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Let f~=C*/E be an open set on the Riemann sphere C* and let to(Q, Y,z) be the 

harmonic measure of Y c E  with respect to 92, evaluated at z 6 Q. For fixed z E Q, 

to(Q, ", z) is a probability measure supported on 092. It can be defined by the require- 

ment that 

a(z) = f u dto(Q, ", z) 

for all continuous u: aQ--*R, where /~ is the Perron solution of the Dirichlet problem 

with boundary values u. We must assume here that E has positive capacity, but not that 

92 is regular for the Dirichlet problem. 

If zt and z2 belong to the same component of Q then the corresponding measures 

to(Q,., zl) and to(Q,., z2) are boundedly absolutely continuous to each other. Accord- 

ingly if f2 is a domain, then the possibility that to(Q, Y, z)= 1 (or 0) is independent of z, 

and a set Y such that to(Q, Y, z)= 1 is said to support harmonic measure. Recently there 

has been interest in the metric properties of such sets. Several types of results are 

known [B, C2, K-W, Makl, Mak2, Man, 0 ,  Po, Pr]; here we are concerned with a 

conjecture of 0ksendal [0] to the effect that there is always a support set with 

Hausdorff dimension ~<1. This has been proved in certain scale invariant cases by 

Carleson [C2], Manning [Man], Przytycki [Pr] and for general simply connected 

domains by Makarov [Makl]. Our first result is a proof for arbitrary domains. 

THEOREM 1. Let QcC* be a domain whose complement has positive capacity. 

Then there is a set F c a Q  with Hausdorff dimension <~ 1, such that to(Q, F, z) = 1 for 

z f Q .  
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Makarov actually proved more in the simply connected case, namely that if 

0: [0, ~ )~ [0 ,  ~) is an increasing function with lim,_~oO(t)/t=O, then there is a support 

set with Hausdorff he-measure zero. Subsequently Pommerenke [Po] observed that 

there is even a support set with o-finite one dimensional Hausdorff measure. These 

sharp results can also be extended to general domains by our method, but that requires 

additional technical work and will appear elsewhere. 

The proof of Theorem 1 is based on two observations, one coming from Makarov's 

work and the other from Carleson's. The starting point is that Markarov's proof works 

for somewhat more general domains than just simply connected ones. To fix ideas let 

us assume ~ is an exterior domain, i.e. f~=C*/E where E c C  is compact. Let 

8(z)=dist(z, E). We say f~ satisfies the capacity density condition if there is a fixed 

constant r/>0 such that 

(CDC) if z E f2 with 6(z) sufficiently small and if D=D(z, 26(z)) then 

oJ(Q ND, EnD,  z)>~rl. 

In other words Brownian motion started near ag2 has a definite probability of 

exiting ~ before moving twice the minimum possible distance. This type of "thick 

boundary" condition has been useful in various contexts, e.g. [Anc], [B-C], [J-M]. It is 

satisfied by any simply connected domain and Makarov's proof of Theorem 1 works 

with minor changes (replace the Riemann map by the universal covering map) on non- 

simply connected domains satisfying CDC. 

It may seem strange that a thick boundary condition would be useful in proving 

Theorem 1, which after all is trivial if the dimension of the boundary is ~<I. However, 

consider the following situation. Let z~ . . . . .  Zs2 be the vertices of a subdivision of the 

unit square into squares of side 1/N. For each zj, let DwD(z j, r~) be a small disc centered 

at zj, and let g2=C*/U Dj. By appropriate choices of the r i we can obtain a situation 

where each Dj has the same harmonic measure, ~o(~, Dj, ~ ) = N  -2. For Theorem 1 to be 

true in (a suitable inverted case of) this situation, the requirement that each Dj has the 

same harmonic measure must force E rj to be bounded independently of N. (Indeed, a 

simple argument with Wiener's test shows that rj must be very much smaller than N -2 

whenever zj- has distance less than ] to the boundary of the unit square.) This example 

was pointed out by L. Carleson and by A. O'Farrell. 

We did not succeed in modifying Makarov's ideas to cover this type of situation 

and used instead an idea from [C2], namely, the integration by parts formula 
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1 f OGloga_~_Gds=~,+ Z 
2x 3 ~ cm va(zp=o 

G(zj). (o.1) 

Here f2 is an exterior domain with smooth boundary, G is Green's function with pole at 

oo, n is the normal into Q, and y=limz_,| G(z)-loglz I is Robin's constant. The point is 

that the right side is explicitly bounded from below in terms of the diameter of C*/f2. 

