SOME PROPERTIES OF CONTINUED FRACTIONS.
By

L. KUIPERS and B. MEULENBELD

of BANDUNG {INDONESIA).

§ 1. Introduction.

Let
(1) {al, Az, - . }
be an infinite normal continued fraction, @, as, ... being integers with a; = 0,
=zl (k=2,3,...).
. P, P, P P,
The consecutive convergents of (1) are denoted by =°, =', =2, ..., where -
Q’ O Qe Qo
has the usual symbolic sense (-lj, and where the irreducible fraction 2—)" (k2 1) has
%
the value of the continued fraction {a;, a,, ..., ax}. We have:

Pn=anpn—1+P”—2('nz2), P1=a1, Po=1;
@) On=nQn1+@n2(n22), =1 @ =0;
PnQn—l—Pn—l Qn= (_1)’”—1 (’ﬂ; 1).

For ani1 =2 2 (n 2 1) the fractions

an + Pn—l
3 —_ b=1,2, ... —1
( ) an T+ Qn—l ( An+1 )
are the interpolated fractions of (1). For & =1 and b = ap4+1 — 1 the fractions (3)

. . P,_
are the extreme interpolated fractions between == ! and

Qn—l Qﬂ+1

. The following theorems

are well-known [1]:
o, P
1. Is « a positive irrational number, then each convergent 0 @z1)of a=

= {ay, ay, ...} satisfies the inequality:

(4)
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P . . . . rP. .
2. Is — an drreducible fraction with (4), then — is either a convergent or an inter-

Q Q
polated fraction of the irrational «.
3. Given a positive irrational o, then apart from the convergents, at most the two

Z:: and %:_1 (n21), satisfy (4).

extreme fractions g, interpolated between

This last theorem is a theorem of Fatou [2], of which a proof has been given by
Koksma [3].

In the present paper we extend the theorem of Fatou, by giving sufficient

conditions, on which the first extreme interpolated fraction (b = 1) or the last one

(b = ant+1— 1) satisfy (4). This is expressed in

Theorem I. Let « be a positive irrational number, and let {a,, as, ...} be its

continued fraction.
If gpy1=an+1 (n21, ans122), then the fraction P _Put Pa satisfies (4).

Q B Qn + Qn—l

. — 1) Py + Py
If ans1 = ant2+1 (021, ani1 Z 2), then the fraction p (o= 1) Pat Puy

Q@  (any1— 1) @n + Qn

satisfies (4).
We shall prove this theorem in § 2.
Furthermore: If ¢ denotes an even integer, and o an odd integer, then all

irreducible fractionng (k 2 0) are of the three classes [g], [S] and [g]. As far

%
as we know the distribution of the convergents with respect to these classes has
never been considered before. In § 3 we give some lemmae and theorems, concerning
this distribution.

Finally: By means of the results of § 2 and § 3 we prove in § 4 and § 5 the

following theorems:

. . P
Theorem II. For k=1 there exist infinitely many fractions — of each of the

Q
three classes [9], [f] and [2], satisfying
e 0 0

(6)

a—£|<£
Ql ¢

regardless of the values of the real irrational number «.
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Theorem III. For k<< 1 there exist irrational numbers, everywhere dense on the
real axis, for which (5) 1s satisfied by only a finite number of fractions of a given
one of the three classes.

The Theorems II and IIT are theorems of W. T. Scott. His proofs, however,
are not based upon the theory of continued fractions, but depend on geometric
properties of elliptic modular transformations [4].

§ 2. Proof of Theorem I.

Pn+Pﬂ,—]_ . (an _i' 1).Pn—-1+P11,—2

L Qn+ Qu1 (an+1)Qnoy + Qusz’
and
«={ay, ag, ..., an—1, p} = %
ith
:1 y = {an, @ns1, . ..}
en
(6) PPu-1+ Pup  (an+1)Pa1+ Pas| _ 1+ an—y

Y@uor+ Quoz  (@n + 1) Q1 + Quoz| (¥ @u1+ Qu2) {(@n + 1) Qu_1 + Qu_2}

as follows from (2) and y <an + 1.

