THE L^p -INTEGRABILITY OF THE PARTIAL DERIVATIVES OF A QUASICONFORMAL MAPPING

 \mathbf{BY}

F. W. GEHRING

University of Michigan, Ann Arbor, Mich. 48104, USA(1)

1. Introduction

Suppose that D is a domain in euclidean n-space R^n , $n \ge 2$, and that $f: D \to R^n$ is a homeomorphism into. For each $x \in D$ we set

$$L_f(x) = \limsup_{y \to x} \frac{|f(y) - f(x)|}{|y - x|},$$

$$J_f(x) = \limsup_{r \to 0} \frac{m(f(B(x, r)))}{m(B(x, r))},$$

$$(1)$$

where B(x, r) denotes the open *n*-ball of radius r about x and $m = m_n$ denotes Lebesgue measure in R^n . We call $L_f(x)$ and $J_f(x)$, respectively, the maximum stretching and generalized Jacobian for the homeomorphism f at the point x. These functions are nonnegative and measurable in D, and

$$J_f(x) \leq L_f(x)^n \tag{2}$$

for each $x \in D$. Moreover, Lebesgue's theorem implies that

$$\int_{E} J_{f} dm \leq m(f(E)) < \infty \tag{3}$$

for each compact $E \subset D$, and hence that J_f is locally L^1 -integrable in D.

Suppose next that the homeomorphism f is K-quasiconformal in D. Then

$$L_f(x)^n \leqslant KJ_f(x) \tag{4}$$

a.e. in D, and thus L_f is locally L^n -integrable in D. Bojarski has shown in [1] that a little

⁽¹⁾ This research was supported in part by the U.S. National Science Foundation, Contract GP 28115, and by a Research Grant from the Institut Mittag-Leffler.

more is true in the case where n=2, namely that L_f is locally L^p -integrable in D for $p \in [2, 2+c)$, where c is a positive constant which depends only on K. Bojarski's proof consists of applying the Calderón-Zygmund inequality [2] to the Hilbert transform which relates the complex derivatives of a normalized plane quasiconformal mapping. Unfortunately this elegant two-dimensional argument does not suggest what the situation is when n>2.

In the present paper we give a new and quite elementary proof for the Bojarski theorem which is valid for $n \ge 2$. More precisely, we show in section 5 that L_f is locally L^p -integrable in D for $p \in [n, n+c)$, where c is a positive constant which depends only on K and n. The argument depends upon an inequality in section 4, relating the L^1 - and L^n -means of L_f over small n-cubes, and upon a lemma in section 3, which derives the integrability from this inequality. We conclude in section 6 with a pair of applications.

2. An inequality

We begin with the following inequality for Stieltjes integrals.

Lemma 1. Suppose that $q \in (0, \infty)$ and $a \in (1, \infty)$, that $h: [1, \infty) \to [0, \infty)$ is nonincreasing with

$$\lim_{t \to \infty} h(t) = 0,\tag{5}$$

and that

$$-\int_{t}^{\infty} s^{q} dh(s) \leq a t^{q} h(t) \tag{6}$$

for $t \in [1, \infty)$. Then

$$-\int_{1}^{\infty} t^{p} dh(t) \leqslant \frac{q}{aq - (a - 1) p} \left(-\int_{1}^{\infty} t^{q} dh(t)\right)$$
 (7)

for $p \in [q, qa/(a-1))$. This inequality is sharp.

Proof. Suppose first that there exists a $j \in (1, \infty)$ such that h(t) = 0 for $t \in [j, \infty)$, and for each $r \in (0, \infty)$ set

$$I(r) = -\int_1^\infty t^r dh(t) = -\int_1^j t^r dh(t).$$

If $p \in (0, \infty)$, then integration by parts yields

$$I(p) = -\int_{1}^{j} t^{p-q} t^{q} dh(t) = I(q) + (p-q) J,$$

where

$$J = \int_1^j t^{p-q-1} \left(- \int_t^j s^q dh(s) \right) dt.$$

Next with (6) and a second integration by parts we obtain

$$J \leqslant a \int_1^j t^{p-1} h(t) dt \leqslant -\frac{1}{p} I(q) + \frac{a}{p} I(p),$$

and (7) follows whenever $p \in [q, qa/(a-1))$.

