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Let  

(1) 

be an infinite normal 

a k > l  (k = 2, 3 , . . . ) .  

w 1.  I n t r o d u c t i o n .  

/as, as, . . .I  
continued fraction, ax, as . . . .  being integers with al > 0, 

P0 P1 Pg. P0 
The consecutive convergents of (1) are denoted by Qo' QI' Q ~ . ' " "  where Q-~ 

1 
has the usual symbolic sense ~ and where the irreducible fraction Pk (k > 1) has ' ~ = 

the value of the continued fraction {al, a s , . . . ,  ak}. We have: 

(2) 
Pn = ~ln Pn-1  + Pn-2 (n >= 2), P1 = a l ,  Po = 1; 

Qn = an Qn-1 -t- Qn-2 (n > 2), Q1 = 1, Qo = o; 

Pn Qn-1 - P,~-I Q,~ = ( -  1) n+l (n > 1). 

For an+l > 2 (n > 1) the fractions 

(3) b Pn + Pn-1 
b Q ~ + Q n - 1  

(b = 1, 2 . . . .  , a , , + l -  1) 

are the interpolated fractions of (1). For b = 1 and b = a,+l - -  1 the fractions (3) 

Pn-1 Pn+__jl The following theorems are the extreme interpolated fractions between ~ and Q.+I" 

are well-known [1]: 
P 

1. Is ~ a positive irrational number, then each convergent ~ (Q > 1)o]  ~ = 

= {al, as . . . .  } satis/ies the inequality." 

P 1 .  

I -- 632081 Acta mathematica. 87 



L. Kuipers and B. Meulenbeld. 

2. Is P P an irreducible /raction with (4), then ~ is either a convergent or an inter- 

polated ~faction o] the irrational ~. 

3. Given a positive irrational :r then apart /tom the convergents, at most the two 

P extreme /ractions ~ interpolated between P,~-I P,~+____!1 , ~ and Qn+I (n>-- 1), satis/y (4). 

This last theorem is a theorem of Fatou [2], of which a proof has been given by 

Koksma [3]. 

In the present paper we extend the theorem of Fatou, by giving sufficient 

conditions, on which the first extreme interpolated fraction (b = 1) or the last one 

(b = a n + l -  1) satisfy (4). This is expressed in 

T h e o r e m  I. Let ~ be a positive irrational number, and let {al, a2 . . . .  } be its 

continued /faction. 

I /  an+l < a~ + 1 (n > 1, a~+l > 2"), then the /faction P P'~ + Pn-1 satis]ies (4). 
= Q Q n + Q , - 1  

I /  a~+l < a,+2 + 1 (n > 1, an+i > 2), then the /faction P- (an+l --  1) Pn + Pn-1 
= = = Q ( a . + i  - -  1) Q .  + Q . - 1  

satis/ies (4). 

We shall prove this theorem in w 2. 

Furthermore: If  e denotes an even integer, and o an odd integer, then all 

[:] [eo] [:l irreducible fractions ~ (k > 0) are of the three classes , and . As far 

as we know the distribution of the eonvergents with respect to these classes has 

never been considered before. In w 3 we give some lemmae and theorems, concerning 

this distribution. 

Finally: By means of the results of w and w we prove in w and w the 

following theorems: 

P 
T h e o r e m  II.  For k > 1 there exist infinitely many ]factions ~ o/ each o/ the 

three classes [ ~ ] ,  [ e ]  and [ o ] ,  satis/ying 

(5) 

r~ardless o/ the values o~ the real irrational number ~. 
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T h e o r e m  III .  For  k < 1 there exist irrational numbers, everywhere dense on the 

real axis, /or which (5) is satisfied by only a finite number o/ fractions o/ a given 

one o/ the three classes. 

The Theorems II  and I I I  are theorems of W. T, Scott. His proofs, however, 

are not based upon the theory of continued fractions, but  depend on geometric 

properties of elliptic modular transformations [4]. 

w 2. P r o o f  o f  Theorem I. 

. 

and 

with 

Then 

y P . - z  + P~-2 
(6) y Qn-1 § Qn-2 

P. + Pn-1 (a,~ + 1).Pn-1 -}- Pn-2 
Q. + Qn-1 (an + l )  Qn-1 -]- Qn-2'  

= yPn-1 § P n - 2  
0r = { a l ,  a 2 . . . .  , a n - l ,  '~'} ~' Q.-1 + Qn-2 

~, = { , , ,  a , + i , . . . } .  

