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The study of closed (periodic) geodesics has a long and rich history. After Fet and
Lyusternik [2] in 1951 proved that any compact riemannian manifold has at least one
closed geodesic, the most outstanding problem has been whether such a manifold has
actually infinitely many distinct closed geodesics. Here closed geodesics are always
understood to be non-constant, and two geodesics are said to be distincet if one is not a
reparametrization of the other. No real progress was made untill 1969 when Gromoll and
Meyer [7] obtained the following celebrated result.

THEOREM. Let M be a compact connected and simply connected riemannian manifold.
Then M has infinitely many closed geodesics if the sequence of Betti nuwmbers for the (rational)

homology of the space of all maps St—M 1is unbounded.

Here a map is always understood to be continuous and the space of maps S~ M is
endowed with the compact-open (uniform) topology. Recently Sullivan and Vigué [21]
showed that the topological condition on M in the above theorem is satisfied if and only
if the (rational) cohomology ring of M is not generated by one element.

Just very recently we have received the second revised and enlarged edition of a
manuseript to a monograph on closed geodesics by W. Klingenberg [13]. In that
manuscript a proof for the existence of infinitely many closed geodesies on any 1-connected
compact riemannian manifold is offered. The proof involves new methods and ideas and
is very complicated.

A related but more general theory than that of closed geodesics is the one of isometry-
invariant geodesics developed by the first named author in [8] and [9]. A non-constant
geodesic ¢: R—M is said to be invariant under an isometry A: M —M if A(c(t) =c{t+1)
for all t€R. Clearly an 4-invariant geodesic with A =id,, is simply a closed geodesic and
vice versa. In contrast to the case of closed geodesics, there are examples of isometries
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which have no invariant geodesics (e.g. rotation on a flat torus). However, as a generali-
zation of the theorem by Fet and Lyusternik, any isometry 4 which is homotopic to
idy; has invariant geodesics [8]. Furthermore, there are isometries (even homotopic to
the identity) which have no more than one invariant geodesic (e.g. rotation on the round
sphere). As a main theorem of this paper we shall prove the following generalization of the

Gromoll-Meyer theorem.

MaIx THEOREM. Let M be a compact, 1-connected riemannian manifold and let
f: M—M be an isometry of finite order. Then there are infinitely many f-invariant geodesics
on M if the sequence of Betti numbers for the homology (any field as coefficients) of the space
of all maps o: [0, 1] M with o(1)=f(c(0)) is unbounded.

Note that any f-invariant geodesic is closed since f is of finite order. Furthermore,
since the isometry group I(M) of M is a compact Lie group, we have that the subgroup
consisting of isometries with finite order is dense in I(M). The theorem was announced in
[12] and proved in particular cases in [10], [22] and [23].

In Grove, Halperin and Vigué [11] a necessary and sufficient condition is given (in terms
of the action of f on the (rational) homotopy groups of M) in order for the space
o: [0, 1]--M with f(o(0)) =0(1) to have an unbounded sequence of (rational) Betti numbers.

In dealing with isometry-invariant geodesics we apply the “modern” calculus of
variations in the large i.e. critical point theory on infinite dimensional manifolds of maps.
The A-invariant geodesics on M are precisely the critical points for the energy integral
E4 (with positive energy) on a suitable space of “A-invariant curves” on M; A(M, A).
Now, Morse theory provides information about existence and number of critical points for
E* in terms of the topology of A(M, A). This, however, does not immeditately give in-
formation about the number of distinct 4-invariant geodesics. For each closed A-invariant
geodesic all its multiple covers are also A-invariant, but no such two are of course
distinet. As in the Gromoll-Meyer proof the theorem follows if for each closed A-invariant
geodesic, the corresponding tower of critical points (orbits) in A(M, 4) contributes to the
homology of A(M, 4) with at most a bounded amount. We are able to show this when 4
is of finite order. The proof makes use of equivariant degenerate Morse theory as developed
by Gromoll and Meyer [6], [7] and a rather delicate study of indices and nullities related
to the work of Bott [1]. In the special case where all the critical points (orbits) are non-
degenerate i.e. all nullities are zero, the proof becomes much simpler and we need not
assume that A is of finite order (cf. the discussion at the end of the paper).

