R.,.

1
Since (2.9) has no solution, the lattice L corresponding to «ng(y, z) can have no
u

point in R, where

v  2d+[d
= = - 2.1
" H 2d—1 (2.10)
This implies that certainly
! =D, (2.11)
"

We use (2.11) to deduce:

Levmma 2.1. If (2.6) holds for any xy, y,, 25, then

1-144 <d<9. (2.12)

Proor. If d=9, (2.10) gives

_2d+(@—~1P _ d+1 _ 82

> T 2d-1 ed=1o 11>
so that* Dp=V(m+1)(m+9) (m=3), (2.13)
then it follows from (2.10), (2.11), (2.13) that
12 V(v +p) (0 +90),
or ([d12+4d—1)([d2+20d—9) <16 A*=324°. (2.14)

* See, for example, BARNES and SWINNERTON-DYER [4], Theorem 3.
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If now 9<d<10, [d]=9 and (2.14) gives
(d+20)(5d+13)<2d°,

which is easily seen to be false for d>9.
If d>10, (2.14), with [d]>d—1, gives

(d%*+2d)(d®+18d —8)<32d°,
d*—12d%+ 284~ 16 <0;

and it is easily verified that this is false for d>10.

Thus (2.11) cannot hold if d>=9; this, with (2.5), proves the lemma.

In order to find further restrictions on the possible values of d, we shall need
more precise information than (2.13) on the value of D, . For this, and for the
later stages of the proof, we use the technique of Barnes and Swinnerton-Dyer [4],
which is outlined in [1], § 4. The main results are stated here for convenience.

We denote generally by [b,, by, by, ...] the continued fraction
1 1

h,—— = ..

! by — bs — '

where b, is integral and b,>2; all continued fractions we consider are infinite and
satisfy the conditions b, >4 for infinitely many n. The value of any such continued

fraction is increased if any partial quotient b, is increased; this gives, in particular,
By, bay ooy but, ba—1]<[By, by, <oy ba, .. ]1<[by, by, ...y B2 (2.15)

Let {a,} (—oco<mn< oo) be any chain of positive even integers such that a, >4

for infinitely many n» of each sign. For each n we define

0n=[an sy An—1, An-2, ]

¢n=[an+1, Gnigs Anig, -..) ’

(2.18)

then, using (2.15), 6,>1, ¢,>1. For any real 4, x4 with Au >0, the inhomogeneous
lattice £ defined, for any =, by

E=A{0n(u—P)+ (-1}
n=p{lu—3+¢x(v—3}
where u, v run through all integral values, is called a symmetrical lattice correspond-

ing to the chain {a,}. If £ has determinant A>0, we have A=Ay (0, ¢n—1), so
that, for points of C,
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En= (Ony+2)(y+ Pn2), y,z=4% 1 (mod 1) (2.17)

6n¢n—l

A symmetrical lattice £ of determinant A is admissible for R, (m>1) if and

only if the inequalities

é> 4(67L¢)TL_1) o +]
m~ (0,+1)(¢pn + 1) "
< (2.18)
4(Onpn—1) J
>t L A
AZ D 1)

hold for all n.
For any m>1, all critical lattices of R, (i.e. admissible lattices of determinant

D,,) are symmetrical. Moreover the inequality
AL)22(m+1)if l<m<3 (2.19)

holds for any Rn-admissible £ which is not symmetrical.

Finally, if
0<G<2(k+1) (2.20)
and, for any =,
A; <@, Ay < g, (2.21)
then the inequality
— /R 16%
2(k—-1) | _ V G*—16k (2.22)

Tk -G T 2(k+1) -G
holds if a=0, or if a=4¢,.

We now specialize some of these results to the problem in hand.

LeMMaA 2.2, Suppose that, for the form f(x, y, 2) of (2.2), (y, 2), with y, 2=
Yo 2o (mod 1), corresponds to a symmetrical lattice L with chain {a,}. Then, for each

n, f(x, y, 2) is equivalent to

fal@ 9, 2)= (@ + ko y + hn_y2)’ — ga (¥, 2), (2.23)
A , )
where gn (Y, 2)= a—zt—l (Ory +2)(y+ dn2), (2.24)
hnii=0n 1 by —hn_y for all n, (2.25)
and Zo Yor 2=, }, § (mod 1) (2.26)

in each form f,(x,y, z).



THE INHOMOGENEOUS MINIMUM OF A TERNARY QUADRATIC FORM (II) 73

Proor. By (2.1), é(y,2) is equivalent to g,(y,z) for each =, with y4, z,=14, }
(mod 1). Hence, under a transformation on y, z which leaves x, and therefore x,,

fixed, f is equivalent to a form
.fn (x: ?/, 2) = (.’I} + hny + k" 2)2 ‘gn (?/, Z),

say, for each n. From the relations

1
0n+1:[an+1, Qn, B, oo ] =Gnpr— =

n°

¢n=[an+1; Oniz, ...]=Qny1— ?_’
n+1

we deduce easily that
In+1(y> 2)=gn (@n1¥ T2, —Y).

