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Introduction

In various papers (cf. the bibliography) A. Beurling has studied the harmonic
analysis of functions on the real line. Using different approaches he has introduced
the notion of the spectrum of a function as a set on the dual real line which, roughly
speaking, consists of the frequencies of the characters of which the function can be
regarded as composed,

The development of the theory of Banach algebras has made it possible to ex-
tend a wide sector of harmonic analysis into more abstract theories. It has therefore
been natural to study spectral theory from a more general point of view. Thus Gode-
ment [8] gave a definition of the spectrum valid for bounded measurable functions
on a locally compact Abelian group, and his approach was pursued by, among others,
Kaplansky [10] and Helson [9].

Many problems in this field remain unsolved. It is by no means obvious to what
extent the spectral theory depends on the metrical properties of the real line and on
the structure of the function spaces which were considered by Beurling. The reason is
perhaps that Beurling attained his results by means of a very large variety of methods.
Algebraic arguments are sometimes used (as in (1]), but more often methods from
the theory of analytic functions and potential theory are applied, and not all
these methods are available in the general setting. Especially the generalization to
groups has met many obstacles. More progress has been made when the theory has
been restricted to the real line (Wermer [17]).

Beurling has given several more or less equivalent definitions of spectrum. The
one which most easily lends itself to generalizations is the definition in [5], which
defines the spectrum of a function in L* as the set of frequencies of the characters
which are included in the weak closure of the linear manifold spanned by the transla-
tions of the function. This definition was also used by Godement. In the theory
which can be developed from this definition, it is of fundamental importance that L*
be a commutative Banach algebra under convolution with the dual group as the
regular maximal ideal space and with the property that every proper closed ideal is
included in at least one regular maximal ideal. The last-mentioned property is closely
connected with the general Tauberian theorem (Wiener [18]) as is shown e.g. in
Loomis [11] §§ 25D, 37A.

A closer study of the possibilities offered by the above definition reveals that
the concept of transformation is of a fundamental importance in the development of the

theory. It is essential that L! can be considered as an algebra of transformations of



HARMONIC ANALYSIS BASED ON CERTAIN COMMUTATIVE BANACH ALGEBRAS 3

L* into itself, if the transformation is defined as the ordinary convolution. In fact,
even the definition of the spectrum can be expressed in terms of these transforma-
tions, and this opens the way to generalization in the following direction.

Let 4 be a normed linear space and ¥ a commutative algebra with a representa-
tion onto an algebra of linear transformations of A4 into itself. For every « € 4 and
f€F we denote by foa the corresponding transformed element in 4. We assume

that F is normed in such a way that

[foali<lfl-lla|

and we suppose that F is a Banach algebra under this norm, with a space S of
regular maximal ideals. We define, for every a € 4, the spectrum A, as the subset
of S consisting of all regular maximal ideals which contain the closed ideal of all
f€F for which foa=0. (6 denotes the null element in 4.) We assume that every
proper closed ideal is included in at least one regular maximal ideal, and then an
empty A, implies that joa=0 for every f€F. Let us finally assume that this is
true only if a=f. Then A, is empty only if a =6, and this fundamental uniqueness
theorem gives us a solid basis for a general theory.

Of course very few of the problems in the Beurling spectral theory can be
formulated in this abstract setting. The notion of translation has for instance dis-
appeared as a main ingredient of the definition. The lost connections with the Fourier
analysis can, however, partially be recovered if we assume that S is a locally com-
pact Abelian group, and further specializations will of course lead us still closer to
the field of study in the Beurling papers.

Our object in this paper is to study a class of algebras F of the above type,
where S is a locally compact Abelian group, and then discuss the corresponding
spectral definition. It will turn out that many of the essential results in the Beurling
spectral theory can be approached in our rather general setting, e.g. the characteriza-
tion of elements with one-point spectrum (originally studied by Beurling [2] and later
by Kaplansky [10], Helson [9}, Riss [15], Wermer [17] and others) and the spectral
definition by means of the narrow closure (Beurling [21).

As for the methods employed. we naturally have to utilize in a very essential
way the general theory of commutative Banach algebras together with the special
properties of the class of algebras which we discuss. The elementary Fourier analysis
on groups is rather freely used, and results from the theory of analytic and quasi-
analytic functions are applied at certain places where it has been possible to restrict

the discussion to the real line. In paragraph 2.2 the structure theory of locally compact



4 YNGVE DOMAR

Abelian groups is used in the discussion of a particular example of the algebras F,

but apart from this, the theory does not depend on structure theory.

The first two chapters deal exclusively with the properties of the algebras F.
Chapter III contains the definition of the spectrum and an account of certain of the
most available spectral properties. In chapter IV the discussion centers around an-
other definition of the spectrum. It is proved to be equivalent to the original defini-
tion and closely connected with the Beurling definition in {2].

Most of the results in chapter III are valid for more general classes of algebras
F. The results in chapter IV, however, depend on the structural properties of F, and

it is doubtful whether it is possible to prove similar results in greater generality.

It is assumed that the reader has a certain knowledge of the theory of com-
mutative Banach algebras as in Gelfand [7] and parts of the theory of Fourier
analysis on locally compact Abelian groups as in Pontrjagin (14], Weil (16] and
Godement [8]. Whenever possible, however, we take the liberty of referring to the
exposition in Loomis [11], and certain more or less standard arguments in harmonic
analysis, such as convolutions, inversion theorems, etc., are used without reference.

Functions on the dual groups G and G are denoted by f(x), ¢(z),..., and f(&),
G (&), ..., respectively. The only exceptions are the characters (x,2), where the above
notation is inconvenient. Whenever two functions, such as f(z) and f(2), are men-
tioned in the same context, they indicate a pair of functions which in some sense

are Fourier transforms. Addition is chosen as group operation.

CHAPTER I

A (lass of Commutative Banach Algebras

1. Main assumptions and definitions

Let G be an Abelian locally compact group with the dual group G. It will be
convenient for our purposes to assume that the groups are Hausdorff spaces. This is
no essential restriction as is shown in L. 28 D. (L. denotes here and in the following
references to the corresponding paragraph in Loomis [11].)

We introduce a Banach space F of complex-valued functions f(z), defined and
finite everywhere on (. The addition of two elements in F is defined as the ordinary

addition of the two functions and the multiplication of an element with a complex
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constant is the ordinary multiplication of the function with the same constant. Dif-
ferent functions are supposed to be different elements, and for that reason f(z) is
the null-element if and only if f(x)=0.

Furthermore we suppose that if two functions f,{(zx) and f,(x) belong to F, then

the same is true for the function
f@)=f(x) f (),

and the corresponding norms fulfill the relation

IS ARTAT

This implies that F is a commutative Banach algebra.
For any function f(z)€F we denote by AY} the set in G where f(zx)=+0, and
by A; the closure of A}

We shall introduce some further assumptions and notations:

1. Suppose that for every meighborhood N of the identity in G there exists a non-

negative, not identically vanishing function fy(x) in F with the Jollowing properties:

A. A]NCN.

B. fv@)= [ (x,2)fx(&)d2,
G
where fy (&) is continuous and € L*(G).
C. Al continuous functions §(2) such that

l§@ | =<]fv @ (1.11)

have the property that the functions

g@)= | (x,2)§(®)d2 (1.12)

belong to F, and their norms are uniformly bounded.

Before we can proceed with our assumptions we have to discuss a consequence
of Assumption I.

Using the Pontrjagin duality theorem and the definition of the topologies of the
dual groups we see (L. 34C) that for every compact set =@, the set of points
z €@, such that for every 2€(

[1—(z,8)[ <},
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is an open set in G. Since it contains the identity o of @, it is a neighborhood N

of 0. The function fy(z) is non-negative and therefore, if 2 €,

fN(:?:)]=l(j} fu () (x, y?)dx[>%(j}'f,v(x)dx.

(We assume here and in the following that the Haar measures on G and G are normed
in such a way that the constant in the Fourier inversion formula has the value 1.)

This shows that it is possible to find, for every compact set C, a function fy ()
such that |fy(2)| has a positive lower bound on (. Using Assumption IC we see

that this implies that the class F, of functions

where § (&) 18 continuous and vanishes outside a compact set, is a subclass of F. The formula

fi(@) - fy (@) = J (@, Q)dﬁj h (&—-2,) fz@o)dﬁo’

which is true if f,(#) and f,(2) belong to L'(G), shows that F, is moreover a sub-
algebra (L. 28 A 4).

Our second assumption will be:

II. Suppose that F, is dense in F.

We shall introduce another subclass of F. Let us first form the class of all
functions g(x) of the type (1.12), for which §(2) is continuous and satisfies (1.11)
for some N, and for which A, is compact. Then we denote by F' the class of func-

tions of the type A-g(x), where A is an arbitrary constant.

2. Some lemmas concerning the subclasses F, and F’

The classes F, and F’ will play important roéles in the discussion of the Banach
algebra F. For later use we shall collect in this section some lemmas on these sub-
classes.

If a function g(x) belongs to F, or to F’, then we shall use the term Fourier
transform of g(zx) for the continuous function §(Z), which in the sense of (1.12) is

associated to g(x).

LeEmwma 1.21. Consider for a given compact set C in G the subclass of all func-
tions g(x)€F,, for which the Fourier tramsforms §(&) vanish outside C. Then there

exists a finite constant dg, such that for all these functions
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llg @)1= de g @]l

where ||§(®)]|. denotes the uniform morm of continuous functions on G.
The proof follows at once from the discussion in 1.1.
LEMMa 1.22. For every neighborhood N of the identity 6 in G there exists a
function f(x) € F’ such that the Fourier transform f(2) satisfies
o=f@ <1,
fe)=1,
T@ <1 outside NJ

(1.21)

Proor. Let us start from a function fy(zr) with compact N. fy(x) is non-
negative, and for that reason

v (@) < fn(8) =0.

The function o
@@
{Fv (0}

is the Fourier transform of a function € F’. It satisfies the first two of the condi-

k@)

tions (1.21), and furthermore we know that
F@)<}
outside a certain compact set C, since the Fourier transform of a function € L'(@)
vanishes at infinity.
Now let N be the given neighborhood. We may of course assume that it is

open. The set €, of all points in €, which are not contained in N, is then a com-
pact set, not containing 6.

Let us for every point x€G denote by O, the open set in G where
|1+ (z,2)P<2.
If 2=+06 there exists a point x, such that (x,2)+1. An elementary reasoning

shows that for a suitable value of the integer » the number

(g, 2)" = (n o, 2)
has to satisfy the inequality
|1+ (nag, 2)|<1.

Therefore the sets O, cover all points in G with the exception of 6, and as a

result we may select a finite sub-sequence {Orv}'l' which covers the compact set C,.
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Let us now form the function

It satisfies the conditions (1.21), the third one, however, only inside C’O. But the

function

satisfies (1.21) in all details, and since §(Z) is a linear combination of characters,

f@)= [ (@8 [@d2

has compact A;, and therefore it belongs to F'.

LemMmma 1.23. For every neighborhood N of 6 and for every &>0 there exists a

function g(x) € F' which has the representation

9(2) =g, (@) + [ (x, %), (3) AR,

where
”91” <&

and where §,(Z) ts non-negative and continuous, vanishes outside N and satisfies

2Dy

G, ()d2=1.

Proor. Let us start from a function f(x) in ¥’ which satisfies the conditions
in Lemma 1.22 with respect to N. Let %(&) be a continuous function satisfying

0=<F£(®) <1 and which vanishes outside N and assumes the value 1 on the set where

2

J@)=

oo

Choose for every positive integer n the constant d, such that

d, [ k@) [f®)]"d2=1.
[e]
Apparently
lim d;/"=1.
This relation and Assumption IC have as consequence that the norm of the

function

dn | (2, 2) (1 k@) [f(@®)1"d2
G
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tends to O, when n—>oco. Let us assume that the norm is smaller than ¢ for n=mn,.
Then the lemma follows by choosing
g(@)=dy, [ (x,2) [f@)"d2
G

g, (x) =do, [ (@, 2) (1 =k (@) []@)]
G
Go (B) =, £ (2) [[ @)™,
Lemma 1.24. For every pair of sets C and O in G, where (' is compact, O is
open and C <O, there exisis a function f(x)€ F' such that
0<f(x)<1 in O,
f(x)=1 in C,
f(x)y=0  outside O.
Proor. We denote for every pair of sets E, and E, in G by E,+ E, the set

of all points x=w, +x,, where x, € H, and x, € E,. Then there exists (L. 5F, L. 28 A 3)
a compact symmetric neighborhood N of the identity in @ such that

C+N+NcO.
Let us assume that the non-negative function fy(x) satisfies the relation

g fr(@)dx=1.