We refer to [5], [3] and [18] for basic facts and tools in riemannian geometry,

geometry of path-spaces and algebraic topology.
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1. Preliminaries

Throughout the paper (M, (-, ->) shall denote a connected, compact riemannian
manifold and f: M —M an isometry of finite order s€Z™ i.e. fF=idy. Let A(M, f) be the
Hilbert manifold consisting of all absolutely continuous maps o: R—M with locally square
integrable velocity field ¢: R—~TM and with o(t-+1)=f(c(t)) for all ¢€R. The tangent
space to A(M, f) at o consists of all absolutely continuous vector fields X: R—7TM along
o with locally square integrable covariant derivative X' and with X(t +1) = f«(X(¢)), where
fo: TM—TM denotes the differential of f. The restriction map o—>c¢|[0, 1] identifies
A(M, ) with the manifold Agy(M) introduced in [8]. A(M, f) caries a natural complete
riemannian metric {-, -, induced from the metric on M. If X and Y are tangent vectors

to A(M, f) at ¢ then
<X: Y>1 :<X? Y>0+<X/= YI>0’

where (X, Y)o= [¢<X(#), Y(t)>dt is the L2-inner product.
The critical points for the energy integral E”: A(M, f)—R defined by

Bl(a) = 6, 6,

are precisely the geodesics ¢: R—M with c¢(t-+1)=f(c(t)), i.e. either closed f-invariant
geodesics or a constant belonging to the fixed point set Fix (f) of f. Furthermore, E”
satisfies the important Palais-Smale condition (C) which is necessary in order to apply
critical point theory (see [8]).

The R-action on the parameter induces a continuous §'=R/s- Z-action by isometries on
A(M, ) under which E’ is clearly invariant [9]. Orbits of critical points with isotropy
group 8! correspond to fixed points of f, whereas orbits of critical points with finite cyclic
isotropy group are embedded critical circles corresponding to oriented (unparametrized)
f-invariant geodesics. By the index A(c, f) and nullity »(c, f) of a critical point ¢ for E' in
A(M, f) we mean the index and nullity of the orbit §'-¢ as a critical submanifold. The

Hessian of B at a critical point ¢ is given by
H(E')(X, Y) =<(X', Y')y—<{R(X, ¢)¢, Yy,

where R denotes the riemannian curvature tensor of M. It follows that the selfadjoint

operator S defined by
H(E) (X, Y)=<(8X, Y

admits a decomposition §=4d 4k, where k is given by

X, YD, = <X +R(X, 6)é, Y.
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Since the inclusion of the Sobolev space L? into L? is compact so is k. In particular the
index and nullity of ¢ are finite. Furthermore, the eigenvectors X of § with eigenvalue

A are smooth, being solutions to the elliptic differential equation
1-)X"+R(X,é)6+AX =0.

We conclude this paragraph by noting that H(E’) restricted to the dense subspace of all

smooth “‘f-invariant” vector fields along ¢ may be written as
H(Ef) (X: Y) = <LX7 Y>0,
where L is an essentially selfadjoint elliptic differential operator defined by

LX = — X"~ R(X, é)é.

2. Index and nullity

In this paragraph we shall study the sequences of indices and nullities of a tower of
critical orbits determined by one f-invariant geodesic. In order to do this we extend our
domain of study so as to contain the spaces A (Fix (f*), f*) for all » and m. Note that
Fix (f*) is a (collection of) closed totally geodesic submanifold(s) of M and that
™ (Fix (/) =Fix (f*). A (Fix (f*), ™) is of course non-empty only if /™ preserves a compo-
nent of Fix (f*).

Let y be an f-invariant geodesic, fixed throughout this paragraph. The following
explicit expression for all the f-invariant geodesics with the same orientation as y and
geometrically coinciding with y will be very important for us.

Let c€A(M, f) be a critical point of smallest E’-value such that ¢ and y are equal up to
a positive change in parameter. Then ¢ is periodic of fundamental period s/m for some
positive inter m <s. Now, s/m=sy/m, where s, and m, are relatively prime positive
integers. Then s,€Z+ is the smallest positive integer with ¢(R)<Fix (f*) and f “rotates”
¢ by the fraction my/s, of its fundamental period. Since (s, my) =1 we can find integers n,
and kg such that mgn,=1+s5k;. If we set h=f" and define ¢*: R—M for any uw€R by
c*(t) =c(u-t) for all t€R, then é=c'™ is an h-invariant geodesic with fundamental period
sy and ¢(R)<TFix (f*). Furthermore, for any pair of integers m and r with msy+rm,==0,
¢me+™ is f-invariant and the set of all f-invariant geodesics coinciding with ¢ (and
hence ) up to a positive change of parameter iz given by the tower of Sl.orbits
Q- gretme g € Z+U {0}
In order to derive the desired formulas for A(c™+™ f) and »(¢™+™, f) we need