Hence if we make the transformation

Y=any +2, 2= —y
we obtain

o, g, )= {2+ @ns1ha —g) ¥ + ha 2’} — gria (', 2);
this is fo,.1(x, ¥, 2') if we take
hnsr=ans1bn —gn, gnir=hn.
The lemma now follows immediately.

Lemma 2.3. Suppose that f(x, y, 2), %, Yo, 2o Satisfy (2.6) and the hypotheses
of Lemma 2.2. Then, for all n,

__ 4d-D) 1 4A |
A= G- (a1~ 2d-1 (2.27)
+_ 4(6,dr—1) 1 4A

P D))y 2d-(@P] (2.28)

Proor. Since (2.6) holds, the inequality (2.9) cannot be satisfied. By Lemma
2.2, ¢y, 2), ¥, 2=y, 2, (mod 1), is equivalent to g, (y, 2), ¥, 2=%, { (mod 1), for

all n. Now
A A
—Gn (%7 %)= 6 95 (% 6" %¢n %7 An >O:
A A
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The insolubility of (2.9) therefore gives

A
K;z ”‘gn(%; _%)>ﬂA,

A
AF =g. (3, $)>v 4,

for all n; these inequalities are just (2.27) and (2.28).

LeMMA 2.4. The tnequalities

>
3
A

(2.27)

B~

A

IA
R

(2.28")
cannot be satisfied by any chain {a,} if 5<d<9.

Proo¥r. (i) If [d]=8, 8<d<9 and (2.27'), (2.28') give

_ 424
< X 7
"T 2d-1 <9

4(2dh} 17)
+< Bl
Arssired < %\se

A

for all n. Thus (2.20), (2.21) hold with G=9, k=82/17>4.82, and so, by (2.22)
with a=80,,

0, —

7.64] V388 1.97
S < < s
264| 264 264
2.14 < 6, < 3.65.

Using (2.15), we see that these inequalities imply that a,=4 for all »; but then

0,=[4,4,4,..1=2+V3>37,
which is false.

(i) If [d]=7,7<d<8 and (2.27), (2.28) give

42t 128
2d—1 15

Az <

"S3d+49 65 13

As <t} 128 3(128)
15
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for all ». Thus (2.20), (2.21) hold with G=128/15, k=13/3, and so (2.22) gives

25
0~ 5

7
< =
8

2925<8,<4

for all n. Hence @¢,=4 for all ». But then, for all =,

=

bl 4 .
On=n=2113,  Ai= >0 (;7))

which is false.
(iiiy If [d]=6, 6<d<7, and (2.27") (2.28") give

4245t 28114
- <
AR < 51 < 13 < 8.059,

424t 28114
< 2.
A< odise = 5o 0%

for all n. Thus (2.20), (2.21) hold with G'=28}14/13 <8.059, k=350/13>3.846, and
so (2.22) gives

5 5.602) 1.847

1.633| = 1.633

235<6,<4.62

for all n. Hence a, =4 for all n, and, as above,

Ay = V; =2.3094 ... >2.096,

which is false.

(iv) If [d]=5,5<d<6, and (2.27), (2.28) give

313 Q
A< 42P) <48V3

G Y S TN

4(2d%t 4813
+< _
A"“2d+25< 37 <225

for all ». Thus (2.20), (2.21) hold with G =48 V§/11<7A56, k=37/11>3.36, and so
(2.22} gives
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On =176 <116’

4.721 1.82

25<0,<564

for all n. Hence 4<<a, <6 for all n.
If some «,=6, 6,2[6,4,4,4,...]=4+ V§>5.7, a contradiction. Hence ¢, =4

for all ». But then, as above
4
Ay == =23094 ... >2.25,
V3
which is false.

LemMa 25. If (2.6) holds, then
1.144 <d <5,

and the hypotheses of Lemma 2.2 are satisfied.

Proor. We known, by Lemma 2.1, that 1.144 <d<9.
(i) If 5=<d<9, Lemma 2.4 shows that, for any symmetrical lattices, at least

one of the inequalities

Ars o oarst
v

holds for some n. Using (2.18), we see that any R,-admissible symmetrical lattice
L (with m=v/u) has

AL)>— -
“

Since m>1, all critical lattices of R, are symmetrical hence

1
D,>—>
y24

which is inconsistent with (2.11).
(i) Suppose next that 1.144 <d <5. We have to show that the Rn-admissible

1 .
lattice L, of determinant 1/,u, associated with the form —A¢(y, 2), Y, 2=Yy, 2, 18
)7

necessarily symmetrical.

Suppose to the contrary that £ is not symmetrical. Then (2.19) gives

--1—22(m+1)=2(K + 1) it m<3. (2.29)
M 1 )
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This reduces to
[dP+4d—1=<2A=2(2d%},

which is easily found to be false for [d]=1, 2, 3 or 4. Also

. S
_ 24+l _,
2d—1
if [d]=1,2o0r3 or if 475=d 5. We therefore certainly have a contradiction from
(2.29) unless
4<d<4.75. (2.30)

If however (2.30) is satisfied, then m >3 and the analysis of Lemma 2.1 holds (using
only the fact that £ is admissible). Thus (2.14), with [d]=4, gives

(4d +15)(20d+ 5) < 32d°,

and this is false for d <4.75.