In the general case, (5) implies that

$$j^q h(j) \leqslant -\int_j^\infty t^q dh(t)$$

when $j \in (1, \infty)$. For each such j set

$$h_j(t) = \begin{cases} h(t) & \text{if } t \in [1, j), \\ 0 & \text{if } t \in [j, \infty). \end{cases}$$

Then $h_i:[1,\infty)\to[0,\infty)$ is nonincreasing and

$$-\int_t^\infty s^q dh_j(s) \leqslant a t^q h_j(t)$$

for $t \in [1, \infty)$. Hence by what was proved above,

$$-\int_{1}^{j} t^{p} dh(t) \leq -\int_{1}^{j} t^{p} dh_{j}(t) \leq \frac{q}{aq - (a - 1) p} \left(-\int_{1}^{j} t^{q} dh_{j}(t) \right)$$
$$\leq \frac{q}{aq - (a - 1) p} \left(-\int_{1}^{\infty} t^{q} dh(t) \right),$$

and we obtain (7) by letting $j \to \infty$.

The function
$$h(t) = t^{-qa/(a-1)}$$

satisfies the hypotheses of Lemma 1, (7) holds with equality, and hence inequality (7) is sharp.

3. Maximal functions, means, and integrability

Suppose that $q \in (1, \infty)$, that $E \subset R^n$ has finite positive measure, and that $g: E \to [0, \infty]$ is L^q -integrable. Then Hölder's inequality implies that the L^1 -mean of g over E is dominated by the corresponding L^q -mean of g, with equality if and only if g is a.e. constant, and hence a.e. bounded. We show here that g is L^p -integrable for some p > q if the L^q -mean of g over certain subsets of E do not exceed the corresponding L^1 -means of g by more than a fixed factor.

We shall base the proof of this fact on a similar result for maximal functions which may be of independent interest. Suppose that $g: R^n \to [0, \infty]$ is locally L^1 -integrable. The maximal function $M(g): R^n \to [0, \infty]$ for g is defined by

$$M(g)(x) = \sup \frac{1}{m(B)} \int_B g \, dm$$

for each $x \in \mathbb{R}^n$, where the supremum is taken over all *n*-balls *B* with center at *x*. Next if $q \in (1, \infty)$ and *g* is locally L^q -integrable, then Hölder's inequality implies that

$$M(g)^q \leq M(g^q)$$

in \mathbb{R}^n .

LEMMA 2. Suppose that $q, b \in (1, \infty)$, that Q is an n-cube in \mathbb{R}^n , that $g: \mathbb{R}^n \to [0, \infty]$ is locally L^q -integrable in \mathbb{R}^n , and that

$$M(g^q) \leqslant b M(g)^q \tag{8}$$

a.e. in Q. Then g is L^p-integrable in Q with

$$\frac{1}{m(Q)} \int_{Q} g^{p} dm \leq \frac{c}{q+c-p} \left(\frac{1}{m(Q)} \int_{Q} g^{q} dm \right)^{p/q} \tag{9}$$

for $p \in [q, q+c)$, where c is a positive constant which depends only on q, b and n.

Proof. Inequality (9) is trivial if g=0 a.e. in Q. Hence by replacing g by dg, where d is a suitably chosen constant, we may assume without loss of generality that

$$\int_{Q} g^{q} dm = m(Q). \tag{10}$$

Next for each $t \in (0, \infty)$ let

$$E(t) = \{x \in Q : g(x) > t\}. \tag{11}$$

We begin by showing that

$$\int_{E(t)} g^{a} dm \leqslant a t^{q-1} \int_{E(t)} g dm \tag{12}$$

for $t \in [1, \infty)$, where a is a constant which depends only on q, b and n.