If f2 is very non-simply connected, then G will have many critical points and the 

right side of (0. I) will be large. In [C2], this fact is used to show that for square Cantor 

sets E, harmonic measure for C*/E is supported on a set with dimension strictly less 

than 1. This is in contrast with Makarov's deep result in [Makl], that if Q is simply 

connected then any set with dimension less than 1 has harmonic measure zero. A 

modification of our method can be used to generalize Carleson's result to "Cantor- 

like" sets without a scale invariant structure; this will appear elsewhere. 

The remainder of this paper is the proof of Theorem 1. The proof we give is due to 

Lennart Carleson; our original argument was similar in spirit but used a different 

domain modification procedure and was much more complicated. We are grateful to 

Prof. Carleson for permission to use his argument and in a broader sense, for every- 

thing he has done for this subject. 

w 1. Modification of the domain: Preliminaries 

In this section we modify f~ to f2' so that on f2' the gradient of Green's function is 

bounded on a large set. This modification will be based on two different constructions, 

here called the disk construction and the annulus construction. Let Q be a dyadic 

square and assume En Q has positive capacity. We let A be a (small) positive constant 

and B be a large positive constant; the values of A and B will be fixed later. These 

values will depend on 6>0 when we prove Dim(to)< I +5. 

Disk construction. Assume first that I(Q)= 1 and E n Q has capacity C(Q). Replace 

EnQ by a disk centered at the center of Q and with radius r=C(Q) a. For arbitrary Q, 

we change scale to a square of sidelength 1, make the above construction, and scale 

back. 

Annulus construction. Let Q' be the closed square with sidelength I(Q')=BI(Q), 
with the same center as Q, and with sides parallel to the coordinate axes. Delete from E 

any point lying in Q'\Q.  
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After performing one of  these construct ions we obtain a new set E and a new 

domain f2, as well as a new harmonic  measure .  We keep,  however, the same notation. 

Our next task is to est imate harmonic  measure  on the new domain.  For  the annulus 

construct ion this is easy;  any part  of  E which remains  has its harmonic  measure  

increased. For  the disk construct ion the effects are less obvious.  The following two 

lemmas give the required est imates.  

LEMMA 1.1. Let F and G be closed sets, and let Q be a square with I(Q)=l/4. We 

suppose F c Q ,  distance(G, Q)~>I/2, and F has capacity e -y. Let g2 be the domain with 

a f t = F O G ,  and let co be the harmonic measure o f F  in if2. Define L to be the curve 

surrounding Q at distance 1/4 to Q. Then if zEL,  

1 co(z) 
1 + K ( G )  ? 

where K(G) is a constant depending only on G. 

Proof. Let  u(z) be the harmonic  measure  of  L for the domain f l '  between G and L. 

We shall prove that 

K(G)=O(u)=fflVu[2dxdy. 

Applying first Green ' s  formula,  then H a r n a c k ' s  inequality, and then Green ' s  formula  

again we obtain (n '= inward  normal in f l ' )  

c3co _--- 

J an an 

JL On 
- - ( -m)  --~n, dS (1.l)  

= mfn, iVu[ 2dxdy 

= mD(u), 

where m is the mean  value of  co over L. 

It is clear that D(u)<~constant and that we may assume 7 is large. Let  G(z, ~) be 
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Green's function (with pole at Q) for ~ = f 2 \ g 2 ' .  (~  is the part of f2 inside L.) Let v be 

the harmonic measure of F in ~ .  Then 

v(z)=~,fFG(Z,O)d~(o) 

where/~ is a positive measure of mass I~ull=l, and where y - y ' .  By Green's formula 

(n=inward normal in ~),  

1 O~o d s  = - ~  ds 
2:r On' On 

1 OWds 
2er v On 

= ~o ds (1 .2)  
an 

= -  c3v 1+ I f o ) - - d s  
~' 2zl Jr. On 

- I  
= (1 -o ) ( zo ) )  

7' 

for some zoEL. The last follows from the mean value theorem because 8v/an>O on L 

and 

1 fLc~v 1 
2n ~n ds Y' 

Combining (I.1) and (1.2) we see that 

mD(u) - 1 (1 - to(z0)), 
Y 

and the lemma now follows from Harnack's inequality. 