3. The results of §2 show that the binary form ¢(y, z) m (2.2) must cor-
respond to a symmetrical lattice C satisfying (2.27), (2.28) for all n, with some d
with 1.144 <d <5. ,

The next step in the proof of Theorem 2 is the investigation of such lattices.
In each of the intervals 4<d<5, 3<d<4 we find (Lemmas 3.1, 3.2) that there
exists a unique chain {a,} satisfying (2.27), (2.28), so that ¢(y, z) is determinate
within an arbitrary (positive) multiple. In each of the intervals 2<d <3, 1.144 <d <2
there are uncountably many distinct chains {a,} satisfying (2.27), (2.28) (Lemmas
3.3, 34); we are able, however, to specify the general structure of these chains

sufficiently well for our purposes.
Lemma 3.1. If 4<d<5, the only chain satisfying (2.27), (2.28) for all n s
{4}. Thus, for all =,

gn (Y, 2) = %(y2+4yz+zz), Yos 2o=1%, 1 (mod 1). (3.1)
Proor. The inequalities (2.27), (2.28) give

9 g3y} ¢ /
A< 22A)E 20110 g g9g, (3.2)
2d—1
D 3N\ K 10
;<%£%ik<<iﬁzﬁl<24m1 (3.3)

2d+ 16 26
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Thus (2.20), (2.21) hold with G =20 Vl?j/Q< 7.028, k=26/9 > 2.888, and so {2.22) gives

o _ 3.776| 1.778
" 0.748| T 0.748
1.998
On> 5748~ 2

for all ». Hence a,=>4 for all =.

If now «, =6 for some n, we should have

0, =16, Z]:4+V§, ¢nz[2}:2+1/§,

4(10+6V3)  4(9+7V3) 59

;_——‘—‘_—‘~':‘—‘ 5,
(5+V38)(3+V3) 33

contradicting (3.3). It follows that a,=4 for all », as asserted.

The rest of the Lemma follows immediately, since for the chain {4} we have

0n=¢n=[2]=2+1/§

for all n.

LemMa 3.2 If 3<d<4, the only chain {a.} satisfying (2.27), (2.28) for all n

is {4, 6}. Thus we have (taking az, =6, agni1=4)

A
Gon (s 2) = Gons1 (2, ¥) = l/—l_é?)(3y2+ 12y2z+22%) (3.4)

with y,, zp=1, } (mod 1).
Proor. (2.27), (2.28) give

4248 32V2
< —_—

(3.5)
5d_1 < 6.465,

A; <

42t 3212
<

32V2 _, esa (3.6)
5d19 - 17 2063

A <
Thus (2.20), (2.21) hold with G =32 V§/7<6.465, k=17/7>2.428, and so give
/8

L

_ 2.856 < 1.715
391 391
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1.141

0n> =301

>2,
so that a, >4 for all n.
If now a, =8 for some n, we find
0,>[8,4]=6+V3>77, ¢.>[4]=2+V3>37,

. 4(27.49)
Af > w——~(4.7) &) >2.68,

contrary to (3.6). Hence a, <6 for all n.

If a,=a,,1=4, then
0.<[4,6]=1+V8,  $.<[4, 6]=1+V8,

- 4(2+V8)

A;> 212 4418 6.8,
V8

contrary to (3.5); and if a,=a, =6, then

6,2[6,4]=4+V3,  $u=[6, 41—4+V3,

(3+V3) _ 4
5+Vs 11

>
S+
v
1
|
i

(3 +13)>2.8,

contrary to (3.6).

The only remaining possibility is that {@,} is the periodic chain {:1, (;}, which
proves the first part of the lemma. The second part of the lemma follows at once,
since (choosing the enumeration so that ags, =6, az,,1=4)

x x 6+ )/30 x < 6+/30
¢2n+1= 02n=[6: 4] = 9 5 ¢2n: 02n+1: 4, 6] = 3 ’

Lemma 33. If 2<d<3 and the chain {a,} satisfies (2.27), (2.28) for all n,
then either

(i) {a.} 4s {é}, when
— A 2 2 -—1 1 .
In(y, 2)= V32 (y"+6yz+2%) gy, 2=%, % (mod 1); (3.7)

or (i) {an} satisfies
s =4, 10<ay,,1 <14 for all n. (3.8)
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Proow. (2.27) and (2.28) give

42d)t 1216

- 3.9
A< 51T < 3 < 5.8788. (3.9)
4243 12V
g - < 2.9394. 3.10)
Al < 51T < 0 © 9394 {

