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I n t r o d u c t i o n  

In various papers (ef. the bibliography) A. Beurling has studied the harmonic 

analysis of functions on the real line. Using different approaches he has introduced 

the notion of the spectrum of a function as a set on the dual real line which, roughly 

speaking, consists of the frequencies of the characters of which the function can be 

regarded as composed, 

The development of the theory of Banach algebras has made it possible to ex- 

tend a wide sector of harmonic analysis into more abstract theories. I t  has therefore 

been natural to study spectral theory from a more general point of view. Thus Gode- 

ment [8] gave a definition of the spectrum valid for bounded measurable functions 

on a Ioeally compact Abelian group, and his approach was pursued by, among others, 

Kaplansky [10] and Helson [9]. 

Many problems in this field remain unsolved. I t  is by no means obvious to what 

extent the speetral theory depends on the metrical properties of the real line and on 

the structure of the function spaces which were considered by Beurling. The reason is 

perhaps that Beurling attained his results by means of a very large variety of methods. 

Algebraic arguments are sometimes used (as in [1]), but more often methods from 

the theory of analytic functions and potential theory are applied, and not all 

these methods are available in the general setting. Especially the generalization to 

groups has met many obstacles. More progress has been made when the theory has 

been restricted to the real line (Warmer [17]). 

Beurling has given several more or less equivalent definitions of spectrum. The 

one which most easily lends itself to generalizations is the definition in [5], which 

defines the spectrum of a function in L ~ as the set of frequencies of the characters 

which are included in the weak closure of the linear manifold spanned by the transla- 

tions of the function. This definition was also used by Godement. In the theory 

which can be developed from this definition, it is of fundamental importance that  L 1 

be a eommutative Banaeh algebra under convolution with the dual group as the 

regular maximal ideal space and with the property that  every proper closed ideal is 

ineluded in at least one regular maximal ideal. The lasli-mentioned property is closely 

connected with the general Tauberian theorem (Wiener [18]) as is shown e.g. in 

Loomis [11] w167 25D, 37A. 

A closer study of the possibilities offered by the above definition reveals that  

the concept of transformation is of a fundamental importance in the development of the 

theory. I t  is essential that  L 1 can be considered as an algebra of transformations of 
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L ~176 into itself, if the transformation is defined as the ordinary convolution. In  fact, 

even the definition of the spectrum can be expressed in terms of these transforma- 

tions, and this opens the way to generalization in the following direction. 

Let A be a normed linear space and F a commutative algebra with a representa- 

tion onto an algebra of linear transformations of A into itself. For every a E A and 

]E F we denote by [ o a the corresponding transformed element in A. We assume 

that  F is normed in such a way that  

I l l  o all<- IIslI" I1, 11 

and we suppose that  F is a Banach algebra under this norm, with a space S of 

regular maximal ideals. We define, for every a E A, the spectrum Aa as the subset 

of S consisting of all regular maximal ideals which contain the closed ideal of all 

] E F  for which ] o a =  O. (0 denotes the null element in A.) We assume that every 

proper closed ideal is included in at least one regular maximal ideal, and then an 

empty Aa implies that i o a = 0  for every ] E F. Let us finally assume that  this is 

true only if a =  0. Then Aa is empty only if a = 0, and this fundamental uniqueness 

theorem gives us a solid basis for a general theory. 

Of course very few of the problems in the Beurling spectral theory can be 

formulated in this abstract setting. The notion of translation has for instance dis- 

appeared as a main ingredient of the definition. The lost connections with the Fourier 

analysis can, however, partially be recovered if we assume that  S is a locally com- 

pact Abelian group, and further specializations will of course lead us.still closer to 

the field of study in the Beurling papers. 

Our object in this pzper is to study a class of algebras F of the above type, 

where S is a locally compact Abelian group, and then discuss the corresponding 

spectral definition. I t  will turn out that  many of the essential results in the Beurling 

spectral theory can be approached in our rather general setting, e.g. the characteriza- 

tion of elements with one-point spectrum (originally studied by Beurling [2] and later 

by Kaplansky [10], Helson [9], Riss [15], Wermer [17] and others) and the spectral 

definition by means of the narrow closure (Beurling [2]). 

As for the methods employed, we naturally have to utilize in a very essential 

way the general theory of commutative Banach algebras together with the special 

properties of the class of algebras which we discuss. The elementary Fourier analysis 

on groups is rather freely used, and results from the theory of analytic and quasi- 

analytic functions are applied at certain places where it has been possible to restrict 

the discussion to the real line. In paragraph 2.2 the structure theory of locally compact 
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Abelian groups is used in the discussion of a particular example of the algebras F, 

but apart from this, the theory does not depend on structure theory. 

The first two chapters deal exclusively with the properties of the algebras F .  

Chapter I I I  contains the definition of the spectrum and an account of certain of the 

most available spectral properties. In chapter IV the discussion centers around an- 

other definition of the spectrum. I t  is proved to be equivalent to the original defini- 

tion and closely connected with the Beurling definition in [2]. 

Most of the results in chapter I I I  are valid for more general classes of algebras 

F. The results in chapter IV, however, depend on the structural properties of F, and 

it is doubtful whether it is possible to prove similar results in greater generality. 

I t  is assumed that  the reader has a certain knowledge of the theory of com- 

mutative Banach algebras as in Gelfand [7] and parts of the theory of Fourier 

analysis on locally compact Abelian groups as in Pontrjagin [14], Weft [16] and 

Godement [8]. Whenever possible, however, we take the liberty of referring to the 

exposition in Loomis [11], and certain more or less standard arguments in harmonic 

analysis, such as convolutions, inversion theorems, etc., are used without reference. 

Functions on the dual groups G and G are denoted by / ( x ) ,  g(x)  . . . . .  and /(2), 

(3) . . . . .  respectively. The only exceptions are the characters (x, ~), where the above 

notation is inconvenient. Whenever two functions, such as /(x) and ](~), are men- 

tioned in the same context, they indicate a pair of functions which in some sense 

are Fourier transforms. Addition is chosen as group operation. 

C H A P T E R  I 

A Class of Commutative Banach Algebras 

l .  Main assumptions and defildtions 

Let G be an Abelian locally compact group with the dual group G. I t  will be 

convenient for our purposes to assume that  the groups are Hausdorff spaces. This is 

no essential restriction as is shown in L. 28 D. (L. denotes here and in the following 

references to the corresponding paragraph in Loomis [11].) 

We introduce a Banach space F of complex-valued functions / ( x ) ,  defined and 

finite everywhere on G. The addition of two elements in F is defined as the ordinary 

addition of the two functions and the multiplication of an element with a complex 
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constant is the ordinary multiplication of the function with the same constant. Dif- 

ferent functions are supposed to be different elements, and for tha t  reason /(x) is 

the null-element if and only if [(x)~O. 

Furthermore we suppose tha t  if two functions /l(x) and ]2(x) belong to F, then 

the same is true for the function 

1 (x) =/ ,  (x), 12 (x), 

and the corresponding norms fulfill the relation 

II/11 ~< II 1111" II/2 II 

This implies tha t  F is a commutat ive Banach algebra. 

For any function / ( x ) C F  we denote by A~ the set in G where / (x )*O,  and 

by  Ar the closure of A~. 

We shall introduce some further assumptions and notations:  

I. Suppose that /or every neighborhood N o/ the identity in G there exists a non- 

negative, not identically vanishing /unction [N (X) in F with the /ollowing properties: 

A. AfN ~ N .  

B. IN(X)= S (x,~)fN(2)d2, 

where IN(2) is continuous and e LI(G). 

C. All continuous /unctions ~ (2) such that 

1~(2) l--<lfN(2)l 
have the property that the /unctions 

g (x) = [. (x, 2) ~ (2) d2 

belong to F, and their norms are uni/ormly bounded. 

(1.11) 

(1.12) 

Before we can proceed with our assumptions we have to discuss a consequence 

of Assumption I. 

Using the Pontrjagin duality theorem and the definition of the topologies of the 

dual groups we see (L. 34C) tha t  for every compact set C c ~ ,  the set of points 

x C G, such that  for every 2 C C 

[ 1 - ( x , 2 ) [ < L  
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is an open set in G. Since it contains the ident i ty  o of G, it is a neighborhood N 

of o. The funct ion /N(X) is non-negat ive and therefore, if 3 E r  

If,,,(3) l = I .r l,,,(x) (x, 3) d x I > �89 .r 1,,, (x) dx.  
G G 

(We assume here and in the following tha t  the Haar  measures on G and G are normed 

in such a way  t h a t  the constant  in the Fourier  inversion formula has the value 1.) 

This shows t h a t  it is possible to find, for every compact  set C, a func t ion /N(x)  

such tha t  [ /g(3) l has a positive lower bound on C. Using Assumption I C  we see 

t h a t  this implies t h a t  the class F o o/ /unctions 

g (x) = S (x, 3) ~ (3) d2,  

where ~ (2) is continuous and vanishes outside a compact set, is a subclass o /F .  The formula  

/1 (x)./2 (x) = j" (x, 2) d2  S/1 (2 - 20) ~2 (20) d30, 
G 

which is t rue if ~1(2) and ~2(2) belong to L 1(6), shows tha t  F 0 is moreover  a sub- 

algebra (L. 28A 4). 

Our second assumption will be:  

I I .  Snppose that F o is dense in F. 

We shall introduce another  subclass of F.  Let  us first form the class of all 

functions g(x) of the type  (1.12), for which 9(2) is continuous and satisfies (1.11) 

for some N, and for which Ag is compact.  Then we denote by F' the class o/ /unc- 

tions o/ the type ~.g(x) ,  where ~ is an arbitrary constant. 

2. Some lemmas concerning the subclasses F 0 and F' 

The classes F 0 and F '  will play impor tan t  r61es in the discussion of the Banach 

algebra F.  For  later use we shall collect in this section some lemmas on these sub- 

classes. 

I f  a funct ion g (x) belongs to F 0 or to F ' ,  then we shall use the term Fourier 

t ransform of g(x) for the continuous funct ion ~(3), which in the sense of (1.12) is 

associated to g(x). 

LEMMA 1.21. Consider /or a given compact set C in G the subclass o/ all /unc- 

tions g(x) EFo, /or which the Fourier trans/orms ~(3) vanish outside ~. Then there 

exists a /inite constant ds, such that /or all these /unctions 
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II g (x) ll <~ d~ ll ~ (3) ll~, 

where lid(3)I[  denote8 the uni/orm norm o/ continuous /unctions on G. 

The proof follows at  once from the discussion in 1.1. 

LEMMA 1.22. For every neighborhood N o/ the identity 6 in G there exists a 

/unction /(x) E F'  such that the Fourier trans/orm [(3) satis/ies 

^ < ' I 
o<_/(x)_l  
[(6) = 1, /1" (1.21) 

[ (3) <_ �89 outside N. ] 

PROOF.  Let  us s tar t  f rom a funct ion /N(X) with compact  N. 

negative, and for t h a t  reason 

/N(X) is non- 

The function 

is the  Fourier  t ransform of a funct ion E F ' .  I t  satisfies the first two of the  condi- 

tions (1.21), and fur thermore we know t h a t  

(x) _ �89 

outside a certain compact  set C, since the Fourier  t ransform of a funct ion E L 1 (G) 

vanishes at  infinity. 

Now let N be the given neighborhood. We m a y  of course assume tha t  it is 

open. The set C 0 of all points in C, which are not  contained in N, is then a com- 

pac t  set, not  containing 6. 

Let  us for every point  x E G  denote by  0x the  open set in G where 

I 1 +(x ,  3 ) [2<2 .  

I f  3 * 6 there exists a point  x 0 such tha t  (x 0, 3)~= 1. An elementary reasoning 

shows tha t  for a suitable value of the integer n the number  

(x 0, 3) n = (n Xo, 3) 

has to satisfy the inequal i ty  

I I + ( n x 0 , 2 )  l_< 1. 

Therefore the sets 0x cover all points in G with the exception of 6, and as a 

result we m a y  select a finite sub-sequence {0~.v} ~ which covers the compact  set C o. 
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Let  us now form the  funct ion 

1 n 

~(pc): ~ ~ I1+(x~, pc)l ~ 

I t  satisfies the  conditions (1.21), the third one, however,  only inside C 0. Bu t  the  

funct ion 
[(Pc) =) i  (PC). ~ (PC) 

satisfies (1.21) in all details, and since ~(2) is a l inear combinat ion of characters,  

/ (x ) - -  S (x, PC) I(PC)dpc 

has compac t  AI, and therefore  it  belongs to F ' .  

L ~ t M A  1.23. For every neighborhood N o/ 6 and /or every ~>0 there exists a 

]unction g (x) E F' which has the representation 

where 

g (x) = gl (x) + S (x, PC) ~ (PC) dpc, 
G 

]lg,[l<~, 

and where g2 (PC) is non-negative and continuous, vanishes outside N and satis/ies 

g2 (PC) d2  = 1. 
N 

PROOF.  Let us s t a r t  f rom a funct ion ](x) in F '  which satisfies the conditions 

in L e m m a  1.22 with respect  to ~r. Le t  $(PC) be a continuous funct ion sat isfying 

0 ~< Is (PC)_< 1 and which vanishes outside 37 and assumes the  value 1 on the  set where 

t (PC) -> ~. 

Choose for every  posit ive integer n the  cons tant  dn such t h a t  

Apparen t ly  

d~ J"/c(k) ]/(PC)In dpc = 1. 

lim d 1 / ~ -  1. n - -  
n--~oo 

This relat ion and Assumpt ion  I C have  as consequence t h a t  the norm of the  

funct ion 

dn f (x ,~) (1  k (~ ) ) [ / (~ ) ]nd2  
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t ends  to  0, when n--->~.  Le t  us assume t h a t  the  no rm is smal ler  t h a n  ~ for n = n  0. 

Then the  l emma follows b y  choosing 

�9 ~ ,,k rt a ~, g~(x) =d~o j" (x, x)(1 - fc(~)) If(x)] dx, 
5 

~2 (2) = tin. k ( 2 )  [ / ( x ) ]  n~ 

L E M M A  1.24. ]~or every pair o[ sets C and 0 in G, where C is compact, 0 is 

open and C ~ O, there exists a /unction /(x) E F' such that 

o_</(z)<_ 1 in O, 

/ (x) = 1 in C, 

] (x) = 0 ou t s ide  O. 

P R O  OF. We denote  for eve ry  pa i r  of sets E 1 and  E 2 in G b y  E I + E  2 the  set 

of all po in ts  x = x  l + x ~ ,  where x l E E  l a n d x ~ . C E  2. Then there  exists  (L. 5 F ,  L. 2 8 A 3 )  

a compac t  symmet r i c  ne ighborhood  N of the  i d e n t i t y  in G such t h a t  

C + N + N c O .  

Le t  us assume t h a t  the  non-nega t ive  funct ion /N(X) satisfies the  re la t ion 

G 

I f  th is  is no t  the  case, we m a y  change the  funct ion  b y  mul t ip ly ing  i t  wi th  a su i tab le  

cons tant .  Then le t  [1 (x) be the  charac te r i s t ic  funct ion  of the  set C ,~ N. The funct ion  

belongs to F ' ,  and  i t  is ve ry  easy  to ver i fy  t h a t  i t  has  the  requi red  proper t ies .  

3. Linear functionais on F 

We are  going to show t h a t  we have  a cer ta in  represen ta t ion  of the  l inear  func- 

t ionals  on F as Borel  measures  on G. Here  the  t e rm Borel  measure  is used in the  

wide sense, i.e. i t  includes also complex  set-funct ions.  

Suppose  t h a t  ]*{1) is a l inear  funct ional  on F.  I f  we consider the  funct ions 

g(x) E F 0 for which the  Four ie r  t ransforms ~(2) vanish  outs ide  a f ixed compac t  set (~, 

we get  from L e m m a  1.21 
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If*<g)l<_ IIf*l l. Ilgll-<de II/*11- II ~(~)11=, 

which shows tha t  the functional  is at  the same time a linear functional on the class 

of functions ~(5) under  the uniform norm. Therefore 

1" (g) = ~ ~j (~) d / i~  ( - 5), 
c 

where /J5 is a Borel measure, uniquely defined on the interior of the compact  set of 

points 5 such tha t  - 5 6 C .  Since C m a y  be chosen arbitrari ly we can extend this 

result to the following l emma:  

LEMMA 1.31. To each linear functional /* on F there corresponds a unique Borel 

measure ~ on G such that if / 6 F  o 

1"(1)= ~ /(5) d~ ( - 5 ) .  