formulas for the index and nullity of é™+™ in A(M, ') for all 7.
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Fix m and r and set M =ms,+rm;. Let W; be the vector space of all C® vector fields

along ¢ which are orthogonal to é. From §1 we see that

A&, f)= 3 dim {X €V;|LX = uX, X(t + ) = f,(X(t)) ViER}
(2.1) =0
o&, ) = dim {X € Us| LX = 0, X(t+ m) = fu(X(t)) VIER}.

Let us equivalently consider the complexification V; = % ®C of ¥z and let L and f,, denote
also the C-linear extensions of I: W¥; > UW; and f,: TM-—>TM respectively. For each real
number g, any non-zero integer m and every complex number w of absolute value 1, we

introduce the complex vector space
S, m, why] ={X €V |LX =uX, X(t+m) =k (X)) VIER}.
Note that from (2.1)

(2.2) ME® Y= zodimcsg{,u, , fa »(E™, f,) = dime 85[0, M, £, ).
I3

In the next lemma we reduce the study of Szlu, s, f,] to subspaces with boundary
conditions imposed only at 1. Here we may consider £ also as a linear map of V; since
¢ is fixed by f*.

LevMwma 2.3. For all m, r€Z with msy+rmy==0 and any u€R

Szlp. i, fil= ® @ @ Si{p, 1, 0k ]nker(fy —2),

aSiSo=1 M=o 2M=a—1

where m =ms,+rmy and @ =mng+ 1k,

Proof. We first observe that

8z, m, 1< Sz, - s, By *]= D Selp, 1, oh].
om-8§=1

The first inclusion is trivial since f*=1d and the second is essentially the same as Theorem

I in Bott [1]. Every Y €8;{u, s, k7 °] admits a unique expansion

Y= 3 wY,, with ¥,€8;{u,1, wh,]
w8 -1
given by
(s -1
Yolt) =1/|ms! - 0 R Y Y (E+q—1)).
0

q=
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Since for X €S;[u, @, f,] clearly X, €85(u, m, fi] we get

Sz [u, M, fi] = gs}_lﬁ’z [1, 1, 0h, ] 0 Ss(p, m, fi].

A straightforward computation shows that
Sz[u, 1, wh,] 0 Sz[u, , fi]l= Ss[u, 1, wh,] N ker (7 — ™)

and when %0 an expansion argument as above for
_ 17 f-1
Y€ker (2" — o 1) with Y,=1/|7]- > 2z % (Y)€ ker (f2 —2)
q=0

where z ranges over #i-roots of a~'=w ", proves that

Szlu. L, wh ] nker (f§" — o) = @ S;[u, 1, wh] nker (f —2)

In the case #=0 a direct computation shows that the above equality holds. Thus

Selpm, fil= @ © @ Silp, 1, why] D ker (i —2)
aS=1 wM=a 2= !
and we are through because every z with ker (f —z)=={0} satisfies 2® =1.
For each complex number z of absolute value 1, we define non-negative integer valued
functions A* and N? on the unit circle Stc € by
A(w)= 2 dime{Sz[p, 1, oh,] 0 ker (fy —2)}

#<0
and

N¥(w)= dim¢{S:[0, 1, wh,] 0 ker (fg —2)}

for all w €8, From (2.2) and Lemma 2.3 we obtain the desired formulas

Mgt fy= 3 2. > A(w)
as/So=1 @MSe+TMo=g 2MNg+TKo=a—1
(2.4)
(e f) = 2 2 2 M)

aS/So=1 @wMSo+TMo=q MNy+TKp=g—1

Note that A* and N? are identically zero unless ker (fy —2)=={0}. In particular there
are only finitely many non-zero functions A* and N° We obtain further properties of
these functions from the following observation. The complexification of the normal bundle
éR)* to &R) in M admits a Whitney sum decomposition into “‘eigenbundles” for f con-

sidered as a bundle map. If &R)*(2) denotes the eigenbundle for fy with the eigenvalue z,
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and if V;(2)< V5 is the complex vector fields along ¢ in &(R)*(z) then clearly ker (f3 —z) =
V3 (2). Furthermore L preserves Vz(z) since it commutes with f?. Let L* be the restriction
of L to Vz(z), then

S3lu, 1, why] N ker (72 —z) = {X € Vz(2) | L*X = pX, X(t+1) = 0hy(X(0)).