Thus (2.20), (2.21) hold with G=12V16/5<5.8788, k=2, and so (2.22) gives

po_ 2 |_ 16

"Toa212| o212’
4

= 1512 7%

Hence a,>4 for all n.
Case I: Suppose that a, =4 for some =, say a., =4 (by suitable choice of the
enumeration); then @s, ,>10, a¢2,.1->10. For otherwise we may suppose, by sym-

metry, that a,n.1<8; then 02, <4, ¢, <8 and so

4 1 124
x3 =_"—" >5.09,

Aen> 357 =97

contradicting (3.9).
Further, if a3,.,=10 for some =, then asn, =as,,2=4. For otherwise we may

suppose, by symmetry, that as,>6, when
Osn2[6, 4]=44 V3,  ¢on=[10,4]=8+V3,

+
2n == 7

(5+13)(9+V3) 429

4(34+1213)  4(282+25V3) =3

75

contradicting (3.10).
From these results it follows at once that, if @y, =4 for some n, then, for all

n, a2, =4, dgni1>10. Finally, if agn.1 =16 for some n, we obtain

Bon>[4]=2+V3>37,  on>[16, 4]=14+V3>157,

. 4(57.09)
Bin > T 16.7)

> 2.96,

contradicting (3.10). Hence az,.1 < 14 for all ». This gives (ii) of the lemma.



THE INHOMOGENEOUS MINIMUM OF A TERNARY QUADRATIC FORM (II) 81

Case I11: Suppose that a,=>6 for all n. If then a,>=8 for some n, we obtain

0,28, 6]1=5+2V2,  .>[6]=3+2V2,

contrary to (3.10). Hence a, =6 for all =.

Finally, for the chain {6} we have, for all n,

On=dn=3+2V2,
A 2 2 =1 1
9n (y! Z): ‘1/3:2@ +6yz+z )7 Yo> 20~ %, 3 (mOd l)'

This gives (i) of the lemma.

Levma 34, If 1.144<d <2 and the chain {a,} satisfies (2.27), (2.28) for all n,
then every pair (an, @n,i) ond (@n.y, @n) of consecutive elements of {a,} is one of
(6, 10), (6, 12), (6, 14), (6, 16), (8, 8) or (8, 10).

Proor. (2.27) and (2.28) give

_ o 4@2d)t 16
A"<m< 3 =5.3333 ... (3.11)
4(2d%F 16
+ > —9 <
Af < a4 1 < 5 3.2. (3.12)
Now*
__ 4B 1) ( 1 1 : 1 )
n = :4 -+ - ’
8=ty g ) (g
so that (3.11) gives, for all =,
4
1*1"5;1?1 <§, 0n>4

Hence a,>6 for all n. The lemma will now follow from the following results:

* The inequality (2.22) cannot be used, since with G =163, k =5/3 we have G =2 (k+1).
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(i) If a,=6, then 10<a,,,<16;
(i) if a,=38, then 8<a,,,<10;
(i)  if a, =10, then 6<a,,;<8;
(iv) if a, =12, then a,,=6;
and the corresponding results (which follow by symmetry) with a,.1 replaced by

@yn-1. For the proof of these it is convenient to write (3.11), (3.12) in the alter-

native forms:

40,—17

¢n> 0. —4 ’ (313)
40,+9

$n< (3.14)

If a, =6, then, since a,>6 for all n,

3+ V8=[6]<6, <6.
3.13) gives ¢, >17/2=8.5, whence a,,,>10. (3.14) gives
g g

$.<1(25V8+53)<17.7;

since ¢n = [tny1, 6]=ttn 1 — (3 — l/é) >a,,1—0.172, it follows that a,,;<16. This pro-
ves (i).
If a,=8, then

5+)8=[8, 6]< 0, <8.
(3.13) gives ¢, >25/4>6, whence a,,; >=8. (3.14) gives
b <1(25V8+3)<10.54,

whence, as above, a,.;<10. This proves (ii).
If a, =10, then

7+ V8=[10, 6]< 6, < 10.
(8.13) gives ¢, >11/2=5.5, whence a,,,>6. (3.14) gives
$n <79 —25V8<8.29,

whence a, ., <8. This proves (iii).
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Finally, if ,>12, then 0,=[12, 6]=9+V8; (3.14) gives

$n < 11—7(193~ 25V8)<17.2,

whence a,,1 <6 and so a,,;=06. This proves (iv).

4. The final stage in the proof of Theorem 2 is the direct examination of
f(z, y, z) by means of the chain f,(z, y, 2) of equivalent forms given by Lemma 2.2,

together with the results on the chain g, (y, z) found in § 3.
LemmA 4.1. It is impossible that 4 <d <5.
Proor. By Lemma 3.1,
gn(y, =k(y*+4yz+2>), ¥, 2=% % (mod 1) (4.1)
where 12k = AZ=24% (4.2)

Now (2.27), (2.28) become

/a9 4A g 2 2_o g3
413<§8“:E’ 32d-1)P<A*=2d°
4 4A ;
= 2 d 8 2 % 2= 3
V3<2d+16’ (d+8)°<3A*=3d°
of which the former gives
d>4.8. (4.3)
Since 4.8 <d <5, (4.2) gives
4.294 < k < 4.565. (4.4)

Now, for all =,
fole, =%, ) =@ —%hy + 3 by 1)+ %k,
fu (@, 3 1) =@+ $ho+ Eho 1) —3E.
We can choose x=uwx, (mod 1) to satisfy either of

0<on=|o—1hn+3hyy]