(an + 1) P~-I  + P . -2 ]  

I (a,, + 1) Q,~-I + Qn-2 (y Qn-1 
1 +a~--y 

+ Qn-2){(an + 1 ) Q . - 1  + Q,,-2} ' 

as follows from (2) and y < an + 1. 

Now we prove that ,  given the first inequality of Theorem I, we have: 

I + a,,-- y I 
(7) < 

~, Q,,-I + Q,,-2 (an + I )Q.-1  + Q,,-2 

The inequality (7) can be written as 

(8) {(1 + an) 2 - -  y ( 2  + an)} Q n - 1  < (y  - -  an)Q. -2 .  

The right side of (8) is positive. The left side of (8) is negative on account of 

(1 + a,) 2 - -  r (2 + a,) < O, 

where the last inequality follows from the assumption a,+l  _-< an + 1 and 

1 1 (1 + a.~) 2 
y > a n +  >=a~+ - -  

1 an + 2 a .  + 2 
an + l -~ - -  

an+2 

From (6) and (7) the first part  of our theorem follows. 
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. 

with 

Then 

tiP,, + P . - I  
(9) fl Q. + Qn-I 

tiP,, + P . - I  
= {a i ,  a ,  . . . . .  an, /~} t~ On + 9 . - ,  

= {on+~,a~+~ . . . .  }. 

(a.+l -- 1) Pn + P . - I  [ 

I (a~+i - -  1) Qn + Qn-1 (/~ Qn 
1 -  a~+l + 15 

+ Qn-1){(an+l - -  1) Q, + Qn-1}' 

o n  account of fl > an+l and (2). 

Now we prove, given the second inequality of Theorem I: 

(10) f l -  an+l + 1 <. 1 
riO, + On-1 (a,~+l- 1 ) 0 ,  + On-l" 

The inequality (10) can be reduced to: 

Qn {(an+l - 1) 2 - -  fl (an+i - -  2)} > Qn--1 (fl - -  an+i). 

This inequality holds when 

(11) (a~+l - -  1) 2 - - f l  (a~+l - -  2) > fl - -  a~+l, 

on account of Qn>Qn-1 .  

The exactness of (11) follows from 

1 
a n + l - - 1  ~a,+2  and f l<an+l  + - -  ~ an+t + - -  

Gn+2 

From (9) and (10) the second part  of Theorem I follows. 

1 
a n + l - - 1  

w 3. Properties o f  convergents  o f  continued fractions.  

Pn (n > 2) is determined by the classes of Pn-2 Evidently the class of ~ = Q._---~ and 

P . -1  
Qn----l' and by an (even or odd), as follows from (2). We have the following lemma's. 

P . -1  Pn 
L e m m a  t .  Two consecutive convergents Qn-~ and ~ (n >= 1) are not o/ the 

same class. 

This follows from the last relation of (2)�9 

Pn 
L e m r n a  2. I /  an is an even integer, the class o] ~ is the same as that o /Pn-2  

Qn--2 

Proof. For an even we have 

Pn ----- Pn-2,  Q. -= Q.-2 (rood 2), as follows from (2). 
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Lemana 3. I /  an is an odd 

P. 
and ~ are o/ di]]erent classes. 

This follows from (2). 

Pn-2 Pn--1 
integer, three consecutive convergents Q~-2' Qn-1 

R e m a r k s .  1. By choosing suitable continued fractions it is easily seen that  

P ,  
in the sequence ~ (n = 0, 1 . . . .  ) each permutation of the" three classes can occur. 

2. For the sake of convenience we give here a scheme, from which the classes 

of the consecutive convergents of every continued fraction can be read off. Starting 

Pn-1 
from some convergent Qn--~' the class of which is represented by one of tke symbols 

Pn 
of the n-th row in the scheme, we can find the class of ~ by going to right if 

an is odd, and to left if an is even (n > 1). 