Fix $t \in [1, \infty)$ and choose $s \in (t, \infty)$ so that

$$s^q = a_n b \left(\frac{q}{q-1}t\right)^q, \quad a_n = \Omega_n n^{n/2},$$

where $\Omega_n = m(B(0, 1))$. Since

$$\frac{1}{m(Q)} \int_{\mathcal{Q}} g^q dm \leqslant s^q,$$

we can employ a well known subdivision argument due to Calderón and Zygmund [2] to obtain a disjoint sequence of parallel n-cubes $Q_j \subset Q$ such that

$$L^p$$
-integrability

269

$$s^{q} < \frac{1}{m(Q_{j})} \int_{Q_{j}} g^{q} dm \leq 2^{n} s^{q}$$

$$(13)$$

for all j, and such that $g \le s$ a.e. in $Q \sim G$, where $G = \bigcup_j Q_j$. (See page 418 of [7] or page 18 of [9].) Then $m(E(s) \sim G) = 0$ and with (13) we have

$$\int_{E(s)} g^q dm \leq \sum_j \int_{Q_j} g^q dm \leq 2^n s^q m(G). \tag{14}$$

Next if B = B(x, r) where $x \in Q_j$ and $r = \text{dia } (Q_j)$, then (13) implies that

$$|M(g^q)(x)| \ge \frac{1}{m(B)} \int_B g^q dm > \frac{s^q}{a_n}$$

and with (8) we obtain

$$M(g)(x) > \frac{q}{q-1}t$$

for $x \in F \subset G$, where $m(G \sim F) = 0$.

For each $x \in F$ there exists an n-ball B about x such that

$$rac{1}{m(B)}\int_{B}\!g\,dm\geqslant rac{q}{q-1}\,t.$$

Since F is bounded, we can apply a familiar covering theorem to find a disjoint sequence of such balls B_j such that

$$m(G) = m(F) \leqslant 5^n \sum_{j} m(B_j). \tag{15}$$

(See, for example, page 9 of [9].) For each j,

$$\frac{q}{q-1} t m(B_j) \leqslant \int_{B_j} g \, dm \leqslant \int_{B_j \cap E(t)} g \, dm + t m(B_j)$$

whence

$$m(B_j) \leq \frac{q-1}{t} \int_{B_j \cap E(t)} g \, dm,$$

and combining this inequality with (14) and (15) yields

$$\int_{E(s)} g^q dm \leq 10^n s^q \frac{q-1}{t} \int_{E(t)} g dm. \tag{16}$$

Obviously

$$\int_{E(t)\sim E(s)} g^q dm \leqslant s^{q-1} \int_{E(t)} g dm,$$

and we obtain (12) with

$$a=10^n\left(\frac{s}{t}\right)^q(q-1)+\left(\frac{s}{t}\right)^{q-1}<50^nqb.$$

Now for each $t \in [1, \infty)$ set

$$h(t) = \int_{\mathcal{R}(t)} g \, dm.$$

Then $h:[1,\infty)\to[0,\infty)$ is nonincreasing,

$$\lim_{t\to\infty}h(t)=0,$$

and it is easy to verify that

$$\int_{E(t)} g^r dm = -\int_t^\infty s^{r-1} dh(s)$$

for all $r, t \in [1, \infty)$. Thus inequality (12) implies that h satisfies the remaining hypothesis (6) of Lemma 1, and we can apply (7) to conclude that

$$\int_{E(1)} g^p dm \leqslant \frac{c}{q+c-p} \int_{E(1)} g^q dm$$

for $p \in [q, q+c)$, where

$$c = \frac{q-1}{a-1} > \frac{q-1}{50^n qb}.$$

Since $g^p \leq g^q$ in $Q \sim E(1)$,

$$\int_{\mathcal{Q}} g^p dm \leqslant \frac{c}{q+c-p} \int_{\mathcal{Q}} g^q dm$$

for $p \in [q, q+c)$, and this together with (10) yields (9).