IA

1
2

§<Ba=|2t b hat+ o<

w

Since, by (2.6), Ifn (x, v, z)|>%d whenever x, y, 2=x,, §, 3 (mod 1), it follows that

ok +3k>1d, (4.5)

6 — 563802. Acta mathematica. 96. Imprimsé le 20 octobre 1956.
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pr—3k>%d (4.6)
(since clearly
Br—3k>%—3(4.294)= —0.191 > — 1 d).
(4.5) gives, with d <5,
> pd—th=pd— (f)%
roEmoRm 2 24
>5— (80> 217,
o, > .4658.
(4.6) gives, with d>4.8, k>4.294,
Br>3d+3k>8.841,
fn>2.9735.
These results, together with the definitions of «,, ., show that for all »
4668 <xyg—fhn+ 1A, 1<.5342 (mod 1), (4.7)
— 0265 <xy+ 3 hn+ 3 hy_y<.0265 (mod 1). (4.8)
Subtracting, we have
—.5607 <h, < — 4393 (mod 1),
so that |hn—%|<.0607 (mod 1). (4.9)

By making a parallel transformation on z in f, (z, ¥, 2) (and the corresponding

transformation on x;) we may suppose without loss of generality that

0<hy<1, 0<h <l
Then (4.9) gives
|ko— 3| < .0607, |k, — %] <.0607, (4.10)

and (4.8), with n=1, then gives
|zo—3|<.0872 (mod 1). (4.11)
Since a,=4 for all n, the recurrence relation (2.25) gives

hy=4h,—h,,
whence, by (4.10)
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(4.9) now shows that
| hy—3| < .0607.

But now (4.8), with n=2, gives

| o] <.0872 (mod 1),
which is incompatible with (4.11). This proves the lemma.

Levma 4.2. If 3<d <4, then f(x, y, 2) is equivalent to Q,(x, y, 2) =22 —y* + 1527

with x4, Yy, 2%p=4%, 3, 3 (mod 1).
Proor. By Lemma 3.2, we have

fon (@, 4, 2)= (@ + hany + hen12)’ —k(By* +12y2z+ 22 }

fani1(® 4, 2) = (¥ + hanp1y +han2)®— k(292 + 12y2+327) (12
for all n, where k>0, y,, 2,=4%, ¥ (mod 1) and
120k =A%=24d°, (4.13)
Now (2.27), (2.28) become
-8—%§—6=A;<2;—_A1, 60(2d~1)2<4§9A2:49d3,
8—1/756=1LT<23$9, 60(2d+9)2<%)A2:289d3,
of which the second gives d>3.87; hence
387<d<4. (4.14)
Now (4.13) gives
933 <k < 1.033. (4.15)
We can ensure, by suitable transformation on z in f,(z, y, ), that
|he| <3, |h_1]< 3. (4.16)

After these preliminaries, our first step is to show that A, =0 for all n. We
first obtain bounds for %, (mod 1) by the method used in Lemma 4.1.

For all =,
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We can choose z=x, (mod 1) to satisfy either of

0<cap=|x—=3bn+thuy|=%,

[

$<Br=|r+ bt haa|<

Since, by (2.6), |f.(x, y, 2z)|>3d whenever z, y, z=x,;, },% (mod 1), it follows that

of +1k>1d, (4.17)
VE—-p>1d (4.18)
(since clearly
17 17
k- ga > , (933)—4=-003..> —%d).

(4.17) gives, with d<4,
o2 >1d—Tk>2—-1(1.033)=.19225,

oy > .4384.
(4.18) gives, with d <4,

, 1 17
BE < %k—%—d< z‘-(1.033)—2 — 2.39025,

Bn < 1.5461.

These results, together with the definitions of oy, fa, show that for all =

4384 <ag—Lhy+ 3 hy 1 <.5616 (mod I) (4.19)
4539 <xy+ 3 by + 4 by <.5461 (mod 1). (4.20)

Subtracting, we find
|ho| < .1077 (mod 1). (4.21)

Since ag, =6, dsp,.1 =4 for all n, the recurrence relation (2.5) gives

h2n+1=4ﬁ2n~ﬁ2n—1 1

(4.22)
h2n+2= 6k2n+1“ th =23 h2n _6k2n—1 J

Consider now a Euclidean plane with rectangular coordinates &, #n, and let R

be the region defined by
|§|<.1077, |7]|<41077.

Denote by P,{— oo <n< co) the point (ha,, h2._1). By (4.21), P, is congruent to
a point of R for all n; and, by (4.16), P,€R.
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Let 7' be the unimodular matrix

23 —6
T‘(4 —J’

then by (4.22) Poo1=T(Pn).
Let now P=(£, ) be any point of R, and let
Q=(&, n)=T(P).
Then |9 |=|4&—n]|<.5385,
£ —235—6y—6y —&.

If now ¢ is congruent (mod 1) to a point of R, we clearly require |%’|<.1077;

then, since
| €| =167 —&|<6(.1077)+ (.1077)=.7539 < 1 —.1077,

we require also |&'|<.1077.

Thus @ is congruent to a point of R only if Q€R.