If this is not the case, we may change the function by multiplying it with a suitable
constant. Then let f, (x) be the characteristic function of the set ¢ + N. The function

ffw(%*%)fl(% ) dag= f(x &) fv@) @) da
belongs to F, and it is very easy to verify that it has the required properties.

3. Linear functionals on F

We are going to show that we have a certain representation of the linear func-
tionals on F as Borel measures on G. Here the term Borel measure is used in the
wide sense, i.e. it includes also complex set-functions.

Suppose that f*(f) is a linear functional on F. If we consider the functions
g(x) € Fy for which the Fourier transforms §(2) vanish outside a fixed compact set (¥,

we get from Lemma 1.21
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| @=17 - lglh=ae )l -1l @],

which shows that the functional is at the same time a linear functional on the class

of functions §(2) under the uniform norm. Therefore

Fl=[§@ dae(-5),
c

where u¢ is a Borel measure, uniquely defined on the interior of the compact set of

points Z such that —2€(. Since ¢ may be chosen arbitrarily we can extend this

result to the following lemma :

Lemwma 1.31. To each linear functional f* on F there corresponds a unigue Borel

measure 1 on G such that if {€F,

fFh= i@ da(—a).

e—,

Furthermore we have the following lemma, which is an immediate consequence

of Assumption II.

Lemma 1.32. Two different functionals can not correspond to the same measure.

Now let f(x) € F' and let f* be a linear functional with the corresponding measure
u. If we let g(z) run through all the elements in F, such that the Fourier transform

A

G (Z) satisfies

[g@1=/@],

we get

[lf@]]dp(—2)|=sup |[ §@) din(—2)|=sup |f* @) |<]f]|-sup gl < o=,
G G

since the norms of the functions g(x) are uniformly bounded (Assumption IC). Thus

we get

Lemma 1.33. If f(x)€F' and if p is a measure which corresponds to a linear

functional on F, then

!

f@ | da(~2)| < eo.

4. Complex-valued homomorphisms of F
A homomorphism of F onto the complex numbers is a mapping
fx)=A(f),

where A(f) for every f(x) € F is a finite complex number with the following properties :
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A. Aley frt cafa) = ¢y A(f1) + co Alfa).
B. Aty fa) = A(f1) - A(1y)

for any two constants ¢; and ¢, and for any two elements f, (z) and f, ().

C. A(fy=0

for at least some f(x).

11

Since F is a commutative algebra, A(f} is bounded, considered as a functional

on F (L. 23 A). Therefore it is a linear functional on F, and in order to determine

the complex-valued homomorphisms of ¥, we have only to find the not identically

vanishing linear functionals which satisfy B.

Suppose that f* is such a functional and suppose that it corresponds to the

measure g in the sense of Lemma 1.31.

Since f* is not identically vanishing and because of Assumption II, there exists

a function f,(x) € F, such that

fif)= {ho@dp(-2)=1.
G
Put )
£f0(£0+®)d}}(_§’o):&(%):
G

which is a continuous function, satisfying

Let f,(x) be a variable function in F,. The relation

o fr) =1 (fo) - * () = (fy)

gives the formula

[ A@ fo@—-2)dR1da(~2e)= [ (@) dp(—2),

and using (1.41) this may be written

for every compact set ¢ in G.

(1.41)

(1.42)

(1.43)
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As a consequence we have, if f, (z) and f,(x) are quite arbitrary functions in F,

[

e,
——
N

(@) [, (@ —B)dR]a(~2)dR= [[i@)a(~)d2 [[. (@) a(-2)d2.
G

Qb
@

And from this relation it is quite easy to see that
B (8 + By) = 6 (By) - & (By) (1.44)

for every pair of points in G. Thus we have:

LeMMA 141, 4 measure u, corresponding to a linear functional which gives a
complex-valued homomorphism, has to satisfy (1.43), where the continuous function o (%)
satisfres (1.42) and (1.44).

We shall now proceed to prove the following more precise statement:

THEOREM 141. The only functionals which give complex-valued homomorphisms,
are the functionals f*(f)=f(z) for any x€G.

These functionals certainly give complex-valuted homomorphisms. The only problem
is to verify the condition C, which is, however, an immediate consequence of Lemma
1.24. We may mention that as a consequence these functionals are linear. They
correspond in the sense of (1.43) to bounded functions «(Z), i.e. to the ordinary
characters (z, Z).

Because of Lemma 1.32 no other linear functionals correspond to bounded func-
tions «(%). For that reason the only thing we have to prove is that no linear func-
tional corresponds to a measure (1.43), where the continuous function &(2) satisfies
(1.44) and is unbounded. (Concerning the existence of such & (%), see the remark

after Theorem 2.31.) For the proof we need the following lemma:

LeEMMA 142, Let %, be a fived point in G and let ¢ be a fived real number
such that
O<e<m.

Form the open set O.(Z,) of all points x € G such that
—c<arg (x,2,) <c¢ (mod 2m).

Suppose moreover that f(&) is the Fourier-Stieltjes transform of a bounded Borel

measure u, vanishing outside O, (Z,) i.e.

f@)= | (z.2)du).

0, (o)
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Then for every inieger n

Finb)= | (a8 du()= | *0db(o),

D)
where b(0) is of bounded wvariation on (—c,c).

ProoF orF LEMma 142, Let us denote by g(e'’) an arbitrary continuous func-
tion on the unit circle. Consider the space of all these functions under the uniform

norm. Then

AMo)= | g 2))du(x)

0, @0
is a linear functional and therefore it has the form
Alg) = fq %) db(0),
where b(f) is of bounded variation. By varying g(e'®) it is easily seen that b(0) is

constant outside (—c¢,¢). And then the lemma follows by choosing g(e'®) =¢'"°.

Proor oFr THEOREM 1.41. Let us assume that a certain unbounded function

A

«(2) of the type described in Lemma 1.41 corresponds to a linear functional on F.
We shall prove that this leads to a contradiction.
Let 2, be a point such that

la (@) |=d>1.
Then we have for every integer n
|&(nZ) | =d".
Choose an arbitrary number ¢ such that
O<c<am.

The set O.(%;), defined in Lemma 1.42, is an open neighborhood of the identity in G-
Therefore we can find a not identically vanishing function f;(z) in F’ such that

Ar, <0 (%,). On account of Lemma 1.33 we have

glfl(a?)ll&(—@)|d@<m,

Let us now choose a function f,(x) € F, such that

f@) = j fl (& —2) fo (&) d 2,
G



14 YNGVE DOMAR

satisfies
fo)=1. (1.45)

The relation

@< [1h@-2)] Ja(~2+2)]
[

[a(—2)]

<| 53), .Hfl(éa)l loa(—2) )|dz- ?ufila(_ﬁo)l'lfo(xo)l (1.46)

shows that for some finite constant K

R K
|f(@)lﬁm—'

=l
for every #. In particular we have for every integer n

[ (—n&,|<- (1.47)

dn

But f(&) is the Fourier transform of the function f, () f,(x), and this function
vanishes outside O.(%&,). Therefore we may apply Lemma 1.42, and we then get for
every integer n

f(n%)=_fe*"""db(0), (1.48)

where b(f)) is a function of bounded variation.
(1.47) and (1.48) show that the analytic function

H(re'%= Z f(—n&y)z

n=—o0
is regular in the region 1<|z|<d and satisfies

lim H(z)=0

r—>1+0

uniformly in any closed interval outside the interval |f#|<¢. Then it has to vanish

identically which is contradictory to (1.45). This proves the theorem.

5. The space of regular maximal ideals

LEMMA 1.51. The topology on G is the weakest topology in which all the functions

f(x) EF are continuous.
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Proor. Lemma 1.24 implies that the functions can not be continuous in any
weaker topology. Thus it only remains to show that every f(x) € F is continuous in
the topology on G.

All the functionals f(x) have a norm =1, since this property is always true for

a functional that gives a complex-valued homomorphism (L. 23 A). Therefore we have

V(@) |l = £ (1.51)

However, because of Assumption II we can approximate every f(x) € F arbitrarily
closely in the F-norm by means of functions in F,. And thus (1.51) implies that
every f(x) €F can be approximated arbitrarily closely in the uniform norm by means

of continuous functions, and this has the consequence that every f(z) € F' is continuous.

In the theory of commutative Banach algebras it is shown that there is a one-
to-one correspondence between the regular maximal ideals and the complex-valued
homomorphisms in the sense that every regular maximal ideal consists of the elements f,
such that

(=0,
where f* is the functional, which gives the corresponding homomorphism (L. 23 A). If
M denotes a variable regular maximal ideal and f* the corresponding functional in
the above sense, then the function
FO) =1 ()

is called the Gelfand representation of the element f on the space of regular maximal
ideals. As topology on this space we choose the weakest topology in which all the
functions f(M) are continuous.

In our case the regular maximal ideals are in one-to-one correspondence to the
points z €@, sinece the functionals have the form f(x). If we in this way identify
the space of regular maximal ideals and , Lemma 1.5]1 implies that the topology
of the regular maximal ideal space is the original topology on G. The topological
space G is therefore the topological space of regular maximal ideals and every function
ts its own Gelfand representation.

From the general theory of commutative Banach algebras we get the following
theorem (L. 24 A Cor., L. 25 D). For the truth of B it is essential that the algebra

is regular (L. 19F), and this is the fact in our case because of Lemma 1.24.

TueorEM 1.51. A. If f(x)€EF, then
im 7% =} @
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B. Let E be a subset of G and suppose that we have an ideal in F with the pro-
perty that, for any x,€E, it contains a function g(x) €F, such that g(xg)=0. Then the

ideal contains every f(z)€F, such that A; is compact and included in E.
Of fundamental importance is the following theorem:
TuEoREM 1.52. The elements f(x) with compact A, are dense in F.

Before we start the proof, we shall introduce a new concept, using a terminology

from L. 31E.

DeriNITION 1.51. A function f(x)€F is said to have an approximate identity
if for every £>0 there exists a compact neighborhood N of 6 with the property that for

every fo(x) €EFy such that fo (&) is mon-negative, vanishes outside N and satisfies

fo@dz=1,

2,

we have

1/ (x)—f @) fo)[| =e

The proof of Theorem 1.52 will appear as an easy consequence of the following

lemma:

LemMaA 1.52. Every element f[(x)€F with an approximate identity can be ap-
proximated arbitrarily closely by elements of the form f(x):g(x), where g(x) €EF and A,

©s compact.

Proor or LEmma 1.52. Choose an arbitrary ¢>0 and a set N which gives
e-approximations of f{z) in the sense of Definition 1.51. Then we use the function

g(x), defined in Lemma 1.23. We then have

=gl =llf=f-gull+ 7N llgll = e+ N1,
which proves the lemma.

Proor oFr THEOREM 1.52. The above lemma implies that the closure of the
elements with compact A; contains all functions with an approximate identity.
However, Lemma 1.21 has the consequence that all elements in F; have an ap-
proximate identity, and therefore they are contained in the closure. And because
of Assumption Il every element in F is contained in the closure.

Theorem 1.51 B with E=(G and Theorem 1.52 have the following important

consequence (the Wiener Tauberian theorem, cf. L. 25D, Cor.).
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TuroREM 1.53. Suppose that a closed ideal in F has the property that il contains,
for every xy€ G, a function f(x), such that f(x,) =0. Then the ideal is the whole algebra F.
Or, using algebraic terminology: Every closed proper ideal is contained in at least

one regular maximal ideal.

CaarpTER 11

Special Algebras and Special Elements

1. Various examples of Banach algebras F

A very simple example of an algebra F is the space of all continuous functions
on (, vanishing at infinity, if we as norm choose the uniform norm. Assumption I
is trivial to verify, and Assumption II is fulfilled as a consequence of the well-known
fact that functions which are Fourier transforms of functions in L'(G) are dense in
the class. This example shows that even if we can express the functions in F, and
F' as Fourier transforms of functions on @, this is in general not true for all the
elements in F.
However, the particular cases, when this is possible, are of great interest. The
classical example is the space of functions f(x), which are Fourier transforms of
functions f(2) € L'(G) and with the norm

f@)|da.