Lemma 3. Suppose that $q, b \in (1, \infty)$, that Q is an n-cube in \mathbb{R}^n , that $g: Q \to [0, \infty]$ is L^q -integrable in Q, and that

$$\frac{1}{m(Q')} \int_{Q'} g^q dm \le b \left(\frac{1}{m(Q')} \int_{Q'} g dm \right)^q \tag{17}$$

for each parallel n-cube $Q' \subset Q$. Then g is L^p -integrable in Q with

$$\frac{1}{m(Q)} \int_{Q} g^{p} dm \leq \frac{c}{q+c-p} \left(\frac{1}{m(Q)} \int_{Q} g^{q} dm\right)^{p/q} \tag{18}$$

for $p \in [q, q+c)$, where c is a positive constant which depends only on q, b and n.

Proof. Assume that (10) holds and define E(t) as in (11). Next for $t \in [1, \infty)$ pick $s \in [1, \infty)$ so that

 $s^q = b \left(\frac{q}{q-1} t \right)^q,$

and choose a disjoint sequence of parallel *n*-cubes $Q_j \subset Q$ for which (13) and (14) hold. Then (13) and (17) imply that

$$s^{q} < \frac{1}{m(Q_{j})} \int_{Q_{j}} g^{q} dm \leq b \left(\frac{1}{m(Q_{j})} \int_{Q_{j}} g dm \right)^{q}$$

and hence that

$$m(Q_j) \leqslant rac{q-1}{t} \int_{Q_j \cap E(t)} g \ dm$$

for each j. Combining this inequality with (14) yields (16) with 2^n in place of 10^n , and we obtain (12) with

$$a=2^{n}\left(\frac{s}{t}\right)^{q}(q-1)+\left(\frac{s}{t}\right)^{q-1}<2^{n+2}qb.$$

This then yields (18) with

$$c = \frac{q-1}{a-1} > \frac{q-1}{2^{n+2}qb}.$$

If g = 0 in $\mathbb{R}^n \sim \mathbb{Q}$, then inequality (17) implies that

$$M(g^q) \leqslant dM(g)^q$$

in Q, where d is a constant which depends only on q, b and n. Hence Lemma 3 is a direct consequence of Lemma 2. However, the direct argument sketched above yields a substantially better estimate for the constant c.

4. An inequality for quasiconformal mappings

We show next that for a quasiconformal mapping f, the L^n -mean of L_f over a small n-cube is dominated by a fixed factor times the corresponding L^1 -mean of L_f .

LEMMA 4. Suppose that D is a domain in \mathbb{R}^n , that $f: D \to \mathbb{R}^n$ is a K-quasiconformal mapping, and that Q is an n-cube in D with

$$\operatorname{dia} f(Q) < \operatorname{dist} (f(Q), \partial f(D)). \tag{19}$$

Then

$$\frac{1}{m(Q)} \int_{Q} L_f^n dm \leq b \left(\frac{1}{m(Q)} \int_{Q}^{\dagger} L_f dm \right)^n, \tag{20}$$

where b is a constant which depends only on K and n.

Proof. We begin with some notation. We denote by $e_1, ..., e_n$ the basis vectors in \mathbb{R}^n , and by \mathbb{R}^n the one point compactification $\mathbb{R}^n \cup \{\infty\}$ of \mathbb{R}^n . Next for $t \in (0, \infty)$ we let $R_T(t)$ denote the ring with

$$\{x = se_1: s \in [-1, 0]\}, \quad \{x = se_1: s \in [t, \infty]\}$$

as its complementary components in \overline{R}^n . Then

$$\mod R_{\tau}(t) \leq \log \lambda^2(t+1), \tag{21}$$

where λ is a constant which depends only on n,

$$\lambda \leqslant 4 \exp\left(\int_{1}^{\infty} \left(\left(\frac{s^2+1}{s^2-1}\right)^{\frac{n-2}{n-1}} - 1 \right) \frac{ds}{s} \right).$$

(See, for example, [3] or [4].) In particular, it is easy to verify that

$$4 \leqslant \lambda \leqslant 4 \left(\frac{e^n}{2}\right)^{\frac{n-2}{n-1}}$$
.