Since P,€R and P,=T"(P,) is congruent to a point of R for all n, it follows*
that P, is the (unique) point F of R satisfying.

T (F)=F,

i.e. that Py=(0, 0). Thus 2,=0, 2_;=0, and so k,=0 for all n, as asserted.
This result, with (4.20), shows also that

l2,—3|<.0461 (mod 1). (4.23)

The final step of the argument is to show that zy=1 (mod 1), k=1.

Since f(x, y, z) is equivalent to f,(x, y, 2), we may take
flx,y, 2d="Fo(x, ¥, 2) = —k{3y° + 12y 2+ 22%)

with z, y, 2=2;, 1, 1 (mod 1).
Let
a=f(2,1,0)=4—-3k.

Then, by (4.15), 901 <a<1.201. (4.24)

If we make the equivalence transformation

* We are appealing here to the general Lemma 3 of [1]. As remarked there, this lemma is due
to CasseLs, and a proof is given in BARNES and SwINNERTON-DYER [3], Theorem D.
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x=2a"+y, y=2+y, z=2,
we find that
fla, y, 2)=azx®— (6k—4)2'y —12kax'y + -

’

=af (@, ¥y, ),

say, where
Ll 8 Zz) = ¢ (¥, 7). (4.25)
oy, =y -4, —xy, 4 (mod 1). (4.26)
Writing d’ =d (f'), it is easy to see that d'=d/a, so that, by (4.14) and (4.24),
3.22<d < 4.44.
It follows from Lemma 4.1 that in fact
3.22<d < 4.
Also, since ' is equivalent to a positive multiple of f,
M(f;5xg—% —, 3) >34
By what we have already proved, we see that there exists an equivalence
transformation of the type
d=X+AY+uz, y=aY+pZ, 2=y Y+0Z
such that iy, 2)=X2—k @Y +12YZ+ 7%
is of the same form as f(z, y, 2) (with possibly a different value &’ of k) with
Xy, Yy, Zy=X,, 1, 3 (mod 1). (4.27)

Since A, u, «, B, v and § are integers, a comparison of (4.26), (4.27) shows at
once that xy=0 or } (mod 1), and then (4.23) gives zy=1 (mod 1), as required.

Finally, it follows by the same argument from (4.25) that (3k—2)/a and 6k/a
must be integral; hence 4/a=6k/a—2(3k—2)/a is integral and, by (4.24),

4 4
<a<_, 3< — <5,
3 a

Thus a=1, and so k=3%(4—a)=1, as required.
We have therefore shown that f(x, y, 2z) is equivalent to 2®— (3y*>+ 12yz+ 227),

with 2y, 49, 2,=1, §, 1 (mod 1); since
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a?—39y—12y2—222=2(x—3y—2)?—(x—6y—22)%+ 1547

f is therefore equivalent to @,, with zy, y,, 2,=1%, 4, 1 (mod 1).
Lemma 4.3. If 2<d<3, then Lemma 3.3 (ii) cannof hold.

Proor. The proof follows the same lines as that of Lemma 4.1, with some
numerical complication arising from the fact that we have no explicit expression for
gn (Y, 2)-

Suppose, contrary to the assertion of the lemma, that {a,} satisfies az, =4,
10<a3,,1<14 for all n. Then

bensis O2n <[4, 14]=E(14 +V182),

Osms1s ban=< 14, 4]=1 14 + V182),
oni1s Pan <] 1=3( ) (4.28)

Gonsr, Oan=[4, 10]=1(10+ 3110),

02n+1: ¢2n2[10, 4]:%(10+3V1‘6),
so that, for all =,

8V182, . 4(0.4,—1) _24V10
v ATl D) 13

(4.29)

9

- {
8110 ._ 4(6.¢.—1) _8VI82
<A G D) - 37 J

Now (2.27), (2.28) give

8V@<4(2d3)é 8VE<4(2d3)%
19 2d—1"° 9 2d+4’

the latter of which yields the inequality
4>2.85.

Also (4.29) shows that, for all =,

37A 9A
pe— <gn (l, D ——, (4.30)
81182 B2

0< —n (%, _%)< — = (431)
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Choosing 2=z, (mod 1) to satisfy either of

Oéan:[x-%hn+%h,,_1|_<_%,

3<By=at+ by + b ha |2,
we require a: —ga i}, —3%)>3%d, (4.32)
|87~ 9a (3, 3)| >} d. (4.33)

From (4.32) and (4.31), with d<3, we obtain

ob>Ld— lg)A >3- 13}’&1‘ >0.207,
81182 8 V182
an > 0.4549.

From (4.33) and (4.30), with d>2.85, we obtain

7 46.298
B> pd+ 18 o425y 37V46.298 4257,
81182 8 V182
B2 >1.938.
It follows that, for all =,
04549 <xy— 3 hy + 3 hy_1<0.5451 (mod 1), (4.34)
—0.062 <zy+ % hn+ 3hy <0062 (mod 1); (4.35)
subtracting, we obtain
0.3929 < h, <0.6071 (mod 1. (4.36)

Supposing, as we may without loss of generality, that

0<hy<1, 0<h <1,
we have, by (4.36),
|hy—4]<0.1070, [k, —}]|<0.1071; (4.37)
then (4.34) with n=1 gives
|2, — %] <0.1522 (mod 1). (4.38)

Since a2, =4, the recurrence relation (2.25) gives

hy=4h, —hy,
whence, by (4.37),
[hy—3[=]4(h — §) ~ (ho— §)| < 0.5355.



