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1. Introduction

Suppose that D is a domain in euclidean n-space R", n>>2, and that f:D—>R" is a

homeomorphism into. For each €D we set

Lf(x) =lim sup |f(?/?3:£f|w) I’
(1)
m(f(B(z, r)))

Tr@) =l SR B, 1)

where B(z, r) denotes the open n-ball of radius r about 2 and m =m, denotes Lebesgue
measure in R". We call L/(x) and J(z), respectively, the maximum stretching and genera-
lized Jacobian for the homeomorphism f at the point z. These functions are nonnegative

and measurable in D, and
J () <L (z)" @)

for each x€ D. Moreover, Lebesgue’s theorem implies that
j‘ Jrdm <m(f(E)) < oo {3)
E

for each compact F< D, and hence that J, is locally L'-integrable in D.
Suppose next that the homeomorphism f is K-quasiconformal in D. Then

Ly(@)" < KJ,(z) 4)

a.e. in D, and thus L; is locally L"integrable in D. Bojarski has shown in [1] that a little
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more is true in the case where =2, namely that L, is locally L-integrable in D for p€[2,
2+¢), where ¢ is a positive constant which depends only on X. Bojarski’s proof consists
of applying the Calderén-Zygmund inequality [2] to the Hilbert transform which relates
the complex derivatives of a normalized plane quasiconformal mapping. Unfortunately
this elegant two-dimensional argument does not suggest what the situation is when »n>2.

In the present paper we give a new and quite elementary proof for the Bojarski theorem
which is valid for »>2. More precisely, we show in section 5 that L, is locally L*-integrable
in D for p€[n, n+c), where ¢ is a positive constant which depends only on K and #. The
argument depends upon an inequality in section 4, relating the L'- and L"-means of L; over
small n-cubes, and upon a lemma in section 3, which derives the integrability from this
inequality. We conclude in section 6 with a pair of applications.

2. An inequality
We begin with the following inequality for Stieltjes integrals.

LemMA 1. Suppose that g€(0, ) and a €(1, =), that k:[1,90)~[0, =0) is nonincreasing
with

tlim h(t) =0, (5)
and that - fwsqdh(s) < ath(t) (6)
¢
for t€[1, oo). Then
T 1 (T
fl 1°dh(t) Saq_ (a,——l)p( fl ¢ dh(t)) (7)

for p€lq, ga/(a —1)). This inequality is sharp.

Proof. Suppose first that there exists a §€ (1, o) such that A(f)=0 for {€[j, o),
and for each r€(0, o) set

Itr)=— f “rany= - f i)

1 1
If p€(0, o), then integration by parts yields
i
1)~ [ -evann -1+ -0,
1

; i
where J =f et ( - f s“dh(s)) dt.
1 i

Next with (6) and a second integration by parts we obtain
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]
J< af PRy dt < — lI(q) +210p),
1 p P
and (7) follows whenever p€lq, ga/(a—1)).
In the general case, (5) implies that
jenti)< — | weaniy
i
when j€(1, o). For each such 4 set
h(t) if t€[1, ),
i ={ () [1,9)
0 if £€[j, oo).

Then h;:[1, co) - [0, o) is nonincreasing and
- f s%dh;(s) < at?h,(t)
t
for £€[1, oo). Hence by what was proved above,

- jp — jp _J___(
Ltdh(t)< J;tdhj(t)<aq—(a—l)p

i
—J t“dh,(t))
1
q oo
<——— |- t4dh(t)),
« e e )
and we obtain (7) by letting § - oo,

The function h(t) = ¢~9aie=D

satisfies the hypotheses of Lemma 1, (7) holds with equality, and hence inequality (7) is
sharp.

3. Maximal functions, means, and integrability

Suppose that g€ (1, o0), that £ < R" has finite positive measure, and that g: E—[0, o]
is L%-integrable. Then Hoélder’s inequality implies that the L!-mean of g over E is dominated
by the corresponding L¢mean of g, with equality if and only if ¢ is a.e. constant, and hence
a.e. bounded. We show here that g is L?-integrable for some p > ¢ if the L%mean of ¢ over
certain subsets of E do not exceed the corresponding L'-means of g by more than a fixed
factor.

We shall base the proof of this fact on a similar result for maximal functions which may
be of independent interest. Suppose that g: R"—>[0, o] is locally L!-integrable. The maximal
funetion M{g): R*—~[0, o] for ¢ is defined by
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1
M(g) (x) = sup w(B) Lgdm

for each x€ R", where the supremum is taken over all n-balls B with center at . Next if

g€(1, o) and g is locally Lintegrable, then Hélder’s inequality implies that

Mgy <M(g°)
in R”.