If we identify A(M, k) in the canonical way with L}-sections of the mapping torus bundle
Mx I=MxR/Z>R|Z=8' of h, then the boundary condition X(t-+1)=wh.(X()) is
exchanged with X(t+1)=wX(t). Here Z acts on M xR by (n, (p, §))—>(A"(p), t +n) (see
{10]). From this we see that A* and N? are functions of the type A and N introduced
in Bott [1]. In particular A® and N* have the following important properties.

(2.5) For each z, N*(w)=0 except for at most 2 dim éR)*(z) (<2 (dim M —1)) points,

the so called Poincaré points of L7

(2.6) For each z, A*is locally constant except possibly at the Poincaré points of L7,

For each z, the inequality
(2.7) lim A%(w) = A*(w,)

W->W,

holds for any w,.

Remark. The above properties for A* and N? as well as (2.1) can also be derived by
the classical methods of Morse involving quadratic forms on finite dimensional approxima-
tions of our spaces (se in particular Theorem IV, 3.1, IV 3.2 and III 2.3 in {15] and
compare with [22]).

We should also like to remark that the Poincaré points of L* can be described by
means of the geodesic flow in the unit tangent bundle of M x,, I. Let P; denote the differen-
tial of the Poincaré map for the closed orbit t-—>(é(t), 9/at)/||-|| of the geodesic flow for
M x, 1. If we consider f* as an isometry on M x,T (identity on I) then P; commutes
with f,. Hence, (the complexification of) P; preserves the eigenspaces of f3,. The Poincaré
points of L7 can now be described as the set of eigenvalues of norm 1 for P; restricted to the
z-eigenspace for f3,. Note that in the horizontal and vertical splitting of the double tangent
bundle £z, =(f2, f3)-

We are now in position to derive a growth estimate for the sequence

{A(C-msH.mn’ f)}rn eZ* y(o)

analogous to Lemma 1 in [7].
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LemMMaA 2.8. Either A¢™+™, f)=0 for all m€Z+U {0} or there exist numbers ¢, a ER*

such that
@™, f) — AE™MRT™, ) 2 (my — my) Sy e~ a

for all integers m,>=my>0.

Proof. Fix a z with ker (f2—2)={0}, in particular 27 =1. Let 0 <g,(2) <... <gr(2) <1
be the Poincaré exponents with respect to z i.e. ¢®®®, . ¢#™r=® are the Poincaré
points of L? (see (2.5)). Set g4(2) =0, 0r+1(2) =1, and let a;(z) =A%(w) for w=€"** with
«€lo;1(2), 0;(2)[ and 1<j<r(z)+1; compare (2.6). In case g,;(z)=1 set @rz+1(z)=0.
By simple angle comparison we get

r(@)+1

2 Nw)= =21 [(my 59+ mo) (04(2) — 05-1(2)) — 1] a5(2)

@M1Sat My =gy

—mng—Ke
ki

with oy =2 and

r(2)+1

2 No)< =21 [(mq 80+ mo) (0)(2) — 0s-1(2)) + 1] a4(2)

wMaSo+Mo—gy

with ay=2"™""%_ Thus from (2.4) we get

r)+1

AEmsr, fy— MEm T )2 2 121 ((my — m) 85(0s(2) — @5-1(2)) — 2) 44(2)
Fi =

Now, if g™+, {}4=0 for some m, then by {2.4), (2.6) and (2.7) there is a 2y and a j, such

that g;,_1(20) <g;,(25) and a;,(z;) >0. Hence

l(émls”mo: f) - l(cmzswmo’ f) = (ml - mz) So €@,
r&+1

where e= (o) ~ i) fze) snd a=3 3 2a(z)
R J=
The next lemma is a crucial generalization of Lemma 2 in [7]. Before stating it, note
that if ¢ is an f-invariant geodesic fixed by f™ for some m, then ¢ is also critical for the
restriction of E’ to A (Fix (f), f). We denote the nullity of ¢ in A (Fix (f"), f) by
»(c, f{Fix (7).