Fur thermore  we have the following lemma, which is an immediate  consequence 

of Assumption I I .  

L EMMA 1.32. Two different /unctionals can not correspond to the same measure. 

Now let / (x) 6 F '  and let /* be a linear functional  with the corresponding measure 

ft. I f  we let g (x) run through all the elements in F 0 such tha t  the Fourier t ransform 

(5) satisfies 

1~(5) l-<1f(5)1, 
we get 

.r 1l(5) t I d,,; ( -  5) 1 = sup I J" 0(5) d / , (  - 5 )  1= sup I/* (g) l -< II f* I1" sup Ilgll < oo 
8 8 

since the norms of the functions g (x) are uniformly bounded (Assumption I C). Thus  

we get  

L EMMA 1.33. I /  /(X)E F' and if ff is a measure which corresponds to a linear 

functional on F, then 

J I / (5 )11dD(-5) l  < co. 

4. Complex-valued homomorphisms of F 

A homomorphism of F onto the complex numbers  is a mapping  

f (x)+~ (/), 

where ~ (/) for every / (x) 6 F is a finite complex number  with the following properties : 
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i .  

B. 

(c~/1 + c~ 1~) = cl i (/1) + c~ X (1~). 

(11" 1~) = ~ (11)" ~ (/~) 

for any  two constants  Q and c 2 and for any  two elements  ]l(x) and /2(x). 

C. ~ ( / ) * 0  

for a t  least some [ (x). 

Since F is a commuta t ive  algebra,  Jl([) is bounded,  considered as a functional  

on F (L. 23A). Therefore it is a linear funct ional  on F,  and in order to determine 

the  complex-valued homomorph i sms  of F,  we have  only to find the  not  identical ly 

vanishing linear functionals  which satisfy B. 

Suppose t h a t  /* is such a functional  and  suppose t h a t  it corresponds to the  

measure  /~ in the  sense of L e m m a  1.31. 

Since f* is not  identical ly vanishing and  because of Assumpt ion  I I ,  there  exists 

a funct ion /0(x)C F o such t h a t  

/* (/0) = f f0 (~) d/~ ( - .~) = 1. 

P u t  
/o (~o + ~) d ~  ( - ~o) = ~ (~), (1.41) 

which is a continuous function,  sat isfying 

~ ( ~ ) = l .  (1.42) 

Let  /1 (X) be a var iable  funct ion in F o. The  relat ion 

/* (fo h)  = 1" ( /o) " / *  (f l) = 1" (11) 
gives the  formula  

[f ]1 (~)/o (#o - ~) d #] d/~ ( - #0) = ] ]1 (#) d # ( - ~), 

and using (1.41) this m a y  be wri t ten 

]1 (~) ~ ( - ~) d ~ = ~/1 (~) d ~ ( - ~). 

Since this is t rue  for every  /1 E Fo, we obtain  

/~ (0 )=  f ~ ( ~ ) d ~  

for every  compac t  set C in G. 

(1.43) 
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As a consequence we have, if /1 (x) and /2(x) are quite arbi trary functions in Fo, 

f If  fl (2) /2 (20 -- 2) dx]  a ( - 20) d 2  o = f fl (2) a ( - x) d x .  y f2 (2) ~ ( - 2) dx.  
G G ~ 

And from this relation it is quite easy to see tha t  

:i (21 + 22) = ~ (21)" ~ (22) 

for every pair of points in G. Thus we have:  

(1.44) 

after Theorem 2.31.) 

LEMMA 1.42. 

such that 

L EMMA 1.41. A measure ~, corresponding to a linear /unctional which gives a 

complex-valued homomorphism, has to satisfy (1.43), where the continuous /unction ~(2) 

satisfies (1.42) and (1.44). 

We shall now proceed to prove the following more precise s ta tement :  

THEOREM 1.41. The only /unctionals which give complex-valued homomorphisms, 

are the /unctionals ]*( / )=/(x)  /or any x E G. 

These functionals certainly give complex-valued homomorphisms. The only problem 

is to verify the condition C, which is, however, an immediate consequence of Lemma 

1.24. We may  mention tha t  as a consequence these functionals are linear. They 

correspond in the sense of (1.43) to bounded functions ~(2), i.e. to the ordinary 

characters (x, 2). 

Because of Lemma 1.32 no other linear functionals correspond to bounded func- 

tions ~ (2). For tha t  reason the only thing we have to prove is tha t  no linear func- 

tional corresponds to a measure (1.43), where the continuous function ~(2) satisfies 

(1.44) and is unbounded. (Concerning the existence of such ~(2), see the remark 

For the proof we need the following lemma:  

Let 2 o be a fixed point in G and let c be a fixed real number 

0 < c < m  

Form the open set Oc (20) of all points x E G such that 

-c<arg(x, 20)<c (rood 27~). 

Suppose moreover that f(2) is the Fourier-Stieltjes transform o/ a bounded Borel 

measure ~, vanishing outside Oc (2o) i~e. 

f (2) = f (x, 2) d # (x). 
Oc(~.) 
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Then /or every integer n 

f ( n ~ 0 ) =  f (x,~o)nd#(x) = f e~~ 
Oc (~o) - c 

where b(O) is o/ bounded variation on ( - c ,  e). 

P R O O F 0 F L E M M a 1.42. Le t  us denote  b y  g (e i 0) an  a r b i t r a r y  cont inuous  func- 

t ion  on the  uni t  circle. Consider the  space of all  these  funct ions  under  the  un i form 

norm.  Then 
~ ( g ) =  f g((X,~o))d#(x) 

O c (,~o) 

is a l inear  func t iona l  and  therefore  i t  has  the  form 

k ( g ) =  ~g (e*~  

where b(O) is of bounded  var ia t ion .  B y  va ry ing  g(e i~ i t  is easi ly seen t h a t  b(O) is 

cons tan t  outs ide ( - e ,  c). And  then  the  l emma  follows b y  choosing g(e i~ = e in~ 

I~ROOF OF T H E O R E M  1.41. Le t  us assume t h a t  a cer ta in  u n b o u n d e d  func t ion  

&(k) of the  t ype  descr ibed  in L e m m a  1.41 corresponds to a l inear  funct ional  on F .  

We shall  prove  t h a t  th is  leads to  a cont radic t ion .  

Le t  So be a po in t  such t h a t  

I a ( 0)1 = d >  1. 

Then we have  for eve ry  in teger  n 

] ~ (n 30) [ = d ~. 

Choose an  a r b i t r a r y  number  c such t h a t  

0 ~ c ~ y t .  

The set  0c (30), def ined in L e m m a  1.42, is an  open ne ighborhood  of the  i d e n t i t y  in G. 

Therefore  we can f ind a no t  iden t ica l ly  vanish ing  funct ion ] l ( x ) i n  F '  such t h a t  

Af~cOr On account  of L e m m a  1.33 we have  

Le t  us now choose a funct ion  Jo (x)E F o such t h a t  

= fo 
G 
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satisfies 

f(~) = ]. (i.45) 
The relation 

1 
II(~)I -< f ll~(,~-~o)l.la(-~+~-o)l-la(_~)l.la(~o) I llo(~,o)l<Z~o 

1 "J" 111(~)I la(-~)Id~'sup la(-~o)l.llo(~o)l (1.4o) -<I~(-~)I e ~ . ~  

shows tha t  for some finite constant K 

K 
It(~)1-<1~(_~) I 

for every ~. In  particular we have for every integer n 

^ < K  I I ( -nxol - -d~ (1.47) 

But [(~) is the Fourier transform of the function /l (x) . /o (X), and this function 

vanishes outside Oc(~o). Therefore we may  apply Lemma 1.42, and we then get for 

every integer n 
c 

[(n~o) = ~ e - ~ ~  db(O), (1.48) 
- c  

where b(O) is a function of bounded variation. 

(1.47) and (1.48) show that  the analytic function 

H(rei~ = ~ [ ( - n ~ o )  Z n 

is regular in the region 1 < [ z [ < d  and satisfies 

lim H (z) ~ 0 
r - -~ l+  0 

uniformly in any closed interval outside the interval [01_<c. Then it~ has to vanish 

identically which is contradictory to (1.45). This proves tile theorem. 

5. The space of  regular maximal ideals 

L~MMA 1.51. The topology on G is the weakest topology in which all the/unctions 

/ (x) E F are continuous. 
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PROOF. Lemma 1.24 implies tha t  the functions can not be continuous in any 

weaker topology. Thus it only remains to show tha t  every / (x)E F is continuous in 

the topology on G. 

All the functionals /(x) have a norm <_ 1, since this property is always true for 

a functional tha t  gives a complex-valued homomorphism (L. 23A). Therefore we have 

II/(x) II <- II [ II. (1.51) 
However, because of Assumption I I  we can approximate every ](x)E F arbitrarily 

closely in the F-norm by means of functions in F 0. And thus (1.51) implies tha t  

every [ (x)E F can be approximated arbitrarily closely in the uniform norm by means 

of continuous functions, and this has the consequence tha t  every / (x) E F is continuous. 

In  the theory of commutat ive Banach algebras it is shown tha t  there is a one- 

to-one correspondence between the regular maximal ideals and the complex-valued 

homomorphisms in the sense tha t  every regular maximal ideal consists of the e lements / ,  

such tha t  
l* ( l )  = 0, 

where /* is the functional, which gives the corresponding homomorphism (L. 23 A). I f  

M denotes a variable regular maximal ideal and /* the corresponding functional in 

the above sense, then the function 

/ (M) = 1" (1) 

is called the Gelfand representation of the element / on the space of regular maximal 

ideals. As topology on this space we choose the weakest topology in which all the 

functions / (M)  are continuous. 

In  our case the regular maximal ideals are in one-to-one correspondence to the 

points xE G, since the functionals have the form /(x). I f  we in this way identify 

the space of regular maximal  ideals and G, Lemma  1.51 implies t ha t  the topology 

of the regular maximal  ideal space is the original topology on G. The topological 

space G is therefore the topological space o] regular maximal ideals and every [unction 

is its own Gel[and representation. 

From the general theory of commuta t ive  Banach algebras we get the following 

theorem (L. 24A Cor., L. 25D). For  the t ru th  of B it is essential t ha t  the algebra 

is regular (L. 19F), and this is the fact  in our ease because of Lemma 1.24. 

T t tEOREM 1.51. A. I /  /(x) EF, then 

II/  nl = Ill(x)II . 
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B. Let E be a subset o/ G and suppose that we have an ideal in F with the pro- 

perty that, /or any x o E E, it contains a /unction g (x) E F, such that g(Xo) * O. Then the 

ideal contains every / (x)E F, such that Af is compact and included in E. 

Of fundamental  importance is the following theorem: 

THEOREM 1.52. The elements /(x) with compact A/  are dense in F. 

Before we s t a r t  the proof, we shall introduce a new concept, using a terminology 

from L. 31E. 

D E F I N I T I O ~  1.51. A /unction / ( x ) E F  is said to have an approximate identity 

i/ /or every e > 0 there exists a compact neighborhood N o/ ~ with the property that /or 

every /o(X) E F o such that ]o(~) is non-negative, vanishes outside N and satis/ies 

fo = 1, 
N 

we have 

II/(x) 

The proof of Theorem 1.52 will appear  as a n  easy consequence of the following 

lemma : 

L E ~ M A  1.52. Every element /(x) E F  with an approximate identity can be ap- 

proximated arbitrarily closely by elements o/ the /orm / (x ) .g (x ) ,  where g(x) 6 F and Ag 

is compact. 

P R O  O F O F L E M M A 1 . 5 2 .  Choose an a rb i t ra ry  s > 0 and a set N which gives 

~-approximations of /(x) in the sense of Definition 1.51. Then we use the function 

g(x), defined in Lemma 1.23. We then have 

I I / -  / .gl l  < - I I l -  /.g ll + ll/ll, llg ll<-  +  .ll /ll, 

which proves the lemma. 

PROOF OF T H E O R E M  1.52. The above lemm~ implies t h a t  the closure of the 

elements with compact  A/ contains all functions with an approximate  ident i ty .  

However, Lemma 1.21 has the consequence tha t  all elements in F 0 have an ap- 

proximate  ident i ty ,  and therefore they are contained in the closure. And because 

of Assumption I I  every element in F is contained in the closure. 

Theorem 1.51 B with E = G  and Theorem 1.52 have the following impor t an t  

consequence (the Wiener Tauberian theorem, ef. L. 25D, Cot.). 



H A R M O N I C  A N A L Y S I S  B A S E D  ON C E R T A I N  C O M M U T A T I V E  BA~qACH A L G E B R A S  17 

T H E O R E M  1.53. Suppose that a closed ideal in F has t]~e property that it contains, 

/or every x o E G, a /unction / (x), such that / (%) ~- O. Then the ideal is the whole algebra F. 

Or, using a lgebra ic  t e rmino logy :  Every closed proper ideal is contained in at least 

one regular maximal ideal. 

C H A P T E R  I I  

Special Algebras and Special Elements 

1. Various examples of Banach algebras F 

A very  simple example  of an  a lgebra  F is the  space of all  con t inuous  func t ions  

on G, vanish ing  a t  inf ini ty ,  if we as  norm choose the  uni form norm.  A s s u m p t i o n  I 

is t r iv ia l  to  verify,  and  A s s u m p t i o n  i I  is fulfil led as  a consequence of the  wel l -known 

fact  t h a t  func t ions  which are Four i e r  t r a n s fo rms  of funct ions  in L I(G) are dense in 

the  class. This  example  shows t h a t  even if we can express  the  func t ions  in F 0 and 

F '  as  Four i e r  t r ans fo rms  of func t ions  on G, th is  is in genera l  no t  t rue  for all  the  

e lements  in F .  

However ,  the  p a r t i c u l a r  cases, when th i s  is possible,  are of g r e a t  in te res t .  The 

classical  example  is the  space of func t ions  /(x),  which are Four i e r  t r a n s fo rms  of 

func t ions  f ( ~ ) E L t ( ~ )  and wi th  the  no rm 

II!11= .r 
G 

Beurl ing [1] and  W e r m e r  [17] have  s tud ied  on the  rea l  line R more  genera l  

Banach  a lgebras  of Four i e r  t r ans fo rms  of func t ions  E L 1 (/~). (R deno tes  here as in 

the  fol lowing the  rea l  line under  the  usua l  topology . )  The Beurl ing a lgebras  are said 

to  be of n o n - q u a s i a n a l y t i e  t y p e  if for every  ne ighborhood  N of the  i d e n t i t y  in R 

t h e y  con ta in  a n o t  iden t ica l ly  van ish ing  func t ion  which vanishes  ou t s ide  N.  The 

cor responding  subclasses  of the  W e r m e r  a lgebras  are a lgebras  which sa t i s fy  a cer ta in  

a s s u m p t i o n  (A), [17] p. 538. The Beurl ing non -qua s i a na ly t i c  a lgebras  are a p p a r e n t l y  

a lgebras  of t ype  F, and the  same is t rue  for those  W e r m e r  a lgebras ,  which sa t i s fy  

(A), a p a r t  f rom an unessen t ia l  difference in the  def in i t ion  of the  no rm [17] p. 537 (6). 

F o r  a lgebras  of th i s  kind,  i.e. a lgebras  which are defined as convo lu t ion  a lgebras  

on the  dua l  group,  the  ver i f i ca t ion  of A s s u m p t i o n  I A  in 1.1 is of ten a ve ry  diff icul t  

p roblem.  This  m a t t e r  was d iscussed  in the  c i ted  pape r s  and  we shall  i l l u s t r a t e  i t  

2 - - 5 6 3 8 0 2 .  Acta mathematica. 96. I m p r i m 6  le 2 ma i  1956. 
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further by discussing a natural  generalization of the Beurling algebras to an arbi t rary 

locally compact  Abelian group G. 