By performing preliminary isometries, we may assume that Q is the closed n-cube

$$Q = \{(x_1, ..., x_n): |x_i| \leq s, i = 1, ..., n\}, \quad s \in (0, \infty),$$

and that f(0) = 0. Let

$$r = \frac{s}{3^K \lambda^{2K} n^{\frac{1}{2}}},$$

and let R_1 be the ring with

$$C_1 = \{(x_1, ..., x_n): |x_i| \le r, i = 1, ..., n\}, \quad C_2 = \overline{R}^n \sim \text{int } Q$$

as its complementary components. Since C_1 and C_2 are separated by the spherical annulus

$$R = \{x \in R^n: n^{\frac{1}{2}}r < |x| < s\},\,$$

we have

$$\mod R_1 \geqslant \mod R = K \log 3\lambda^2. \tag{22}$$

Next let

$$r' = \max_{x \in \partial C_1} |f(x)|, \quad s' = \min_{x \in \partial C_2} |f(x)|, \quad t' = \max_{x \in \partial C_2} |f(x)|,$$

and choose points $x \in \partial C_1$ and $y \in \partial C_2$ such that |f(x)| = r' and |f(y)| = s'. The ring $f(R_1)$ then separates f(x) and 0 from f(y) and ∞ , and hence

$$\mod f(R_1) \leqslant \mod R_T \left(\frac{|f(y)|}{|f(x)|} \right) = \mod R_T \left(\frac{s'}{r'} \right). \tag{23}$$

(See, for example, [3], [4], or [8].) Thus (21), (22), (23) and the fact that f is K-quasiconformal imply that

$$K \log 3\lambda^2 \leqslant K^{1/(n-1)} \mod f(R_1) \leqslant K \log \lambda^2 \left(\frac{s'}{r'} + 1\right)$$

or simply that

$$s' \geqslant 2r'$$
. (24)

Let $P: \mathbb{R}^n \to \mathbb{R}^{n-1}$ denote the projection

$$P(x_1, ..., x_n) = (x_1, ..., x_{n-1}),$$

and for each $y \in P(C_1)$ let $\gamma = \gamma(y)$ denote the closed segment joining $y + re_n$ to $y + se_n$. Since f is quasiconformal, there exists a Borel set $E \subseteq P(C_1)$ such that

$$m_{n-1}(E)=m_{n-1}(P(C_1))=(2r)^{n-1}$$

and such that f is absolutely continuous on γ whenever $y \in E$. By Fubini's theorem, we can choose a $y \in E$ such that

$$\int_{\mathcal{V}} L_f ds \leq \frac{1}{m_{n-1}(E)} \int_{\mathcal{Q}} L_f dm = \frac{1}{(2r)^{n-1}} \int_{\mathcal{Q}} L_f dm. \tag{25}$$

Then since $y + re_n \in \partial C_1$ and $y + se_n \in \partial C_2$,

$$|s'-r' \le |f(y+se_n)| - |f(y+re_n)| \le \int_{\gamma} L_f ds,$$

and we obtain

$$s' \leqslant \frac{2}{(2r)^{n-1}} \int_{\Omega} L_r \, dm \tag{26}$$

from (24) and (25).

Now suppose that s' < t' and let

$$R'_2 = \{x \in R^n : s' < |x| < t'\}.$$

Then (19) implies that $R_2' \subset f(D)$, and hence $R_2 = f^{-1}(R_2')$ is a ring which separates x and 0 from y and ∞ , where $x, y \in \partial C_2$. Thus

$$\mod R_2 \leqslant \mod R_T \left(\frac{|y|}{|x|} \right) \leqslant \mod R_T (n^{\frac{1}{2}}),$$

and we obtain

$$\log \frac{t'}{s'} = \mod R_2' \leqslant K^{1/(n-1)} \mod R_2 \leqslant K \log \lambda^2 (n^{\frac{1}{2}} + 1),$$

or simply

$$t' \leq a \ s', \quad a = \lambda^{2K} (n^{\frac{1}{2}} + 1)^K,$$
 (27)

from (21) and the fact that f is K-quasiconformal. (See also Lemma 3 in [6].) Since a > 1, (27) also holds if t' = s'.