LEMMA 1.2. Let Fi and •1 and F2 and t)2 be as in Lemma 1.1 with G outside Q 

satisfying G=Of~j\Fj, j= I, 2. Let e -r' and e -y2 be the capacities o f  F 1 respectively F 2, 

and assume that Q satisfies the (B) annulus condition. Define L to be the circle with 

center equal to center of  Q and radius �88 Then given any e>0 there is a oalue B(e) so 

that tf (l+e)yi~<y2, B>~B(e), and if  tol(z) and to2(z) are the harmonic measures o f  any 

YcG, 
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( /)I(Z)~(. /)2(Z),  zEL, 

and hence outside L. 

Proof. Let R=~B and shrink the picture in the scale 1/R so that L becomes  the unit 

circle. Let Dj= U \ F j ,  j =  1,2 where U is the unit disk. Let  gj(z, e) be Green 's  function 

for Dj. The lemma follows from the estimate 

agl (Z, O) < ag2 an -~n (z,o), Izl = I, 10i = 1/2. (1.3) 

For assume that (1.3) holds but that 

(-D 1 (Z 0 ) (-O I (Z) 
- M a x  = 2 > 1 ,  

(-02(Zo) Izl = 1/2 602(Z) 

where [z01=l/2. By the maximum principle (2co2-coj>0 on Y), 

2~o2-~o1>0 on Izl=l. 

However, taking 0=z0 in (1.3), Green 's  theorem yields (co~=0 on Fj), 

0 = 2~o2(z 0)-  ~o I(z0) 

l f 
= 2~r .]lzl= I On zzc Jlzl=l-~n (z'z~176 

lf n(Z, Zo)(2o,2(z)-o,,(z))ds(z) > 2:r 

> 0 ,  

which is a contradiction. 

To prove (1.3) we first set uj(z) to be the harmonic measure of  Fj in Dj. Then 

u j ( z ) = l f  log l - zO  d, uj(Q) 
I z - e l  

where #j is the appropriate unit mass, and 

1 I+O(1/R) 
)7j y j+ logR 

(1.4) 

An application of  the maximum principle shows that for 101= 1/2, 
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and 

l - z 0  _ ( l o g 2 _  ~_~_L)u,(z) gl(z, 0) < log 

l - z 0  _ ( l o g 2 +  ~ )  u2(z ) g2(z, 0) > log 

where C1, C2>0 are two universal constants. We now fix Iz1=3/4 and compare these last 
two inequalities. Since (1 +e)V~<~Vz, it follows from the representation of uj and (1.4) 
that 

gl(z, Q) < gz(Z, Q), 101 = 1/2. 

Since g~ and g2 vanish on Izl= 1, (1.3) follows from the above inequality. 

Lemmas 1.1 and 1.2 have the following immediate consequence. 

LEMMA 1.3 (Main Lemma). Let A= 1 +e. Suppose QNE~=(~ and suppose Q sat&- 

ties the (B) annulus condition where B~B(e). When we perform an (A) disk construc- 

tion, harmonic measure (at ~) o f  a set outside o f  Q increases (Lemma 1.2). The 

harmonic measure for Q itself decreases by at most a bounded factor (Lemma 1.1). 

For the proof of the theorem we also require some properties of Hausdorff 

measure. Let ~p(r) be increasing for r>0 with go(0)=0. For a set E we then define as in 

[Cl] 

h~(E) = inf Z q0(r) 
j=l 

where the infimum is taken over all coverings Ect.JT= I (Iz-z~l<rj} and where no restric- 

tions are made on the size of rj. For the following lemma (compare [CI]) we also require 

q~(r)/r<~cp(2r)<~Cq~(r), and q~(r)/r<~l, r<~l. 

LEMMA 1.4. Let E~(lzl<l} have capacity e-L Then 

h~( E ) <- const, q0(e-Y). 

Proof. There exists (see [C 1], page 7) a positive measure/~ of total mass m>~Chr 

such that/~(a,r)=/~({Iz-al<r))<.~v(r) for all a,r<l .  The logarithmic potential V of/~ 

satisfies 
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V(z)=flog[z~old/~(Q)=fo21Og!d/~(z,r)~fom*log-~dq~(r), 
where qo(m*)=m. Consequently, 

V(z) <~ m l o g - ~  + fom*--~ dr 

and therefore 

! | 
y ~< sup--" V(z) <~ log ~ + 1. 

The lemma now follows immediately. 