#il=1

Beurling [1] and Wermer [17] have studied on the real line B more general

Banach algebras of Fourier transforms of functions € L'(R). (R denotes here as in
the following the real line under the usual topology.) The Beurling algebras are said
to be of non-quasianalytic type if for every neighborhood N of the identity in R
they contain a not identically vanishing function which vanishes outside N. The
corresponding subclasses of the Wermer algebras are algebras which satisfy a certain
assumption (A), [17] p. 538. The Beurling non-quasianalytic algebras are apparently
algebras of type F, and the same is true for those Wermer algebras, which satisfy
(A), apart from an unessential difference in the definition of the norm [17] p. 537 (6).

For algebras of this kind, i.e. algebras which are defined as convolution algebras
on the dual group, the verification of Assumption TA in 1.1 is often a very difficult
problem. This matter was discussed in the cited papers and we shall illustrate it

2~ 563802. Acta mathematica. 98. Imprimé le 2 mai 1956.
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further by discussing a natural generalization of the Beurling algebras to an arbitrary
locally compact Abelian group G.
Let p(2) be a function on (, measurable with respect to the Haar measure,

bounded on every compact set and satisfying

p@)=1 (2.11)
for every 2 € G and
P&, +2) <P @) PRy (2.12)

for every pair of points #, and 2, in G.

Then consider the multiplicative Banach algebra of functions

where () € L'(G), and where

rll= §

DEFINITION 2.11. We denote this Banach algebra F {p}.

It is easy to see that the inequality (2.11) is necessary in order to have (1.51)
fulfilled, i.e. in order that the algebra is of type F.

The algebra F{p} is an algebra F if and only if for every meighborhood N of the
identity in G it contains a not identically vanishing function which vanishes outside N.

This will lead us to the following theorem:
TarorEM 2.11. F{p} is an algebra F if and only if for every #,€@G

oo

S log &)l _ (2.13)

1

The proof will be given in 2.2.

It may be pointed out that the condition (2.13) is well known on the real line.
All questions of this kind are closely connected to notions of quasi-analyticity on the
real line, and Theorem XII in Paley-Wiener [13] is a suitable tool in many similar
cases.

An especially interesting case of the space F{p} is the following. Suppose that

G'=R, ie. that R may be represented as the real line — co <t<<cc. We choose

plty= 2 a,|t],
1]
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where {a,}7° is a sequence of non-negative numbers such that the least non-increasing
majorant of

o0
1/r
1

> a,
1

is convergent, and such that for every m and =
Uminm+n¥!<apm!-a,n!.

The condition (2.12) is easy to verify, and (2.13) is fulfilled according to a
theorem by Carleman [6] p. 50. Therefore the space is of type F.

The interest of this space lies in the fact that we may construct a very closely
related space in the following way. Consider on R the space of all functions f(x)
such that

Il = gav;ggolf‘”(x)lwo,
while

Zav sup |f*(x)| >0

|z |>7,

when z,—>co. This space is a multiplicative Banach algebra if ||f|| is chosen as
norm, and the fact that the functions in the algebra F{p} are dense in this new
algebra can be used to show that it is of type F'. We will not go into the details
concerning the proof.

A particular case is when a,=0 if » is greater than a certain index n. In this

case we have to suppose that f™(

() is continuous and the algebra is then simply
the multiplicative algebra of all functions with » continuous derivatives, vanishing

together with the derivatives at infinity. It is then possible to use as norm

= SHPZ @)

Since we have introduced in Definition 1.51 the neotion of elements in F with
an approximate identity, it may be suitable to construct a space F where not all
the elements are of that kind.

We form the function

1

PO Rzl i

on R. Tt is easy to show that if ¢;=+0

2@ D, —t)de<p(t,).

— o
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Let us then consider the class of functions
flay= [ e fdt,

where f(t) is continuous except possibly at t=0, and where

fiey=o(n(t)
at =0 and = co.

Choosing the norm

—~—

(t)
()

|

Hfll= sup
t=0

=

we get an algebra F. However, an element such that f(t) is discontinuous at t=0,
can not have an approximate identity. For such an element f(x) we have further-
more that, if ¢=0, the function ‘
fla)eer

does not belong to the class. Therefore, in general we do not get new elements by
multiplying an element with a character. This fact accounts for some of the com-
plications in the discussions in chapters 3 and 4.

Finally we give the following space, which illustrates the fact that for a given
value z,+0, the functions f(z) and f(x+x;) need not be elements of F at the same
time.

We consider on R the class of functions
f@) =@+ o= | e f@rder [ et de,

where f,(t) (1+|t]) € L* f,(¢t)€ L', and where f,(x) vanishes in the interval 0 <z < co.
Then we put

Ill=in ¢ a1 1h@ldes T ihwlas,

where we vary all the possible representations of f(x). It is very simple to show

that we get an algebra F.

2. Proof of Theorem 2.11

THeE NEcEssITY. Let us assume the opposite, namely that for some 2,€G

log [p gn_Ao)_J — (2.21)

. 3
n

~PN 8
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whereas for every neighborhood N of the identity in ¢ we have a not identically

vanishing function

f@)= [ (&) f(@)dz,

oe—,

which vanishes outside N, and is such that

[P@ @ da< oo

We may then proceed in exactly the same way as in the proof of theorem 1.41
with the only difference that & (—2) all the time is exchanged to p(%). It is true
that the inequality (1.46) uses the relation (1.44), which is not true for the function
p(#), but (2.12) is apparently sufficient to guarantee that (1.46) is valid even if
a{—®) is exchanged to p(%). We therefore get for every ¢, such that 0 <c¢ <z, that

there exists a function b(f) of bounded variation such that Fourier coefficients

Cp = jge‘medb(ﬁ)
satisfy -
co=1 (2.22)
and
K
len] < 5 (n ko) (2.23)
for every integer n and for some finite constant K.

The reason why the proof of the contradiction in these relations causes us some
trouble is that there exists no exact correspondence in the theary of Fourier series
to the Theorem XII in Paley-Wiener [13] on Fourier integrals, which vanish on a
half-line. The method which we shall use is to transfer the series into an integral
with similar properties, and then use the Paley-Wiener theorem.

Standard arguments on the Fourier series in question show that there is no real

restriction to assume that
o0

Zf’(”ﬁo)lcn|<°°- (2.24)

Then we can prove the contradiction, starting from a value of ¢, such that
0<c<m/2.

For every real number y we define a.(y) as the Fourier coefficients of the

function
et ye
in —x<60<ax, and put

A () = (y) - Ca.
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Apparently

o0

2 day)|-p(nB)=d (2.25)
for some finite constant d, independent of y. In the interval —z/2<60<x/2 we have

> da(y)e ™' =2m [ OV db(y)=2me " B(—y), (2.26)

where

B@t)= je‘”"db(@).

Using the Parseval relation, (2.26) and (2.23) we obtain for any integer n

|B(n+y)l=|7f: eI VO g ()|

1S 1. KT da)]
T3 |02 e W B | S 2 B (g | a2 BBy

However, by (2.12) and (2.25)

$ bl $ pmB) plln—m)2y)|dnony)]
mile PMBY) T miTe i’(nﬁo)'ﬁ(mﬁo)
1 © . N d
g w2 POl W50 5
and hence
K-d 1

|B(n+y)|<

27{B(~y)| P(nk)
It follows from (2.22) that
27| B(—-y)|=1
for |y|<6, if 6 is sufficiently small. Therefore

K-d
Bn+y)|<=x

if » is an integer and |y|<d. By (2.24), b(f) is absolutely continuous and
b () €L*(—c,c). Hence B(t)€ L*(— oo, o), and the inequality above, together with
the assumption (2.21), gives

fog|BO)|,,
f 1ie 4=

Using the cited theorem by Paley-Wiener we see that this implies that B(f)=0,
which is contradictory to (2.22).
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TuE SurricIENCY. In the proof of the sufficiency it seems difficult to avoid
structural considerations. We shall start by considering some cases when the group
G has a very simple structure and then step by step extend the theorem to the general
case.

The case when @ is a discrete group D is trivial, sinee @ is then compact
(L. 38A), ie. p(2) is bounded. The cases when G is the real line B or the unit
circle 8, both under the usual topology, are obvious consequences of Theorem XII
in Paley-Wiener [13].

Now let G be the direct product G;xG, of two groups Gy and G,, for which
the theorem is true. The points in G may be written in the form xz=x; +x, where
r, €G,, 2,€G,. (G is then the direct product of G; and @G, and we may therefore
put 2=2,+2, where 2, €6, and z,€G, (L. 35A). This representation of G and G
can be done such that always

(x, &)= (xq, By) - (24, Zy).

We denote the identities in @, Gy, G, G, and G, by o, o, 05, 6,, and 8, and assume
that the Haar measure on @ is normed in such a way that it is the direct product
of the Haar measures on G; and G,.

Suppose that R

P@) =P (@ +2)
fulfills the requirements of theorem 2.11. Let N be an arbitrary neighborhood of o.
1t contains a neighborhood of the form N,xN, where N,c@, and N, <6, are neigh-
borhoods of o, and oy, because of the definition of the direct product topology. The
functions .
P@R)=P@ +8,) and P@)=pRy+8y),

considered as functions on @, and G,, satisfy the conditions in Theorem 2.11. And
since the theorem was supposed to be true for these groups, we can for »=1, 2

find a function

h@)= [ @ 2) @) da.,

vanishing outside N, and satisfying

0< [ |7 @)D ds,<oo.
Gy

Then let us form the function

f@)=f (2 +3) = f (%) - fa ()
= [ (2, 2) (2, By) fl () “fa (@) d2,d2, = j (;aéjfl 2y fa (2;) d2.

é‘XG‘
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It vanishes outside N, but not identically, and satisfies

@)@ p@des |

G G

~

fz (2,) [ p(&) p(Ry) d2

fr (@)

@) 2@ dR - [ |fo(@)]D(By) dBy < oo,

Therefore, the theorem is true for the group .

As a consequence of this the theorem is true for all groups of the form
R"x 8" xD. (2.27)

We are now in a position to prove the theorem for an arbitrary locally compact
Abelian group G.

Let N be an arbitrary neighborhood of the identity o in ¢. The multiplicative
algebra of Fourier transforms of functions € L*(#) under the usual norm is an algebra
F. By applying Lemma 1.22 to this class of functions we see that there exists a

function

where § (%) € L'(G) vanishes outside a compact symmetric neighborhood ¢ of 6, and
such that
g(0=1, (2.28)
while
|g(®)|<} outside N.

We denote by G, the subgroup of G, which consists of all points #;, included

in some of the sets

n-C=C+C+-+0, n=12,..,

i.e. the group, generated by (. This is a new locally compact group under the
induced topology, and we may as Haar measure on G, choose the restriction to G,
of the Haar measure on (. According to a theorem by A. Weil [16] p. 110, G, is
the dual group of a group &, of the type (2.27), and hence the theorem is true for
the group G,.

If the function g (%) satisfies the conditions in the theorem with respect to G,
then the same is true with respect to G, for the function p(%,), defined as the re-
striction of p(2) to G;. For that reason we can find, for every neighborhood N, of

the identity in the dual group G, a function f(%;) on G, such that
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o< [If@)]|p@)d 2 <o, (2.29)

Gy
while
j (x, &) [ (21) A2y
G,
vanishes outside N;. We may as N, choose the subset of ; where
l f (1, &,) § (&) A2y | > 4,
6
for this set is obviously open, and it contains the identity because of (2.28).
We extend the definition of f(£) to the whole of G by defining f(

G,. And since for every z €@ the restriction to G, of the functions (x, &) are charac-

2) =0 outside

ters on (f;, we see that the above conditions imply that the function

vanishes whenever |g(z)[<{, and hence it vanishes outside N. The condition (2.29)
may be written

0< [|f@)]|p@)d2< oo,

e—,

and since N was arbitrary, this proves the theorem in the general case.

3. The class &

iz

Basic functions in the harmonic analysis on R are the functions ¢'**, where 1

is a complex number, and to some extent also the ordinary polynomials
n
P,(x)= 2 anx™.
m=0

These two classes of functions have correspondences on any locally compact Abelian
group, and we shall now study to what extent these generalized exponentials and

polynomials on G belong to F. To this end we shall make the following definition.