LeMMA 2.9. There exist positive integers ky, ..., k, and sequences {m}}, 1>0,7=1, ..., q
such that the numbers mik; are mutually distinct, {mik;} ={ms,+mg|m€Z+U {0}} and

o @ =@, 1 Fix () = w7 Fix (),
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where s} is the mazimal integer relatively prime to m} and dividing s/sy, and where r is an integer

with the property rmi=1 mod s,s.

Proof. For each [€{1, ..., s/s,}, each o =ez"Iv with (u,v)=1 and v|s[s, let Pf be the
collection of Poincaré points for L? with 2'=a? i.e.

Pi={o| 2 N'(w)>0}

gt =a™

and let
QF = {g€Z+|3bEL* sb. (b, qv) =1, en’iwEPF}.

@= U ¢ and @=QU..UQyV{l}

S/So=1

If we set

then @ is a finite set by (2.5). Note that if »(¢™+™, f)=£0 for some m€Z+U {0}, then by
(2.4) there exist I, a=ex" and w=e>"ie with (p, ¢)=(u, v)=1 such that w™+™ =«
and o €Pf. The property w™ +™ =« implies that v divides ¢ i.e. ¢/vEQF.

For each subset D<@, let k(D) denote the least common multiple of all the element in
D. Choose distinct numbers £y, ..., k&, such that {k,, ..., k}={k(D)[D<@Q}. For each
j€{1, ...,t} we select from the sequence mk;, m€Z+ the greatest subsequence jk; with
the property that whenever g€Q and g¢|m}k then g|k;. Then the numbers m;k; are
mutually distinet and {mjk;|i>0, j=1, ..., t}=Z+ Let now {k,, ..., & } be the maximal
subset of {k,, ..., k} such that {mj k; |¢>0}n {msy-+my|m€EZ+U {0}}+D for every r€
{1, ..., ¢}. Choose subsequences {mi}, :>0, r€{1, ..., ¢} from the sequences {mj’r} so that
{mk; |1>0, r€{1, ..., q}} ={msy+m,|mEZ+Y {0}}. If we set k,=£;,, then we claim that
the positive integers ki, ..., k, and sequences {mj}, ¢>0, j=1,...,q have the required
properties.

Let us fix a k; and an m}. Then there is a unique integer m such that ms, -+ mq =m}k;.
Let I€{1, ..., s/s,} be determined by ! =mny-+ ko mod s/s,. Suppose that for some ¢ = e2ni"/v
with (u, v)=1
> > N¥w)=+0

i
g g

. . : . mik, j
ie. there is an w=e*""e€Pf with (b, qv)=1, so that v '/=c. Hence m; and » are

relatively prime. Thus from (2.4) we get
mik
W =2 3 2 M),
ocs;=1 wm;kLa =t

where s} is the maximal integer which satisfies (s}, m{)=1 and s}|s/s,. Let s{*-...-sp» be

the decomposition of s/s,s! into prime factors. From mjk;n,=Is,+1 mod s/s, and sy, ...,
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s,|m} we see that I and s/s,si are relatively prime. Thus if z satisfies 2¥% =1 and 2' =1
i i i
where a7 =1 then 27=1. In the above expression for v(émf'kf, f) this means that the sum

i
over z is taken only for z satisfying ker (f2 -z)=={0} and 27=1 i.e.
mk mik, . sos?
vE ", fy=ve ", f|Fix (f 7).

Since (sy, mjk;)=1 and (s}, mj)=1 we can pick an integer » so that rm;=1 mod s,s].

k3
Therefore for each « with «7=1 we have

mik, .
{weP}lw ’k’=a}={w€P§‘|wk’=a’}
and hence
mzk Sos?
we " fFix ()= 3 3 3 W)

i
s k;
al=1 @ J=ar zlog-1

On the other hand k;=(rm)s,+7rmy mod s,si and Ir = (rm)n,+7rky mod s/s,. Thus we can
find an integer » so that k; =ns, -+ rmy and nny +rky,=lr mod s. Therefore & EAFix (™), f)

and from (2.4) we have

W FIFx =3 S 3 Mo

$; ki
al=1 wi=a 2=

Since (r, si)=1 we are done.