Po [:]=~. 
I 

[ I 
P1 P1 [~] =~ [o1 

I I 
I I I I 

[~ [~ [:] [:] 
I I I I 

I I I I I I i I 
Iv] [o] Iv I [o1 [o] Iv] [o] [o I 

In the following we give a formula which indicates the class of the n-th convergent 

of an arbitrary continued fraction. 

~o~ ~ ~o,,o~o ~o c~o~ ([1 [:] [;l) =~ ~1 ~o ~nv=e o,c,o ([:I 
[~1 [o1) 

Pk 
Let  [a] be the class of an arbitrary convergent ~ of {al, as . . . . .  ak, ak+l, . . . } ;  

this element has a fixed place in the scheme. Now we denote by D (C x or C-1), 
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, Pk+l Pk+2 the cycle o/[a], that is the cycle o/ the corresponding consecutive classes o! Qk+l' Qk+2' " "" 

i] the parti~aI quotients a~+l, ak+2 . . . .  would be odd. (In the scheme the cycle is found 

by going from [a] to right.) I t  is evident that  variation o~ cycle is possible only by 
an odd number o/ consecutive even a's. 

Let S~ ) [a] (1 > 0) denote an operator, applied on the element [a] in D, such that :  

Sf[a] = [a] /or even l;  

S D[a] = the element in D preceding [a], /or odd I. 

Let  T f  [a] (l _>-0) denote an operator, applied on the element [a] in D, such that :  

[ T ~ [ a ] = [ a ]  # l------0 (rood3); 
! 

T~ [a] the element in D, /ollowing [a], /] l - - 1  (mod 3); 

/ T ~  [a] = the element in D, preceding [a], i/ 1----2 (mod 3). 

Let A,, be the continued fraction: 

(12) An = {ax, as . . . . .  ak,, a~,+l . . . . .  ak,+k . . . . . .  ak,+k,+...+~2n_l+Z . . . . .  ak,+~,+...+k~n}. 
Y 

even a's odd a's odd a's 

If the first a is odd, then we put kx = 0; if the last a is even, then we put k2n = 0. 

Now we shall prove 

T h e o r e m  t .  The class o/ the last convergent o/ An "equals 

(13) ~ (n) = 1-I T c(-1)~'+k~+''" 
"i~--O k2i§ ~ k 2  i + 1  ' 

where 1--[ T S means 

Tk2nS~en_l[." [Tk, S~,[Tk, S k , [ : ] ] ] ] ,  and k - , = 0 ;  

and where T~2i+2Sk2i+1 [a] is the element T~I+2 [Sk2i+l [a]]. 

Proof .  For n = l  and (12) is 

A = {al, a~, . . . ,  ak,, ak,+l . . . . .  ak,+k,}. 

even a's odd a's 

Then in this case we have: 

[;] [o1 [o] [;1 1. If k x = 0 ,  the class of A is T~  = e ' or for k g . ~ 0 , 1  o r 2  

(rood 3), respectively. 
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2. If kl is even and ~ 0 ,  then the class of A is 

�9 o'[;1 [~ [:1 [:] k~ ~kl = Tks = , or 

for k2 - -0 ,  1 or 2 (rood 3), resp. 

3. If kx is odd, then the class of A is 

C--1 

for ks--=0, 1 or 2 (rood 3), resp. 

Po �9 he exactness of the assertions 1, 2, and 3 follow from the fact, tha t  Q0 is of 
I - _ 1  

c l a s s / e l ,  and from Lemma 3. So our theorem is true for n =  1. Let  the asset- the 

tion hold for n, then we shall prove the exactness for the case n + 1. We distinguish 

two subcases: 

A. k2n+s = 0, so the last a's are even. 

Then from (13) and our assumption we see that  the class of An is 

C ( -  1)k1+/r "'" 
~ksn+ 1 +k2n--] [~ ( n ) ]  = ~ (n  + 1) .  

For, if the class of the last convergent of An is v 2 (n), then the class v 2 (n + 1) 

of the last convergent of A,+I (with ks,+2 = 0) is y (n) for k2,+1 is even, and the 

class preceding ~ (n) in the cycle C (-l)~'+k'+''" +k2"-1 for ks.+1 odd, tha t  is in both 

cases 
SkC( ~ 1) kl+b3§ . . .  + k . ) n _  1 

�9 2~+1 " [ ~  (n ) ]  = ~ (n  + 1). 