LemMA 2. Suppose that g, bE(1,00), that Q is an n-cube in R", that g: R"—[0, o] is
locally L-integrable in R", and that
M(g®) <bM(g)* (8)

a.e. in Q. Then g is LP-integrable in Q with

5@ o e e o) ®

for pElq, q+c), where c is a positive constant which depends only or ¢, b and n.

Proof. Inequality (9) is trivial if g =0 a.e. in @. Hence by replacingg by dg, where d is a

suitably chosen constant, we may assume without loss of generality that

[ grim=m@. (10)
Q
Next for each t€(0, o) let
E(t)={x€Q: g(x) >t} (11)
We begin by showing that
f g"dm<at"‘1f gdm (12)
Et) E)

for t€[1, oo), where a is a constant which depends only on ¢, b and n.
Fix ¢€[1, o) and choose s€(t, oo ) so that
a q ¢ ni2
8 =anb q——lt ) an=an )
where Q, =m(B(0, 1)). Since

1
— Udm < 89,
m(Q) L“’

we can employ a well known subdivision argument due to Calderén and Zygmund [2] to
obtain a disjoint sequence of parallel n-cubes @, < @ such that
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§i<<

1
Udm < 2" g? 13
(@) Jo,? (13)

for all §, and such that g<s a.e. in @~ G, where G= U,Q,. (See page 418 of [7] or page
18 of [9].) Then m(E(s)~ G)=0 and with (13) we have

f gidm<> | ¢%dm<2"sIm(G). (14)
E(s) 7 Jey

Next if B= B(x, r) where z€ ¢, and r=dia (Q;), then (13) implies that

and with (8) we obtain M(g) (x) >q—_— t

for x€ F < G, where m(G~ F)=0.
For each x € F there exists an n-ball B about x such that

1 q
e dm = —2—1.
m(B) Lg g—1

Since F' is bounded, we can apply a familiar covering theorem to find a disjoint sequence
of such balls B; such that
m(G) =m(F) < 5" 3 m(B)). (15)
7

(See, for example, page 9 of [9].) For each j,

—q—tm(Bj)<f gdm<f gdm + tm(B,)
g—1 B; BNE®)

-1
whence m(B;)< - gdm,
B’-ﬂ E)

and combining this inequality with (14) and (15) yields

f g“dm<10“sqq_lf gdm. (16)
Es) t Jew

Obviously
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f godm <597t f gdm,
E@)~E(s) Et)

q -1
a=uwe)@—1y+e) < 50" gb.

Now for each €[], oo) set

and we obtain (12) with

h(t)= f gdm.
B

Then A:(1, o0) [0, o) is nonincreasing,

lim A(t) =0,

t-» 00

f g dm = —f s dh(s)
E(t) t

for all ,2€[1,00). Thus inequality (12) implies that % satisfies the remaining hypothesis

and it is easy to verify that

(6) of Lemma 1, and we can apply (7) to conclude that

f g°dm < ¢ IJ g%dm
E() gtec—pJeq

g—1_ g¢g-1
a-1 >50"qb'

c
Pdm < f 2dm
J‘Qg g+tec—p Qg

for p€[g, g+ c), and this together with (10) yields (9).

for p€lq, g+ c), where

c=

Since ¢ < g% in @~ E(1),

LemwmA 3. Suppose that q,b€ (1, o), that Q 1is an n-cube in R, that g:Q 0, ] is
L-integrable in Q, and that

1 1 a
il adm < b | —— 1
m(@) Lg <t (m(@') Lf"dm) 4
for each parailel n-cube @' < Q. Then g is LP-integrable in Q with
1 c 1 plg
— 0 < - a4 18
(@) fqg an q+c—p(m<@> fo“’ "”) 4o

for p€lq, q+c), where ¢ is a positive constant which depends only on q,b and n.
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Proof. Assume that (10) holds and define E(#) as in (11). Next for t€[1, oo) pick
S€[1, o) so that
q q
a—p| 21—
’ b(q—lt) ’

and choose a disjoint sequence of parallel n-cubes @, < @ for which (13) and (14) hold.
Then (13) and (17) imply that

1 1 a
i< 1dm<b (— dm)
m(Q) Q,g m(Q) ng
and hence that
m(Q,) < g—1 gdm
¢t Jenen

for each j. Combining this inequality with (14) yields (16) with 2" in place of 10", and we
obtain (12) with

s\? s\e!
@ =2" (—t) (g—1)+ (—t) < 2"*2gb.
This then yields (18) with

_1-1_g-1
“Ta-1 >2"+2qb'
If g=0in B"~ @, then inequality (17) implies that
M(g°)<dM(g)®

in @, where d is a constant which depends only on g, b and »n. Hence Lemma 3 is a direct
consequence of Lemma 2. However, the direct argument sketched above yields a substan-

tially better estimate for the constant c.