Now let Q be a square, l(Q)=r<-l/4, and let E*NQ have capacity e -r. When we 

apply the (1 +e) disk construction to E* N Q we obtain a disk A' of radius r' and capacity 

e -v'. Since r<~l/4, it is easily seen that y'~<(l +e)y. Setting cp(t)=t j+2' we see by Lemma 

1.4 that 

h~(E* f] Q) <- Cq~(e -y) 

= C e - ( 1 + 2 E )  

C e - ( l + t / 2 ) y  ' 

= C(r') I+t/2. 

(1.5) 

w 2. Modification of the domain 

Let Q be a domain whose boundary, E, is contained in {Iz1<1/2}. We fix two large 

integers M and N, and set p=2 -N. Let Cgn be the grid consisting of closed dyadic 

squares on sidelength Q, and divide ~3N into B: periodic classes (modulo B• -n along 

the coordinate axes) which we call ~3~, 1 <<.j<~B 2. Let Ej be the intersection of E with the 

collection of all QE~3~, Q(Q)=0. Then E=UT)IE j. Let ~ i=R2 \E j  and let wj denote 
* ~  '~B2 z,~ 0)*  harmonic measure on f~j. Then w --:z~j=l ~.j, where is the original harmonic measure 

on Q. We may therefore assume from the start that f~ satisfies the (B) annulus 

condition for all cubes Q, l(Q)=o. 
We now start altering E (and hence g2) by the procedure developed in section 3. 

First perform the (2) disk construction for all Q, I(Q)=Q. By the Main Lemma 1.3, the 

harmonic measure of each Q decreases by at most a bounded factor, i.e., 
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to*(Q)<---cto(Q) for the new harmonic measure to. Our new set consists of disks of 

radii~<~ well separated from each other. Furthermore each of these disks is contained 

in its associated Q,/(Q)=Q. 

We now proceed with the following algorithm. 

Step I. Let to and E be given. Choose the largest dyadic square Q with I(Q)>IQ for 

which 

to(Q) >I Ml(Q). 

If no such Q exists, stop. If such a Q exists, proceed to Step II. 

Step II. Perform the (B) annulus construction on Q. This gives a new E and a new 

to. Proceed to Step III. 

Step III. Perform the (A) disk construction on Q to obtain a new E and a new 09. 

Go back to Step I. 

Special Rule 1. A square Q on which Steps II, III have been performed should not 

be subdivided at some future stage. In other words, in applying Step I we should not 

consider Q's inside squares which have already been modified. 

Special rule 2. Let Q~, Q2, Q3 . . . .  be the squares acted upon in Steps II, Ill, 

enumerated by the order in which they are considered. Let ~ be the (B) annulus about 

Q~ and let Aj be the disk associated to Qj constructed by Step III. If QjCsr k>j, then 

do not delete from E at stage k any part of the disk Aj. 

Upon analyzing this algorithm we first notice that it stops. The reason for this is 

simply that by Special Rule 1 the possible number of constructions is finite. When the 

algorithm stops it has produced a certain number (possibly zero) of disjoint squares Qj. 

Each satisfies (Step II) the (B) annulus condition of size l(Qi)>~ Q, and has inside of it a 

disk Aj of radius r i. This follows from Special Rule 2 because if a disk is constructed at 

some stage, it is either wholly untouched or totally deleted at each subsequent stage of 

the construction. (If A-- 1, a small piece of Aj may lie outside of Qj.) There also remain a 

certain number of original squares Qj and disks Aj of radii rj. For each Qj, 

to(aj) I> to*CQj), 

where to* is the original harmonic measure. 

The original set, E*, also lies near the new set E in a quantifiable sense. Let Q be 
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some dyadic square, I(Q)=~), and let Eo=EN Q. Then i f E  0 is not inside a Qj or a Qj, EQ 

must be in the 2B annulus of some Qj. The reason for doubling the annulus is that we at 

some stage consider a square Q=QO. This square may at a later stage of the algorithm 

be included in a (B) annulus A l corresponding to a larger square Q~ and Qi may 

similarly relate to Q2, etc. The squares Q0, Ql, Q2 . . . .  satisfy l(Qk)>~21(Qk-l), so a 

doubling of the annulus suffices to include E*. 

Special Rule 1 together with the Main Lemma 1.3 implies that 

and consequently, 

w(Qj) >>- const. MI(Qj), 

c (o(Q) < c (2.1) 
J 3 

Therefore h~(tJj Qj)<~C/M and by the last paragraph 

C'B 
h~(E* n Oj2BQ) ~<--M-- 

for any q) such that q)(r)/r is an increasing function. 