Let  :~(~) be a function on (~, measurable with respect to the H a a r  measure, 

bounded on every compact  set and satisfying 

(2) >_ 
for every ~ E G and 

(kx + ~ )  -< P (~)" P (~) 

for every pair of points ~21 and ~2 in G. 

Then consider the multiplicative Banach algebra of functions 

(2.11) 

(2.12) 

/(x)= ~ (x,~)/(~)d2, 
G 

where [(k) e L 1 (G), and where 

G 

D E F I ~ ~ T I 0 1~ 2.11. We denote this Banach algebra F {~}. 

I t  is easy to see tha t  the inequality (2.11) is necessary in order to have (1.51) 

fulfilled, i.e. in order t ha t  the algebra is of type F. 

The algebra F{~} is an aljebra F i/ and o~ly it for ewry neighborhood N o~ the 

identity in  G it contains a not identically vanishing /unction which vanishes outside N .  

This will lead us to the following theorem: 

THEOREM 2.11. F (p}  is an algebra F i[ and only i[ [or every 20 C 

log [~(n~0) ] < 
1 - - ~  . . . .  ' ( 2 . 1 3 )  

The proof will be given in 2.2. 

I t  may  be pointed out tha t  the condition (2.13) is well known on the real line. 

All questions of this kind are closely connected to notions of quasi-analyticity on the 

real line, and Theorem XII in Paley-Wiener [13] is a suitable tool in many similar 

c a s e s .  

An especially interesting case of the space F{~} is the following. Suppose tha t  

G = R ,  i.e. t ha t  /~ may  be represented as the real line - ~  < t <  ~ .  We choose 

~(t)= ~ avlt[ ~, 
0 
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where {a,,}o is a sequence of non -nega t ive  numbe r s  such t h a t  the  l ea s t  non- increas ing  

m a j o r a n t  of 
r162  

O TM 

1 

is convergent ,  and  such t h a t  for every  m and  n 

a, ,+n(m+n)!<_arnm! .a, ,n!.  

The cond i t ion  (2.12) is easy  to  verify,  and  ( 2 . 1 3 ) i s  fulfil led according  to  a 

t heo rem b y  Car leman [6] p. 50. Therefore  the  space is of t y p e  F .  

The in te res t  of th is  space lies in the  fac t  t h a t  we m a y  c o n s t r u c t  a ve ry  closely 

r e l a t ed  space in the  fol lowing way.  Consider  on R the  space of all  funct ions  / (x)  

such t h a t  

II111= sup I f , ' ( z ) l <  
o Ixl<oo 

while 

snp l l + < x / l + o ,  
o Ixl~x0 

when x 0 - + ~ .  This space is a mul t ip l i ea t ive  Banach  a lgebra  if II/d[ is chosen as 

norm,  and  the  fac t  t h a t  the  funct ions  in the  a lgebra  F{~b} are dense in th is  new 

a lgebra  can be used to  show" t h a t  i t  is of t y p e  F .  W e  will no t  go into  the  de ta i l s  

concerning the  proof .  

A p a r t i c u l a r  case is when a ~ = 0  if v is g r ea t e r  t h a n  a ce r ta in  index n. I n  th i s  

case we have  to  suppose  t h a t  /(~>(x) is con t inuous  and the  a lgebra  is then  s imply  

the  mu l t i p l i ca t i ve  a lgebra  of all func t ions  wi th  n con t inuous  de r iva t ives ,  vanish ing  

t oge the r  wi th  the  de r iva t ives  a t  inf ini ty.  I t  is t hen  possible  to  use as no rm 

II111 = sup I1 +(x) I. 
I x l < ~  o 

Since we have  i n t roduced  in Def in i t ion  1.51 the  no t i on  of e lements  in F wi th  

an a p p r o x i m a t e  i den t i t y ,  i t  m a y  be su i tab le  to  cons t ruc t  a space F where no t  all 

the  e l ements  are of t h a t  k ind.  

We form the  func t ion  

1 
P(t)-12~zlt]&(1 § It]) 

on /~. I t  is easy  to  show t h a t  if t 0 * 0  

o~ 

P (t) p ( to -  t) dt  <- :P (to). 
c o  
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Le t  us then  consider  the  class of funct ions  

co 

/ ( x ) =  ] e - ~ t z [ ( t ) d t ,  
- o o  

where f ( t)  is con t inuous  except  poss ibly  a t  t = 0 ,  and  where 

f ( t)  = o@(t) )  
a t  t = 0  and t = ~ .  

Choosing the  no rm 

II111= sup f(t) 
t~-O ~ -  ' 

we get  an a lgebra  F .  However ,  an e lement  such t h a t  [(t) is d i scon t inuous  a t  t = 0 ,  

can no t  have  an  a p p r o x i m a t e  iden t i ty .  F o r  such an e l emen t  / (x )  we have  fu r ther -  

more  t h a t ,  if a *  0, the  func t ion  
! ( x )  e ~ x  

does n o t  belong to  the  class. Therefore,  in genera l  we do n o t  ge t  new e lements  b y  

mul t ip ly ing  an e lement  wi th  a character .  This  fac t  accounts  for some of the  com- 

p l ica t ions  in t he  discussions in chap te r s  3 and 4. 

F ina l ly  we give the  fol lowing space,  which i l lus t ra tes  the  fact  t h a t  for a given 

va lue  x 0~-0, the  funct ions  [(x) and  [ ( x +  x0) need n o t  be e lements  of F a t  the  same 

t ime.  

We consider  on R the  class of funct ions  

co 

/ (x) = /l (X) + /2 (x}= j" e ~tX fl (t) d t  + .[ e - i t z  f2 ( t )d t ,  
. o o  - o r  

where / l ( t ) (1  + [ t l ) E L  1, f 2 ( t ) E L  1, and  where /2(x) vanishes  in the  in t e rva l  0 _ < x _  < o o  

Then  we p u t  

I l l l l=inf { }r (1 + l t l ) I f l ( t ) ld t+  TIf~(t)ldt}, 
z,o oo 

where we v a r y  all the  possible  r epresen ta t ions  of /(x).  I t  is ve ry  s imple to  show 

t h a t  we ge t  an a lgebra  F .  

T H E  N E C E S S I T Y .  

2. Proof  of  Theorem 2.11 

Le t  us assume the  opposi te ,  n a m e l y  tha~ for some 2 0 E (] 

log [ p ( n x o ) ] _  c~ , (2 21) 
/ 72  

1 
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whereas for every neighborhood N of the ident i ty  in G we have a no t  identically 

vanishing funct ion 
l ( x ) =  ~ (x, 2)I(PC) d~, 

d 

which vanishes outside N, and is such tha t  

J 5( )ll(Pc)l oo. 
G 

We m a y  then proceed in exact ly  the same way as in the proof of theorem 1.41 

with the only difference t h a t  ~ ( - 2 )  all the t ime is exchanged to /)(2). I t  is t rue 

t h a t  the inequali ty (1.46) uses the relat ion (1.44), which is no t  t rue for the funct ion 

/)(Pc), b u t  (2.12) is apparent ly  sufficient to guarantee  t h a t  (1 .46) i s  valid even if 

~ ( -Pc)  is exchanged to  /)(Pc). We therefore get  for every c, such t h a t  0 < c < ~, t h a t  

there exists a funct ion b(O) of bounded var iat ion such t h a t  Fourier  coefficients 

satisfy 

and 

cn= ~ e-~n~ 
e 

Co~- 1 

K 

(2.22) 

(2.23) 

for every integer n and for some finite cons tan t  K. 

The reason why the proof  of the contradic t ion in these relat ions causes us some 

trouble is t h a t  there exists no exact  correspondence in the theory  of Fourier  seriea 

to the  Theorem X I I  in Paley-Wiener  [13] on Fourier  integrals, which vanish on a 

hMf-line. The me thod  which we shall use is to  transfer  the series into an integral  

with similar properties, and then  use the Paley-Wiener  theorem. 

Standard  arguments  on the Fourier  series in question show tha t  there is no real 

restriction to assume t h a t  

I cn I < (2.24) 
-oo 

Then we can prove 

0 < c < z ~ / 2 .  

For  every real number  y we define an(y) as 

funct ion 
e - t y o  

the contradiction, s tar t ing from a value of c, such tha t  

in - ~ _ < 0 < ~ ,  and pu t  
dn (y) = an (y)" cn. 

the Fourier coefficients of the 
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Apparently 

[ dn (y) ] . i~ (n~o) <- d (2.25) 
- o o  

for  some finite constant d, independent of y. In the interval - z / 2  _< 0 _< z / 2  we have 

dn(y) e~n~ f e ~v(o ~) .db(~p)=2ne-~VOB(_y) ,  (2.26) 
c 

where 

B( t )=  re-i t~ 
- c  

Using the Parseval relation, (2.26) and (2.23) we obtain for any integer n 

[ B ( n + y ) l = [  f e -'~~ ~VOdb(O) l 
c 

- - 2 2 " ~  m = - o r  cmdn-m(Y) B~-Y) 

However, by (2.12) and (2.25) 

(mxo) p ((n - m)Xo)ld.-m (U) l 
. . . .  io(m~o) --m= ~ /~(n~o) 'P(m~ o) 

1 or d 

<- ~ (n ~o) m =- ~ ~ b ((n - m)~o)ldn_ ~n (y)] <-- ~ (n ~o) 

and hence 
K . d  1 

[B(n  +Y) l < - 2 ~ l B ( _ y ) l ' ~ ( n 2 o ) "  

I t  follows from (2.22) that  

for [Y] -< 5, if 5 is sufficiently small. Therefore 

K . d  
] B ( n  + Y) l <- fo(n~o ) 

if n is an integer and l yl_<(~. By (2.24), b(O) is absolutely continuous and 

b' (0) E L 2 ( - c, c). Hence B (t) E L 2 ( - oo, oo), and the inequality above, together with 

the assumption (2.21), gives 

; log ]B(t) l d t =  - ~ .  
3 1 + t  2 

Using the cited theorem by Paley-Wiener we see that  this implies tha t  B(t)=-O, 

which is contradictory to (2.22). 
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T ~ E S v F F I C I E N C Y. I n  the proof of the sufficiency it seems difficult to  avoid 

s t ructurai  considerations. We shall s tar t  by  considering some cases when the group 

G has a very  simple s tructure and then step by  step extend the theorem to the general 

case. 

The case when G is a discrete group D is trivial, since G is then compact  

(L. 38A),  i.e. /5(5) is bounded. The cases when G is the real line R or the  uni t  

circle S, both  under the usual topology, are obvious consequences of Theorem XI1  

in Paley-Wiener  [13]. 

Now let G be the direct product  G I •  2 of two groups G 1 and G3, for which 

the theorem is true. The points in G m a y  be wri t ten in the form x = x  l + x  3 where 

x l E G  1, x 3EG 3. 0 is then the direct product  of 01 and 03, and we m a y  therefore 

put 2~5 I+53, where 2 IE01 and x~.E02 (L. 35A). This representation of G and 0 

can he done such that always 

(X, X) = (Xl, 51)" (X2, 52). 

We denote the identities in G, G1, G3, G1, and 0 3 by  o, ol, 03, 51, and 63, and assume 

tha t  the Haar  measure on G is normed in such a way  tha t  it is the direct p roduc t  

of the H a a r  measures on G~ and 0 3 . 

Suppose tha t  
(5) = ~ (5~ + 53) 

fulfills the requirements of theorem 2.11. Let  N be an arb i t rary  neighborhood of o. 

I t  contains a neighborhood of the form N 1 X~u 2 where N 1 c G 1 and N 3 ~ G  3 are neigh. 

borhoods of o~ and 03, because of the  definition of the direct product  topology. The 

functions 
15 (5~) =/5 (51 + 63) and 15 (53) = 15 (5 s + 6~), 

considered as functions on G1 and (~2, satisfy the conditions in Theorem 2.11. And 

since the theorem was supposed to be true for these groul~s, we can for v = l ,  2 

find a funct ion 

1~ (x~) = S (~,, 5,) 1, (5~) dS~., 

vanishing outside N,  and satisfying 

0 <  I I ] . ( 5 , ) 1 ~ ( 5 , ) d ~ . < ~ .  

Then let us form the funct ion 

/ (X) = [ (X 1 -~ T2) = fl (Zl)" f2 (X2) 

= ~ (Zl, 51) (X2, 52) fl (51)* f3 (~t) d~ i  d52 = S (x, 5) fl (51) f2 (52) u s .  
d, • o, 0 
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I t  vanishes outside N, bu t  not  identically, and satisfies 

.f [ t 1 ( ~ 1 ) I , I t ~ ( & ) l ~ ( ~ ) d ~  ~ Ifl(~i)l If~(~)[ ~(&) b(~)d~ 

= .r I / ~ ( : ~ , ) l i , ( ~ ) < ~ l . . f  i /~(&) l  7 , ( ~ ) d ~ <  oo. 
5, d. 

Therefore, the theorem is true for the group G. 

As a consequence of this the theorem is t rue for all groups of the form 

R~•215 (2.27) 

We are now in a position to prove the theorem for an arb i t rary  locally compact  

Abelian group G. 

Let  N be an arbi t rary  neighborhood of the ident i ty  o in G. The multiplicative 

algebra of Fourier  t ransforms of functions E L I(G) under  the usual norm is an algebra 

F.  By  applying Lemma 1.22 

function 

to this class of functions we see tha t  there exists a 

g (x) = ~f (x, ~) 0 (Y) d~, 
G 

where ~(~)E L 1 (G) vanishes outside a compact  symmetr ic  neighborhood 0 of 6, and 

such tha t  

g (o) = 1, (2.28) 

while 

[g (x) I -< �89 outside N. 

We denote by  G1 the subgroup of G, which consists of all points ~1, included 

in some of the sets 

n.C=C+C+...+C, n = l , 2  . . . . .  

i.e. the group, generated by C. This is a new locally compact  group under  the 

induced topology, and we m a y  as Haar  measure on G1 choose the restriction to G1 

of the Haar  measure on (7. According to a theorem by A. Well [16] p. 110, G1 is 

the dual group of a group G 1 of the type  (2.27), and hence the theorem is t rue for 

the group Gx. 

I f  the funct ion ib(~) satisfies the conditions in the theorem with respect to G, 

then the same is true with respect to C:~ for the function P(Xl), defined as the re- 

striction of p(Y) to G 1. For  t ha t  reason we can find, for every neighborhood N1 of 

the ident i ty  in the dual group G1, a funct ion [(~1) on G1 such tha t  
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G~ 

while 

5, 

vanishes outside N 1. We m a y  as N 1 choose the  subset  of G 1 where 

I J" (xD ~1) g(s d ~  ] > 1 ,  
d, 

for this set is obviously open, and i~ contains the ident i ty  because of (2.28). 

~ e  extend the  definition of [(~) to the whole of G by  defining [ ( ~ ) = 0  outside 

(~1, And since for every  x E G the  restr ict ion to 571 of the funct ions (x, ~) are charac- 

ters on C~1, we see t h a t  the  above conditions imply  t ha t  the funct ion 

G 

vanishes whenever  I g (x) l ~ ~,I and hence it  vanishes outside N. The  condition (2.29) 

m a y  be wri t ten  

G 

and since N was a rb i t ra ry ,  this proves  the  theorem in the general case. 

3. The class q~ 

Basic functions in the harmonic  analysis on R are the functions e i~x, where ), 

is a complex number ,  and to some ex ten t  also the ordinary polynomials  

P~ (x) = ~ a,~ x m. 
rn--O 

These two classes of functions have  correspondences on any  locally compac t  Abelian 

group, and we shall now s tudy  to wha t  ex ten t  these generalized exponentials  and 

polynomials  on G belong to F.  To this end we shall make  the following definition. 

D E F I N I T I O N  2.31. We denote by 09 the class o/ all /unctions on G, which 

coincide on any given compact set with .some /unction in F. 

The following theorem shows t h a t  r contains all generalized exponentials .  