3. Local and characteristic invariants

In finite dimensions Morse [15] associated to any isolated critical point a local homo-
logical invariant. His construction was modified and generalized to infinite dimensions by
Gromoll and Meyer [6], in the case where the involved function satisfies condition (C)
and the hessian operator is of the form §=¢d +k, where k is a compact operator (see § 1).

Consider an isolated critical orbit 8*-¢ in A(M, f). The St-action on A(M, f) induces
an isometric S'-action on the normal bundle ¥ of S-c. Let ¥': #—A(M, f) be an arbitrary
equivariant smooth map which is the identity on the zero-section and of maximal rank
there. The image by ¥ of a sufficiently small discbundle of 1 defines an equivariant tubular
neighbourhood D=8'-D, of S'-¢, where D, is the fiber over ¢. By the so called splitting
lemma of Gromoll and Meyer [6] any function with an isolated critical point (and which
has the above properties) splits locally in a non-degenerate part and a completely
degenerate part. From an orbit version of that lemma it follows that for D, sufficiently
small B’ restricted to D, satisfies condition (') and has only ¢ as a critical point (compare
[7] and [22]).
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We can now define the local invariant for E’|D, at ¢. For >0 we let ds: D,~R be

given by
ds(0) = 26(0/5)* E(0) + | ¥ o)}

for all 0€D,, where E=E'|D,— E’(c). Then for é sufficiently small
W) = B[ -0, 8)Nd5" (o0, 17+ (g[B)2], W(8)~ = E-Y(—~0)N W (0)
is a pair of so called admissible regions and
H(E, ) = Hy (W (0), WO))

is a well defined local homological invariant of ¢ (see [6]; for simplicity we have chosen
0; and g, there to be g, =p and py=(3/5)-p respectively). Here we take homology with
coefficients in an arbitrary field. If we set W(5) =S W (d) and W(d)~=S'- W (4)~ then

for ¢ sufficiently small
HE, 8'-0) = Hy(W(5), W(d))

is a well defined local homological invariant of the orbit S'-¢ (see also Klingenberg [13]
for a different approach). The crucial property of this invariant is contained in the
following lemma, which is proved by deformation and excision arguments exactly as

Lemma 4 in Gromoll and Meyer [7].

Lremma 3.1. If b is the only critical value of E7 in [b—eg, b+e] for some £>0 and if

St-cq, ..., St-c, are the only critical orbits with E'-value b then

H (AL P, AQL ) = © BB, S -,
=1
where as usual A(M, ))*=(E")y(— oo, a).

Observe now that (W(3), W(d)~) can be considered as a pair of bundles over the circle
S with fiber (W,(0), W.(0)~). If we write S* as the union of two intervals and apply the
relative Mayer-Vietoris sequence [18] to the corresponding two pairs of trivial bundles,

we get
dim W (B, St-c) <2 (dim Y (B, o) +dim H,_, (B, ¢))

for all k. Hence it is sufficient to study the loecal invariants H(E’, c).
In Gromoll and Meyer [6] there was also introduced a characteristic invariant H°,
which will play a very important role in this paper. This invariant may be defined as

the local invariant of the degenerate part of the function. Since v(c, f) <2 (dim M —1)
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for any critical point c€ A(M, f) we get in particular that the characteristic invariant of
E’| D, at ¢ satisfies

(3.2) WAE, c)=0 for k>2dim M —-1.
Furthermore, according to the shifting theorem of [6]
Wi s B, ¢)= HYUE, ©) for all k,

where A=A(c, f). In particular, if we set

Bic, ) =dim (B, S'-¢) and Bi(c, f) = dim HLE", )
then

(3.3) By(e, ) <2(Bi-i(c, )+ Bi-aale, )

for all k, when A=A(c, f) as above. We will use B,(c) instead of B,(c, f) when there is no
danger of confusion.
For the behavior of characteristic invariants we recall also the following very

useful lemma of [6].

LeMMma 3.4. Suppose ¢ is an 1solated critical point for E: A—=R and let A be a closed
Hilbert submanifold of A through c. If grad E restricted to A is tangent to A and if the nll
space of the Hessian of E at ¢ is contained in TCA then (R, c):?lO(E[A, c).

From this lemma we shall now derive the following two impotant properties for the

characteristic invariants of isometry-invariant geodesics.

ProrosiTION 3.5. Let N be a totally geodesic submanifold of M with f(N)=N. Let
c: R—N be an f-invarint geodesic such that S'-c is an isolated critical orbit in A(M, f). Then
H(E?, o) = H(B'| AN, f), ¢) if v(c, ) =v(c, f| N).