Finally, notice that by the algorithm 

 o((Iz-z01 < r)) ~< CMr 

holds for any zoEQj or Qj and r>~l(Q) or I(Qj). 

(2.2) 

w 3. The level set 

To prove the theorem we will integrate IVGIIogIVG] around certain level curves of G, 

Green's function for fl  with pole at oo, to obtain an estimate on the set where ]VG t is 

small. We first require a lemma on such integrations. 

LEMMA 3.1. Let F surround E and assume that E and all o f f  lie inside (Izl<l). r 

is assumed to be composed of  leoel lines Fi where G=ci . Then 

,(r)= [  loglVOl ds  -log2. 
z~ Jr ~n 

Proof. Let 0j be the critical points of G which lie outside of F. Then by Green's  

formula 
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i(r) = ~ G(O+ 
J �9 i 
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and consequently 

1 f r~nlog[VG]ds=_(ai_ f l i )=_l  2:t ~ 

and 

Therefore 

i(r) = E c ( O - E  c,+y. 
j i 

Let n(c) equal the number of components of {z: G(z)=c} which lie outside F. Also, 

let c0=sup~ci. Then 

E G(Q;) = (n(c)- 1 ) dc 
J 

I0 ~i" Ci'~ E~{c<~c'}(c) c~ dc" 

I(F) > y-Co. 

But for Iz[< I, G(z)= f loglz-o I dr 7 satisfies G(z)~<iog 2+y so that c0~<log 2+),. (All 

critical points of G lie inside (Izl<l}.) 
Now let z belong to Q \ A  where Q is either a Q; or a Qj, and A is the correspond- 

ing disk. Then Green's function can be written as 

G(z) = f, loglz-el da,(o)+ fe\, ioglz-el da, O+ ~, 

= u(z)+v(z)+~,. 

Let ai be the number of boundary components of E inside Fi, and let ~ i  be the number of 

critical points of G inside Fi. Then 
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Observe that by (2.2), 

We define 

IVv(z)l<. fe d~ <~CM ( ~ dr 

I = CM log 
I(Q) " 

S =  S(A)= Max(  - o(A) , r(A)), 
M 2 log 1/l(Q) 

where r(A) is the radius of A. 

Let r denote the radius from the center, z0, of A. Then 

_ 8___u_U(z)> ~ w(A) Cr(A)~o(A) 
ar IZ-Zol Iz-zol 2 

If 

S - ~o(A) > r(A) 
M 2 log I/I(Q) 

we see that ]Su/ar] dominates IVvl when IZ-Zo]-S, and consequently there is an 

essentially circular level line encircling A where Iz-zol-S On this level line 

IVG(z)I o(A) (3. I) 
S 

If S=r(A), we take 8A (i.e., G=0) as the level line, and again (3.1) holds. 

The above procedure gives a collection of level lines whose union, F, surrounds E. 
By (3.1), 

1 ( OGiog+IVGI ds <~ C E 6o(A)log + S(A) / 
2~r Jr On all A 

~<C E ~o(A) log(M21og-~l  ~ 
\ I(Q) / 

~< C' log log 1 
0 

if M2<~log 1/~). By Lemma (3.1), 

1 fOGlog_tVGlds>~_Cloglog 1 
2:r Jr an Q 

(3.2) 
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We now use the Hausdorff  function 

q)(r)=r l+~, d t = 2 e > 0 .  

We then set A = 1 +2e (the disk constant) and fix B=B(2e) (the annulus constant) as 

in the Main Lemma 1.3. By (2.1) we need only worry about the squares Qj (those of 

sidelength ~) which have not been altered), Fix such a Qj and its associated disk A), and 

assume first that 

co(A) I> rj Q~/2, (3.3) 

where rj is the radius of As'.. Call such a disk Type I. Then ifE*=EnQj, (1.5) shows 

2 
A?E Type 1 

hr <~ C E tr.i)" '"+~ 
Type I 

co  o(Aj) 
Type I 

<~ Cp ~/2. 

In the remaining disks where (3.3) fails (Type 2 disks), we have Sf=rj and by (3. I), 

IVGI~<~o ~'2 on aAj .  By (3.2), 

I fo 8Gds 
A~EType 2 Type 2 A~ 

C f~ OG, I , 

~< Cloglog I/Lo 
elog l/p 

The proof of the theorem is complete. 
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