4. An inequality for quasiconformal mappings

We show next that for a quasiconformal mapping f, the L*.mean of L, over a small
n-cube is dominated by a fixed factor times the corresponding L'-mean of L.

LeMMA 4. Suppose that D is a domain in R, that f: D— R" is a K-quasiconformal map-
ping, and that @ is an n-cube in D with

dia /(@) <dist (@), of(D)). (19)

L prames (<L (g
Then 1—”@ L’Lf dm <»b (m(Q) fQL,dm) s (20)

where b 1s a constant which depends only on K and n.
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Proof. We begin with some notation. We denote by ey, ..., ¢, the basis vectors in R",
and by R" the one point compactification R*U {oo} of R". Next for {€(0, ) we let R,(f)
denote the ring with

{x =se;:s€[—1,01}, {x=se;: sE[L, o]}

as its complementary components in R”. Then
mod R.(t) <log A%t +1), (21)

where 1 is a constant which depends only on =,

o 32+1%§% ds
s [ (7))

(See, for example, [3] or [4].) In particular, it is easy to verify that

n—2

4<< 4(e—n)"-‘—1
) .
By performing preliminary isometries, we may assume that @ is the closed n-cube
Q ={(xy, ..., z,): |®,| <s,i=1,...,n}, $€(0, =),
and that f(0)=0. Let

8§

T SERE Y

and let R, be the ring with
Cy={(2y, ..., ) |@ <1, i=1,...,m}, C,=Rr~intQ

as its complementary components. Since C; and C, are separated by the spherical annulus

R ={z€R™ ntr<|z|<s},

we have mod B, >mod R = K log 322. (22)
Next let ¥ =max |f(x)], § =min|f(z)|, ' =max]|f@®)]
z€@Cy z€dCy 1€dC:

and choose points x €0C; and y €80, such that |f(x)| =r" and |(y)| =s". The ring f(R,) then
separates f(z) and 0 from f(y) and o, and hence

mod f(R,) < mod R, (lf (v) I) =mod Ry (s) (23)

) 7
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(See, for example, [38], [4], or [8].) Thus (21), (22), (23) and the fact that fis K -quasiconformal
imply that
K log 32*< KY" D mod f(R,) < K log 4* (; + 1)

or simply that §'=2r. (24)
Let P: R*— R™! denote the projection
P2y, ..oy @) = (T oovs Tny),

and for each y € P(C,) let y =y(y) denote the closed segment joining y +re, to y +se,. Since f
is quasiconformal, there exists a Borel set £ < P(C,) such that

My (H) = my_y(P(Cy) = (2]

and such that f is absolutely continuous on y whenever y € £. By Fubini’s theorem, we can
choose a y€E such that

1 1
<———- = — L . 25
fyL’d"” mn_l(mLL’dm (2r>“*1fo rdm (25)

Then since y+re, €0C; and y+se, €90,

8 —r < |fly+se,)| — [fy +re,)] <J L, ds,
Y
and we obtain

2 f
,<—“‘_ . 2
S < LL,dm (26)
from (24) and (25).

Now suppose that ' <t' and let
Ri={x€R™ ¢ <|z| <t'}.
Then (19) implies that B;< f(D), and hence B,= f~1(R;) is a ring which separates z and 0
from y and oo, where x, y €0C,. Thus

mod B, < mod Ry (M) < mod Rr(n?),

|=|

and we obtain

t / ,
log e mod Ry < K¥" Y mod R,< K log 22(n +1),
or simply t<as, a=2En+1)F, @7)

from (21) and the fact that f is K-quasiconformal. (See also Lemma 3 in [6].) Since a>1,
(27) also holds if ¢ =s".
18—1732905 Acta mathematica 130. Imprimé le 17 Mai 1973
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Finally f(@) obviously lies inside the closed ball B(0, ¢'). Hence if we combine (3), (4),
(26) and (27), we obtain

Lo M(f as
m(Q)fL dm < K "0, <KQ,,(28)

m"(2 () -G L’d’")n

=iy J2eim)

where b = KQ,(2a)"(3FA2E pt)ynin-1), ; (28)

This completes the proof of Lemma 4.