Now we prove that, given the first inequality of Theorem I, we have:

]. + a«n — y < 1 .
VQn—I + Qn—2 (an + 1) Qn—l + Qﬂ—Z

(7)

The inequality (7) can be written as
8 {1+ an)® =y (2 + an)} Qu—1 < (¥ — an) @n—2.
The right side of (8) is positive. The left side of (8) is negative on account of
L+ an)—y(2+ an) <0,
where the last inequality follows from the assumption an+1 < @ + 1 and
1 1 1+ a,.)z_

>, — = + =
[ r g =Mt mt2 @t 2
n+

an+2

From (6) and (7) the first part of our theorem follows.
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_ _ﬁPn'{"Pn—l
2. o= {ay, as, ..., an, B} —ﬂ———Qn+Qn—1
with
ﬂ = {a"+1, An+2, . . ‘}'
Then
BPn+ Puy  (an41—1) Pu+ Pua| l—ant1 + 8

O 80, Ot (@i =1 On + Gut| ~ BGr + Got) l(@ns: — ) On + Ooa)’

on account of f > ax+1 and (2).
Now we prove, given the second inequality of Theorem I:

ﬂ—a”“ + 1 < 1
B@n+ Qn (@n1— 1) Qn + Qns

(10)

The inequality (10) can be reduced to:

On{(ns1— 1) — B (ant1—2)} > Qn—1(B — @n+1)-
This inequality holds when
(1) (@ns1— 1) = B (an+1— 2) > B — anus,

on account of Qn > Qn-1.
The exactness of (11) follows from

1
San t .
an+2 any1—1

Ani1— 1 = ane2 and f<apyr +

From (9) and (10) the second part of Theorem I follows.

§ 3. Properties of convergents of continued fractions.

Evidently the class of 6 (n Z 2) is determined by the classes of Q % and
n n—2

, and by an (even or odd), as follows from (2). We have the following lemma’s.

Qn—

S nd%( 2 1) are mnot of the

Lemma 1. Two consecutive convergents
same class.

This follows from the last relation of (2).

. . P, . -
Lemma 2. If a, s an even integer, the class of Q—" is the same as that of Q" 2.
n n—2

Proof. For a, even we have

Pyo=Py 2, Qu=_0Qn_2 (mod 2), as follows from (2).
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Pn—2 Pn—l

Qn—2 ’ Qn—l

Lemma 3. If a, is an odd integer, three conmsecutive convergents

and L are of different classes.

@On
This follows from (2).

Remarks. 1. By choosing suitable continued fractions it is easily seen that

. P, .
in the sequence — (n =0, 1,...) each permutation of the three classes can occur.
n

2. For the sake of convenience we give here a scheme, from which the classes
of the consecutive convergents of every continued fraction can be read off. Starting
P n—1

n—1

from some convergent ; the class of which is represented by one of the symbols

of the n-th row in the scheme, we can find the class of P by going to right if
n

an 18 odd, and to left if @, 18 even (n = 1).

[]-a

In the following we give a formula which indicates the class of the n-th convergent

of an arbitrary continued fraction.

Let C' denote the cycle ([g], [Z], [g]), and C-! the inverse cycle ([Z],
2] D
o]’ lol/)’

. P
Let [a] be the class of an arbitrary convergent = of {ay, dg, . - ., Gk, @41, - - -};

Q
this element has a fixed place in the scheme. Now we denote by D (C' or C71),
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. . . P, P
the cycle of {a], that is the cycle of the corresponding consecutive classes of %} , QHZ, ce
r+1 Qrr2
tf the partial quotients axy1, Gk+2, ... would be odd. (In the scheme the cycle is found

by going frem [a] to right.) It is evident that variation of cycle is possible only by
an odd number of consecutive even a’s.
Let SP[a] (I 2 0) denote an operator, applied on the element [a] in D, such that:

{ 8P [a] = [a] for even I;
SP [a) = the element in D preceding [a), for odd I.

Let TP?[a] (I Z 0) denote an operator, applied on the element [a] in D, such that:

[ TP[a] = [a] if 1=0 (mod 3);
TP [a] = the element tn D, following [a], if =1 (mod 3);
l TP [a] = the element in D, preceding [a], if l=2 (mod 3).

Let 4, be the continued fraction:

(12) 4 = {al, Ags - ooy Qlys Ay +1s o oy Ayt ks « + oy Ahythat - +hgp_g+Lls -+ s Chyt+hat '~-+k2,|}-

even a’s odd a’s odd a’s

If the first @ is odd, then we put %k, = 0; if the last a is even, then we put ke =0.
Now we shall prove

Theorem 1. The class of the last convergent of An equals

n—1 ‘
(—nkitkst - +hgiy (—1tket - +hg1]0
13 n) = T¢ -
( ) 1P( ) ;:[;% k2i+2 ‘SkZi‘{'l e »

where 1] TS means

Tk2n S"2n—1 [ [TkASka [Tk: Skl [Z]]]]a and k-1 =0;

and where Try;, , Sky;,,[a] ts the element Tiy;, o [Sky;,,[a]]-

Proof. For n =1 and (12) is

A={ay, as, ..., Gy, Ghyt1, - - 5 hyths)-

even a’s odd a’s
Then in this case we have:

