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0. Introduction 

The minimal surface equation is probably the best known among the non-linear, elliptic 

partial differential equations, and has been studied extensively. In Euclidean space R 3 

the classical Bernstein theorem states that any solution which is an entire minimal 

graph over R 2, must be a plane. In a celebrated sequence of investigations the 

combined efforts of de Giorgi [8], Almgren [1], Simons [16], Bombieri, de Giorgi and 

Giusti [3] succeeded in extending this result to R ~, n~<8, and providing counterexam- 

pies for n>8. At the 1970 International Congress of Mathematicians in Nice, Professor 

S. S. Chern proposed the following as one outstanding problem in differential geome- 

try: 

The Spherical Bernstein problem: Let the (n-H-sphere  be imbedded as a minimal 

hypersphere in the standard Euclidean n-sphere Sn(1). Is it necessarily an equator? 

For n--3 the answer to the above problem was already known to be positive by a 

theorem of Almgren and Calabi, which holds under the weaker assumption of an 

immersed S 2 in $3(1). No further progress was made until Wu-Yi Hsiang recently 

proved the existence of infinitely many non-congruent minimal imbeddings of S "-~ 

into Sn(1) for the specific dimensions n=4, 5, 6, 7, 8, 10, 12, 14 [9, 10]. 

(t) Work done under grant from the Nansen foundation; summer 1983. 
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In this paper we solve the spherical Bernstein problem simultaneously for all even 

n .  

THEOREM. Let S2'n(1) be the standard Euclidean sphere of dimension 2m. Then 

there exists a minimally imbedded (2m-1)-sphere which is different from the equator. 

The proof given here suggests that there in general should be only one almost- 

homogeneous example, invariant under the isometry group SO(2)xSO(m) on s2m(1) 
defined below; i.e. a remarkable "second-best equator". Similarly the same type of 

construction gives an almost-homogeneous S(U(2)xU(m))-invariant example on 

s4m(1) and an Sp(2)x Sp(m)-invariant example on sSm(1). 

There are notable differences between the examples constructed here and those of 

Wu-Yi Hsiang referred to above. In Hsiang's construction essential use was made of 

some unstable minimal cones of focal type (related to the local geometry of the corner 

singularity of the orbit space of s2m(1)). The oscillatory behaviour of a dynamical 

system near a singularity of focal type in that case eventually produces infinite families 

of minimal hyperspheres. The constructions of this paper show that in addition to those 

infinite families, which occur only for a few low dimensions, there exist examples of 

minimal hyperspheres of generalized rotational type whose construction is based on 

area minimizing homogeneous cones, corresponding to a corner singularity of nodal 

point type. The difficulties in this case have up to now been a major obstacle to 

extending constructions of minimal hyperspheres to larger classes of symmetric spaces, 

(see (13) for extensions to other symmetric spaces in the focal point case). 

The Spherical Bernstein problem has a direct bearing on the problem of the local 

structure of an isolated singularity p of a minimal hypersurface N n of a Riemannian 

manifold M n+~. The (regular) tangent cone of N ~ at p is a minimal cone in R ~+1, 

whose intersection Q with S~(1) is a minimal hypersurface. Hence the theorem of 

Almgren-Calabi shows that for n=3, Q cannot be a sphere, (i.e. N ~ a topological 

manifold) unless N n is smooth at p; i.e. the theorem is analogous to Mumfords theorem 

for isolated singularities of complex, algebraic surfaces. 

On the other hand, the cone construction (with vertex at the origin) on our minimal 

hyperspheres, gives the following theorem, which demonstrates an analogous role in 

the theory of isolated singularities of minimal hypersurfaces of Riemannian manifolds 

as that of the spheres of Brieskorn [4] for isolated singularities of complex hypersur- 

faces in algebraic geometry. 
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THEOREM. An isolated singularity of a minimal hypersurface of an odd-dimen- 

sional Euclidean space R 2m+1 cannot in general be detected by its local topological 

structure. 