DrrinivioN 231, We denote by @ the class of all functions on G, which

coincide on any given compact set with some function in F.
The following theorem shows that ® contains all generalized exponentials.
TaEoREM 2.31. Suppose that «(x) is a continuous function on G, satisfying
o (g + @) = o (1) - ot ()

for every x, and x, in G. Then «(x) €D,
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Proor. It is only necessary to consider the case when o« (x)#0. Lemma 1.24
then shows that it is possible to find a function f(z)€ F’, such that

[f@)a(—z)dz=1.
Ar

We denote by ¢(x) the function which coincides with «(z) on the compact set,
consisting of all points x=x, —x, where z; €C and x, € A;, while it vanishes outside
the set. Then if z€(

h(x)= ff(xo)g(x—xo)dxo= ff(xo)a(x—xo)dx0=a(x)- If(xo)a(—xo)dxo:a(xﬁ
Ay Ar Af

and the Fourier transform % (2) satisfies

h@)=f@)-4@),
where ¢ (%) is continuous and bounded. Therefore, it follows from Assumption IC in
1.1 that AEF.

ReEMARK. The question concerning the existence of other functions o (x) than the
bounded characters has been answered by Mackey [12]. He has found that there
exist unbounded functions o(x) +f and only if there exist mnon-trivial continuous homo-

morphisms of R into G, i.e. one-parameter subgroups of G.

DerINITION 2.32. A continuous function P(x) on G is called a polynomial of

degree n, if for every x and z, in @
Px+ray)

is a polynomial of degree <n, considered as a function of the variable non-negative

tnteger v, while at least one of these polynomials is exactly of degree n.

We may mention as an example that if «(z) is an unbounded function of the
kind described in Theorem 2.31, then

{log | (=) [}"

is a polynomial of degree n.
THEOREM 2.32. Every polynomial belongs to .
We need the following lemma:

LeEMma 231. Let P,(x) be a polynomial of degree <n. Then for any given x,

Zo( -1y (:) P, (x+vxy) =Q(x, )
ts tndependent of x.
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Proor oF LEMMA 2.31. The above definition of a polynomial of finite degree
can be given on any semi-group, and i we omit the continuity assumption, the
semi-group need not even have a topology. It will turn out from the proof that the
lemma is still true in that general case if we make the extra assumption that the
semi-group is commutative.

Apparently it is enough to prove that
Q(x, %) = Q (& + 2, ) (2.31)

for any given pair of points « and =, in G.

The expression
Po(x+pxy+va,)=R(u,»)

has the property that for every choice of non-negative integers u, », y, and v,
RB(pu+Apg, v+ Avg) (2.32)

is a polynomial of degree <n in the non-negative integer variable 1. If we choose
w=2,=0, yo=1, and then y=pu,=0, yy=1, it follows from the elementary theory of

arithmetical series that

n
R(u,v)= 2, apqu®v®
p,q=0

By choosing suitable values of y, and », in (2.32) it is obvious that the coefficients

ap o vanish whenever p-+q¢>mn. Then
n n
20(—1)”(v)R(u, v)=(—1)"n! aq,n,

which is independent of u. We obtain the two members of (2.31) by putting u=0
and p=1 in the above expression, and hence the relation (2.31) is true, which proves

the lemma.

Proor oF THEOREM 2.32. We shall prove the theorem by induction.

Lemma 124 shows that the theorem is true for polynomials of degree 0. Let
us suppose that it is true for polynomials of degree <n —1, and we have then only
to prove that the construction is possible for an arbitrary polynomial P, (x) of de-
gree n.

We choose a function f(x) € F’ such that

[ f@)de=1.
Ar
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The function
P, (x)=1P, (x)"Af f(xy) P (x—ay)day
5

satisfies because of lemma 2.31

n

S0 (1) Pastat v = Q) — T ) @z,

=0 f
=Q(x, x4) ~ Aj f(®) @z, xp)dx, =0
f

for every x and x;,, and therefore it is a polynomial of degree <n—1.
Now let C be the given compact set, and let g(x) coincide with P, (x) on the
compact set, consisting of the points x =z, —x, where x, €C and =z, € A;, while it

vanishes outside this set. The function

h(x) = Af f(zg) g (x — ) d
s

belongs to F, as can be shown in the same way as the similar statement in the proof
of Theorem 2.31. And we have for z€C

Py (x)= Py () —h(z).
By assumption we can find a function k(z)€ F, coinciding with the polynomial
P, 1(x) on C. Hence we get if x€C
P (x)=h(2) +k(2),
and this proves the theorem.

Our definition of polynomials is quite different from the definitions of polynomials
and generalized polynomials in the theory of distributions on locally compact Abelian
groups by J. Riss [15]. The connection of our concept and his is not obvious, and a
study of this problem seems to require extensive structural considerations. The author

hopes that he will be able to return to this subject.

CuarTtER III
The Spaces A and the Spectrum

1. The spaces A
Let F be a Banach algebra of the kind described in chapter I and let 4 be a

normed linear space. We assume that to each f€F and each a € A there corresponds

an element foa €A and that this correspondence has the following properties:
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foleray+epan)=c - {foa,)+ea (fOay),

(erhiteafs)ca=c - (fLoa)+c(fy0a)
and

fhifsoa=f0(f,0a)

for any elements f, f,, f, in F, any elements a, a;, a, in 4 and any complex constants
¢, and c,.

This implies that we have a - homomorphism of F onto an algebra of linear
transformations of A into itself, i.e. a representation of F. It is not necessary that

different functions correspond to different transformations.

I. We denote by ||al| the norm in A, and assume that we always have
foall=IIfll-llal. (3.11)

II. We denote by 8 the null element in A, and assume that if for a given element
a€A

foa=10
for every f€F, then a=0.

It is an easy consequence of (3.11) that ¢f f=0 or if a=0 then foa=0.
Starting from a given space F we can find a great number of spaces 4. We
shall mention some particularly important or interesting cases. It should be observed

that A4 need not be complete (cf. example 4°).

1°. The space F' itself if we for any pair of functions f and ¢ in F put

fog=fg.
Condition 1 is trivial and Condition II is an easy consequence of Lemma 1.24,

2°. The space F* of all linear functionals on F with the usual norm. Here we
define the functional fof* as the functional which, operating on a function g€ F,

gives the value f*(fg). Since

Ll -1 gl
1fo =17

and hence I is true. II can be proved in the following way:

we have

Suppose that for a given functional f*

fof =6
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for every f€F, ie. that

f*(f-9)=0
for every pair of functions f and ¢ in F. The class of functions of the form f-¢ is
according to Theorem 1.53 dense in F, and thus f*(f)=0 for every f€F, ie. f*=0.

3°. Let F be a space F{p} (Definition 2.11), where p(Z) then has to satisfy
the condition in Theorem 2.11. Let p be a number such that 1<p<oc, and let

¢ (&) be a positive measurable function such that for every pair of points £, and 2, in G

~

g (@ +2,) <q () P(R). (3.12)

Then let us form the Banach space of all measurable functions d(2) on G with

the finite norm
Q@ q@ya.

[N

I
—
e

If f€F{p} and

we define fod as the function

Using (3.12) and an inequality by Young, extended to groups by Weil [16] pp. 54-55,
it is easy to prove that Condition I is satisfied. Condition II is also fulfilled, and
hence the space is a space 4 with respect to the space F {p}.

We shall present a method for constructing functions ¢(£) from given functions
p(2). Let us assume that p(2)=p(—2) for every 2.

Suppose that r(u) is a real-valued function of a real variable % such that for

every u, and u,
|7 (uy — ug) | < |y — s |.
Then

o (108 PE N7 (0§ D(E2) < gllo8 p(Ey-log Py < plos PE -1y < ?3 @, —2,)

Hence

a@) — g7 (log D@

is an admissible function. In particular we may choose
r(uw)=|u|'"¢ sin |u[,

where 0<c¢<1, and then the corresponding function q(2) has the property, that if
P(%) is unbounded. then ¢ (%) assumes in general both arbitrarily large and arbitrarily

small values.



HARMONIC ANALYSIS BASED ON  CERTAIN COMMUTATIVE BANACH ALGEBRAS 31

4°. Let G be the real line B and F the class F {1}, i.e. the class of Fourier
transtorms of functions f(¢)€ L' (IAi’).

A

Let A be the linear space of bounded measurable functions 4 () on R.

We define fod as the function

=]

[ Te—to) d(ty) dt,,

and put

|é]l= sup [ lim |fod]),
NAlf=1 t>+o0

where f varies in the class F.
The definition of the norm may look artificial, but it simplifies if we consider

only the subclass of uniformly continuous functions d(f). Then
llall= lim |a ().
t->+ o0

A null function is then every function d(¢), which tends to 0, when t—> + oo.

It is easy to see that the Conditions I and II are fulfilled for this class.

2. Definition and main properties of the spectrum

It is natural that the representation of F as an algebra of continuous functions
on G will give us a certain characterization of the space 4 in terms of the space G.
This can be effected by defining for every element a € A a subset A, < G which we

call the spectrum of the element. The spectrum is defined in the following way:

DErFINITION 3.21. For every fixed element a € A let us consider the class of all

elements g€ F such that goa=0. Then A, is defined as the complement of the set
UAs,
i.e. as the largest set, where all functions g(x) vanish.

Apparently the spectrum is a closed subset of G. It follows immediately from
Lemma 1.24 that in the case 1° in 3.1, i.e. when 4= F, then the spectrum of an
element f is exactly the set A, defined in 1.1 as the closure of AY, and this justifies
our notations.

In the case when F=F {1} (Definition 2.11) and 4 =F*, i.e. when 4 is equi-
valent to the space L* (@) of bounded measurable functions on @, this definition of

the spectrum coincides with the one introduced by Beurling in [5]. If, on the other
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hand, 4 is a space of the kind described in 3:1 3° we get a definition of spectrum
of the functions 4(Z) which is in its main features equivalent to the spectral defini-
tion for certain classes of functions on R given by Beurling in [3]. We imay mention
as an example that for functions 4 (%) in the classes L? (@), corresponding to ¢ (%) =1,
we have if 1<p<2 that A; is the smallest closed set, outside which the Fourier

transform

[ (2, 2)d(2)d%

vanishes almost everywhere.

The definition of spectrum in the classes of type 3.1 3° and 3.1 2° offers the
possibility of defining a notion of spectrum for certain classes of functions (or more
generally Borel measures) on G. It can be proved, that these spectral sets are in-
dependent of the classes in which the functions or measures are considered as ele-
ments. This will not be proved here, since we have no use for the statement in the
following, but we mention it in . order to stress the quite different nature of the
spectral definition in 3.1 4°. In that case we get a definition of spectrum for bounded
measurable functions on R, but this definition does not coincide with the Beurling
definition. . Thus by varying the topology in A4 it is possible to change the spectrum.

The following theorem together with its proof is an extension of mainly un-

published results in the Beurling spectral theory (cf. [3]).

THEOREM 3.21. A, A, is‘empty if and only if a=6.
B. A.o=A, if the constant ¢+ 0.
C. Augia, A UA,, if a; and a, belong to A.
D. AjucArnNAg if JEF and a€A.

Proor. A. a=40 implies that foa=0 for every f€ F and hence A, is empty.
If, on the other hand, A, is empty, then the class of functions in # for which foa=10
is a closed ideal, which is not contained in any regular maximal ideal. Because of
Theorem 1.53 it has then to contain every function f€ F and hence Assumption IT
in 3.1 shows that a=0.

B. The statement is obvious.

C. Let us choose an arbitrary point x, outside A, U A,,. According to the de-
finition of the spectrum there exist functions f, (z) and f,(x) in F such that f, (z,) =0
while f,oa=0 for v=1,2. Then

hf:ola,ta)=fyo(foa)+fio(fyoa)=f00+f 00=0.

But f, (%) [5(%y) =0, and therefore z,¢ Aq, . q,-
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D. Let x, be an arbitrary point in the complement of A;. Since A, is closed
we can find a neighborhood N of z, included in the complement of A;. And because
of lemma 1.24 we can find a function g(z) € F such that g(x,) =0 while A, < N.
Then ¢-{=0, and hence

go(foa)=gfoa=0,
so that 2, ¢ As.q.

Then let x; be an arbitrary point in the complement of A,. As above we can
find a function ¢, (x) € F such that g, (r,)+0 while A, is contained in the complement
of A,. We can furthermore choose ¢, (x) so that A, is compact.