1. If k =0, the class of 4 is T' [9] = [9] [‘—’] or [f] for ky=0, 1 or 2
_ te e ) 0
(mod 3), respectively.
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2. If k; is even and 0, then the class of 4 is

el ] ] 12

for £5=0,1 or 2 (mod 3), resp.
3. If %; is odd, then the class of 4 is

s []- - [« 2
ky e B o of’ o e
for k3==0,1 or 2 (mod 3), resp.

. P, .
The exactness of the assertions 1, 2, and 3 follow from the fact, that 60 is of
)

the class [g] , and from Lomma 3. So our theorem is true for n = 1. Let the asser-

tion hold for n, then we shall prove the exactness for the case n + 1. We distinguish

two subcases:

A. kgnyz2 =0, so the last a’s are even.
Then from (13) and our assumption we see that the class of Ay is

o~ 1)k1+kn+ ceotkap—1

oy [y (m)] = y (n + 1).

For, if the class of the last convergent of A, is u(n), then the class o (n + 1)
of the last convergent of Any1 (With ksnie = 0) is ¢ (n) for keat1 is even, and the
class preceding v (n) in the cycle O(-vbtkst e than1 gor kon+1 odd, that is in both

cases
ol — Dkitkst ko g

o ()] =y (n + 1).

B. koni2540, so the last a’s are odd.
Now the class of A, is

ol — 1)k1+k2+ ver +k2n+1 SC(_ 1)k1+k3+ EEE Y S|

byntg Kynit [y ()] =y(n+1),

as follows by a similar argument as in 4. This completes the proof.

Let n be a fixed positive integer. Each continued fraction {ay, as, ..., Ga}
belongs to a class which is determined by a fixed succession of n symbols e or o.

The number of such classes, over which all continued fractions {a;, as, . .., as} can

be distributed, is 2*. Let K, K,, ..., K.n be these classes. Now gﬁ (the value of
n
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the continued fraction) belongs to one of the classes [g] s [3] and [g], mentioned

above. Now we put the question how the classes Ky, K,, ..., K, are distributed

among the classes [2] , [Z] and [g] The following theorem gives the answer.

Theorem 2. If A,, By and C, are the numbers of those classes of Ky, K, .. ., Kon,
belonging to [g] R [:—:] and [(_e)] respectively, then we have:

Ap =327 — (= 1)1} Ba=Co={2"—(—1)".
Proof. Obviously
(14) Ay + B, +Cpo =2 (p=1,2,...,m).
From the lemma’s 2 and 3 it follows:
Ap = Bp_1+.0p1
(15) By =0Cp-1+A4p1 (p=2,3,...,n)
Cp = Ap—1+ By
From (14) and (15) it follows: 4y + Ap-1 =271 (p=2,3,...,n). For n=1 it is

Ay =0, B, = Cy=1; hence the assertion of the theorem is true for » = 1. By in-

duction (we assume the theorem to be true for » —1), we find
A" — 2n——1 — An—l — 2n-1 . §- {27;—2.__ (___ l)naZ} — % {2n—~1 _ (__ 1)"_1},

and
By = Cp= a7t — 3 {2n ! — (— 171 = 3 {20 — (= 1))

§ 4. Proof of Theorem II.

Without loss of generality we may assume that « is a positive irrational number.
From the theor'y of the continued fractions it is known, that the convergents

(T" (r=1,2,...) of «a = {ay, as, ...} satisfy the inequality
n
k

=g <g: *ED

If in the development {a,, as, ...} tnfinitely many odd integers occur, then for this «

P,

Theorem II is proved, as follows from Lemma 3.
Now we assume that in {ay, as, ...} from a certain n=1n,21 only even
partial quotients occur. Then from that index ny the convergents are of two classes,
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either [s] , [g] , or [2] , [9] or [9, e] , 80 that the inequality (5) can be satisfied

(4] e e

by an infinite number of fractions of each of two classes.
The extreme interpolated fractions

P, + Pny and (an+1~—1)Pn+ P, 1
Qn + Qn—l (an+1 - 1) Q” + Qﬂ—l

are of the remaining class. 1t is easily seen that the condition azs1 S anye + 1 occurs

infinitely many times, regardless of the cousidered « = {a,, as, ...}, so that (5) holds
(a'n+1 - 1) P, + Pny
(tn+1—1) Qn + @Qn_y’
completes the proof of Theorem II.

as follows from Theorem I. This

with infinitely many fractions

§ 5. Proof of Theorem III.