18-732905 Acta mathematica 130. Imprimé le 17 Mai 1973

Finally f(Q) obviously lies inside the closed ball $\overline{B}(0, t')$. Hence if we combine (3), (4), (26) and (27), we obtain

$$\frac{1}{m(Q)} \int_{Q} L_{f}^{n} dm \leqslant K \frac{m(f(Q))}{m(Q)} \leqslant K\Omega_{n} \left(\frac{as'}{2s}\right)^{n}$$

$$\leqslant K\Omega_{n} \left(2a \left(\frac{s}{r}\right)^{n-1} \frac{1}{m(Q)} \int_{Q} L_{f} dm\right)^{n}$$

$$= b \left(\frac{1}{m(Q)} \int_{Q} L_{f} dm\right)^{n},$$

$$b = K\Omega_{n} (2a)^{n} (3^{K} \lambda^{2K} n^{\frac{1}{2}})^{n(n-1)}.$$
(28)

where

This completes the proof of Lemma 4.

5. Main result

We now apply Lemmas 3 and 4 to obtain the following n-dimensional version of Bojarski's theorem.

THEOREM 1. Suppose that D is a domain in \mathbb{R}^n and that $f: D \to \mathbb{R}^n$ is a K-quasiconformal mapping. Then L_f is locally L^p -integrable in D for $p \in [n, n+c)$, where c is a positive constant which depends only on K and n.

Proof. Choose an n-cube $Q \subseteq D$ such that

$$\operatorname{dia}\left(f(Q)\right) < \operatorname{dist}\left(f(Q), \partial f(D)\right). \tag{29}$$

Then L_f is L^n -integrable in Q. If $Q' \subset Q$ is an n-cube, then (29) implies that

dia
$$(f(Q')) < \text{dist } (f(Q'), \partial f(D))$$

and hence, with Lemma 4, that

$$\frac{1}{m(Q')}\int_{Q'}L_f^ndm\leqslant b\left(\frac{1}{m(Q')}\int_{Q'}L_fdm\right)^n,$$

where b depends only on K and n. Thus by (3), (4) and Lemma 3, L_f is L^p -integrable in Q with

$$\frac{1}{m(Q)}\int_{Q}L_{f}^{p}dm \leqslant \frac{c}{n+c-p}\left(K\frac{m(f(Q))}{m(Q)}\right)^{p/n} < \infty$$

for $p \in [n, n+c)$, where c is a positive constant which depends only on K and n,

$$c > \frac{n-1}{2^{n+2}nb}. (30)$$

Since each compact $E \subset D$ can be covered by a finite number of n-cubes Q satisfying (29), it follows that L_f is locally L^p -integrable in D for $p \in [n, n+c)$, where c is as above. This completes the proof.

Inequalities (27), (28) and (30) yield an explicit positive lower bound for the constant c in Theorem 1. However, this estimate is undoubtedly far from best possible since we have made no attempt to obtain sharp bounds in Lemmas 3 and 4.

To obtain an upper bound for the constant c in Theorem 1, set

$$f(x) = |x|^{a-1}x, \quad a = K^{1/(1-n)}.$$

Then $f: \mathbb{R}^n \to \mathbb{R}^n$ is a K-quasiconformal mapping with

$$L_{\mathbf{f}}(x) = |x|^{a-1}.$$

Since L_f is not L^p -integrable near the origin whenever $p(a-1) \leq -n$, we see that

$$c \leq \frac{n}{K^{1/(n-1)}-1}.$$

It seems probable that this upper bound for c is sharp.

6. Final remarks

We conclude this paper with two applications of Theorem 1. The first of these sharpens the well known result that a quasiconformal mapping is absolutely continuous with respect to Lebesgue measure.

THEOREM 2. Suppose that D is a domain in \mathbb{R}^n , that $f \colon D \to \mathbb{R}^n$ is a K-quasiconformal mapping, and that c is the constant in Theorem 1. For each $a \in (0,c/(n+c))$ and each compact $F \subseteq D$ there exists a constant b such that

$$m(f(E)) \leq b \ m(E)^a$$

for each measurable $E \subset F$.