5. Main result

We now apply Lemmas 3 and 4 to obtain the following n-dimensional version of Bo-

jarski’s theorem.

TaEOREM 1. Suppose that D is a domain in R" and that f: D—R" is a K-quasiconformal
mapping. Then L, is locally LP-integrable in D for p€[n, n+c), where ¢ s a positive constant
which depends only on K and n.

Proof. Choose an n-cube Q< D such that
dia (f(Q)) <dist (f(@), &/(D)). (29)
Then L, is L*-integrable in Q. If @’ <@ is an n-cube, then (29) implies that

dia (f(@") <dist (f(@'), 2/(D))

and hence, with Lemma 4, that

1 1 ”
—_— L}dm<b|—— | L,d R
m(@) J;z' pdm < (M(Q)L' ¢ m)

where b depends only on K and n. Thus by (3), (4) and Lemma 3, L; is L*-integrable in
@ with

1 » c mf@\"" _
mfaLfdm§n+c—p(K m(Q)) B

for p€[n, n+c), where ¢ is a positive constant which depends only on K and =,
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n—1

C> 57,
2n+2nb

(30)

Since each compact F< D can be covered by a finite number of n-cubes @ satisfying
(29), it follows that L, is locally L?-integrable in D for p €[n, n+c), where ¢ is as above. This
completes the proof.

Inequalities (27), (28) and (30) yield an explicit positive lower bound for the constant ¢
in Theorem 1. However, this estimate is undoubtedly far from best possible since we have
made no attempt to obtain sharp bounds in Lemmas 3 and 4.

To obtain an upper bound for the constant ¢ in Theorem 1, set

f@)=||* ez, a=KY4-",
Then f: R*— R" is a K-quasiconformal mapping with
Ly(z) = | 2]

Since L, is not LP-integrable near the origin whenever p(a —1) < —n, we see that

< ____.—__n
Cx .
Kl/(n—]) —~1

It seems probable that this upper bound for ¢ is sharp.

6. Final remarks

We conclude this paper with two applications of Theorem 1. The first of these sharpens
the well known result that a quasiconformal mapping is absolutely continuous with respect

to Lebesgue measure.

TarorEM 2. Suppose that D is a domain in R", that f: D~ R" is a K-quasiconformal
mapping, and that ¢ is the constant in Theorem 1. For each a € (0,c/(n+ c)) and each compact

F < D there exists a constant b such that

m(f(E))<bm(E)*
for each measurable E< F.

Proof. Choose a € (O, L) and set
n+c

1 c
=-———¢|1,1+).
=1 % (’1+n)

Then Theorem 1 and (2) imply that J; is locally L-integrable in D,
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/g
b=(f J}’dm) < oo,
F

and with Holder’s inequality we obtain

m(f(E)) = LJ,dm <bm(E)*

for each measurable E< F.
The second application is concerned with Hausdorff dimension. Suppose that #< R".

For a €(0, =) the Hausdorff a-dimensional outer measure of E is defined as

H,(E)=lim (inf > dia (E,)%),
a—>0 i

where the infimum is taken over all countable coverings of E by sets E; with dia (&) <d.
The Hausdorff dimension of E is then given by

H-dim E =inf {a: H,(E) = 0}.

Obviously 0 <H-dim E<n.
The following result describes what happens to the Hausdorff dimension of a set under

a quasiconformal mapping. (See Theorems 8 and 12 in {6].)
THEEOREM 3. Suppose that D is o domain in R", that f: D— R" is a K-quasiconformal

mapping, and that ¢ is the constant in Theorem 1. Then

% < H-dim f(EK(C_t’M (31)
ctn—a cta

for each E< D with H-dim E =q.

Proof. A simple limiting argument shows we may assume that Z is contained in an
open set with compact closure #< D. Next for each a €(«, ) and each v €(0, ¢) set

b___(___y+7})a’ q=l+z.
y+a n
Then H,(E)=0, J,is L%integrable in F, and we obtain
H,(f(E)) =0
from the proof of Theorem 12 in [6] with 2 replaced by n. Letting a >« and y—c¢ then yields
the right-hand side of (31). The left-hand side of (31) follows from applying what was

proved above to f1.
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Theorem 3 shows that sets of Hausdorff dimension 0 and n are preserved under n-di-

mensional quasiconformal mappings, thus completing the proof of Conjecture 15 in [6].
Theorem 5 in [6] shows, on the other hand, that no such statement is true for sets of Haus-

dorff dimension & when «€(0, »).
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