THE INHOMOGENEOUS MINIMUM OF A TERNARY QUADRATIC FORM (II) 91
By (4.36), this implies that
[ha—3]| <0.1071.
But now (4.34), with n=2, gives
| 24| <0.1522 (mod 1),
which is incompatible with (4.38).

LeMMA 44, Suppose that 2<d-<3. Then f(x,y, z) 1s equivalent to @ (x, ¥, z)

with x4, Yo, 25=1%, %, + (mod 1).

Proo¥. By Lemma 4.3, the conclusion (i) of Lemma 3.3 must hold whenever
2<d<3. Thus

9o (4, 2) =k (Y*+6yz+2%), Yy, 25=4%, } (mod 1),
where k>0, 32k =A2=2d". (4.39)

(2.27), (2.28) become

= 4A 4 4A
4V2=4v < 5o V2 S 2dt 4

the latter of which yields
(d+2 <iA?=d, d>2.875.
Thus 2.875 <d <3, (4.40)
and so, by (4.39), 1.218 < k< 1.300. (4.41)
Choosing x=:x, (mod 1) to satisfy either of
0<a,=|x—thy+thy 1|4,

F<Ba =l 4t 3|52,
we then require

ok +k>1d,
| B2 —2k|>1d.
Using (4.40), (4.41), we deduce that
0% >3-1.3=0.2, o > 0.447,

B:>1.437+ 2.436=23.873,  B,>1.967,

so that, for all =,
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0447 <xy— L hy+ S hy_1 <0.553 (mod 1), (4.42)
0.033 <zy+ 4 hn+ 31k, 1 <0.033 (mod 1); (4.43)

subtraction yields
|hn—4]<0.086 (mod 1). (4.44)

We may suppose without loss of generality that
0<hy<1l, 0<h <I. (4.45)
Let R be the region of the &, #-plane defined by
[E—1]<0.086, |n—%]<0.086;
P, the point (h,, hn_1); and 7 the unimodular matrix
6 —1

r= (1 o)'
The recurrence relation (2.25), with a,,;=6, gives
bhng1=6hy —by_q,

so that P"+1=(hn+1, }Ln)=T(Pn)

By (4.44), P, =T"(P,) is congruent (mod 1) to a point of R for all n; and
by (4.45), P,€R. Further, if P=(&, ) is any point of R and Q=T (P)=(£', ), then

& ~51=16(6— 1) —(n—1)| <0.602,
o~ =[¢~ 3] <0086,

hence ¢ can be congruent to a point of R only if @— (2, 0) belongs to R.
From these results, and [1] Lemma 3, it follows that P, is the unique point
F of R satisfying
T (F)— (2, 0)=F;

ie. P =F=(}, 1), k=1, ho=1%.
Thus we may take
fa, g )=hix y, o) =(e+3y+32°— k(" +6yz+2? (4.46)
with z,, ¥y, 2=, %, 3 (mod 1); and, by (4.43) with n=1,

[2,—%|<0.033 (mod 1I). (4.47)
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Now let a==f(1,1,0)=8—kF, (4.48)

so that, by (4.41), 0.95<a<1.032. (4.49)
Making the equivalence transformation

z=x"+y, Y

I
8
[

|
N

we find that
fx,y,z2)=ax®*+ 32"y —(6k—Dz'y -+ -

=Llf’ (x/’ yl, Zl),
say, where therefore
3 12k-3
A e I T2
with Tos Yo, 20=%, y— 3%, 1 (mod 1). (4.50)

Writing d' =d (f'), we have d'=d/a, so that, by (4.40) and (4.49),
2.78 <d’ < 3.16.
Using Lemma 4.2, (4.14), we see that in fact
2.78<d’ <3.
Also, since [ is equivalent to a multiple of f,

M(f,; %’ xo_%’

(ST

)>3d.

By Lemma 4.3 and what we have already proved in this lemma, ¢’ (y’, 2') is

equivalent to a positive multiple of
Y +r6y' 2 +2% gy, 2=13, % (mod 1),

and each of the coefficients 3/2a and (12k—3)/4a must be congruent to 0 or

o=

(mod 1) [arguing precisely as in Lemma 4.2].
(4.50) and (4.47) show at once that

2y=4% (mod 1).
Also, by (4.49),

so that we must have
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and now (4.48) gives

_
I
[

Thus
e, y, 2)=(x+$y+ 32" -3y +Byz+2°)

=@ (x, 9, 2),
with x,, ¥y, 20=1%, 3, 3 (mod 1), as required.

LevMma 4.5. Suppose that 1.144 <d <2. Then f(x, y, 2) is equivalent to a posi-
tive multiple of a form [ (x, y, 2), satisfying the same conditions (2.2), (2.6), for which
d'=d(f)>3.4.