T ~ E O R E ~  2.31. Suppose that ~(x) is a continuous /unction on G, satis/ying 

(X 1 -L X2 ) = g (Xl ) ,  0r (;~2) 

/or every x I and x 2 in G. Then ~(x) C (P. 
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P ~ o o F .  I t  is only necessary to consider the case when ~ ( x ) ~ 0 .  Lemma 1.24 

then shows tha t  it is possible to find a function / (x)E F', such tha t  

/ ( x ) ~ ( - x ) d x =  1. 
AI 

We denote b y  g (x) the funct ion which coincides with :r (x) on the compact  set, 

consisting of all points x = x  1 -x2 ,  where x 1 E C and x 2 E AI, while it vanishes outside 

the set. Then if x E C  

h(x)= f [ ( xo )g ( x - xo )dxo=  S / (xo)cc(x-xo)dxo=:c(x)"  ~ / (xo):c(-xo)dxo=:c(x) ,  
hr hf A r 

and the Fourier t ransform )~ (3) satisfies 

(~.) = f ( ~ . ) .  ~ (~,), 

where ~ (3) is continuous and bounded.  Therefore, it follows from Assumption I C in 

1.1 t h a t  h E F .  

R ~ M A R K. The question concerning the existence of other  functions u (x) than  the 

bounded characters has been answered by  Mackey [12]. He has found tha t  there 

exist unbounded [unctions o~ (x) it and only i/ there exist non-trivial continuous homo- 

morphisms o/ R into (~, i.e. one.parameter subgroups o/ G. 

DEI~I~ITION 2.32. A continuous [unction P(x)  on G is called a polynomial o/ 

degree n, i/ /or every x and x o in G 

P (x + v xo) 

is a polynomial o/ degree <_n, considered as a [unction of the variable non-negative 

integer v, while at least one o/ these polynomials is exactly o] degree n. 

We m a y  ment ion as an example t h a t  if :r is an unbounded  function of the 

kind described in Theorem 2.31, then 

{log (x)I}" 
is a polynomial  of degree n. 

T H ~ O R E ~  2.32. Every polynomial belongs to @. 

We need the following l emma:  

L ~ . ~ A  2.31. Let P~(x) be a polynomial o/ degree <n. Then [or any given "x o 

V=O \ v /  
i8 independent o[ x. 
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PlCOOF OF LEMMA 2.31. The above definition of a polynomial of finite degree 

can be given on any semi-group, and if we omit the continuity assumption, the 

semi-group need not even have a topology. I t  will turn out from the proof that  the 

lemma is still true in that  general case if we make the extra assumption that  the 

semi-group is commutative. 

Apparently it is enough to prove that  

Q (x, %) = Q  (x + x 1, x0) (2.31) 

for any given pair of points x and x 1 in G. 

The expression 

Pn(x 4- ktXl § VXo)=R(~, v) 

has the property that  for every choice of non-negative integers /x, v, #0 and v o 

R(#+ 2#o , v+ XVo) (2.32) 

is a polynomial of degree <_ n in the non-negative integer variable 2. If we choose 

# = V o = 0 ,  g o = l ,  and then v=/~o=0,  v0= 1, it follows from the elementary theory of 

arithmetical series that  

R (#, v) = ~ ap, q/~" v ~. 
P,q=0 

By choosing suitable values of /~0 and v 0 in (2.32) it is obvious that  the coefficients 

ap, q vanish whenever p + q > n. Then 

~ ( - W  R(~, v)=(-  U~n! a0,n, 
v=fl 

which is independent of #. We obtain the two members of (2.31) by putting # = 0  

and # =  1 in the above expression, and hence the relation (2.31)is true, which proves 

the lemma. 

PROOF OF T ~ E O R E ~  2.32. We shall prove the theorem by induction. 

Lemma 1.24 shows that  the theorem is true for polynomials of degree 0. Let 

us suppose that  it is true for polynomials of degree _ < n - l ,  and we have then only 

to prove that  the construction is possible for an arbitrary polynomial Pn (x) of de- 

gree n. 

We choose a function [(x)E F' such that  

[. l ( x ) d x =  l. 
Af 
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The function 
P,~ i ( x ) = P n ( x ) -  ~ / ( x l ) P n ( x - x l ) d x  1 

Af 

satisfies because of lemma 2.31 

(n) 
~ o ( - 1 Y  Pn l ( x §  Xo) -  I / ( X l ) Q ( X - X l ,  Xo)dXl 
= Af 

= Q (x, Xo) - ~[ / (xl) Q (x, xo) d xl = O 
Af 

for every x and x0, and therefore it is a polynomial  of degree _ ~ n - 1 .  

Now let C be the given compact  set, and let g(x) coincide with P~(x) on the 

compact  set, consisting of the points x = x  1 -x2 ,  where x 1 C C and x 2E AI, while it 

vanishes outside this set. The function 

h (x) = S / (x0) g (x - x0) d x 0 
Af 

belongs to F,  as can be shown in the same way as the similar s ta tement  in the proof 

of Theorem 2.31. And we have for x EC  

Pn 1 ( X )  = Pn (x) -- h (x). 

By assumption we can find a funct ion ]~(x)E F,  coinciding with the polynomial  

P~_l(X) on C. Hence we get  if x E C  

P~ (x) = h (x) + k (x), 

and this proves the theorem. 

Our definition of polynomials is quite different from the definitions of polynomials 

and generalized polynomials in the theory  of distributions on locally compact  Abelian 

groups by J. Riss [15]. The connection of our concept  and his is not  obvious, and a 

s tudy  of this problem seems to require extensive s t ructural  considerations. The author  

hopes tha t  he will be able to re turn  to this subject. 

CHAPTER I I I  

The Spaces A and the Spectrum 

1. The spaces A 

Let  F be a Banaeh algebra of the kind described in chapter  I and let A be a 

normed linear space. We assume tha t  to each /E F and each a E A there corresponds 

an element / o  a E A and tha t  this correspondence has the following propert ies:  
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! o ( q  a~ + c2 %) = q "  (1 o a~) + e2" (I o a2), 

(el 11 @ C2 12) O a = c 1 : (/1 0 a )  x c2 (12 0 a )  

and  

h 12 o a = 1, o (12 o a) 

for a n y  e lements  /, [1, /2 in F ,  any  e lements  a, a 1, a= in A and any  complex cons tan ts  

q and % 

This implies  t h a t  we have  a homomorph i sm  of F onto an a lgebra  of l inear  

t r ans fo rmat ions  of A into itself, Le. a r ep resen ta t ion  of F .  I t  is not  necessary  t h a t  

different  funct ions correspond to di f ferent  t r ans format ions .  

I. We denote by ilall the norm in A ,  and assume that we always have 

lit o a II-< II111 II a II. (3 .11)  

We denote by 0 tt, e null element in A,  and assume that i/ /or a given element I I .  

a E A  

/oa=O 
/or every [ E F, then a=O.  

I t  is an easy  consequence of (3.11) t h a t  i/ / ~ 0  or i/ a =  0 then / c a =  O. 

Sta r t ing  f rom a given space F we can f ind a g rea t  number  of spaces A.  We 

shall  ment ion  some pa r t i cu l a r l y  i m p o r t a n t  or in teres t ing  cases. I t  should be observed  

t h a t  A need no t  be comple te  (cf. example  4~ 

1 ~ The space F itself if we for any  pa i r  of funct ions  / and  g in F pu t  

log=lg .  

Condi t ion I is t r iv i a l  and  Condi t ion I I  is an easy  consequence of L e m m a  1.24. 

2 ~ . The  space F* of all  l inear  funetionMs on F with  the  usual  norm.  Here  we 

define the  func t iona l  ] o ]* as the  funct ional  which, opera t ing  on a funct ion g E F ,  

gives the  va lue  /* ([g). Since 

I1" (lg) l -< II1" I1 11111" II g II, 
we have  

I I /o/ , l l_<nl l ,  ll. ll/11, 

and  hence I is t rue.  I I  can be p roved  in t i le  following w a y :  

Suppose  t h a t  for a given funct ional  /* 

1o1"=0 
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for every /C F,  i.e. tha t  

/ * ( / . g ) = 0  

for every pair of functions ] and g in F .  The class of functions of the form [ - g  is 

according to Theorem 1.53 dense in F ,  and thus ] * ( [ ) = 0  for every / C F ,  i.e. ] * =  0. 

3 ~ . Let  F be a space F{~}  (Definition 2.11), where ~(2) then has to satisfy 

the condition in Theorem 2.11. Let  p be a number  such tha t  l _ ~ p < ~ ,  and let 

(2) be a positive measurable funct ion such tha t  for every pair of points 21 and x2 in 

(2, + 22) -< q (2,)" P (22). (3.12) 

Then let us form the Banach space of all measurable functions d(2) on G with 

the finite norm 

If / e F { ~ }  and 

we define / o  d as the function 

5 

/ ( x ) =  .f (x, ~)[(2)d2, 
5 

; [ (~ -  2o) a (~o) d20. 
5 

Using (3.12) and an inequali ty by  Young,  extended to groups by Weil [16] pp. 54-55, 

it is easy to prove tha t  Condition I is satisfied. Condition I I  is also fulfilled, and 

hence the space is a space A with respect to the space F{io}. 

We shall present a method for construct ing functions ~(2) from given functions 

ib(2). Let  us assume tha t  ~ ( 2 ) = p ( - 2 )  for every ~. 

Suppose t h a t  r (u)  is a real-vMued function of a real variable u such tha t  for 

every u I and u 2 

Then 

Hence 

e r (lo~ ~ (L))-r (log ~ (L)) _< e 1 log ~ (L)-lo~ ~ (L) I < dog ~ (L-~) </3 (21 -- 22). 

(2)  = e ~(~~ ~ (~ ,  

is an admissible function. I n  part icular  we may  choose 

r ( u ) = [ u [  1-c s i n l u l  c, 

where 0 < c <  1, and then the corresponding function ~(2) has the property,  tha t  if 

/3(2) is unbounded,  then ~ (2) assumes in general both  arbitrari ly large and arbitrari ly 

small values. 
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4 ~ . Le t  G be the  real  l ine R and F the  class F{1} ,  i.e. the  class of Fou r i e r  

t rans forms  of funct ions  [ ( t )E  L 1 (/~). 

Le t  A be the  l inear  space of bounded  measurab le  funct ions  d(t)  on /~. 

We define / o  d as the  func t ion  

[ (t - to) d (to) d to, 
-oo 

and  pu t  

Ildll= sup [ l im I/odl],  
I l f l l  1 t-~+or 

where / var ies  in t he  class F .  

The def ini t ion of the  norm m a y  look art if icial ,  b u t  i t  s implifies if we consider  

only  the  subclass of un i fo rmly  cont inuous  funct ions  d (t). Then 

11411= l im Id( t ) l .  
t-~ + r 

A null funct ion is t hen  every  funct ion  d(t), which t ends  to 0, when t -~  + o~. 

I t  is easy  to  see t h a t  the  Condi t ions I and  I I  are fulfi l led for th is  class. 

2. Definition and main properties of the spectrum 

I t  is na tu r a l  t h a t  the  r ep resen ta t ion  of F as an a lgebra  of cont inuous  funct ions  

on G will give us a cer ta in  cha rac te r i za t ion  of the  space A in t e rms  of the  space G. 

This can be effected b y  defining for eve ry  e l emen t  a C A a subset  Aa c G which we 

call the  spec t rum of the  e lement .  The spec t rum is def ined in the  following w a y :  

D E F I N I T I O N  3.21. For every /ixed element a E A let us consider the class o /a l l  

elements g C F such that g o a - O .  Then Aa is de/ined as tt~e complement of the set 

U A ~ 

i.e. as the largest set, where all /unctions g(x) vanish. 

A p p a r e n t l y  the  spec t rum is a closed subse t  of G. I t  follows i m m e d i a t e l y  from 

L e m m a  1.24 t h a t  in the  case 1 ~ in 3.1, i.e. when A = F ,  t hen  the  spec t rum of an  

e lement  / is exac t ly  t he  set At,  def ined in 1.1 as the  closure of A~, and  th i s  just i f ies  

our  nota t ions .  

I n  the  case when F = F { 1 }  (Def in i t ion  2.11) and  A = F * ,  i.e. when  A is equi-  

va len t  to  the  space L :r (6) of bounded  measu rab le  funct ions  on G, th is  def in i t ion  of 

the  spec t rum coincides wi th  the  one in t roduced  b y  Beur l ing  in [5]. If ,  on the  o ther  
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hand,  A is a space of the  k ind  descr ibed in 3.1 3 ~ we ge t  a def in i t ion  of spec t rum 

of t he  funct ions  d(2) which is in i ts  main  fea tures  equ iva len t  to  the  spect ra l  defini- 

t ion for cer ta in  classes of funct ions  on R given by  ]3eurling in [3]. We m a y  ment ion  

as an example  t h a t  for funct ions  d(2)  in the  classes L p (G), cor responding to ~ ( 2 ) =  1, 

we have  if 1 < p < 2  t h a t  Aa is the  smal les t  closed set, outs ide  which the  Four i e r  

t r ans fo rm 

.f (x, 2) d (2) d2  
d 

vanishes  a lmos t  everywhere .  

The def in i t ion  of spec t rum in the  classes of t ype  3.1 3 ~ and 3.1 2 ~ offers the  

poss ib i l i ty  of def ining a notion of spec t rum for cer ta in  classes of funet ions  (or more  

genera l ly  Borel  measures)  on G. I t  can be proved,  t h a t  these spect ra l  sets are  in- 

dependen t  of the  classes in which the  funct ions  or measures  are  considered as ele- 

ments .  This will not be p roved  here. since we have  no use for the  s t a t e m e n t  in the  

following, bu t  we ment ion  i t  in order  to stress the  qui te  di f ferent  na tu r e  of the  

spectra l  def in i t ion  in 3.1 4 ~ In  t h a t  ease we get  a def ini t ion of spec t rum for bounded  

measurab le  funet ions on /~, b u t  this  def ini t ion does not  coincide wi th  the  ]3eurling 

def ini t ion Thus  bv  va ry ing  the  topo logy  in A it  is possible to change the  spec t rum.  

The following theorem together  wi th  its proof  is an extens ion  of ma in ly  un- 

publ ished resul ts  in the  ]3curling spectral  t heo ry  (el. [3]). 

T H E O R E M  3.21. A. Aa is empty i[ and only i/  a - O .  

]3 A c a - A a  i[ the constant c *O. 

C. A a , + a ~ C A , l v  Aa~ i/ a I and a 2 belong to A.  

D. A ; , ~ = A I f ~ A ~  i/ / E F  and a C A .  

P R O O F .  A. a - 0  implies  t h a t  ! c a - 0  for every  / E F  and  h e n c e A ~  is empty .  

If. on the  o ther  hand,  A~ is empty ,  then the class of funct ions  i n / / '  for which / e a = 0 

is a closed ideal, which is not conta ined  in any  regula r  max ima l  ideal.  ]3ecause of 

Theorem 1.53 i t  has then  to conta in  every  funct ion / E  F and hence Assumpt ion  I I  

in 3.I  shows tha t  a - 0 .  

]3. The s t a t e m e n t  is obvious.  

C. Le t  us choose an a r b i t r a r y  po in t  x 0 outs ide  A~ 1 U Aa~. According to the  de- 

f ini t ion of the  spec t rum there  exis t  funct ions /1 (x) and  /2(x) in F such t h a t / ~  (x0)~-0 

while / , , o a = 0  for v 1,2.  Then 

11 / 2 0  (a I @ a2) = 12 O (11 O al) -}- 11 o (12 O a:) - - / e  o 0 + 11 o 0 = 0. 

]3ut /1 (Xo)"/2 (x0) n= 0, and  therefore  z 0 ~ A~,+~,. 
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D. Le t  x 0 be an a r b i t r a r y  po in t  in the  complement  of As. Since Af is closed 

we can f ind a ne ighborhood N of x0, inc luded in the  complement  of As. And  because 

of l e m m a  1.24 we can f ind a funct ion g ( x ) E F  such t h a t  g(xo)*O while A ~ c  N.  

Then g.  1 ~  O, and hence 

go  ( l o a ) = g / o a = O ,  

so t h a t  x 0(~AIo~. 