B. k2n+s ~ 0, so the last a's are odd. 

Now the class of A,+I is 

TC(-  ])~+k~+ ' "  +k.,,+l Sc(- 1)k,+k3+-" +k.z,-1 [v 2 (n)] = ~ (n + 1), 
k2n+2  k 2 n + l  

as follows by a similar argument as in A. This completes the proof. 

Let  n be a fixed positive integer. Each continued fraction {al, a2 . . . .  , an} 

belongs to a class Which is determined by a fixed succession of n symbols e or o. 

The number of such classes, over which all continued fractions {al, as . . . .  , a~} can 

Pn (the value of be distributed, is 2". Let  K1, K s . . . .  , K2, be these classes. Now ~-~n 
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the continued fraction)belongs to one of the classes [ ~  [ ~  and [ : ] ,  mentioned 

above. Now we put the question how the classes K1, K2 . . . . .  K2,, are distributed 

the classes--[~], [0]  and [~]  The following theorem gives the answer. among 

T h e o r e m  2. 1/A. . ,  B,, and C,, are the numbers o/those classes o/K1, Ks, . . . ,  K.2", 

b e l o n g i n g t o [ ~ 1 7 6  respectively, thenwehave." 

A,, = ] {2---1- (--1) ' -1} ; B,, = C.. = �89 {2"-- (-- 1)n}. 

Proof .  Obviously 

(14) A~ + B~ + Cp = 2 n (p = 1, 2, . . . ,  n). 

From the lemma's 2 and 3 it follows: 

[ A~ = Bp-I +.C~-1 

(15) B~ C ~ - I + A p - 1  (v = 2, 3, . . . ,  n). 

C ~  = -~p - -1  -J- Bp-i 

From (14) and (15) it follows: A~ + Ap-1 = 2 ~-1 (p = 2, 3 . . . . .  n). For n = 1 it is 

A t = 0 ,  B I = C I =  1; hence the assertion of the theorem is true for n =  1. By in- 

duction (we assume the theorem to be true for n -  1), we find 

A.. = 2 "-1 --An-I = 2 " - I  - -  ~ {2 " -2 ._  ( - -  I) "-2} = ~ {2 " - 1 -  ( - -  1) ' -I},  

and 

B,, = C,, = ,c,_,,-1 _ t { 2 " - 1  - -  ( - -  1 )  " - 1 }  = :~ { 2 "  - -  ( - -  1 ) ' } .  

w 4. Proof of Theorem I I .  

Without loss of generality we may assume that  ~r is a positive irrational number. 

From the theory of the continued fractions it is known, that  the convergents 

Pn in = 1, 2, .) of ~ = {al, as, �9 .} satisfy the inequality Q ,, " . . 

I ~ -  < ~  (k___> 1). 

If  in the development {al, ag, . . .}  infinitely many odd integers occur, then for this 

Theorem II  is proved, as follows from Lemma 3. 

Now we assume that  in {al, as . . . .  } from a certain n = no > 1 only even 
partial quotients occur. Then from that  index ~0 the convergents are of two classes, 
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[:l [:1 [o] [o :1 either , , or , or , , so tha t  the inequality (5)can be satisfied 

by an infinite number of fractions of each of two classes. 

The extreme interpolated fractions 

P.  + P,~-I and (an+l - -  1)P,, + P,,-1 
Qn + Q.-1 (a.+l - -  1)Q~ + Qn-1 

are o/ the remaining class. I t  is easily seen that  the condition a.+~ < a~+2 + 1 occurs 

infinitely many times, regardless of the considered r162 = {al, a2, . . . } ,  so that  (5) holds 

with infinitely many fractions (a,+l - -  1) P ,  + P . - 1 ,  as follows from Theorem I. This 
(an+l - -  1) Qn -~- Q.-1 

completes the proof of Theorem II. 

w 5. Proof  of  Theorem III. 

P 
If k < 1, then each fraction ~ ,  satisfying (5), is either a convergent or an extreme 

interpolated ~faction of a = {al, a~ . . . .  }, on account of w 1, 2. 