Proof. Since N is totally geodesic it is intuitively obvious that grad B’ is tangent
to the closed submanifold A(N, f) of A(M, f). In order to prove it we pick a 0 €A(N, f).
Since the set C®(N, f) of smooth f-invariant curves is dense in A(X, f) we can assume
that o is C®. Let X€T,A(M, f) be orthogonal to A(N, f). Then X is pointwise orthogonal
to NV because N is totally geodesic. Hence

AE(X) =<X', 65 = —<(X, 6> =0

gince ¢ is smooth and ¢’ is tangent to N.
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Let now &1- DY be an equivariant tubular neighbourhood of 8t-¢ in A(N, f) and let D
be an equivariant tubular neighbourhood of A(W, f) in A(M, f). Then D= D|S*- D7 isan
equivariant tubular neighbourhood of §*-¢in A(M, f) of the form S§*- D, where D, = D|DY.
Since grad B’ is tangent to A(N, f) we see from this that gard (E/| D,) restricted to DY is
tangent to Dy . Moreover, the null space of the Hessian of B’ | D, at ¢ consists of f-invariant
Jacobi fields orthogonal to ¢. From N totally geodesic in M and v(c, f) =w(c, f| N) it follows
that the above null space is contained in T,Df. Hence H(E’, c)=HYE'|A(N, f), ¢) by

Lemma 3.4 /

ProrosiTION 3.6. Assume that St-c is a critical orbit of E' such that S'-¢™ for some
m is an isolated critical orbit for B in A(M, f™). Then S'-c is also isolated and HO(E’, ¢) =
B, ™) if vle, f)=v(e™ 7).

Proof. By arguing on the mapping torus M x,I for f (compare the remark in §2)
this proposition follows from Theorem 3 in [7]. For the sake of completeness we

proceed as follows:

Let m: A{M, f)—A(M, f) be the iteration map defined by m(g) =¢™ forall s €A(M, f).

If we endow A(M, f™) with the following equivalent riemannian metric
<X: Y>1,m =<X’ Y>o+m_2<Xl, Y,>o

then m is an isometric embedding. Furthermore Eom=m?-E and hence Hc, f) =
(B |\ m(A M, ), ¢™.

Note that the action of f on M as well as the translation by m~— on R induces two
isometric Z-actions on A(M, f™). Moreover, m(A(M, f)) is exactly the submanifold of
A(M, f™) on which these two actions coincide. Since both actions leave B/ invariant
we see from this that grad E'" is tangent to m(A(M, f)). We can now argue as in Proposi-
tion 3.5 so as to obtain HO(E™|m(A(M, ), ¢™)=HU(E"™, ™.

Combining the above propositions with Lemma 2.9 we see in particular that there are
only finitely many characterisic invariants associated with a single (isolated tower of)

f-invariant geodesic(s).

4. Existence of infinitely many invariant geodesics

Let M be a compact, connected and simply connected riemannian manifold and let
A: M—M be an isometry. Then the Banach manifold C°M, A) of continuous curves
0: [0, 11> M satisfying o(1)=A(g(0)) with the compact-open topology is connected. Using
the evaluation fibration “at 0", %M, A)—~M with fiber the ordinary loop space Q (up
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to homotopy), it follows from Serre [17] that the Betti numbers b, (C%(M, 4))=
dim H,(C*(M, A)) are all finite. Hence our main theorem is a consequence of the next

theorem.

TaEOREM 4.1. Assume that M is a compact connected riemannian manifold and
that f: M—~M is an isometry of finite order. If there are at most finitely many f-invariant

geodesics on M, then the sequence b(CYM, 1)), k=2 dim M s bounded.

Proof. Since the inclusion A(M, fy< C¥M, f) is a homotopy equivalence [8] we may
just as well prove the theorem for A(M, f).

Suppose f has only finitely many invariant geodesics represented in A(M, f) by the
orbits St-ést™, .., St-¢™ ", meZ+U {0}, where ¢ are f'“invariant as in § 2. Since
all these orbits are isolated we can apply the results of the previous paragraphs. By Lemma
2.9, Proposition 3.5 and 3.6 there is a constant B>0 such that

Blersit™y< B forall k,i=1,..,r and m€Z+U{0}.