Then  let  x 1 be an a r b i t r a r y  po in t  in the  complement  of An. As above  we can 

f ind a funct ion gl (x)E F such t h a t  gl (xl) ~ 0 while A< is conta ined  in the  complement  

of A~. We can fu r the rmore  choose gl(x)  so t h a t  A <  is compact .  

B y  Theorem 1.51 B the  ideal  of all  funct ions  g E F  such t h a t  g o a =  0 contains  

the  funct ion gl. Therefore  

gl o (/ o a ) = /  o (gl o a ) - - /  o O-O,  

and  since ~/I(Xl)~-0 th is  implies t h a t  x 1 ~ Ar~ 

We shall  now make  a compar ison  be tween our  def ini t ion of the  spec t rum and  

the  one used b y  Beur l ing  in [3]. We  shall  res t r ic t  the  discussion to  the  case when 

A = F*, and  we then  need the  following lemma.  

L E M M A  3.21. Let ] * E F * .  x0lSAI,  i/ and only i/ /or some neigborhood N o/ x o 

/or every / E F with A; c N. 

P u o o F .  I f  there  exists  

A r c  N,  then  obvious ly  

/* (/)  = 0 

a ne ighborhood  N such t h a t  / * ( / ) = 0  if / C F  and  

l*  ( / g )  - 0 

for every  g E F .  Hence  b y  def ini t ion / o  1"= 0 for every  such funct ion /, and  thus  

x0 Ca . .  
If  on the  o ther  hand  x 0 ~ AI, .  t hen  by  Theorem 3.21 D ] o 1"= 0 for e v e r y / E  F 

with  AI included in a cer ta in  compac t  ne ighborhood N of x 0. Hence  1" ( / g )=0  for 

eve ry  g E F ,  and  choosing g~=l on N,  we ob ta in  [ * ( / ) - 0 .  

Le t  us now assume t h a t  G = R  and t h a t  F = F { ~ ( t ) }  (see Def in i t ion  2.11). I t  is 

easy  to  see t h a t  if a > 0  and  if ~ is real,  t he  funct ion 

2(~ f e_it(x ~)_~ltldt 
a 2 + ( x  ~)2 . 

--oo 

belongs to F .  We shall  then  prove  the  following theorcm.  

3- -563802 .  Acta mathematica. 96. I m p r i m ~  le 3 mai  1956. 
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T H E  O R:EM 3.22. Let /*E F*. x o r At, i/ and only i/ 

v .  (~, ~) =/* ( ~  2 ~ ~-+o, + (x - X)2/ when a--> + O, 

uniformly /or every 2 in an interval around x o. 

P R o  o F. A measure /~ (t), which corresponds to a linear functional /* is in this 

case absolutely continuous. Let  us pu t  ~'( t )= d(t). Apparent ly ,  for every /E  F 

1" (1) = ~ [ ( t l d ( - t ) d t  
-oo  

where the integral is absolutely convergent.  Hence the Fourier  t ransform of Ur, (a, ~t), 

considered as a funct ion of ~t, is e ~ d (t). 

Let  us assume tha t  Ui,(a , ~)-->0 uniformly in the interval 

Xo-S <_~ <_Xo + e 

where s > O. Let  [ (x)E F vanish outside the interval. Then 

~o+8 0r O 0  

1; f f /(X) Ur,(a,).)d).= [(t)e " r t l d ( - t )  dt---> [ ( t ) d ( - t ) d t = / * ( / )  
x o - e  - o r  o o  

by  the Lebesgue theorem on dominated  convergence. Thus /* (h = 0 for every such 

funct ion /, and by  L e m m a  3.21 x 0 ~ AI.. 

Before we s tar t  the proof of the opposite direction of the statement,  let us observe 

the following. Using Lemma 1.24 we can, for every s >0 ,  find a function g~(x) with 

sup Ig~(x) l < 1 

and which coincides with the funct ion 1/(1-4-x 2) outside the interval ( - e ,  s). By  

Theorem 1.51 A 

~: tlg~(x)'ll =B 

is finite, and owing to the special choice of F 

~. IIg~(x-X)'ll= B 
; ' t - - 1  

for every ~t. I f  a s <  1 
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1 ( 1  - -  o " )  n 

"~ [1 § ( x  --  4)2] n+ l  a 2 + (x - 4) 2 0 

and the r ight  hand  member  m a y  for I x - 4 [  > e be exchanged to 

h ( x - 4 )  = ~ (I -a2)~ ~ ( x  - ;0 ~+'. 
o 

Hence if for a fixed x 0 ] ; t - x  0 ] < e  and ] x - x  o [ > 2 e  

1 
h (x - 4). o 2 + (x  - 4) 2 

Let  us now assume tha t  x 0 CAm, and tha t  ~ is so small t ha t  / * ( / ) = 0  if 

A r c ( x 0 - 2 r  ) (Lemma 3.21). Then, if 1 4 - x 0 ] < ~  we obtain for 0 < o < 1  

U,.(o,  4 ) = / *  ( 2 0  ) 
/~2 + (x  - ~)2 = 2 o 1" (h (x  - ;))  

and hence 
IU.(0,  t) l<-20111*ll.llh(x-, )ll= 20 B.I I l * l l  

and this shows tha t  U m (0, ~t)-+0, when 0-+ + 0, uniformly if [ 4 -  x 0 [ < ~. 

I~EMARK. Theorem 3.22 shows tha t  we m a y  define the spectrum of the func- 

tionals, or, otherwise expressed, the spectrum of the functions d(t), by  means of the 

funct ion Ur. (0, 4). This funct ion is harmonic,  and therefore methods  from potent ial  

theory  and f rom the theory  of analytic functions m a y  be used in order to s tudy  the 

properties of this spectral definition. This has been done by Beurling [3] and Wer- 

mer [17]. I t  is t rue tha t  they  s tudy  more general functions than  the functions d(t) 

in our theorem, but  it is possible to modify  theorem 3.22 to a more general theorem 

which shows the equivalence of the spectral definitions in still more general cases. 

3 .  T h e o r e m s  o n  i t e r a t e d  t r a n s f o r m a t i o n s  

In  Definition 2.31 we have introduced a certain class (I) of functions on G. qb is 

apparent ly  an algebra which contains F as a subalgebra. I f  q~ E (I) and if /E  F has 

a compact  .AI, then it follows at  once tha t  q~(X).f(x)EF. We denote by  A+ the 

closure of the set where V ( x ) * 0 .  

Let  V E (I) and a E A. Suppose tha t  there exists an element a 1 E A with the pro- 

pe r ty  tha t  for every ] E F with compact  A I 

loa:=l.qjoa. 
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This element is then unique, for if a~ has the same property, then 

l o (a~- al) = 0 

for every / with compact AI. This implies that Aa,-a is empty, and hence a 2 - a  1 = O. 

Let us put a 1 - ~  o a. We eall this operation on the element a generalized trans- 

formation. In  general it can not be defined for every element a E A. We shall prove 

two properties of these generalized transformations. 

THEOREM 3.31. A. q~oa exists /or every element a with compact Aa. 

B. A~o~ c A~ ~ A~, i/ ~ o a exists. 

PROOF. A. There exists a function g E F ,  coinciding with ~ in an open set, in- 

eluding A~. Then A~_g and As have no point in common, and hence by Theorem 3.21 D 

].(cf--g) o a = O  

for every /E F with compact A/. Thus we ha~e 

/ o ( g o a ) = / q ~ o a  

for every / of that  kind, i.e. by definition 

c f o a = g o a .  

B. For every / with compact A r we have by Theorem 3.21 D 

A~r~ c A~ (1 A~r~ A~ r/AI rl A~. 

Therefore A~ro~ is empty if A I is included in the complement of A~ (1 A~. Thus under 

these conditions 

l o ( q ~ o a ) = O .  

And from this the lemma follows at once, using Lemma 1.24. 

The reason why we have introduced the generalized transformations is that  many 

functions on G of very simple nature belong to dp but in genera] not to F. We may 

refer to 2.3 where we have shown that  the functions ~ (x) and the polynomials belong 

to (1). Apart from the identically vanishing function and from the case When G is 

compact, these functions do not belong to F, since the functions in F have to vanish 

at infinity (L. 19B). 

We shall now proceed to prove some theorems on what we may call iterated 

transformations. Starting from an element a E A and a function ~ C (I) we are going 

to show some connexions between A~, T(x) and the norms of the elements rp~o a. 
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T ~ O R ~ M  3.32. Suppose that C is a compact set and that q)C(O. 

exists a sequence o/ constants B~, n =  l,  2 . . . .  with the property 

so that /or every n 

i/ a E A  and A a c C .  

P ~ O O F .  We p u t  

Then there 

l im B 1/n : s u p  I(j9 ( x )  l , 
n--)c~ x E C 

I1r oal l -<B. ' l l~l l ,  

sup I~ (x) l= k 
a tEC 

and choose an  a r b i t r a r y  posi t ive  number  e. L e m m a  1.24 asserts  t h a t  the re  exis ts  a 

non-nega t ive  funct ion /~ (x) E F wi th  the  va lue  1 on an  open set inc luding C, vanishing 

outs ide the  set where ] ~ ] < k §  and  wi th  a va lue  _<l elsewhere. A p p a r e n t l y  wo 

can choose /~ in such a way  t h a t  A& is compact .  

Now 

sup Iw(x).l~(~)l_<k+~, 
X C G  

and  thus  according to  theorem 1.51A the  sequence 

satisfies 
B: = II [,~-I~] ~ II 

l i ra [B~] u'~ _< k + e. 
n--~ oo 

Arguing as in the  proof  of Theorem 3 .31A we get  

~" oa=[~.l, ]" oa, 
and  thus  

i1~ ~ o a l l -  II [~-  1~]" II" I lal l  _<B:, - I la  II. 

Then the  theorem follows, since e can be chosen a rb i t r a r i l y  small .  

R E M A R K .  I t  is easy to show t h a t  the  theorem is stil l  t rue  if ~vEF  and  if C 

ins tead  of being compac t  is the  complemen t  of a compac t  set. 

The following theorem is a r a the r  s t rong converse of Theorem 3.32. 

T ~ E O R E M  3.33. I] a E A  and q)E(I) and i/ q~n~oa exists /or an increasing 

sequence o/ positive integers n~, v =  1, 2, . . . ,  then the relation 

l im ]]qP" o alp/n~=d 
v--> oo 

implies that 
sup [~(x)l_<d. 
x e A  a 
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P ~ o o F .  I f  at a point Xo, ]q(x0) I = d + e  for some e > 0 ,  then there exists be- 

cause of Lemma 1.24 a function g(x)E F, which assumes the value 1 in an open set 

0 including x0, while Ag is compact and included in the set where 

I q ( X o ) l > d + ~ .  
2 

According to Theorem 1.51 B this function is included in the ideal, consisting of 

functions in F of the form g(x)-F(x) ,  where g ( x ) E F  and A~ is compact, and for 

tha t  reason there exists a function g (x)E F, such tha t  in the set 0 

while 
g (x)- ~ (x) = 1, 

1 
sup Ig(x) l ~ - - .  (3.31) 
x e G  B d + -  

2 

For any /E  F with Ar compact and c O  

IJlo all o all-<ll!lt" IIg" ll.ll "" o all. (3.32) 

By applying Theorem 1.51A, (3.31) gives 

lim IIg'~ 111.'._< 
v-.-)*~ 

1 

d + -  
2 

and hence the right hand member  of (3.32) tends to 0 when v-->~.  Thus / o  a= O, 
which implies tha t  x 0 r A~. 

As an application of the last two theorems we shall consider the spaces A of 

the type mentioned in 3.1 3 ~ Let  us assume tha t  G=R, i.e. tha t  the elements in 

the space A are functions d(t) and the elements in the space F(Io(t)} are functions 

/ ( x ) =  ?e- i~t l ( t ld t .  
o o  

We are going to consider the generalized transformations obtained by the func- 

tions (ix) ~. These functions are polynomials and by Theorem 2.32 they belong to r 

We shall show that  these transformations are equivalent to derivations of the func- 

tions d(t). We say that  the nth  derivative d(~)(t) of a function d(t) exists whenever 

there exists a function, equivalent to d, absolutely continuous together with its ( n -  l)  

first derivatives and with the nth  derivative d(~)(t). 
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T H E o R E M 3.34. d(n) (t) exists and E A i/  and only i! the element (i x) n o d exists, 

and the elements are then identical. 

P R 0 o F. 1. The su//iciency. We denote by g (x) an arbitrary function in F 0 such 

that  the Fourier transform ~ (t) has n continuous derivatives. Then 

g (x) (i x) n = ~ e -~t  ~n) (t) dr. 
- o o  

We suppose that  ( i x )no  d exists, and call the corresponding function d l(t). By 

definition 

1 o ~1 = / (x) .  (i x F  o d 

for every /E F with compact Af, and hence 

! O (~ G ai) = / O  [a (X). ( ix)  n! O (~. 

Since this is true for every / of the mentioned type, the spectrum of the element 

g o d 1 -  [g(x). (ix) n! o d is empty, and hence 

g 0 a l  = [g (x)- (i x) n! 0 a. 

Writing this as convolutions on - o o  < t < oo we get 

r 0 (t - to) d 1 (to) d t o = I 0 (n) (t - to) d (to) d to, 
- ~  - o o  

or after n partial integrations 

o o  t .  t l  t n _  1 - -  

# ( n ) ( t - t o ) { [ . d t ~ d t 2 . . .  ~ dt(tn) dtn (to)}dto=O. 
- o o  0 0 0 

By varying g we see that  this implies 

~1 (t) = ~(n) (t). 

2. The necessity. On the other hand if we suppose that  d(n) (t) exists as an 

element in A, we can carry out the above argument in the opposite direction, and 

show that  for every function g of the type mentioned above and for every function h E F 

(hg) o a(n)= ( h ( x ) . g ( x ) .  (ix) n) o d. 

However, every function /E F with compact Ar belongs to the ideal which is formed 

by the elements h . g  (Theorem 1.51B). Therefore 
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/ o d<n)= (/(x)" (ix) ~') o d 

for every such function ](x), i.e. 

d(n)= (ix) n o d. 

Let us now apply the Theorems 3.32 and 3.33 to this case. We assume that  C is 

the closed interval ( - b ,  b). We then obtain: 

T~EOREM 3.35. I /  A a c ( - b ,  b), then all the derivatives d <~) exist and 

lira IId(=>(t) [I ''~ < b. 
n --->oo 

Conversely, i/ d (t) is in/initely di//erentiable and 

lim ][d<~)(t) I[ 1/" _<b, 
n -->oo 

then A a c  ( - b ,  b). 

I t  is not difficult to realize that the functions d(t) in the theorem above have 

to coincide almost everywhere with the values on the real axis of analytic functions 

of exponential type. Interesting results may be obtained by studying the connexions 

between this class of functions and the generalized transformations obtained by the 

real functions e ~'x. We shall, however, not discuss this matter any further in this context. 

4. Elements with one-point spectrum 

The problem of characterizing the elements with a spectrum consisting only of 

one point, was first solved by Beurling [2] in the case when the space consists of 

all bounded, uniformly continuous functions on R. The spectrum was introduced by 

means of the closure properties of the translations of the function in a certain topo- 

logy, the narrow topology. This definition gives the same spectrum as the one used 

in [5] (cf. [5] p. 225), which as we have mentioned earlier is related to our definition. 

Godement [8] posed the problem for bounded measurable functions on an arbi- 

t rary locally compact Abelian group, using a definition of spectrum which corresponds 

to the Beurling definition in [5], and Kaplansky [10] and Helson [9] gave the solu- 

tion. The problem has also been solved for more general classes of functions on R 

by Wermer [17] and for distributions on locally compact Abelian groups by Riss [15]. 

In our case we have to specialize in order to get results which are as simple 

as the ones obtained in the theories mentioned above. We are going to introduce a 
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notion of spaces F of polynomial  growth,  and for the corresponding spaces A we shall 

then get results which resemble the results by  ~Termer and Riss. 

Let  C be a compact  set in G. We know tha t  every character  (x, ~ ) C ( 1 ) b y  

Theorem 2.31, and therefore there exist functions / (x) E F,  coinciding with (x, 2) on C. 