A. Now consider ~ = m + ~ +  1 =  {2m, 2 m  . . . .  } (m integer and >_- 1). The 

convergents of this continued fraction are alternately of the classes [-eo] and 

m 
We prove in 1 and 2 that  from a certain n for k < V1 + m ~ the extreme inter- 

polated fractions, which are of the remaining class, do not satisfy (5). 

1. Obviously ~r - ~ P "  + Pn-1 Hence 

(16) [~Pn§ Pn-l Pn & Pn-l[ 
Q~ + Q.-1 Q. + Q.-1 (~ Q. + Q.-I)  (Q. + Q.-1) 

I t  is well-known that  

so that  

Qtt 

Qn--1 

(aQnQ-~_-i + 1 ) ( Q " + Q " - I ) 2  

- -  = {2m, 2m . . . . .  2m}, 
Y 

n - -  1 partial quotients 
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and 

l i m  
Sg--~O0 

Q. 
l~--~'O0 

( ~ - 1 ) (  Q" ) 
Q~-I + 1  a2--1 m 

Qn = ~-~ + 1 = V l + m  z" 
~Q~_I + 1  

Thus, for k <  m 

k 
greater t h a n  (Q,, + Q,,_,)a" 

we see that from a certain n the fight side of (16) is 

17) 

Now 

. Furthermore 

a --  (a,L+i --  I) Q. + Qn-i 
aP,,§ + P,, 

Q,,+I + Q. 

o~+1 
(~ Q,,+~ + Q,,) (Q.+~ - Q.) 

P s + l  ~ e n  

(~+  1) ( ~  -- 1) 1 

0.+I + 1 (Q.+I - Q.)~ 
Q,, 

l i m  ~ 
n-*~ Qn+l ~ + 1 

From this it follows that from a certain n for k < -  

k 
is greater than ( Q . + I - - - 2 "  

m 

m 
the right side of (17) 

the class [ ~  satisfying 

For, otherwise, since fl = 1 + ~, there would be infinitely many fractions 
P - Q  of 

B. Obviously the convergents of fl = {2m + 1, 2m, 2m, . . .}  are of the classes 

and . It  is easily seen, that there are not infinitely many fractions ~ of 

the class [ e l ,  satisfying: 
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P k 0  
and this is impossible on account of A. 

1 {0, 2m + 1, 2m, 2m . . . .  } are of the classes C. The convergents of ~ 1 + 

[o] [o] 
and . I t  is excluded that  there are infinitely many fractions ~ of the class , 

satisfying 

has to limit ~ : 

I1 + ~ _ _ Q P l < k ( l + ~ )  k P ( l + ~ )  kl p~--Q--- = p~ Q < ~-~ 

infinitely many fractions Q which of course are 
m 

with kl < V ~ '  for of the 

[ e l ,  and this is impossible, as follows from B. class 

D. From A, B and C it follows that  in the case k < 1, (given one of the three 

classes) there-exist at least one irrational for which (5) is satisfied by only a finite 

number of fractions of this class. 

The exactness of Theorem I I I  now is a consequence of A, B and C, and the 

following facts: 

a ~ + 2 b  
1. The numbers 2 c c c + d  (a, b, c and d integers with a d - - 4 b c =  +_ 1) lie 

everywhere dense on the real axis for each irrational a. 

2. The fractions a P  + 2bQ (a, b, c, d, P and Q integers with a d - - 4 b c =  +1)  
2 cP + dQ 

P 
are of the same class as ~)- 

3. Given k < 1, and given some class, there exists an integer m and a corre- 

sponding irrational ;t (a, fl or ~), such that  the inequality 

o 

P 
can be satisfied by only a finite number of fractions x of the given class. 
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If we assume that  the inequahty 

t a2 + 2b p k 

holds for infinitely many fractions p- of that  class, then we should also have for these -~ : 
q q 

:Now 
a q - - 2 c p  < ( a q - 2 c p )  ~ (2 l 

lim l(2c2 + d ) ( 2 c P - - - a ) l  = l a d - - 4 b c [ =  l. 
q--.,.oo q 

m .  < l, there would be infinitely many fractions Hence, for k < k 1 < ]/1 + m 2 

( o f t h e  same c l a s s a s ~ ) ,  forwhich  

2 P kl 

and this is impossible. 

P p d - - 2 b q  
Q a q - 2 c p  
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