By Theorem 1.51 B the ideal of all functions g € F' such that g ca=6 contains

the function g;. Therefore
hro(foay=folg0a)=fo =0,

and since g, (x;)==0 this implies that x, ¢ As.q.

We shall now make a comparison between our definition of the spectrum and
the one used by Beurling in [3]. We shall restrict the discussion to the case when

A=F* and we then need the following lemma.
Levma 321. Let f*€F". x,4 A;e if and only if for some neigborhood N of =,
(=0
for every fE€EF with A;< N.

Proor. If there exists a neighborhood N such that f*(f)=0 if f€F and
Ar< N, then obviously

ff(fg)=0

for every g€ F. Hence by definition fo f*=8 for every such function f, and thus
2o & Ase.

If on the other hand z, ¢ As.. then by Theorem 3.21D fo f*=0 for every f€F
with A, included in a certain compact neighborhood N of x,. Hence f*(fg)=0 for
every ¢ € F, and choosing g=1 on N, we obtain f*(f)=0.

Let us now assume that G=R and that F=F {p(t)} (sec Definition 2.11). It is
easy to see that if ¢ >0 and if A is real, the function

o]

20 { —it@—M-alt]
5 = e “eltidt
o+ (x—1)?

-0

belongs to F. We shall then prove the following theorem.

3 — 563802, Acta mathematica. 96. Imprimé le 3 mai 1956.
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THEOREM 3.22. Let f*€F*. x,¢ Ay if and only if

20

m) —>0, when o + O,

Ups (o, A)=f* (

uniformly for every A in an interval around w,.

PrOOF. A measure g (t), which corresponds to a linear functional f* is in this

case absolutely continuous. Let us put p'(¢)=d4(f). Apparently, for every f€ F
fih= 1 fwa(-nde

where the integral is absolutely convergent. Hence the Fourier transform of Usx (o, 4),
considered as a function of 1, is e ?'t g (¢).

Let us assume that Uy (g, A)=0 uniformly in the interval
2g—e<A<zy+te

where £>0. Let f(x) € F vanish outside the interval. Then

. Zote o0 oo *
5n | 10U = [0 a-nae [Toac-oa-rg

by the Lebesgue theorem on dominated convergence. Thus f*(f)=0 for every such
function f, and by Lemma 3.21 z,¢ As.
Before we start the proof of the opposite direction of the statement, let us observe

the following. Using Lemma 1.24 we can, for every £>0, find a function g, (x) with
R el <

and which coincides with the function 1/(1+2?%) outside the interval (—e, ). By
Theorem 1.51 A

> flg.@l-B

is finite, and owing to the special choice of F

5 o=l - B

for every 4. If ¢®*<1
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1 _ % (1-d%"
o+ (e—2)? T+ @=-At

and the right hand member may for |z—1|=¢ be exchanged to
hz—A)= 2 (1—06")"gc(x— A)".
0
Hence if for a fixed z, [A—x,| <& and [x—2,|=2¢

sz =h(@—A).
o+ (x— A)? (z—=4)
Let us now assume that x,¢ Aj, and that £ is so small that f*(f)=0 if
A< (xg—2¢, xy+2¢) (Lemma 3.21). Then, if |1—2,|<e we obtain for 0<o<1

20

Urto D1 (34 ey

):2af* (h(x—21))

and hence

[Upto, <20 ||f*|- |2 @—A)|=20B-| |

and this shows that U (g, )0, when g +0, uniformly if [1—z,|<e.

REMARK. Theorem 3.22 shows that we may define the spectrum of the func-
tionals, or, otherwise expressed, the spectrum of the functions &(f), by means of the
function Upgs (o, A). This function is harmonic, and therefore methods from potential
theory and from the theory of analytic functions may be used in order to study the
properties of this spectral definition. This has been done by Beurling [3] and Wer-
mer [17]. It is true that they study more general functions than the functions d(¢)
in our theorem, but it is possible to modify theorem 3.22 to a more general theorem

which shows the equivalence of the spectral definitions in still more general cases.

3. Theorems on iterated transformations

In Definition 2.31 we have introduced a certain class @ of functions on @. @ is
apparently an algebra which contains F' as a subalgebra. If ¢ €® and if f€F has
a compact Ay, then it follows at once that @(x)-f(x)€F. We denote by A, the
closure of the set where ¢ (x)=0. »

Let ¢ €D and a € A. Suppose that there exists an element a, € 4 with the pro-
perty that for every f€F with compact A,

foa=f-goa.
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This element is then unique, for if a, has the same property, then
fo(as—a)=0

for every f with compact A, This implies that A, _, is empty, and hence a, —a, = 6.

Let us put a;=¢ oa. We call this operation on the element a generalized trans-
formation. In general it can not be defined for every element ¢ € 4. We shall prove
two properties of these generalized transformations.

THEOREM 3.3l. A. @oa exists for every element a with compact A,.

B. A= ApnNAs, if poa exists.

Proor. A. There exists a function g € F, coinciding with ¢ in an open set, in-

cluding A,. Then A,_,; and A, have no point in common, and hence by Theorem 3.21 D
f-lpg—g)oa=10

for every f€F with compact A;. Thus we have
folgoa)=fpoa

for every f of that kind, i.e. by definition

poa=goa.

B. For every f with compact A, we have by Theorem 3.21 D
A(pfoaCAa n A¢/C Aa n A/ n A‘p.

Therefore A,r.. is empty if A, is included in the complement of A, N A,. Thus under

these conditions

folpoa)=0.

And from this the lemma follows at once, using Lemma 1.24.

The reason why we have introduced the generalized transformations is that many
functions on ¢ of very simple nature belong to @ but in general not to ¥. We may
refer to 2.3 where we have shown that the functions «(z) and the polynomials belong
to @. Apart from the identically vanishing function and from the case when ¢ is
compact, these functions do not belong to F, since the functions in F have to vanish
at infinity (L. 19B).

We shall now proceed to prove some theorems on what we may call iterated
transformations. Starting from an element a € 4 and a function ¢ €Q we are going

to show some connexions between A,, @(x) and the norms of the elements ¢" 0 a.
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TaEOREM 3.32. Suppose that C is a compact set and that ¢ € ®. Then there

exists a sequence of constants B,, n=1,2,... with the property

lim BY" = su}c) | ()],

n—>o0 re
so that for every n
lg" oall<By-|lall,

tf a€Ad and A,<C.

Proor. We put
sup |g (z)| =

and choose an arbitrary positive number ¢. Lemma 1.24 asserts that there exists a
non-negative function f,(x) € F with the value 1 on an open set including C, vanishing
outside the set where |@|<k+e and with a value <1 elsewhere. Apparently we
can choose f, in such a way that A, is compact.
Now
sup | (@) fo (@) | <k + e,

and thus according to theorem 1.51 A the sequence

By =|llp-£1"]l
satisfies
lim [By] " <k +e.

Arguing as in the proof of Theorem 3.31 A we get

(pn O“:[<P‘fe]noa,
and thus
g™ call<|llp-f1" |- llall < By -]lall.

Then the theorem follows, since ¢ can be chosen arbitrarily small.

REMAREK. It is easy to show that the theorem is still true if p € F and if C

instead of being compact is the complement of a compact set.
The following theorem is a rather strong converse of Theorem 3.32.

TEEOREM 3.33. If a€A and p€® and if @™ oa exists for an increasing
sequence of positive integers m,, v=1,2, ..., then the relation
lim ||¢™ o a]"™ =d
implies that

sup |g(z)|<d.

TeAy
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Proor. If at a point w, |@(x,)|=d+e for some &>0, then there exists be-
cause of Lemma 1.24 a function ¢(x) € F, which assumes the value 1 in an open set

O including z,, while A, is compact and included in the set where
£
}(p(x0)|>d+§'

According to Theorem 1.51B this function is included in the ideal, consisting of
functions in F of the form g(x)-¢@(x), where g(x)€F and A, is compact, and for

that reason there exists a function g(z)€ F, such that in the set O

g(x)-p@)=1,
while
1
sup |g(z) | <—— (3.31)
TelG &
d+§

For any f€ F with A, compact and <O
foall=[l(-g"-g™) oall<llf}-llg" ] ll¢™ o a]l- (3.32)

By applying Theorem 1.51 A, (3.31) gives

lim g™ =
V—>00 d e
+2
and hence the right hand member of (3.32) tends to 0 when v—>oo. Thus foa=6,
which implies that z, ¢ A,.

As an application of the last two theorems we shall consider the spaces 4 of
the type mentioned in 3.1 3°. Let us assume that G=R, i.e. that the elements in

the space A are functions ¢ () and the elements in the space F{p(t)} are functions

Fa)= | e*=tfde.

We are going to consider the generalized transformations obtained by the funec-
tions (1x)". These functions are polynomials and by Theorem 2.32 they belong to ®.
We shall show that these transformations are equivalent to derivations of the func-
tions d(t). We say that the nth derivative d”(f) of a function d(f) exists whenever
there exists a function, equivalent to @, absolutely continuous together with its (n —1)

first derivatives and with the nth derivative 4™ (f).
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THEOREM 3.34. 4™ (1) exists and €A if and only if the element (1x)" o 4 exists,
and the elements are then tidentical.

Proor. 1. The sufficiency. We denote by ¢(x) an arbitrary function in Fy such

that the Fourier transform §(f) has n continuous derivatives. Then

g@) o) = | e g™ () dt.

We suppose that (¢z)" o ¢ exists, and call the corresponding function 4, (#). By
definition
fod =f@)-(ix)"0d
for every f€F with compact A;, and hence
folgody)=folg(x): (iz)"]od.
Since this is true for every f of the mentioned type, the spectrum of the element
god,—[g(x)-(tx)"] o d is empty, and hence
god,=[g(x)-(ix)"] 0 d.
Writing this as convolutions on — co << oo we get
I (E~1to) dy (b)) Aty = .[ g (E—ty) G (L) dto,
or after »n partial integrations
oo ty t, tn_1

Ié‘”’(t—to){ofdtlofdtz j' Gy (ta) dtn—d(t)} dt, =0

—QQ

By varying g we see that this implies
d, ()=4™ (¢).

2. The necessity. On the other hand if we suppose that 4™ (f) exists as an
element in A, we can carry out the above argument in the opposite direction, and

show that for every function g of the type mentioned above and for every function h € F
(hg) © ™ = (h(x)-g () (iz)") 0 d.

However, every function f€F with compact A; belongs to the ideal which is formed
by the elements A-g (Theorem 1.51 B). Therefore
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fod™=(f(x)-(ix)")od

for every such function f(z), i.e.

4™ =(12)" 0 4.

Let us now apply the Theorems 3.32 and 3.33 to this case. We assume that O is
the closed interval (—b&,5). We then obtain:

THEOREM 3.35. If Aqc(—b,0), then all the derivatives & exist and

lim || 4™ @) ||V <b.
n—>00

Conversely, if d(t) is infinitely differentiable and

lim |6 0| <b,

n—>00

then A@C ( —‘b, b)A

It is not difficult to realize that the functions d(¢) in the theorem above have
to coincide almost everywhere with the values on the real axis of analytic functions
of exponential type. Interesting results may be obtained by studying the connexions
between this class of functions and the generalized transformations obtained by the

real functions e**. We shall, however, not discuss this matter any further in this context.

4. Elements with one-point spectrum

The problem of characterizing the elements with a spectrum consisting only of
one point, was first solved by Beurling [2] in the case when the space consists of
all bounded, uniformly continuous functions on R. The spectrum was introduced by
means of the closure properties of the translations of the function in a certain topo-
logy, the narrow topology. This definition gives the same spectrum as the one used
in [5] (cf. [6] p. 225), which as we have mentioned earlier is related to our definition.

Godement [8] posed the problem for bounded measurable functions on an arbi-
trary locally compact Abelian group, using a definition of spectrum which corresponds
to the Beurling definition in [5], and Kaplansky [10] and Helson [9] gave the solu-
tion. The problem has also been solved for more general classes of functions on E
by Wermer [17] and for distributions on locally compact Abelian groups by Riss [15].

In our case we have to specialize in order to get results which are as simple

as the ones obtained in the theories mentioned above. We are going to introduce a
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notion of spaces F of polynomial growth, and for the corresponding spaces 4 we shall
then get results which resemble the results by Wermer and Riss.

Let C be a compact set in (. We know that every character (x,%) €D by
Theorem 2.31, and therefore there exist functions f (x) € ¥, coinciding with (z, 2) on C.