Proof. Choose $a \in \left(0, \frac{c}{n+c}\right)$ and set

$$q = \frac{1}{1-a} \in \left(1, 1 + \frac{c}{n}\right).$$

Then Theorem 1 and (2) imply that J_f is locally L^q -integrable in D,

$$b = \left(\int_F J_f^q \, dm\right)^{1/q} < \infty \,,$$

and with Hölder's inequality we obtain

$$m(f(E)) = \int_E J_f dm \leqslant b \, m(E)^a$$

for each measurable $E \subseteq F$.

The second application is concerned with Hausdorff dimension. Suppose that $E \subseteq \mathbb{R}^n$. For $a \in (0, \infty)$ the Hausdorff a-dimensional outer measure of E is defined as

$$H_a(E) = \lim_{a \to 0} (\inf \sum_j \operatorname{dia} (E_j)^a),$$

where the infimum is taken over all countable coverings of E by sets E_j with dia $(E_j) < d$. The Hausdorff dimension of E is then given by

$$H$$
-dim $E = \inf \{a: H_a(E) = 0\}.$

Obviously $0 \leq H$ -dim $E \leq n$.

The following result describes what happens to the Hausdorff dimension of a set under a quasiconformal mapping. (See Theorems 8 and 12 in [6].)

THEOREM 3. Suppose that D is a domain in \mathbb{R}^n , that $f: D \to \mathbb{R}^n$ is a K-quasiconformal mapping, and that c is the constant in Theorem 1. Then

$$\frac{c\alpha}{c+n-\alpha} \leq H \cdot \dim f(E) \leq \frac{(c+n)\alpha}{c+\alpha}$$
 (31)

for each $E \subseteq D$ with H-dim $E = \alpha$.

Proof. A simple limiting argument shows we may assume that E is contained in an open set with compact closure $F \subseteq D$. Next for each $a \in (\alpha, \infty)$ and each $\gamma \in (0, c)$ set

$$b = \frac{(\gamma + n) a}{\gamma + a}, \quad q = 1 + \frac{\gamma}{n}.$$

Then $H_a(E) = 0$, J_f is L^q -integrable in F, and we obtain

$$H_b(f(E)) = 0$$

from the proof of Theorem 12 in [6] with 2 replaced by n. Letting $a \to \alpha$ and $\gamma \to c$ then yields the right-hand side of (31). The left-hand side of (31) follows from applying what was proved above to f^{-1} .

Theorem 3 shows that sets of Hausdorff dimension 0 and n are preserved under n-dimensional quasiconformal mappings, thus completing the proof of Conjecture 15 in [6]. Theorem 5 in [6] shows, on the other hand, that no such statement is true for sets of Hausdorff dimension α when $\alpha \in (0, n)$.

References

- [1]. Bojarski, B. V., Homeomorphic solutions of Beltrami systems. *Dokl. Akad. Nauk SSSR*, 102 (1955), 661–664. (Russian)
- [2]. CALDERÓN, A. P. & ZYGMUND, A., On the existence of certain singular integrals. Acta Math., 88 (1952), 85–139.
- [3]. CARAMAN, P., Homeomorfisme cvasiconforme n-dimensionale. Bucharest, 1968.
- [4]. Gehring, F. W., Symmetrization of rings in space. Trans. Amer. Math. Soc., 101 (1961), 499-519.
- [5]. Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc., 103 (1962), 353–393.
- [6]. GEHRING, F. W. & VÄISÄLÄ, J., Hausdorff dimension and quasiconformal mappings. J. London Math. Soc., 6 (1973), to appear.
- [7]. John, F. & Nirenberg, L., On functions of bounded mean oscillation. Comm. Pure Appl. Math., 14 (1961), 415–426.
- [8]. Mostow, G. D., Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms. Inst. Hautes Études Sci. Publ. Math., 34 (1968), 53-104.
- [9]. Stein, E. M., Singular integrals and differentiability properties of functions. Princeton Univ. Press. 1970.
- [10]. VÄISÄLÄ, J., Lectures on n-dimensional quasiconformal mappings. Lecture notes in mathematics 229, Springer Verlag, 1971.

Received September 25, 1972