ProoF. By Lemma 3.4, every pair (@,, @n.1) and (@,.1, @,) of eonseeutjve

elements of the chain {a,} is one of (6, 10), (6, 12), (6, 14), (6, 16), (8, 8) or (8, 10).

If some a, is 6, say a, =6, we have

> X 5 19 X ® 2 Tag
6, <16, 16]= ﬁ*%l—?’—s, . <16, 6]= liﬁ (4.51)
X X /-_ X X 15 910
6,>(6, 10]= ———15+5l 210 4 >0, 6= BT V210 (4.52)
whence
- - 7
Or=Db=l) 3T og7p (4.53)
01— 1 41138
LossT< 0 GGl o 19 g0 (4.54)
41138 01— 1 Y210

If however no a, is 6, then a,=8 or 10 for all #, and a,=8 for some =.

Taking a,=8 without loss of generality, we therefore have

“ox 2041380 20+ /380
6, <[8, 10]= O+5V3@, <110, 8]= —Qf@, (4.55)
0,>[8]=4+ V15, & =[8]=4+ V15, (4.56)
whence
=D =1 31 <0.7952, (4.57)
61 41— 1 2138
o568 < 20 Uit DGt 5y g0 (4.58)

2380 61 V15
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Thus in either case the basic inequalities (2.27), (2.28) yield

4A _ 4(6,4,-1) _ 8V380
2d—1~ (6,—1) (¢,— 1) 31

44 4(6,4,-1) _ 4210
2d+1°7 (0,+1) ($,+1) " 19 °

from the second of these we obtain by a straightforward calculation
361d°>105(2d + 1),
d>1.85.

To prove the lemma, it now suffices to show that f(z, y, z) assumes primitively

a value a satisfying

0<a<0.5437. (4.59)

For then (1/a)f(z, y, z) represents | and is equivalent to a form [ (z, y, z) of the
type (2.2) with
0 1.85

’ A l «
d=df) =" > o137 3
as required.
By applying a parallel transformation on z in f; (2, ¥, z), and changing the

signs of y and 2, if necessary, we may take without loss of generality

0<h,<1. (4.60)
We shall now show that

A

=fi(1,0, —1)=(1—hg)*— I 4.61
a fl( ) ( 0) 01 ¢1_ 1 ( )
satisfies (4.56) (where ¢, =6 or 8 is chosen as above).

We first prove that

0.4563 < T <0.6901. (4.62)
61 ¢1_ 1

For if a,=6, (4.51) and (4.52) give
R 1 N
5.7965 <% 1/210< 6, ~ 4 <1V138<5.8737,
1

while if a, =8, (4.53) and (4.54) give

77459 <2 115<6, - ;

- <3%1/380<7.7975,
1
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thus in either case we have

5.7965 < 0, — % <7.7975.
1

Also, since A?’=2¢?% 1.85<d<2, we have

3.5580 < A < 4.

Division of these two inequalities gives (4.59).

Next we show that
0<hy,<0.1186.

Choosing z=z, (mod 1) to satisfy either of

0<a=|z+ih —3h|<d,

Now by (4.53) or {4.57)
0< 49,3, —3)= M’Sl—_—]quOﬂ%Z)A,
61 9’51‘ 1
and by (4.54) or (4.58)

40,3, D= »(O_I%J%fil—il—)zx>(1.2557) A.
171

Hence, using 1.85 <d <2, 3.5580 <A <4, we obtain
4a2>2d+4g, (3, —3)>4—4(0.7952) = 0.8192,
a>)0.2048 > 0.4525;
44 >2d+4g,(3, 3)> 3.7+ (1.2557)(3.5580) > 8.1677,
B>V2.0419 > 1.4289.

It follows that
0.4525 <o+ 3 hy— L hy<0.5475 (mod 1),

0.4289 < g+ 3 by + L hy<0.5711 (mod 1),

and so, by subtraction

(4.63)

(4.64)
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—0.1186 <%,<0.1186 (mod 1).

This inequality, with (4.60), gives (4.64) at once.
Inserting (4.64) and (4.62) in (4.61), we find

a>(0.8814)%— 0.6901 >0,
a<1—0.4563 = 0.5437,

so that (4.59) is satisfied. This completes the proof of the lemma.

The proof of Theorem 2 follows immediately from the lemmas of this section,
together with the fact (Lemma 2.5) that 1.144<d<5. For Lemmas 4.1-4.4 give
the required result if 2<d<5; while Lemma 4.5 shows that, if 1.144<d <2, an

appropriate multiple of f(x, y, z) satisfies 3.4 <d <5. [It is easily verified a posteriort

that if 1.144<d<2, then {a,} must be {g} and then f(x, y, 2) is equivalent to a
multiple of @, (x, y, z); this corresponds to the form 2?--1(y*+8yz+2%) found ex-
plicitly in [1] Lemma 12.]

The calculations of this paper were carried out on a Brunsviga, supplied to me

by the University of Sydney.

The University of Sydney, Australia
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