We form A
pc(®)= inf Hf“

taken over this class of functions, and make the following definition for every posititive

integer q.

DeEriniTION 3.41. The space F is said to be of polynomial growth <gq with

respect to x € G and 2 € G if for some compact neighborhood N around x the sequence

(@)™ ={pa}",
satisfres
pn=0(n]|Y, |n]|->oo, (3.41)
and
lim 2n —o. (3.42)

|7 10 1n|q

In order to exemplify this definition, we may mention that the last of the
spaces I, considered in 2.1, has the property that if x>0, then F is of polynomial
growth <2 with respect to x and every ¢, while if x<0, it is of polynomial growth
<1 with respect to x and every ¢.

It is easy to give examples of spaces which are not of polynomial growth with

respect to all pairs x and 2. It is, however, always true that

lim [pn]l” m=1
n—oc

as a result of Theorem 3.32, and that

which is an easy consequence of (1.51).

We are going to prove the following general theorem:

TrEOREM 3.41. Suppose that F is of polynomial growth <gq with respect to z,
and %, and that a € A is such that A, consists only of the point x,. Then

(X~ B) — 1) 0a=0.

We shall first prove two lemmas on Fourier series.
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LEvma 341. Let {pn}f:O be a bounded sequence of positive numbers and let f(6)

be a function in (—x, x), continuous and with absolutely convergent Fourier series.

Then there exists for every e£>0 and every integer m a function

where
o0
2 len|< oo
— 00

and

2 plea| <[f(O)| pmte,

such that g(0) and f(6) coincide in an interval around 0=0.
ProoF¥ oF LEMMmaA 341, Let us put

p= sup pPa.

—00 <N <o

By the corollary in L. 37C there exists for every function

hO)= 2 a, e,
where
5 Jan| < o0

and f,(0)=0, a function

R(O)= > d, e
such that
2 &
dn <>
Sl

and such that 2(0) and f,(0) coincide in an interval around 0=0. Let us apply

this to the function

f(0)=16)—f(©0)e™.

The function A(f) thus obtained has the property that the function
g(O) =h(0)+1(0)e™ = 3 due™®+f(0)e™

satisfies the requirements in the lemma.
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LeEmMmma 342, Let {pn}‘io be a sequence of positive numbers such that for some
positive integer q the relations (3.41) and (3.42) are fulfilled. Let the function f(0) be
continuous in (—m, m) together with its first n derivatives and vanmishing at 6 =0 together
with its first n—1 derivatives, and suppose that @ (6) has an absolutely convergent
Fourier series.

Then, for every &£>0, we can find a function

[l

g (6) = Z Cn ei"95

— o0

where
oo
S leal< o0
~o0

and

_Z pnlcn[<8’

such that g(8) and f(B) coincide in an interval around 6=0.

Proor or LEMMA 342. It is apparently enough to prove the lemma in the

case when p,=1 and
-1
paz|nl
for every n.

By Lemma 3.41 we have for every >0 a function

where the series is absolutely convergent and

-1 [
lagl+ 3 + 3 22 laa| <,
— 00 1 In\
and which coincides with f?(f) in an interval around 6 =0.

Then let us form the function

-1

k(9)= 2 + ? 'a/n)a einﬂ'

e (2m

We have in the above interval
[(6) K (0) =1.(6)— K (8) =a,

which shows that f(6)—%(6) coincides in the interval with a polynomial P,(f) of
degree <gq. Now
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| PE(0) [ =]ay| <0
and

=]

-1 -1 oo
[P (©0)[=1f”0)~ K (0) [ = [k”(0)| < 2 + ;'“”' <3+ 3 lal<o

mfr ™ [nff

for v=0,1,...,¢—1.
Let ¢ be an arbitrary positive number. We may choose the number ¢ such
that d<e&/2, and from the inequalities above it is trivial to conclude that if § is

sutficiently small there exists a function

o0

1(0)= 3 b, em?
with
hod e
7200 Pn | bn|<§

and coinciding with P, (6) in an interval around 0 =0.

Hence the function
g(0)=k(0)+1(6)

coincides with f(f) in an interval around §=0 while its Fourier coefficients satisfy

oo -1 oc =)
Z Pulean|S 2> + 1zp|n71?r|+-z pn]bn|<6+%<e,

which was to be proved.

Proor oF THEOREM 3.41. Let F be of polynomial growth <g with respect
to x, and Z,, and let N be a neighborhood of x, with the property that

(b (@)}, = (P},

satisfies (3.41) and (3.42). Then there exists for every integer » a function f,(x)€F
which coincides with

( — Zo, ﬁo)n ° (CL‘, Qo)n = (x — Xy, ﬁo)n
in an open set including N, and satisfies
”fn (z) “ <2p,.

Now Lemma 3.42 shows that there exists for every ¢>0 a function



HARMONIC ANALYSIS BASED ON CERTAIN COMMUTATIVE BANACH ALGEBRAS 45

where

z >
Zlenl=y

and which coincides with (¢/—1)® in an interval around 6 =0.

Hence
Selli@l<e

and
o0

f@y= 2 cnfnlx)

— 00

defines an element in F which coincides with ((x—x,, ,) —1)? in the intersection of

N and an open set of type
— 0 < arg (x— gy, ) <0 (mod 27),
i.e. in a neighborhood of Z,. Obviously ||f||<e.
Hence if a €4 and if A, does not contain other points than z,

a;=((x—xy, By) — 1) 0a=f(x)0a,
which implies that
lall=Nifll-llel<e-]la]|.

And since ¢ was arbitrary, a, =6, which proves the theorem.

Theorem 3.41 has a particularly interesting interpretation if A is the space F*
of linear functionals on F in accordance to 3.1 2°. We shall first show a simple

lemma, which is valid not only for this particular 4.

Lemma 343. If a€4 and if A, is compact, then a can be written

a=fy 0 a,
where ay € A and f, € F,.

Proor. The space of the functions in F of the form f,(x):f, (x) where f, € F,
and f, €F is an ideal, not contained in any regular maximal ideal. Hence by Theorem

1.51 B every function f€F with compact A; can be written
f=lh-

By Lemma 1.24 we can choose f in such a way that f(x)=1 in an open set, in-

cluding A,, and then we get

a=foa=fyfoa=f0(f,0a),

which proves the lemma.
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Thus if we choose 4 =F"*, every f*€ F* with compact A;» can be written
f* =fp0 ﬁ;’

where f,€ F, and f; € F*. Let us call the measures that in the sence of 1.3 correspond

to f* and f5, u and g, If we expressin terms of the measures the equality

(=15 (t1o),

which in particular is true for all f€F,, we get
‘&(0): J‘d@ I io(£0+5?)d[‘0(“£o)
C G

for every compact . Hence

f(0)= gi’@)dﬁ,

where ﬁ’(?c) is a continuous function. Furthermore, A being compact, (x,2,) o f* is
welldefined by Theorem 3.31 A. If we put

(23, fo) of*:frf
we get
L =1 @) (=, %))
for every f€F, and this shows that (, %,) of* corresponds in the above sense to

the function F(2+2,). Finally the functional
(1= (=2, £))* © f* = (1= (x, &) - (%o, —2o))* O 7, (3.43)
where x, and #, are arbitrary fixed points, corresponds to the function
q

> (-1 (i)ﬁ(@+mﬁo) (@, —mBy). (3.44)

m=

This is true for every f*€ F* with compact As, then in particular for any f*
with Ay« consisting only of the point z,. If moreover F is of polynomial growth <gq
with respect to x, and Z,, we see from Theorem 3.41 that the functional (3.43) is
the null functional, which implies that (3.44) vanishes identically. If this then is

true for every point Z,, we see from definition 2.32 that the continuous function
F () (%, ~ %)

is a polynomial of degree <g—1. We formulate the result in the following theorem.
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THEOREM 3.42. If F is of polynomial growth <gq with respect to a fixed point
x, and every 2, and if f* €F* has A« consisting only of the point z,, then the corre-

sponding measure {i satisfies for every compact set C

p(0)= [ F@)dz,

where F () s a function such that j?’(i?)-(xo, —2%) is a polynomial of degree <g—1.

A similar interpretation is possible for the spaces of type 3.1 3° namely that
under the same conditions the element 4(Z) is equivalent to a polynomial of degree
<g—1 multiplied by the character (%, 2). The condition that F is of polynomial
growth may then be exchanged to certain restrictions in the growth of p(%).

In the case 3.1 4° however, the corresponding theorem is not true. This would
imply that if A, consists of only one point, then d(f) is equivalent to a constant

multiplied by a character. It is very easy to find examples which show that this
is not the case.

CHAPTER IV

An equivalent definition of the spectrum

1. Elements in 4 with approximate identities. The subspace A4,

The following chapter deals with a different method of defining the spectrum,
and the definition is essentially a generalization of the definition used by Beurling
in [2]. Our definition will be expressed in terms of the generalized transformations
obtained by the characters, and since they correspond to the translations in the
Beurling theory, we shall use that terminology even in our case.

It is possible to prove special results for elements in a certain subspace 4, of 4,

and we shall introduce this subspace by means of the following two definitions.

DEFINITION 4.11. An element a € A is said to have an approxzimate identity if
for every >0 there exists a compact neighborhood N of 6 with the property that for

every f,(x) € Fy such that f,(2) is non-negative, vanishes outside N and satisfies

x
we have
la—fooal<e.

We call such a neighborhood N an e-neighborhood with respect to a.
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DeEFiNiTION 4.12. A, s the subspace of A consisting of all elements a such
that the translations (x,2) © a exist and such that a and all (x, 2) 0 a have approximate

identities.

REMark. It is quite obvious from the assumptions and results in chapter I
that if the algebra F has the elements f(x) and if z, denotes a fixed point in G,
then the isomorphic algebra F,,, consisting of the functions f(x+ ;) with the same
norm as the corresponding functions f(x) in F, is an algebra of type F. This new
algebra may as well be used to define the spectrum of the elements in 4, and we
then obtain a spectrum which is the original spectrum translated by z,.

Now it is quite easy to prove that the subspace A4, is invariant under this
translation of the spectrum. The only thing we need to check is whether the defini-
tion of elements with approximate identities changes when the functions f, (%) are
multiplied by (x? ajr; And this is not the case as is seen from the following argument.

Under the conditions in Definition 4,11 we have
lfooall<lla]|+e.
Hence, if f(%) is continuous and vanishes outside N

f@|dz.

||/Ou||§2(||a||+8)£

For that reason

2

la—[ 1@ (= B)d2 0 al|=|la—foo all+] {4 (@) (1 — (xo, ®)) d2 0 all

<e+2(la]|+e) [ @) |1 (2, ®)| d2

and the right hand member is arbitrarily small if ¢ and N are sufficiently small.
This will be of great use for us in 4.3, where the new definition of the spectrum
is introduced. By the above arguments, it has the same property as our first de-
finition, i.e. the spectrum is translated in the above sense. Hence. in order to prove
the 'equivalence of the definitions, it is enough to prove that the point o belongs to
the spectrum in the sense of one definition if and only if it belongs to the spectrum

in the sense of the other definition.

Before we proceed we shall prove a theorem on elements in 4 with approximate
identities. The Definition 4.11 is nothing but an extension of Definition 1.51, and it
is obvious that the proof of Lemma 1.52 can also be applied to the general case.

Thus this lemma is true if the element f(2) is exchanged to any element a € 4 with
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an approximate identity, and if f(x)-g¢(z) is exchanged to g©a. We apply this new
lemma to an element ¢ with a discrete spectrum, and g © ¢ has then a finite spectrum.
However, using Lemma 1.24, it is easy to show that every element with a finite
spectrum may be expressed as a sum of elements with one-point spectrum. Hence

we obtain the following theorem.

THEOREM 4.11. Kvery a € A with an approximate identity and with discrete A, can

be approximated arbitrarily closely by finite sums of elements with one-point spectrum.

The theorem should be compared with a result by Beurling [4].

The following theorem illustrates that the class 4, can to a certain extent be

characterized by continuity properties of the translations of its elements.

THEOREM 4.12. A. If a€A,, then ||(x,2)0a— (x,%,) 0 a|| is a continuous func-
tion of & for every .

B. Suppose that A s complete, i.e. a Banach space. If all translations (x, %) 0 a
of the element a € A exist, and if ||(x,2) 0 a— (x, &) 0 al| is continuous in & for every
R, then a € A4,.