We form 

taken over this class of functions, 

integer q. 

/~c(2)-- inf II/11 

and make the following definition for every posititive 

D E F I N I T I O N  3.41. The space F is said to be o/ polynomial growth <q  with 

resFect to x C G and 2 E G i/ /or some compact neighborhood N around x the sequence 

{pN(nx)}  ~ = { P n } - ~  
satis/ies 

pn =o(Inl~  Inl-  , (3.41) 
and 

lim Pn = 0. (3.42) 

In  order to exemplify this definition, we may  mention tha t  the last of the 

spaces F,  considered in 2.1, has the proper ty  tha t  if x > 0 ,  then F is of polynomial  

growth < 2  with respect to x and every t, while if x <  0, it is of polynomial  growth 

< 1 with respect to x and every t. 

I t  is easy to give examples of spaces which are not  of polynomial  growth with 

respect to all pairs x and 2. I t  is, however, always t rue tha t  

lira [p~]l/I ~ I = 1 
n --->or 

as a result of Theorem 3.32, and tha t  

p ~ >  1, 

which is an easy consequence of (1.51). 

We are going to prove the following general theorem:  

THEO~]~M 3.41. Suppose that F is o] polynomial growth <q  with respect to x o 

and Xo and that a C A  is such that Aa consists only o/ tl~e point x o. Then 

((X-Xo, 20)- 1)  ~ o a = O. 

We shall first prove two lemmas on Fourier  series. 
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L]~MMA 3.41. Let {p ,}~ r  be a bounded sequence o/ positive numbers and l e t / (0 )  

be a /unction in ( -  ~, 7~), continuous and with absolutely convergent Fourier series. 

Then there exists /or every s > 0 and every integer m a /unction 

where 

and 

g (0) = ~ c. d "~ 

p .  l c . l < l l ( o )  lpm+e ,  

such that g(O) and / (0)  coincide in an interval around 0 = 0 .  

P R O O F  OF L ~ M M A  3.41. Le t  us p u t  

p = sup pn. 

where  

B y  the  corol la ry  in L. 37 C there  exis ts  for eve ry  funct ion 

and  ]l  (0) = O, a funct ion  

such t h a t  

h (o) = ~ ~.o an e , 
- o o  

- o o  

h (0) = ~ dn e ~'~~ 

~ [d.[< ~- , 
-r162 p 

and  such t h a t  h(O) and  ]1(0) 

th is  to the  func t ion  

coincide in an  in te rva l  a round  0 = 0 .  

h (o) = / (0) - / (o) e '"~ 

Le t  us a p p l y  

The funct ion  h (0) t hus  ob ta ined  has  the  p r o p e r t y  t h a t  the  funct ion 

g (0) = h (0) + / (0) e t''~ = ~ dn e ~n~ + / (0) e ~'~ 
oo 

satisfies the  r equ i remen t s  in t he  l emma.  
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LEMMA 3.42. Let (p~}~ be a sequence o/ positive numbers such that ]or some 

positive integer q the relations (3.41) and (3.42) are ]ul/illed. Let the /unction /(0)  be 

continuous in ( - ~, ~) together with its /irst n derivatives and vanishing at 0 = 0 together 

with its /irst n - - 1  derivatives, and suppose that /(q)(O) has an absolutely convergent 

Fourier series. 

Then, ]or every ~ > O, we can ]ind a /unction 

g (0) = ~ c~ e ~~ 

where 

and 

such that g(O) and /(0)  coincide in an interval around 0 = 0 .  

P R O O F  OF LEMMA 3.42. I t  is appa ren t ly  enough to prove the l emma in the 

case when P0 = 1 and  

pn >_ ln l q-1 
for every n. 

By  Lemma  3.41 we have for every ~ > 0 a func t ion  

h (0) = ~ a= e ~"~ 

where the series is absolutely  convergent  and  

I~o[§ 2: + la~l<~, 

and  which coincides with /(q)(O) in  an in terva l  a round  0 = 0 .  

Then  let us form the func t ion  

1 ~ an 
k(o)= Z + ein0 

We have in  the above in terva l  

which shows tha t  

degree _< q. Now 

f:q) (0) -- k (q) (0) -- h (0) - ]c Cq) (0) ~ a  o, 

] ( O ) - k ( O )  coincides in the in terva l  with a polynomial  Pq(O) of 
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IP~,(o)[-- I~o1< ~ 
and  

[Pg~) (0) [ = [1(~ (01 - ~'~ (o) l = [ k (~'(0)[ _< 2 + E + ] ~  [ < 0 

for v = 0 , 1  . . . .  , q - 1 .  

Le t  s be an  a r b i t r a r y  posi t ive  number .  We m a y  choose the  number  6 such 

t h a t  6 < e /2 ,  ~nd f rom the  inequali{,ies above  i t  is t r iv ia l  to  conclude t h a t  if 6 is 

suff ic ient ly  smal l  the re  exists  a funct ion 

l(0)= ~ bn e in~ 
o o  

with  

and  coinciding wi th  Pq (0) in an in te rva l  a round  0 = 0 .  

Hence  the  funct ion  

g (0) = k (0) + t (0) 

coincides wi th  / (0)  in an  in te rva l  a round  0 = 0  while i ts  Four i e r  coefficients sa t i s fy  

1 ~ pn lan l  ~ Ib n E 
pnl~nl -< ~: + + P,~ 1<6 ~, 

which was to be proved .  

P R O O F  o F  T H ~ O R E ~  3.41. Le t  F be of po lynomia l  g rowth  ~ q  wi th  respec t  

to x 0 and  x0, and  le t  N be a ne ighborhood  of x o wi th  t he  p r o p e r t y  t h a t  

sat isfies (3.41) and  (3.42). Then  there  exists  for eve ry  in teger  n a f u n c t i o n / ~  (x)E F 

which coincides wi th  

( - Xo, 2o) ~" (x ,  ~o) ~ = (x  - Xo, 2o)  ~ 

in an  open set  inc luding N,  and  satisfies 

II /~ (x) ll < 2 p~. 

Now L e m m a  3.42 shows t h a t  the re  exists  for eve ry  s > 0  a funct ion 

Cn einO~ 
-- or 
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where 

_ P n l C n l < ~  

and  which coincides wi th  (e! e -  1) q in an  in te rva l  a round  0 = O. 

Hence 

cn I l ln(x/ l l<~,  

and  

l(x)= ~ cn In (x) 

defines an  e lement  in F which coincides wi th  ( (X-Xo,  2 o ) - l )  q in the  in tersec t ion  of 

N and  an  open set  of t y p e  

- (~ < arg (x - Xo, 20) < d (rood 2 7~), 

i.e. in a neighborhood of 20. Obviously II/H < ~ .  

Hence  if a E A  and  if A~ does no t  conta in  o ther  poin ts  t h a n  x o 

a l - - ( ( X - - X o , ~ o ) - - l )  q o a = / ( x )  c a ,  
which implies  t h a t  

II a, II--< IIIII" Ilall--< e. II ~ II. 

And  since s was a rb i t r a ry ,  a I = O, which proves  the  theorem.  

Theorem 3.41 has  a p a r t i c u l a r l y  in teres t ing  i n t e rp re t a t i on  if A is the  space F* 

of l inear  funct ionals  on F in accordance  to 3.1 2 ~ W e  shall  f i rs t  show a s imple 

lemma,  which is va l id  no t  only  for th is  pa r t i cu l a r  A.  

L EMMA 3.43. I /  a E A  and i/ A s  is compact, then a can be written 

a ~ [0 0 ClO~ 
where a o E A and /o E F 0. 

P R O O F .  The space of the  funct ions  in F of the  form /o (X) . /l (x) where /oEFo 

and  ]1 E F is an ideal ,  not  con ta ined  in any  regula r  m a x i m a l  ideal.  Hence  b y  Theorem 

1.51B every  funct ion [ E F wi th  compac t  Ar can be wr i t t en  

] = 10" /1 '  

By ' L e m m a  1.24 we can choose [ in such a w a y  t h a t  / ( x ) ~ l  in an open set, in- 

cluding A~, and  then  we get  

a = f  o a = f o f l  o a = / o o  ( f l ~  a), 

which proves  the  lemma.  
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Thus if we choose A =F* ,  every f*EF*  with compact AI, can be written 

1" = 1o o l~, 

where /o E F o and /~ E F*. Let  us call the measures tha t  in the sence of 1.3 correspond 

to 1" and 1~, /~ and /~o. I f  we express in terms of the measures the equality 

1" (I) = 1~ (11o), 

which in particular is true for all /E Fo, we get 

/ , ( C ) =  f d 3  f t 0 ( 3 0 + 3 ) d ~ o ( - 3 o )  
& o 

for every compact C. Hence 

~ ( C ) =  f _k(3)d3, 
5 

^ 

where F(3)  is a continuous function. Furthermore,  At, being compact, (X, 3o)o /*  is 

welldefined by  Theorem 3.31 A. I f  we put  

(x, 30) o 1" = g ,  
we get 

IF (I) = 1" (1 (x)- (x, 3o)) 

for every /EFo ,  and this shows tha t  (x, 30)o 1" corresponds in the above sense to 

the function _F (3 +3o). Finally the functional 

(1 - (x-xo, 3o)) ~ o /*  = (1 - (x, 30)" (xo, -3o ) )  ~ o /* ,  (3A3) 

where x o and 3 o are arbi t rary  fixed points, corresponds to the function 

m = 0  

This is true for every [*E F* with compact  AI,, then in particular for any [* 

with Af, consisting only of the point x 0. I f  moreover F is of polynomial growth < q 

with respect to x 0 and 30, we see from Theorem 3.41 tha t  the functional (3.43) is 

the null functional, which implies tha t  (3.44) vanishes identically. I f  this then is 

true for every point 30, we see from definition 2.32 tha t  the continuous function 

(3) (xo, - 3) 

is a polynomial of degree _< q - 1 .  We formulate the result in the following theorem. 
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THEOREM 3.42. I /  F is o/ polynomial growth <q with respect to a /ixed point 

x o and every ~, and i/ /*E F* has Ay, consisting only o/ the point xo, then the corre- 

sponding measure ~ satis/ies /or every compact set 

c 

where F(~) is a /unction such that _F(~).(x0, - ~ )  is a polynomial o/ degree <_q-1.  

A similar interpretation is possible for the spaces of type 3.1 3 ~ namely tha t  

under the same conditions the element d(~) is equivalent to a polynomial of degree 

_< q - 1  multiplied by  the character (%, ~). The condition tha t  F is of polynomial 

growth may  then be exchanged to certain restrictions in the growth of ~ (~). 

In  the case 3.1 4 ~ , however, the corresponding theorem is not true. This would 

imply tha t  if Aa consists of only one point, then d(t) is equivalent to a constant 

multiplied by a character. I t  is very easy to find examples which show that  this 

is not the case. 

C H A P T E R  I V  

A n  equivalent definition of  the spectrum 

1. Elements in A with approximate identities. The subspaee A 1 

The following chapter deals with a different method of defining the spectrum, 

and the definition is essentially a generalization of the definition used by Beurling 

in [2]. Our definition will be expressed in terms of the generMized transformations 

obtained by the characters, and since they correspond to the translations in the 

Beurling theory, we shall use tha t  terminology even in our case. 

I t  is possible to prove special results for elements in a certain subspace A 1 of A, 

and we shall introduce this subspace by  means of the following two definitions. 

D E F I N I T I O N  4.11. An element a EA  is said to have an approximate identity i/ 

/or every e > 0 there exists a compact neighborhood N o/ d with the property that /or 

every /o(x)E F o such that fo(~) is non-negative, vanishes outside 1V and satis/ies 

I fo = 1, 
f~ 

we have 
Ila-loOall<-e. 

We call such a neighborhood / I  an e-neighborhood with respect to a. 
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D E F I N I T I O N  4.12. A 1 is the subspace o/ A consisting o/ all elements a such 

that the translations (x, ~) o a exist and such that a and all (x, ~) o a have approximate 

identities. 

RE MARK.  I t  is quite obvious from the assumptions and results in chapter  I 

tha t  if the algebra F has the elements /(x) and if x 0 denotes a fixed point  in G, 

then the isomorphic algebra Fxo, consisting of the functions [(X+Xo) with the same 

norm as the corresponding functions [(x) in F, is an algebra of type  F.  This new 

algebra m a y  as well be used to define the spectrum of the elements in A, and we 

then obtain a spectrum which is the original spectrum translated by  %. 

Now it is quite easy to prove tha t  the subspace A 1 is invariant  under this 

t ranslat ion of the spectrum. The only thing we need to check is whether  the defini- 

t ion of elements with approximate  identities changes when the functions f 0 ( 2 ) a r e  

mult ipl ied by  (x0, 2). And this is not  the ease as is seen from the following argument .  

Under  the conditions in Definition 4.11 we have 

IIIoo all-<llall* . 

Hence, if f(7) is continuous and vanishes outside ,V 

III o all _<2 (llall § I 

For that reason 

lla- Io( l(xo, Id oall<-lla-looall+ll.f lo( l(l-(xo, )l d oall 

-< + 2 (llall + . ) . r / o  (xo, ~) I d~ 
D' 

and the r ight hand  member  is arbitrari ly small if s and 2~7 are sufficiently small. 

This will be of great  use for us in 4.3, where the new definition of the  spectrum 

is introduced. By  the above arguments,  it has the same proper ty  as our first de- 

finition, i.e. the  spectrum is t ransla ted in the above sense. Hence. in order to prove 

the equivalence of the definitions, it is enough to prove t h a t  the point  o belongs to 

the spectrum in the sense of one definition if and only if it belongs to the spectrum 

in the sense of the other  definition. 

Before we proceed we shall prove a theorem on elements in A with approximate  

identities. The Definition 4.11 is nothing bu t  an extension of Definition 1.51, and it 

is obvious tha t  the proof of Lemma 1.52 can also be applied to the general case. 

Thus this lemma is t rue if the element ](x) is exchanged to any  element a C A with 
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an a p p r o x i m a t e  iden t i ty ,  and  if [(x) .g(x)  is exchanged  to g o a. W e  a p p l y  this  new 

l emma to an  e lement  a wi th  a discrete  spec t rum,  and  g o a has then  a f inite spec t rum.  

However ,  using L e m m a  1.24, i t  is easy  to show t h a t  every  e lement  wi th  a f ini te  

spec t rum m a y  be expressed as a sum of e lements  wi th  one-point  spec t rum.  Hence 

we ob ta in  t he  following theorem.  

T H E O R E M  4.11. Every a E A with an approximate identity and with discrete A~ can 

be approximated arbitrarily closely by finite sums o/ elements with one-point spectrum. 

The theo rem should be compared  with  a resul t  b y  Beur l ing [4]. 

The following theorem i l lus t ra tes  t h a t  the  class A 1 can to a cer ta in  ex t en t  be 

charac te r ized  b y  con t inu i ty  p roper t i e s  of the  t r ans la t ions  of i ts  elements .  

T H E O R E M  4.12. A. I /  d E A l ,  then [l(x, 2 ) ~  20)~ is a continuous ]unc- 

tion o/ 2 /or every 20 . 

B. Suppose that A is complete, i.e. a Banach space. I /  all translations (x, 2 )o  a 

o/ the element a E A  exist, and i] I](x, 2 ) ~  20)~ is continuous in 2 /or every 

20, then a E A 1. 

P R O O F .  A. I t  is a p p a r e n t l y  enough to prove  t h a t  the  funct ion corresponding to  

20 = 6 is  cont inuous  a t  2 -  6. 

Le t  us choose an  a rb i t r a ry  e > 0 and le t  for every  2 E G N2 be an e -ne ighborhood 

wi th  respect  to (x, 2) o a. 

Then  we choose 21 such t h a t  

- &  e ~?~, (4.11) 

and  le t  f(2) be non-negat ive ,  continuous,  sa t is fying 

.i f(2) d ~ -  1, 

and  vanish ing  outs ide  the  set 

~o n (_K,'~ + (-2,)), 

which is a ne ighborhood  of - 2 1 .  