In view of the well-known difficulties in finding closed solutions, even in the case 

of ordinary differential equations, it is not surprising that a considerable amount of 

explicit non-linear analysis is required. Our result is an existence theorem, our minimal 

hyperspheres are non-homogeneous and not given by any explicit equation. Thus, from 

the point of view of geometric measure theory, their analysis is more complicated than 

most examples studied in depth earlier, and could involve computer assisted approxi- 

mations. The construction suggests stronger stability properties for the cones over 

these examples than in the focal point case.(~) 

For further observations on minimal cones and the Spherical Bernstein problem, 

see [I0]. 

Our construction is based on the orbital geometry of the transformation group 

G=SO(2)xSO(m) acting on s2m(1)cRZm@R--R2(~Rmt~R by the representation 

Q2| (here Ok is the standard representation of SO(k) on R k and 1 is the trivial 

representation). We can then apply methods of equivariant differential geometry; this 

approach was initiated by Hsiang and Lawson [12], and has recently been applied by 

Hsiang to obtain some strong results [9, 10]; we would like to acknowledge our debt to 

his work. We present in this article an exposition of the relevant methods from 

equivariant differential geometry at their present stage of refinement. 

In section 1 we study the orbit map from s2m(1) to s2m(1)/G. The restriction of 

this to the generic set of principal orbits is a Riemannian submersion in the sense of 

O'Neill [15]. The calculation of the mean curvature of a hypersurface requires only the 

following data: the orbital distance metric on the orbit space (a spherical lune) and the 

volume functional, which registers the volume of the fibres. Since the representation 

02| of G is the isotropy representation of the Grassmannian manifold of oriented 2- 

planes in R m+2, this is essentially an application of the theory of Elie Cartan and 

Hermann Weyl to a specific case. With these results, we deduce the differential 

equation in orbit space for a G-invariant minimal hypersurface of s2m(1). Our investi- 

gation is then reduced to finding special types of solution curves. This requires a 

considerable amount of non-linear analysis in orbit space, both qualitative arguments 

and specific estimates. In section 2 the differential equation is studied at the singular 

(I) Very recently, Hsiang and Sterling have shown that the cones over many of the minimal hyper- 
spheres of our main theorem, are indeed stable. 
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boundary. The equation is deformed to a homothetically invariant differential equation, 

which at the comer singularity is a good local approximation. The latter equation is 

then analyzed by Poincar6-Bendixon theory. For completeness, we also include a 

result related to a proposition of Lawson, which produces examples of area-minimizing 

homogeneous cones, i.e. non-interior regularity of solutions to the Plateau problem 

[14]. 

Section 3 contains some qualitative analysis of solution curves. In particular we 

establish a criterion for the existence of solution curves which oscillate between the 

two smooth arcs of the singular boundary; this is more generally applicable than 

previous methods [9, 10]. In fact it can be applied to show the following theorem: Any 

standard sphere Sn(1), n>3, has infinitely many non-congruent, minimally immersed 

hyperspheres. 

Hence the theorem of Almgren and Calabi fails for all dimensions higher than 3. 

Our method is based on counting critical points along certain segments of solution 

c u r v e s .  

The main analysis is carried out in sections 4 and 5. It is a somewhat annoying 

feature of non-linear analysis that arguments tend to be unconvincing until specific 

numerical estimates have been made; for the benefit of the sceptical reader sufficient 

details are given in the Appendix. Our main theorem is finally established by studying 

the variation of the above mentioned number of critical points along a one-parameter 

family of solution curves emanating from the singular boundary of the spherical lune. 

1. The reduced minimal equation in orbit space 

The Grassmannian manifold of oriented 2-planes in R m+2 is the symmetric space G/K 
with G=SO(m+2), K=SO(2)xSO(m). Let a={(xl,x2)}~R 2 be a maximal split Cartan 

subalgebra with restricted root systems +i(x~-x2), +i(x~+x2), and +ix~, +ix2 with 

multiplicities m - 2 .  The isotropy representation of K on p=R 2'' is 02| and the 

orbit space p/K=a/W, where W is the Weyl group of (G, K), and a/W may be identified 

with the Weyl chamber defined by x~>~O, x2>~x~. From Weyl's volume formula in the 

symmetric space case, the volume of an orbit parameterized by (x~,x 2) is 

CX~I-2XT-2(XI--X2)(XIq-X2). Hence the orbit space of 02~Orn(~l o n  s2m~_R2m+R is a 

spherical lune X of angle ~:t. Introducing spherical polar coordinates (r, 0) centered at 

the north pole we obtain: 
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The orbital distance metrix on X is ds 2= dr2+sin2rdO 2. 