Proor. A. It is apparently enough to prove that the function corresponding to
Z,= 06 is continuous at 2=4.

Let us choose an arbitrary &>0 and let for every 2 € G N; be an e-neighborhood
with respect to (x,Z) o a.

Then we choose 2; such that

_@lez\?é, (4.11)
and let f(£) be non-negative, continuous, satisfying

f@dz=1,

oy

and vanishing outside the set

which is a neighborhood of —2;.

Let us put

Then we get

4 — 563802, Acta mathematica. 96. Imprimé le 3 mai 1956.
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Using the assumption that N, and N ;, are e-neighborhoods we obtain

la—f(@) oali<e

and
@ 8)0a—[f(@): (a0 [z &) od| =](2)ca-f&)oa|<e
Hence we get
[|a—(z,2) 0al|<2e. (4.12)
This is true for every #;, which satisfies (4.11), and thus this part of the theorem
is proved.

B. Let a be the given element and &£>0 a given number. Let ]’\\7 be a compact
neighborhood of ¢ such that

la—(x, =) call<e

for every Z € N. We are going to show that this set is an e-neighborhood with respect
to @, and since this argument can be applied also to the elements (z, £) © a, this will
prove the theorem.

We choose a function f€ F, such that f(£) is non-negative, vanishes outside N

and satisfies

[f@dz=1,

and then we choose another arbitrary function g€F,.
For every positive integer n we are going to divide N into n distinet measurable
subsets £, such that every EY” is included in some of the sets ErY n=23, ...
An)

Then we choose a point 2% in every ES.

We shall discuss the linear combinations of characters

fal@) = 5 [ f@)d2-(x, ~2).

m=1 E(n)
m

For every n we have f, €D, and it is easy to see that
la—fa0al|<e. (4.13)

It is possible to show that we can choose the sets £% in such a way that when

n—)oo,
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sup | f(&)d2—0,

m E(r::)
sup [ sup “(1‘, ”—QO)Oa_ (1‘, —Ql)oa||]—>0,
mn 7., T € E‘%”
and
sup [ sup [§(&-2)—¢(@—2)[]>0.
m :?s@,f,,iieﬁgg)
Then {f,© a}?, is a Cauchy sequence, and since the space is complete, the

sequence has a limit element @,. By (4.13)
la—a,ll<e. (4.14)

It can also be proved that the Fourier transforms of the functions f,(z)-g ()
converge uniformly to the ¥Fourier transform of f(z)-¢(x), and since all functions
vanish outside some fixed compact set, Lemma 1.21 shows that we have at the same

time convergence in norm. Thus

goa,=limgo(fpoa)=1lim (g-f)ca=go(foa)

Now a; does not depend on the choice of g and hence by Assumption II in 1.1

a,=foa.
Thus by (4.14)
lla-foall<e,

and this proves that N is an e-neighborhood with respect to a.

REMARK. The part B of the theorem is not true for all spaces 4 which are
not complete. This is shown in the remark which follows after Theorem 4.31. In this
remark it is shown that Theorem 4.31 fails to be true if the condition a € 4, is
exchanged to the condition that the translations exist and ||(z, ) 0 a— (x, &) o a|| is

continuous.

2. Some lemmas

In order to prove Theorem 4.31 we need various lemmas, and we collect them

in this section.

Lemma 4.21. Suppose that a€ A,. Then there exists for every compact C and

every ¢>0 a set N , which 1s an e-neighborhood with respect to all elements (x, 3,) 0 a,
when £, € 0.
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Proor. Let 1{7,3 be an e-neighborhood with respect to a. We can find a smaller
symmetric neighborhood N 5 of 6 such that

N+ Njc N,.

Then if the non-negative, continuous function f(£) vanishes outside N 5 and

satisfies
f@adz=1,

Qs

we have for every #;, such that &, € N,
f@) @ &)= | 1@+ ) @ 2)d,
which implies that 0
la—f(@) (x, &) call<e.
But (4.11) holds and hence (4.12) is true. Thus

| (@, &) 0a—f(x) (z,2)0al<3e,

and this relation shows that N, s is a 3e-neighborhood with respect to every element
(x,2;) 0 a such that %, € N;. By applying the same argument to the element (z,%;) o a
we see that there exists, for every £,€G, a set N '2 which is a 3e-neighborhood with

respect to all elements (z,2;) © @, such that
By — 8 € N

L. . ar? . A
The interiors of the sets %,+ N. form an open covering of C, and hence we
3

can select a finite covering

{&,+ Nz},

Thus every point #€C can be represented in the form

which shows that ]Q’;A is a 3e-neighborhood with respect to this particular eiement

v
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(z,2)0a. And in order to get a 3e-neighborhood with respect to all (v, Z) © @, where
é}‘Eé’, we have only to form the set
N..

v

Hy ~

S50 Y

Since ¢ is arbitrary this proves the lemma.

LeMMA 4.22. Suppose that a € A, and f,(x) € Fy, let & >0 be an arbitrary number
and C an arbitrary compact subset of G.

Then there exists a linear combination of translations of a
n
a=72c (z,—%)0a,
1

where the points 2, belong to the closure of the set where the Fourier transform f, @) =0,

and with the properties

(@, 8) 0 (f,oa—a)|<e (4.21)
for every &€ C, §0v=f0(o), and
?'“'54 [ 1a8)] dt. (4.22)
G

Proor. It is obviously enough to prove the lemma in the case when fo () is

non-negative and

folo)= [ fo(@)d2=1
G
if we instead of (4.22) show the stronger relation
> e |=1. (4.23)
1

We denote by C, the compact closure of the set where fo(®)=0. Since the set
C+(—0,) is compact we can, according to Lemma 4.21, find a set N, which is an
e-neighborhood with respect to all elements (z,2—2,) 0 a, where 2€( and #,€0,.

The interiors of the sets N +&,, where 2,€C,, cover C,. Let us select a finite

covering
{N+8).

Obviously fo (2) can be decomposed into a sum of non-negative, continuous functions
f,(®), such that f,(2) vanishes outside Z\A7+Q,,, v=1,2...,n. We put
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| L@dz=c,.

ﬁwiv
Apparently
which proves (4.23). Now
L@ (@ &) = [ (x,2)f,@+2)d2,
N

and since N is an e-neighborhcod with respect to the elements (x, 2 —2,) 0 a for every
2€C we get

l@8)0 (o a=a)l= 3w B o a—c.lo,8-2) 00l =

»—nM:

“f,,(x)(.’l?, Qﬂ) o ((x: Q_iv) o (l)—C,,(.’L‘,@—@,,) Oa||§8§:0v:8,
and this proves (4.21).

Lemma 4.23. Suppose that a € A, and that € F has compact A,;. Let £¢>0 be an
arbitrary number and C, an arbitrary compact subset of G. Then there exists a linear

combination a’ of translations

such that
@, &) o (foa—a)| <e,
if 2,€0,.
Proor. We can use Lemma 4.22, and hence the only thing we have to prove

is that we can find an element ¢(x) € F, such that

) .20 (- g)| <.
if 2,€d,.
Lemma 3.43 shows that f(z) can be written
f@)=fo (@) f(2),
where f,€F, and f, € F. Let us put

sup [|fo - (@, 2o)|| = B,

Z4eCy

which is finite because of Lemma 1.21. Then we use Assumption II in 1.1. which

shows that we can find a function f,(x) € F, such that
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€
xX)— x <

Hence, if 2,€C,
Il (=, &) f—~ (%, 2) fo/‘z”S ” fo- (=, 92'0)“ ) ||f1_f2“ <e&.
We may therefore choose as g(x) the function f,(x) f,(z).

Lemma 424, A, Every a€ A with compact A, belongs to 4.
B. Given any compact set C< @, there exist two continuous functions pc (%) and

gc (@), where qc(6)=0, such that
[z, 2+ &) = (=, 2)] 0 a|| <]l o (@) - 4 (),
if a€Ad and A, C.

Proor. Let us first prove the second part. We choose a function f(z)€F
such that f(x)=1 on an open set, including €, while A, is compact. This choice is
possible by Lemma 1.24,

From Lemma 3.43 and from the fact that all functions in F, have approximate
identities (Definition 1.51) it is easily seen that the same is true for f(z) and all
functions (x,2)-f(x). Therefore f(x)€F, if the space F in the sense of 3.1 1° is
considered as a space 4. And by Theorem 4.12 A the functions

@) -, 2)~1)|| = qc (&)

and

£ (@) (z, 8)|| = pc (&)
are continuous and g¢¢(8)=0. If A, C, we have

a=foa=foa, (4.24)
and thus

@ 2) @ 20) — (@ )] c all <[ [(z, &) ~ 1] {- (2, &) 0 a|| = ||| e (2) - G (R)-
As for the first part, (4.24) shows that @ has a representation of the form foa,
where f€ F,. This implies at once that a€ 4,.

3. The spectral sets A, and A,

We are going to introduce two new definitions of spectrum of the elements in 4.
Only the first definition may be applied to every element in 4, but the second one

is often more convenient, since it is expressed only in terms of the translations.
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DeriNiTroN 4.3l. For every a€A we define A, as the set of points x,€ G,
with the property that for every ¢>0 and every compact set C < G there exists an element
fEF, such that foa belongs to A, and satisfies

[z -2, 2)—1]-foa|<e||foal

for every 2€C.

DEFINITION 4.32. For every a€ A, we define A, as the set of points x,€ G
with the property that for every £>0 and every compact set C <@ there exists a linear

combination of translations

’

a =

HMS

¢, (x,2,)0a,

such that
(e -, ) =110 0’| <e|la||
for every 2 €C.

The following fundamental theorem connects these definitions and Definition 3.21.

THEOREM 4.31. Aa=A, for every a€A.

Aa=Ay for every a € A,.

REMARK. Of course the spectrum A, can be defined for a larger class of ele-

ments than 4,, e.g. for the class of elements @ € A such that for every 2,
| (z, 2) 0 a— (x,2,) 0 al

exists and is a continuoué function of 2. The following example, however, shows that
we may then have A,=+A,. This shows at the same time that A4, is a proper sub-
class of the mentioned class (cf. Theorem 4.12.).

Let b,(t) be a bounded function € L' (— oo, co) such that if

n
>lel=+0
1
none of the linear combinations of translations
"~ n -~
di@) =2 ¢, b, (t+1,)
1

is equivalent to a continuous function.
Let b,(t) be another function with the same property. To each linear combina-

tion d, (t) there corresponds in a unique way the function
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n n -
dy (t) = ; e, by (1)

We shall show that we can choose b, () and b,(t) in such a way that A5l$A52,
where these sets are defined as the closure of the sets where the corresponding Fourier
transforms do not vanish.

Let us choose

b, (t) =e™'*! sign ¢.
It is easy to prove that A; =(— oo, oc). Then we choose ¢(¢) in L' (— 00, o0) and

L* (— oo, o0) such that its Fourier transform is =1 in (—1, 1). The function
byxé= [bi(t)é(t—1t)dt

is then bounded and continuous and its Fourier transform coincides with the Fouri_er

transform of b, in (—1,1). Therefore

fulfills A +Aj, and since each of the functions b, and b, has only one essential
point of discontinuity, no non-trivial linear combination of translations is equivalent
to a continuous function.

Let us now choose as F the space F{l} of Fourier transforms of functions

€L (— o0, o), and as A the space A! of functions of the form

dy (1) = a(t) +dy (1), (4.31)

where @ () is equivalent to a bounded continuous function € L' and where d, (f) is
a linear combination of the kind defined above. We define the transformation fo g,

by means of the convolution
[t () ity

and since all functions fod, are equivalent to bounded continuocus functions, they

belong to the space A'. We introduce the norm

ladl=la@+dol = [ daw|+d o]+ doDd,

which is uniquely determined by the unique decomposition (4.31). The spectrum of
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an element d, € 4" is apparently the set A, defined above. The space 4' fulfills
every requirement which we demand of a space A.

For every element 4, (f) the translations d,(t+¢,) exist and the function

(|1 ¢+ 8)—dy ¢+ 50) |
is continuous.
If we exchange the role of the indices 1 and 2 in the above example, we get
a space A? with analogous properties. Now the norms of the elements dy (1) € A are
exactly the same as the norms of the corresponding functions d,(f) € A% Hence by
Definition 4.32 A:;'l:A/é'z. But we have assumed A; + A;. Thus AE,*A,EII or
Al;gr«tA;:, i.e. the second part of Theorem 4.31 is false for at least one of the

spaces A”.