P s .
— ., satisfying (5), is either a convergent or an extreme

Q

wnlerpolated fraction of o = {ay, ag, ...}, on account of § 1, 2.

If #<1, then each fraction

A. Now consider a =m + Vm? + 1 ={2m, 2m, ...} (m integer and = 1). The
. . . 0
convergents of this continued fraction are alternately of the classes [g] and [—e]

We prove in 1 and 2 that from a certain = for k << the extreme inter-

V1 +m?
polated fractions, which are of the remaining class, do not satisfy (5).

. o Oan + Pn—l
1. Obviously a = 20 T Oy’ Hence
«lp+ Pooy Pyt P a—1

(16) “Qﬂ + Qn—l - Qn + Qn—l B (0( Qn + Qn—l) (Qn + Qn—l)

—-(ar—l)(Q?:+l). .

(a 6@,_ i 1) @+ Quoa?
nt

It is well-known that
On
Qn»—l

={2m,2m, ... 2m},

n—1 partial quotients
so that
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. On
lim = a,
n—>00 Qn 1 *
and
y( & 1)
. (o 1)(in+l _ =1  m
n—>o0 Qn S Vl+m*
Qo
Thus, for k< %—m—z, we see that from a certain »n the right side of (16) is

k
greater than- m .

2. Furthermore

17) _(aﬁ+1_l)Pn+Pn—-l - aPn+l+Pn Pn+1‘_‘Pn -
(an+l - 1) Qn + Qn—l o Qu+l + Qn Qn+1 - Qn
On+1 )
) ol (e + 1) ( 0. —1 . 1 .
(a Qn+l + Qn) (Qn+1 - Qn) Qn+1 +1 (Qn+1 - Qn)2
*On
Now
Qﬁ+l )
, (a+1)(Qn —1 21 m
m == LI
n—co Qn+1 +1 e +1 VI+md
Qn
From this it follows that from a certain n for k< V%’r? the right side of (17)
. k
18 greater than m-

B. Obviously the convergents of f={2m + 1, 2m, 2m, ...} are of the classes

0 [ ) ) e . P
[5] and [Z]. It is easily seen, that there are not infinitely many fractions Q— of

the class [g] , satisfying:

—ol<e (<ire)

For, otherwise, since § =1 + «, there would be infinitely many fractions

Q

QOf

the class [g] , satisfying
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Y <h ez

and this is impossible on account of A.

C. The convergents of y = ={0,2m+1,2m, 2m, ...} are of the classes

l1+a

[%] and [g] . It is excluded that there are infinitely many fractionsg of the class [g]

satisfying

=al<e (=7t

Otherwise we should have (since the sequence g has to limit 1 }_ a):

E(l1+a) iP(l+a)<k1

Pg PP ¢ P?
Q
P

with % < —_._m———__, for infinitely many fractions
V1% m?

class [%] , and this is impossible, as follows from B.

, which of course are of the

D. From A, B and C it follows that in the case k<< 1, (given one of the three
clagses) there- exist at least one irrational for which (5) is satisfied by only a finite
number of fractions of this class.

The exactness of Theorem III now is a consequence of A, B and C, and the
following facts:

ax +2b . . _ .
1. The numbers don it d (@, b, ¢ and d integers with ad —4bc= * 1) lie
everywhere dense on the real axis for each irrational «.
. aP +2bQ . .
. i 4 —4be=+
2. The fractions 90D + dQ (@, b, ¢, d, P and @ integers with ad —4bc= +1)

P
are of the same class as —-

Q
3. Given k<1, and given some class, there exists an integer m and a corre-

sponding irrational 4 («, 8 or ), such that the inequality

o<¢ =yl

. .. . P .
can be satisfied by only a finite number of fractions = of the given class.

Q

A—=i<
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If we assume that the inequality

al+2b pl k

2¢i+d ¢ 7

holds for infinitely many fractions Z—) of that class, then we should also have for thesegi

_ pd—2bg k ( P_ ) .
'l 4g—2cp @g—2opP 2¢i +d) 2cq a
Now
lim {(2¢4 + d)(2c§——a) = |ad—4bc| = 1.
g—>o0
m ., e . P pd—2bq
Hence, for k <k, < m< 1, there would be infinitely many fractions 0 —ah_——q —

(of the same class as g), for which

PI ky
A—= i< 55
QI @
and this is impossible.
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