Le t  us p u t  

l(x)= f (x,2) f(2)dP. 
[r 

Then we get  

](x). (x, 21)= f (x, 2 ) / (2 -21)  dP. 

4 - - 5 6 3 8 0 2 .  Acta mathematlca. 96. I m p r i m 6  le 3 m a i  195[i. 
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Using the assumption tha t  /V~ and /V;, are e-neighborhoods we obtain  

]la-l(x) oall<-e 
and 

II (z, 41) o a -  [ / (z ) .  (x, 4~)]  o [ (z ,  4~) o ~] II = II (x, ~ )  o ~ -  1 (~) o a II <- ~. 

Hence we get 

Ila-(x, 4~)oall<-2~. (4.12) 

This is t rue  for every 41, which satisfies (4.11), and thus this par t  of the theorem 

is proved. 

B. Let  a be the  given element and e > 0  a given number.  Le t  N be a compact  

neighborhood of 6 such tha t  

Ila- (x, -4)  oall-<c 

for every 4 6/V. We are going to show tha t  this set is an e-neighborhood with respect 

to a, and since this a rgument  can be applied also to the elements (x, 4 ) o  a, this will 

prove the theorem. 

We choose a funct ion 16 F 0 such tha t  / (4)  is non-negative,  vanishes outside /V 

and satisfies 

/ (~) d 4  = 1, 
k 

and then we choose another  a rb i t rary  funct ion g 6 F  0. 

For  every positive integer n we are going to divide N into n distinct measurable 

subsets ~ ) ,  such tha t  every ~(~n o) is included in some of the sets ~(n-]), n = 2, 3 . . . . .  

Then we choose a point  Xm^(n) in every ~ ) .  

We shall discuss the  linear combinat ions  of characters 

In(x) = ~ ~ /(~)~4.(x,-4~)).  
rn=l j ~ )  

For  every n we have /n 6(I), and it is easy to see tha t  

I l a - L  o all _<~. (4.13) 

I t  is possible to show tha t  we can choose the sets ~ ) i n  such a way  t h a t  when 

n--~ c:~ 
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H A R M O N I C  A N A L Y S I S  B A S E D  O:N C E R T A I N  C O M M U T A T I V E  B A N A C H  A L G E B R A S  51 

sup I [(2)d~--~0,  
m /~(m n) 

sup [ sup [[(x, --~0) o a - - ( x ,  - - ~ ) o a ] ] ] - - > 0 ,  

sup [ sup 19 ( ~ - ~ , ) -  # ( 2 - ~ )  l i fo .  

oo 
Then {/n o a}l , is a Cauchy sequence, and since the space is complete, the 

sequence has a l imit  element a 1. By  (4.13) 

II a - a 111 -< e- (4.14) 

I t  can also be proved tha t  the Fourier  t ransforms of the functions /n (x) .g(x)  

converge uniformly to the Fourier  t ransform of [(x) .g(x) ,  and since all functions 

vanish outside some fixed compact  set, L e m m a  1.21 shows tha t  we have at the same 

time convergence in norm. Thus 

g o a  1 = l i m g o ( [ n o a )  = lim ( g . / ~ ) � 9  

Now a I does not  depend on the choice of g and hence by  Assumption I I  in 1.1 

al= / 0 a. 
Thus by  (4.14) 

I l a - / o  all-<s,  

and this proves tha t  N is an  v-neighborhood with respect to a. 

RE MARK.  The pa r t  B of the theorem is not  t rue  for all spaces A which are 

not  complete. This is shown in the  remark  which follows after  Theorem 4.31. In  this 

remark  it is shown tha t  Theorem 4.31 fails to be t rue if the condition a E A  1 is 

exchanged to the condition tha t  the translat ions exist and II (x, ~ ) o  a - ( x ,  ~0)o a lt is 

continuous. 

2 .  S o m e  l e m m a s  

In  order to prove Theorem 4.31 we need various lemmas, and we collect them 

in this section. 

LEMMA 4.21. Suppose that a E A  1. Then there exists /or every compact ~ and 

every e > 0  a set N,  which is an s-neighborhood with respect to all elements (x, ~o) o a, 

when ~o E ~. 
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o o F. Le t  N6 be an t -neighborhood with respect  to a. We can find a smaller  P 

symmet r i c  neighborhood /Y~ of 6 such t h a t  

N~ + N~ c ~. 

Then if the  non-negat ive,  cont inuous funct ion ] (~)  vanishes outside A~'6 and 

satisfies 

G 

we have  for every  ~1, such t h a t  31 E 3,:To 

/(X)" (X, 3 1 ) =  f / ( X + 3 1 )  (X, x) d 3 ,  

which implies t h a t  

II - / (x) , (x, o all < 

But  (4.11) holds and hence (4.12) is true. Thus  

II (x, 31) o a - / ( x ) .  (x, 31) o a II < 3 t ,  

and this re lat ion shows t h a t  , ~  is a 3 t -ne ighborhood  with respect  to every  e lement  

(x, ~1) o a such t h a t  xl E/~"~. By  applying the same a rgumen t  to the  e lement  (x, x0) o a 

we see t ha t  there  exists, for every  ~0E G, a s e t / ~ :  which is a 3 t -ne ighborhood  with Xa 
respect  to all e lements  (x, ~1)o a, such t h a t  

^ 
The interiors of the sets x0 +N'^  form an open covering of C, and hence we X0 

can select a finite covering 

Thus every  point  ~ E C can be represented in the form 

for some v, where 3: denotes  a point  in ~"~. For  t h a t  reason xv 

which shows tha t  N'~ is a 3 t -ne ighborhood  with respect  to this par t icular  e lement  x e 
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(x, ~ ) o  a. And in order to get  a 3e-neighborhood with  respect  to all (x, 2 ) o  a, where 

6C,  we have  only to form the  set 

~ ,  
N �9 
1 Xv 

Since e is a rb i t r a ry  this proves  the  lemma.  

L ]~ M M A 4.22. Suppose that a E A I and /o (x) C Fo, let ~ > 0 be an arbitrary number 

and C an arbitrary compact subset o/ G. 

Then there exists a linear combination o/ translations o/ a 

a'= ~ c~(x, --2~)oa, 
1 

where the points 2~ belong to the closure o/ the set where the Fourier trans/orm [o (2)~-0, 

and with the properties 

I] (x, 2) o (/o o a -  a')I] <- s (4.21) 

/or every ^ ^ x E C ,  ~ c~=[o(O ), and 
1 

Ic 1<_ 4 1to(2) 1d2. (4.22) 

PRO OF. I t  is obviously  enough to prove  the  l emma in the case when ]0(x) is 

non-negat ive  and 

/o (o) = j" [o (3) d:~ = 1 
5 

if we ins tead of (4.22) show the s t ronger  re la t ion 

I 1. (4.23) 
1 

We denote by  Co the  compac t  closure of the  set  where ]0 (3)~= 0. Since the  set 

C + ( - C o )  is compac t  we can, according to L e m m a  4.21, find a set _~, which is an 

e-neighborhood with  respect  to all e lements  (x, 2 -  2o) o a, where 3 6 C and 3 o e C o. 

The  interiors of the  sets 2V+~0, where 2o E Co, cover  C o. Le t  us select a finite 

covering 

Obviously  ]o(~) can be decomposed into a sum of non-negat ive,  cont inuous funct ions 

f~ (3), such t h a t  f~ (3) vanishes outside N + 3v, v = 1, 2 . . . . .  n. We pu t  
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Apparen t ly  

which ' proves (4.23). Now 

N ~ x  v 

~ lc ,  I = ~ ;c ,= l ,  
1 1 

1, (x). (x, 2,,) = .I (x, 2) L (2 + 2,) de, 
k 

and  since 27 is an  s-neighborheod with respect to the elements (x, ~ - ~ ) o  a for every 

6 0 we get 

II (x, e )o  (i0 o ~ -a ' ) l i -<  ~: tt (x, e)/~ o a -c , (~ ,  m-m~)oa l i=  

= ~: IIl,(x)- (x, ~,) o ((x, ~-~- , )  o a ) -c , (x ,  ~ - ~ , )  o all <- ~ ~ ~,= ~, 
1 1 

and  this proves (4.21). 

LEMMA 4.23. Suppose that a E A  1 and that / E F  has compact As. Let r  be an 

arbitrary number and ~o an arbitrary compact subset o/ G. Then there exists a linear 

combination a' o/ translations 

such that 

i/ 20 c Co. 

a '=  ~ e , ( x , ~ ) o a ,  
1 

II (x, ~o)o (to a -  a')ll < ~, 

PROOF.  We can use Lemma 4.22, and  hence the only th ing  we have to prove 

is t ha t  we can f ind an element  g(x)E F o such tha t  

I I ( ~ , ~ o ) - ( / - g ) l l < ~ ,  
if ~o E C o. 

Lemma  3.43 shows tha t  /(x) can be wr i t ten  

/ (x) =/o (x)-/1 (x), 

where / 0 6 F  o and  / 1 6 F .  Let  us pu t  

su9 II 10. (x, m0)II = B,  
~0~~ 

which is finite because of Le mma  1.21. Then  we use Assumpt ion  I I  in  1.1, which 

shows tha t  we can find a funct ion  /2 (x)E F 0 such tha t  
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Hence,  if ^ x 0 E C O 

s 

II/i (x) - / 2  (x)II < ~. 

II (x, ~ o ) . / -  <x, ~ol ]o/~ It ~ II 1o-(x, ~o)II �9 II I ~ -  ]~ II < ~. 

W e  m a y  therefore  choose as g(x) the  funct, ion /0 (x) /2 (x). 

L E M M A  4.24. A. Every a E A  with compact Aa belongs to A 1. 

B. Given any compact set C c G, there exist two continuous /unctions Pc(2) and 

qc(2), where q c ( 6 ) = 0 ,  such that 

II [(x, ~ + 2~ - (x, 2)]  o a II-< II a I1 ~ (~)" Go (~'0), 

i/ a E A  and A a c C .  

P R O O F .  Le t  us first  prove  the  second pa r t .  W e  choose a funct ion  /(x) E F  

such t h a t  / ( x ) - 1  on an open set, inc luding C, while As is compact .  This choice is 

poss ible  b y  L e m m a  1.24. 

F r o m  L e m m a  3.43 and f rom the  fact  t h a t  all  funct ions  in  F o have  a p p r o x i m a t e  

ident i t i es  (Defini t ion 1.51) i t  is easi ly  seen t h a t  the  same is t rue  for /(x) and  all  

funct ions  (x, 2) . / (x ) .  Therefore  /(x) E F  1 if the  space F in the  sense of 3.1 1 ~ is 

considered as a space A.  And  b y  Theorem 4.12 A the  funct ions  

II l ( x ) .  ((x, ~.) - 1)II = <:,~ (2) 
and 

I I / (~ ) .  (x, 2)II - : ~  (2) 

are  cont inuous  and  qc(6) = 0 .  I f  A~ c C, we have  

a = / o a = ]2 o a, (4.24) 
and  thus  

II [(x, 2) (z, 2 0 ) -  (x, 2)1 o a II = II1- [(x, 2~ - 1] .  i .  (x, 2) o a I I -  II a II D~ (2) .  ~ (2~ 

As for t he  f i rs t  pa r t ,  (4.24) shows that. a has  a r ep resen ta t ion  of the  f o r m / o  a, 

where / E  F 1. This implies  a t  once t h a t  a E A r 

3. The spectral sets A'~ and A'~' 

W e  are  going to  in t roduce  two new def ini t ions  of spec t rum of the  e lements  in A. 

Only  the  f i rs t  def in i t ion  m a y  be appl ied  to  eve ry  e lement  in A, b u t  the  second one 

is of ten more  convenient ,  since i t  is expressed only  in t e rms  of the  t rans la t ions .  
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D]~FINITION 4.31. For every a E A  we de/ine A'~ as the set o/ points xoEG,  

with the property that /or every ~ > 0  and every compact set ~ c  G there exists an element 

/C F,  such that / o  a belongs to A 1 and satis[ies 

I[ [(x-x0,  i ) -  1 ] . / o  a l l < e l i / o  a][ 

/or every ~ E C. 

D E F I N I T I O N  4.32. For every a E AI we de/ine A'j as the set o/ points x o C G 

with the property that /or every e > 0  and every compact set C c ~  there exists a linear 

combination o/ translations 

such that 

a ' =  ~c~(x ,~v)  oa ,  
1 

II[<x-xo, o a'lI< lla'll 
/or every ~ EC. 

The following fundamental theorem connects these definitions and Definition 3.21. 

- A '  /or every a E A.  THEOREM 4.31. A a -  a 

Aa = A'a' /or every a E A 1. 

REMARK. Of course the spectrum A'j can be defined for a larger class of ele- 

ments than A1, e.g. for the class of elements aE A such that  for every ~0 

] l ( x , ~ ) o a - ( X , ~ o ) O a l l  

exists and is a continuous function of ~. The following example, however, shows that 

we may then have Aa :~A'a'. This shows at the same time that  A 1 is a proper sub- 

class of the mentioned class (cf. Theorem 4.12.). 

Let bl(t) be a bounded function C L I ( - o o ,  oo) such that  if 

1 

none of the linear combinations of translations 

41 (t) = ~ C v bl (t ~- tv) 
1 

is equivalent to a continuous function. 

Let D 2 (t) be another function with the same property. To each linear combina- 

tion 41 (t) there corresponds in a unique way the function 



H A R M O N I C  A N A L Y S I S  B A S E D  ON C E R T A I N  C O M M U T A T I V E  B A N A C I I  A L G E B R A S  5'7 

42 (t) = ~ c~ $~ (t + t~). 
1 

We shall show t h a t  we can choose bl(t) and b2(t) in such a way  tha t  A~,~: A~,  

where these sets are defined as the closure of the sets where the corresponding Fourier  

t ransforms do not  vanish. 

Let  us choose 
bl(t) - e  -It l  sign t. 

I t  is easy to prove tha t  A 6 , = ( - ~ ,  ~ ) '  Then we choose ~(t) in L 1 ( - ~ , ~ )  and 

L ~ ( - ~ ,  ~ )  such tha t  its Fourier  t ransform is ~ 1  in ( - 1 ,  1). The function 

bl * ~ = ] bl (to) c (t - to) d t o 

is then bounded and continuous and its Fourier  t ransform coincides with the Fourier  

t ransform of bl in ( - 1 ,  1). Therefore 

fulfills A S~-A61, and since each of the functions bl and D 2 has only one essential 

point  of discontinuity,  no non-trivial  linear combinat ion of t ranslat ions is equivalent  

to a continuous function. 

Let  us now choose as F the space F{1} of Fourier  t ransforms of functions 

E L l ( - o ~ , o ~ ) ,  and as A the space A 1 of functions of the form 

d~ (t) = d(t)  + el 1 (t), (4.31) 

where d (t) is equivalent  to a bounded continuous funct ion C L 1 and where cl 1 (t) is 

a linear combinat ion of the kind defined above. We define the t ransformat ion [ o d 1 

by  means of the convolution 

oo 

[ d 1 ( t -  to)/(to) dto, 
- c o  

and since all functions / o  (%1 are equivalent  to bounded continuous functions, they  

belong to the space A 1. We introduce the norm 

I l d l l l = l l d ( t ) + d l ( t ) l l  = ~ ( ] d ( t )  l + l [ l l ( t ) l + l C ~ 2 ( t ) l ) d t  , 

which is uniquely determined by  the unique decomposit ion (4.31). The spectrum of 
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an e lement  dl E A 1 is a p p a r e n t l y  the  set Aa,, def ined above.  The space A 1 fulfills 

eve ry  r equ i remen t  which we d e m a n d  of a space A.  

F o r  eve ry  e lement  d 1 (t) t he  t r ans la t ions  d 1 (t + t~) exis t  and  the  funct ion 

II a l  ( t  @ 6") - -  d l  ( t  @ 6'0)II 

is continuous.  

I f  we exchange  the  rSle of the  indices 1 and  2 in the  above  example ,  we get  

a space A 2 wi th  analogous proper t ies .  Now the  norms  of the  e l e m e n t s  (~l(t)E A 1 a r e  

exac t l y  the  same as the  norms  of the  corresponding funct ions  d2(t)E A 2. Hence  b y  
it t! 