Proor oF THEOREM 4.31. The remark after Definition 4.12 makes it possible
to restrict the discussion to the case when z,=o0. The proof will be divided into
three parts. In the first two parts, we are going to show that o€ A, implies 0€ A,
and o€ A, respectively, i.e. we have to prove that the Definitions 4.31 and 4.32 are
fulfilled with z,=o0, and for any prescribed ¢ and C.

1. A;cA.. We assume that o€ A,, and have to construct an element foa€4,,
satisfying the relation in Definition 4.31.

Let C be an arbitrary open neighborhood of o. By Lemma 4.24 there exists an
open neighborhood N of 6 such that

|G, &+ %) — (x, B)] 0 ay || < %”alu, (4.32)

it #€0, £,€N, and if a, €4 fuifills A, <C.
The sets £+ N, where £ €, form an open covering of €. Let us select a finite

covering

{&,+N}.

Now let ¢’ be a compact neighborhood of o, included in € and in the open

neighborhood of 6 where for every v
| &) —1]< 2 (4.33)

We choose a function f,€F with A, <’ and f,(0)=0. Since 0€ A4, we have

fooa=0. Let us then consider the class of elements
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4y = [g<<x, 8- 1>"v} ofoa,

where the exponents %, denote arbitrary non-negative integers. Two cases may occur:

1°. Infinitely many of the elements g, are =6.
Let us apply Theorem 3.32 to the elements a,. Since A, < (" and (4.33) holds
in (" we obtain for the constants B} which correspond to ¢ (2)=(#,2,)—1 in the

theorem, the relation

lim [BY]" < ¢

n—->0

[N

This is true for all ¥, and we have

leall=lfo o all £ B

Hence the numbers

sup ||a0|| =0y,
m
}1:"‘1;:"

which are all different from 0, have to satisfy

— e
lim 67" < =
n—->o0 Z

This implies that at least one of them, let us say §,,, satisfies

£
67;“1 < 5 N 6,10.

The corresponding element, i.e. the element a, with > k,=n, and for which
1
ll o |l = on,
then has to satisfy for every »
| [z, 2,) — 1] © a|| < bnpu1-

Thus for every », this element, which we denote a,, satisfies

| [(x, 2,) — 110 a,]| < %”“l”' (4.34)
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2°. Only a finite number of the elements a, are + 6. Since in any case foa==0,

we can find an element @, among the elements ag, such that ;=0 and for every »

[(z, 2,)—1]0a; =0,
then a fortiori (4.34).

The element @, has A, < (', and hence a, €4, by Lemma 4.24, and it also
satisfies (4.32). Combining (4.32) and (4.34) we get

[((z, &, +2) — 1] 0 oy || < e |

for every v and if 53062\} . But every point in ¢ may be written in the form 2, +2,.
And this concludes the proof.

2. A,<A;. In the preceding part of the proof we saw that if o€ A,, then
0€ A, and the function f(x) can be chosen with compact A,. Then, comparing Defini-
tion 4.31 with Definition 4.32, we see that the only thing we need to prove is that
we can approximate f o a arbitrarily closely by translations a’ of a, in the sense that

for every 0 >0 we can find ¢’ such that

[foa—a'|<é
and

|2, 2)0[foa—aT]

< 6,

if 26€C. And this approximation is possible, since we assume in this place that
a€A4,, and thus we can apply Lemma 4.23 with C, consisting of the point ¢ and
the set C.

3. As<A, and A; ©A,. Starting from a given element a, the two proofs will
be exactly the same apart from the difference that the variable element o' should
be interpreted as an element of the form foa in the first case, as a linear combina-
tion of translations in the second case. We suppose that o4 A, and we are going to
show that the relation o€ A, or ¢€ A, respectively, has to involve a contradiction.

It follows from the definition of A, that there exists a function f;(z) € F with
f1(0)=1 and such that f,0ca=0, ie. such that for every a’

froa =6.
We approximate f, by a function f, € F, such that for a prescribed £>0

||f1“fo“<8"
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By (1.51) ;
[fo(0)] = f1(0) =11 (0) = fy (0) | > 1 —&, (4.35)

and moreover we have
loodll <llfioali+lith—f)oa | <efla]]. (4.36)
The Fourier transform f,(2) vanishes outside a certain compact set C. Let us put
;:[ |75(2)|d%=B< co.

Since the Definitions 4.31 or 4.32, respectively, are assumed to be satisfied for
%y =0, there exists an element a’' € A; such that if 2€(

I, —#)-vowll< Slla]. (4.37)

Then, by Lemma 4.22 there exists a linear combination of translations
n

; <y (fL‘, - aAjv) O a,’

where 2, € 0, satisfying > ¢, =f, (0),
T

lfooa — gcv (@, —&)od | <e|a| (4.38)
and

0(@)|d2=4B. (4.39)

The formulae (4.38) and (4.37) give

n
e > e,
1

n
lhow=3eal<ellal+ —p ],

i.e. together with (4.39)
lfooa’ —fo(0)- || <2ella’]].
And combining this inequality and (4.36) we obtain
o) |- la’ < 3efla’]],

which is contradictory to (4.35) since we can assume £<1.



62 YNGVE DOMAR

4. The narrow topology

The relation between our spectral definitions in this chapter and our original
definition is essentially the same as the relation between the Beurling definition in [2]
and the definition which he used in [5]. This will appear from the following dis-
cussion.

Let p(2) be a function of the kind used in Definition 2.11. p(—2) is a function
with the same properties. We form the space F{p(—2)} and let 4 be the corre-
sponding space of linear functionals in the sense of 3.1 2°. Then A4 is isomorphic to
the following space of functions d(2) on G.

&(&) is defined, finite and measurable a.e. on G and

[N

4 (&)|| = sup. ess. = @),

P(2)

The linear transformation fo d of the element @(Z) is the ordinary convolution

fod: jd(i"ﬁo)f(ﬁo)dﬁo,

[e]

and the translation by (z, Z,) is the ordinary translation

A

(z, Zy) 0 d=d (2+ Z,),

which exists for every element.
Given f€ F{p(—2)}, we can for every ¢>0 and every compact set =@ find a
function f, € F,, such that
(. 2)- (f—fo)ll <&

for every 2 € (. The functions f,(x) have, however, the property that
11, 2) ~ (2, 21+ fo |

is a continuous function of £ for every Z,. Thus the same is true for the function f (x).

Hence we may conclude that for every element of the form fo d the function
| [z, ) — (x, Z)1 o (fo d) ||

is continuous, and thus by Theorem 4.12 B, using the fact that 4 is complete, we
conclude that fod€ A4,.
By definition every element in A4; can be approximated arbitrarily closely by

functions f,od, where f, € F,. Thus it is a limit of continuous functions and hence
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it is a continuous function itself. Therefore, 4, consists by Theorem 4.12 of all func-

tions, equivalent to continuous functions d (%), for which

is continuous at Z,=4.

In the case when 2 (2) is bounded, the space is the space of all measurable and
bounded functions, and 4, is then the subspace, consisting of all functions which are
equivalent to uniformly continuous functions.

Let us now make the extra assumption that p(%) is continuous and satisfies
p(8)=1. The characters (z,2) belong to the space and since we assume p(2)=>1,

we have
| (@, 2)]|=1. (4.41)

Now we introduce a new topology in the space, the narrow topology, by choosing

as a neighborhood base of an element 4, the subspaces of elements ¢ for which

¢ @) —do@)]+ [ [lall—lldoll] <&,

where & is an arbitrary positive number and C an arbitrary compact subset of G.

We can then prove the following two theorems.

TreEOoREM 4.41. A; consists of the points x, for which (z,, &) is included in the

narrow closure of the class of functions of the form fod.

ToneorEM 442. If 4d€ A, then A, consists of the points x, for which (x4, Z) is

included in the narrow closure of the class of linear combinations of translations
n
S, d@+2).
1

RemMarK. The narrow topology was introduced by Beurling [2] in the space
of bounded, uniformly continuous functions on R, and he proved that the narrow
closure of the class of linear combinations of translations of a given function always
contains a character. His arguments may as well be used to prove that the defini-
tions of spectrum in [2] and [5] coincide (cf. [5] p. 225), which is the same as the
truth of Theorem 4.42 for that particular case.

The sets of points x, for which the corresponding characters (x,, 2) are included
in the narrow closure of the spaces mentioned in the theorems, are sets which are
very closely related to the spectral sets A; and A;. The fact that these sets by

Theorem 4.31 coincide with A; makes it possible for us to prove the above theorems.
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Proor or THEOREM 441 AxD THEOREM 4.42. The two proofs will only
differ in the respect that d, in the first case denotes a function of the form fo d,
in the second case a linear combination of the translations of d, which then is supposed
to belong A4,. In any case 4, € 4;, and we may suppose that the function is con-
tinuous.

If 2y¢ A; there exists a function f with f(z,)=0 such that fod=0. Hence
fod, =0, ie.

Ja(-»f@az-o

for every d,. If (x,, &) were included in the narrow closure of the functions 4, we
would have
fo) = | (@ —2) (&) d2=0,
i.e. a contradiction.
Thus we have only to show that if ;€ A;, then (x,, Z) is included in the narrow

closure of the elements d,. We apply Theorem 4.31 which shows that there exists for

every £ >0 and every compact set C a function ¢, such that if 2, €
[ dy @+ 2) — (0, Bo) - &, @) || < el d,]|- (4.42)

We shall modify this statement. There exists of course a point Z; such that

PPN foan Lo
ld, (&;)] > p(xl)ﬂ; a,|]. (4.43)
The function
& @+2
1<d,(8) = 1
=) dy (2y)
is also of the type d;. It satisfies
d,(6)=1, (4.44)
and using (2.12) and (4.43) it is easily seen that
1<]|d,@)||<1+e. (4.45)

Furthermore we get from (2.12), (4.42) and (4.43)
[l dy (2 -+ &) — (20, By) da (B [| < 2 (L +e)

for 2,€C, ie. by (4.44)
|Gy (Bo) — (g, Bo) [ <& (1 +2). (4.46)
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If we finally combine (4.41), (4.45) and (4.46) we obtain

sup | dy (Bo) — (%o, o) | + | | da|l = | (zo, B) [| | < £ (2 + &)

ToeC
Since ¢ was chosen arbitrarily and p(2) is bounded in the compact set , this shows
that we may find a function d; in any neighborhood of (x,, £), i.e. (x,, 2) belongs to

the narrow closure of the space of the functions d,.

We shall illustrate the results in this chapter by means of another example.

Let 4 be a Banach space and let us have a strongly continuous homomorphism
(i.e. a representation) of G onto a group of linear bounded transformations of 4 into
itself. (Cf. L. 32 A.) We let 7'; denote the transformation which corresponds to £ and

assume that for every 2

2 log |7 _
1 nw

Since apparently

172l =17 To | < 1| Tl - 1| 7. |

the space F{||T;|]} (Definition 2.11) is of type F. Using the same technique as in
the proof of Theorem 4.12 B (cf. also L. 32 B) it is possible to prove that the group
of transformations can be extended to an algebra of the following kind:

There is an algebra of transformations of A of the kind described in 3.1, with
F=F{||\T;||} and such that for every & and a T; a coincides with the translation (z, %) o a.

We have moreover 4, =4, and this is by the way important in the proof of the
above statement, since it shows that every a can be approximated arbitrarily closely
by elements foa, f€F{||T;:||}, and this has as a result that Assumption II is ful-
filled.

Therefore the whole spectral theory may be applied and owing to Theorem 4.31
we have now a possibility to express the definition of the spectrum in terms of the
“translations” 7';. In order to get a briefer formulation let us say that a subclass
A4, of 4 contains approximate eigenelements corresponding to =z, if for every £>0

and every compact set € < G it contains an element o’ such that
(s = (%, B)- Do’ || <e|| & ||

for every 2 €0, where I denotes the identical transformation. Then Definition 4.32
yields:
41— 563802. Acta mathematica. 96. Imprimé le 3 mai 1956.
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2, € Ay if and only if the linear manifold spanned by the translations of a contains
approximate eigenelements corresponding to .

And the fundamental Theorem 3.21 A shows that i¢f a==0, then we can always
find a point x, with this property.
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