From this, (3.2), (3.3) and Lemma 2.8
B@®itmy<4B forall k,¢ and m

and the number of orbits with B(¢*i*™)=£0 is bounded by a constant C>0 for all
k>2dim M. Thus from Lemma 3.1 together with an exact sequence argument we get

(Morse inequalities) for all regular values 0 <a <b
b(AM, f)°, A(M, /)y <4BC for k>=2dim M.

For a sufficiently small @ >0, Fix (f)c A(M, f) is a strong deformation retract of A(M, f)*
[8]. Since furthermore dim Fix (f) <dim M we see that

byA(M, f)’) <4BC for k>2dim M

and all regular values b. Fix now a k>2 dim M and choose b so large that By(c) = By.,(¢)=0
for all critical orbits S!':-¢ with E’(c)>b. Then, again by Lemma 3.1 and an exact
sequence argument by (A(M, f)) =b(A(M, f)°). Hence sup {b(A(M,)|k>2dim M}<
4BC.

Note that if M is not simply connected then C°(M, f) is not connected and we can
very well have b,(CM, f)) = oo if k<2 dim M even in the case where f has only finitely
many invariant geodesics. This may happen if there is an f-invariant geodesic all of
whose iterates have index zero.

As an immediate application of our theorem and the Sullivan-Vigué theorem [21]

mentioned in the introduction we have:
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CoROLLARY 4.2. Let M be a compact, 1-connected manifold whose rational cohomology
ring s not generated by one element, and let f: M~M be a finite order smooth map which
is homotopic to id,,. Then there are infinitely many f-nvariant geodesics on M in any metric

for which f is an isometry.

Let us discuss the general case where 4: M — M is an arbitrary isometry. One might
still hope that the condition {by(A(M, 4))};>e unbounded would ensure the existence of
infinitely many A4-invariant geodesics.

Consider the example 4 =4, x 4, 82 x 8%~ 82 x 82, where 4, and A, are rotations
on the 2-sphere of constant curvature 1. A is clearly homotopic to idg, s and hence
A(S? % 82, A) has unbounded sequence of Betti numbers. From the geometry it is clear that
any such A has infinitely many invariant geodesics in the product metric on 8% x 82. Note
however, that if the ratio between the rotations of A, and A, is irrational, then A has
only four closed invariant geodesics. Hence as far as closed 4-invariant geodesics is con-
cerned our theorem seems to be optimal.

Note also that if in the above example 4, = A4, is an irrational rotation on S? then the
isometric St-action on S2%x S generated by A has oply finitely many (in fact five)
geodesic orbits.

In general it is true, that if 4 has a non-closed invariant geodesic then it has
uncountably many invariant geodesics (see [9]). Thus if A4 has only finitely many invariant
geodesics ¢, ..., ¢, then they must all be closed. Here again we are faced with the problem
of the iterates of each ¢;, 4 =1, ..., 7. Fix ¢ €{1, ..., #} and let ¢ be an A-invariant geodesic with
minimal E“-value having the same image as ¢;. Then the fundamental period of ¢ is & for
some «>1, and all the iterates of ¢ are described by ¢"**', m€Z+U {0}. Using a general
index theorem by Klingmann {14] together with Lemma 2.8 (in the special case f=id,,)
it is possible to derive a growth estimate for the sequence A(c™*", 4) m >0 exactly of the
type in Lemma 2.8 (see also [16]). Hence from our arguments in the proof of Theorem 4.1
we see that the main theorem holds for an arbitrary isometry if there are only finitely

many different characteristic invariants among H°(E4, ¢"**!

). As we observed, this follows
from Lemma 2.9, Proposition 3.5 and 3.6 in the case where A =f is of finite order, and it
seems to us that the general case will have to be treated in quite a different manner.

An interesting problem in connection with this paper is to find necessary and sufficient
conditions on 4 and on M for A(M, A) to have an unbounded sequence of Betti numbers.
Here one can assume that 4 = is of finite order. As mentioned in the introduction the
problem has been solved completely for rational coefficients in the case f=id) [21]. In

that case it is not difficult to find the so called minimal model for A(M, id,,), which
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contains all the information about the rational homotopy theory of the space (see [19],

(4],

[20], [21] and also [13]). The general case is more subtle and will be treated in

a subsequent paper by the first named author, S. Halperin and M. Vigué [11].
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