Defini t ion 4.32 A ~ = A "  5.  B u t  we have  assumed  A~, * A ~ .  Thus A ~ * A ~ ,  or  
t! A ~ A ~ ,  i.e. the  second par~ of Theorem 4.31 is false for a t  leas t  one of the  

spaces A ~. 

P R O O F  OF T U E O R E M  4.31. The r e m a r k  af te r  Def in i t ion  4.12 makes  i t  possible 

to  res t r ic t  the  discussion to  the  case when x 0 = o. The  proof  will be d iv ided  into 

th ree  par ts .  I n  t he  f i rs t  two par t s ,  we are  going to  show t h a t  o EA= implies o EA'~ 

and  o E A ' j ,  respect ively ,  i.e. we have  to  prove  t h a t  the  Def ini t ions  4.31 and  4.32 are  

fulfil led wi th  x 0 = o, and  for a n y  prescr ibed  s and C. 

1. Aa c Aa,.  We assume t h a t  o E Aa ,  and  have  to  cons t ruc t  an e lement  l o a E A1, 

sa t is fying the  re la t ion  in Def in i t ion  4.31. 

Le t  C be an  a r b i t r a r y  open ne ighborhood  of o. B y  L e m m a  4.24 there  exists  an 

open ne ighborhood  2( of 6 such t h a t  

e 
]I [(x, 2 + 2o) - (x, 2)] o a a II -< ~ II aa H, (4.32) 

if ~ E C, 20 E N,  and  if a 1 E A fulfills .Aal c C. 

The sets 2 + 2~ r, where 2 E O, form an  open covering of C. Le t  us select a f ini te  

covering 

+ 

Now let  C'  be a compac t  ne ighborhood  of o, inc luded in C and  in the  open 

ne ighborhood  of o where for eve ry  v 

e (4.33) I(x,},)- ll< 

We choose a funct ion  [ 0 E F  wi th  A s ~  and  10(o)*0.  Since o E A a ,  we have  

10 o a *  O. L e t  us then  consider  the  class of e lements  
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where the exponents /c~ denote arb i t rary  non-negat ive integers. Two eases m a y  occur:  

1 ~ Infinitely m a n y  of the elements a0 are 4~ 0. 

Let  us apply  Theorem 3.32 to the elements a0. Since Ay0 c 6'' and (4.33) holds 

in 6'' we obtain for the constants  B~ ~ which correspond to ~ ( x ) = ( x ,  2 , ) - 1  in the 

theorem, the relation 

lim rB(~)~/n < e 

This is t rue for all v, and we have 

II~ott<llloo ~11 ~ - , -  
V=I 

Hence the numbers  

sup , a0 H = ~n, 
m 

which are all different f rom 0, have to satisfy 

lim ,~l/n 
?z -->co 2 

This implies t h a t  at  least one of them, let us say ~n., satisfies 

The corresponding element, i.e. the element a o with ~ k~ = n  o and for which 
1 

then has to satisfy for every v 

II [(*, ~ ) -  i ]  o ~0,  <_ ~n.+~. 

Thus for every v, this element, which we denote al, satisfies 

8 
(4.34) 
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2 ~ Only  a f ini te  number  of the  e lements  a 0 a re  ~= 0. Since in any  c a s e / o  a ~  0, 

we can f ind an  e lement  a 1 among the  e lements  a0, such t h a t  a~ ~: 0 and for eve ry  

[(x, ~ , ) -  1] o a 1 = 0 ,  

t hen  a for t ior i  (4.34). 

The e lement  a 1 has As c C', and  hence a l E A  1 b y  L e m m a  4.24, and  i t  also 

satisfies (4.32). Combining (4.32) and (4.34) we ge t  

[[ [(x, 3~ + ~ 0 ) -  1] o a~[[ < ~ [I al]l 

for every  ~ and  if 30E.~.  B u t  eve ry  po in t  in ~ m a y  be wr i t t en  in the  f o r m 3 ~ + 3 0  . 

A n d  this  concludes  the  proof.  

2. A s c A ' j .  I n  the  preceding p a r t  of the  proof  we saw tha t  if o E A a ,  then  

o E A's and  the  funct ion / (x) can be chosen wi th  compac t  At .  Then,  compar ing  Defini- 

t ion 4.31 with  Def in i t ion  4.32, we see t h a t  the  only  th ing  we need to  p rove  is t h a t  

we can a p p r o x i m a t e  / o  a a rb i t r a r i l y  closely b y  t rans la t ions  a '  of a, in the  sense t h a t  

for every  ~ > 0  we can f ind a '  such t h a t  

II/oa- '[t< 
and  

II (x, 3) o [to  -a']ll < 

if # E C. A n d  th is  a p p r o x i m a t i o n  is possible,  since we assume in this  place t h a t  

a E A 1 ,  and  thus  we can a p p l y  L e m m a  4.23 wi th  C 0 consis t ing of the  po in t  6 and  

the  set C. 

3. A'a c As  and  A ' j  c As.  S t a r t i ng  f rom a given e lement  a, the  two proofs  will 

be exac t ly  the  same a p a r t  f rom the  difference t h a t  t he  var iab le  e lement  a '  should 

be i n t e rp re t ed  as an  e lement  of the  form / o a in the  first  case, as a l inear  combina-  

t ion  of t r ans la t ions  in the  second case. W e  suppose t h a t  o ~ Aa and  we are  going to 

show t h a t  the  re la t ion  o E A's or o E A'a', respect ively ,  has  to involve  a contradic t ion .  

I t  follows f rom the  def in i t ion  of As  t h a t  there  exists  a func t ion  /1 (x)E F wi th  

/ 1 ( ~  and  such t h a t  / l ~  i.e. such t h a t  for eve ry  a '  

/l o a ' = O .  

We a p p r o x i m a t e  /1 b y  a funct ion  /0 e F 0 such t h a t  for a prescr ibed  s > 0 

Plll-/01J< . 
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:By (1.51) 

I10 (o) l -> 11 (o) - I11 (o) - 1o (o) 1 > 1 - ~, (4.35) 

and m o r e o v e r  we have  

I l i0 o <~'tl -~ III1 o <~, I1 + II ( I , - 1o )  o <~'11-~ ~ i1<~' tl. (4.36) 

The Fourier  t rans form f0 (~) vanishes outside a certain compac t  set C. Let  us put  

.[ I fo (~ , ) ld~ :  B <  oo. 

Since the Definitions 4.31 or 4.32, respectively,  are assumed to be satisfied for 

x 0 = o, there  exists an e lement  a ' E  A 1 such t h a t  if ~ C C 

IIe(~, - ~ ) - ~ 3 o ~ ' 1 1 <  ~ l l a  II. (4.37) 

Then, by  L e m m a  4.22 there  exists a linear combina t ion  of t ranslat ions 

~ C  v (X~ - -  " a , X,,)  �9 
1 

where ~,~ E C, satisfying ~ G =/0  (o), 
1 

and 

I I /0oa' - -  ~c,(x, -~,,) oa ' l l<~l l~ ' l l  
1 

( 4 . 3 s )  

(4.39) 

The formulae (4.38) and (4.37) give 

n 

III0 o ~ ' -  ~c,,~'ll < ,~ LI~'II + 4 B  - - " l l a ' l l ,  

i.e. together  with (4.39) 

II/0 o,~ ' - /0(o) 'a ' l l  < 2,~ I1~' II. 

And combining this inequal i ty  and (4.36) we obta in  

I/o(o) I. lla' II < 3 ~ II a' It, 

which is cont radic tory  to (4.35) since we can assume s< �88  
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4. The narrow topology 

The relation between our  spectral definitions in this chapter  and our original 

definition is essentially the same as the relation between the Beurling definition in [2] 

and the definition which he used in [5]. This will appear  from the following dis- 

cussion. 

Let  15(5)be a funct ion of the kind used in Definition 2.11. i b ( - 5 ) i s  a funct ion 

with the same properties. We form the space F { ~ ( - 5 ) }  and let A be the corre- 

sponding space of linear functionals in the sense of 3.1 2 ~ Then A is isomorphic to 

the following space of functions d(5) on G. 

d(5) is defined, finite and measurable a. e. on ~ and 

(5) 
II d ry ) I I  = sup. ess.% (5) 

The linear t ransformat ion / o  d of the element d (5) is the ordinary  convolution 

l o ,~ - .[ ,~ (5 - & )  [ ( & )  d & ,  

and the translat ion by  (x, 50) is the ordinary  translat ion 

(x, 50) o d = ~ (5 + 5o), 

which exists for every element. 

Given / q F {/~ ( - 5)}, we can for every e > 0 and every compact  set C c ~ find a 

funct ion /o E Fo, such tha t  

II (x, ~). ( / -  10)II < 

for every 5 E C. The functions /0 (x) have, however, the proper ty  tha t  

II [(~, 5) - (x, 50 ) ] . / 0  II 

is a continuous funct ion of 5 for every 50. Thus the same is t rue for the function /(x). 

Hence we m a y  conclude tha t  for every element of the form / o  d the function 

II [(x, 5 ) -  (x, 50)] o (1 o ~)II 

is continuous, and thus  by  Theorem 4.12 B, using the fact  t ha t  A is complete, we 

conclude tha t  / o d E A 1. 

By  definition every element in A1 can be approximated  arbitrari ly closely by 

functions /0 o d, where ]0 E F 0. Thus it is a limit of continuous functions and hence 
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it is a continuous funct ion itself. Therefore, A 1 consists by  Theorem 4.12 of all func- 

tions, equivalent to continuous functions d (~), for which 

sup 

is continuous at  20 = 6. 

I n  the case when /~ (~) is bounded,  the space is the space of all measurable and 

bounded functions, and A1 is then the subspace, consisting of all functions which are 

equivalent to uni formly  continuous functions. 

Let  us now make the extra  assumption tha t  ~ ( ~ ) i s  continuous and satisfies 

~ ( 6 ) = 1 .  The characters (x, ~) belong to the  space and since we assume {0(~)>_1, 

we have 

II (x,  )II = 1. (4.41) 

Now we introduce a new topology in the  space, the narrow topology, by  choosing 

as a neighborhood base of an element d o the subspaces of elements d for which 

sup + I II lt-II oll I< 

where e is an arb i t rary  positive number  and C an a rb i t ra ry  compact  subset of G. 

We can then prove the following two theorems. 

T H E O R E M  4.41. Aa consists o[ the points x o [or which (xo, ~) is included in the 

narrow closure o[ the class o/ /unctions o/ the [orm / o  d. 

T n E O R E ~  4.42. I[ d e a l ,  then Aa consists o/ the points x o ]or which (xo,~) is 

included in the narrow closure o] the class o/ linear combinations o/ translations 

1 

REMARk: .  The narrow topology was introduced by  Beurling [2] in the space 

of bounded, uniformly continuous functions on R, and he proved tha t  the narrow 

closure of the class of linear combinat ions of translat ions of a given function always 

contains a character.  His a rguments  m a y  as well be used to prove tha t  the defini- 

tions of spectrum in [2] and [5] coincide (cf. [5] p. 225), which is the same as the 

t ru th  of Theorem 4.42 for t ha t  part icular  case. 

The sets of points x 0 for which the corresponding characters (x0, ~) are included 

in the narrow closure of the spaces ment ioned in the theorems, are sets which are 

very  closely related to the spectral sets A '  " and Aa .  The fact  t ha t  these sets by  

Theorem 4.31 coincide with A~ makes it possible for us to prove the above theorems. 
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P g O O E  OF T H E O R E M  4.41 A ~ D  T H E O R E M  4.42. The two proofs will only  

differ  in the  respect  t ha t  d I in the  f irst  case denotes  a funct ion  of the  form / o  d, 
in the  second case a l inear  combina t ion  of the  t r ans la t ions  of d, which then  is supposed  

to belong A 1. In  any  case d 1 E A t ,  and  we m a y  suppose  t h a t  the  funct ion  is con- 

t inuous.  

exis ts  a funct ion / wi th  /(x0)=~0 such t h a t  / o d - 0 .  Hence  If  x o q A a  there  

/odl=O, i.e. 

for every  d 1. 

would have  

f dl ( - 2) t (2) d 2 = 0 
- o 0  

If  (Xo, 2) were included in the  nar row closure of the  funct ions  d 1 we 

oo 

/(Xo) = f (x o, - ~ )  f (~)  d ~ = 0 ,  
oo 

i.e. a cont radic t ion .  

Thus we have  only  to  show t h a t  if x 0 E Aa,  then  (x0,2) is inc luded in the  na r row 

closure of the  e lements  d 1. We app ly  Theorem 4.31 which shows t h a t  there  exists  for 

every  e > 0  and  every  compac t  set  C a funct ion d 1 such t h a t  if 20 r 

II dl (2 § 20) (x0, 20). dl (2)II < ~ II dx II. (4.42) 

We shall modi fy  th is  s t a t ement .  There  exists  of course a po in t  21 such t h a t  

1 
I dl al )  l > ~ (21) 1 + ~  II dl II. (443) 

The funct ion 

1 ~ d e (2 )  - dl (~ § 21) 
dl (21) 

is also of the  t y p e  d I. I t  satisfies 

d 2 (6) = 1, (4.44) 

and  using (2.12) and  (4.43) i t  is easi ly seen t h a t  

1 _< II 6 (2)lI-< i + e. (4.4~) 

F u r t h e r m o r e  we ge t  from (2.12), (4.42) and  (4.43) 

I[ d~ (2 + 20) - (x o, 20) d 2 (2)II < e (1 + e) 

for 20 E C, i.e. b y  (4.44) 

I d2 (20) - (Xo, 20)[ < e (1 + s). (4.46) 
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If we finally combine (4.41), (4.45) and (4.46) we obtain 

sup I d~ ( 2 o ) -  (Xo, 2o) 1 + III d~ II - II (Xo, 2)II1< ~ (2 + ~). 

Since e was chosen arbitrarily and ~(2) is bounded in the compact set C, this shows 

that  we may find a function d 1 in any neighborhood of (x0, ~), i.e. (x0, 2)belongs to 

the narrow closure of the space of the functions d 1. 

We shall illustrate the results in this chapter by means of another example. 

Let A be a Banach space and let us have a strongly continuous homomorphism 

(i.e. a representation) of G onto a group of linear bounded transformations of A into 

itself. (Cf. L. 32 A.) We let T~ denote the transformation which corresponds to 2 and 

assume that  for every 2 

log II T=~ II 
n 2 < ~ .  1 

Since apparently 

the space F{IIT~II} (Definition 2.11) is of type F. Using the same technique as in 

the proof of Theorem 4.12 B (cf. also L. 32 B) it is possible to prove that  the group 

of transformations can be extended to an algebra of the following kind: 

There is an algebra o/ trans[ormations o[ A o[ the kind described in 3.1, with 

F = 2' {IITi II} and such that ]or every 2 and a T~ a coincides wi th  the translation (x, 2) o a. 

We have moreover A 1 = A ,  and this is by the way important in the proof of the 

above statement, since it shows that  every a can be approximated arbitrarily closely 

by elements [ o a, [E ~{11T~ ]1}, and this has as a result that  Assumption I I  is ful- 

filled. 

Therefore the whole spectral theory may be applied and owing to Theorem 4.31 

we have now a possibility to express the definition of the spectrum in terms of the 

"translations" T~. In order to get a briefer formulation let us say that  a subclass 

A 0 of A contains approximate eigenelements corresponding to x 0 if for every e >  0 

and every compact set C c ~ it contains an element a' such that  

II (T~ - (~o, 2 ) , / )  a' II < ~ II a' li 

for every 2 E 0, where I denotes the identical transformation. 

yields : 

4"~--563802. Acta mathematica. 96. Imlorim6 le 3 m a i  1956. 

Then Definition 4.32 
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xo E Aa i /  and only i f  the linear mani/old spanned by the translations o / a  contains 

approximate eigenelements corresponding to x o. 

And the fundamen ta l  Theorem 3.21 A shows tha t  i /  a~:O, then we can always 

/ ind a point  x o with this property. 
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