The (normalized) volume functional is: v(r, 0) -- sin 2' ' -2 r sin m-220 cos 20. 

Let  M*~S 2m be the union of  principal orbits; then the orbit projection at restricted to 

M* is a Riemannian submersion: M*-->X*c_X in the sense of  O'Neill  [15]. I f7  is a curve 

in X*, the mean curvature of  its inverse image in M* is given by 

H(z) = k(~r(z))- -~n In v(at(z)), 

where k is the geodesic curvature of  ~, and h is the oriented normal of  7 [10]. 

THEOREM I. Let N be a compact, G-invariant hypersurface of  M. Let 7(s) be the 

curve at(N) in X parametrized by arc length s, and let a be the angle from O/ar to the 

tangent 07/ds. Then N is minimal if and only if the generating curve y AX* satisfies the 

following differential equation: 

J" = COS a 

6 = s ina  sin - l  r (*) 

& = - ( 2 m -  1) sin a s in-  l r cos r+  2 cos a sin-  1 r[(m-2) cot 2 0 - t a n  20]. 

Proof. We observe that there are no exceptional orbits. By a well-known dimen- 

sion argument in transformation groups, N must intersect M*, hence (N A M*) is open 

dense in N. N is minimal if and only if H - 0 ,  by continuity it suffices to check this on 

N flM*. This reduces to 

k(y(s))--~nnlnv(7(s))=O 

on ~,AX*, computat ion o f  k (in the spherical metric) and 

d In v(r, O) 
da 

gives (*). Q.E.D.  

Remark 1. The  equation (*) is reflectionally symmetric  around r=�89 It is also 

symmetric under  reversal of  parameter ,  i.e. if 7(s)=(r(s), O(s)) is a solution, then 

g(s)=7(-s) is also a solution. 
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Remark 2. There are two easy solutions of (*): 

(i) r--�89 is the equator s2m-I(I)=R 2m n S2m(1). 

(ii) 0 -00= �89  is the suspension of the principal orbit of maximal 

volume. It does not define a smooth submanifold of s2m(1) ("the meridian solution"). 

We now conclude with our main reduction theorem for minimal hyperspheres: 

THEOREM 2. Let G, M, X, X*, :r be as above. Let y(s)=(r(s), O(s)), s E (a, b) be a 

simple smooth curve in X*, parametrized by arc length, such that r(a+)E(0,gr), 

0(a+)=0, r(b-)  E (0, :r), 0(b-)=�88 Assume that (r(s), O(s), a(s)) is a solution o f  (*) for 

s E(a,b) with a(a+)-a(b-)-�89 Then N=:r-l()  ') is a minimally imbedded 

hypersphere o f  M=S2m(1)o 

Proof. The coordinate curve r=c E (0, :r) generates the hypersphere {(x, z)lz=cos c, 

Ilxl12+z2-1} in M=s2m(1). A curve in X that enters the boundary 0=0 (or 0-=~:r) or- 

thogonally, generates a smooth hypersurface in M, so N=:r-~(7) is a smooth, minimal 

hypersurface of M by Theorem I. To conclude that N is a sphere, we note that it is of 

cohomogeneity I under G with [a, b] as orbit space. Here (Go) is the principal orbit 

type for c E (a, b), and the one-parameter family of orbit types (Go), c E [a, b] corre- 

sponds exactly to the same data for the G-space s2m-~(1) generated by r---�89 It is well 

known from transformation group theory that those data determine N as the union of 

the mapping cylinders of the projections G/Go-'*G/Ga and G/Go--->G/Gb. Hence N 

must also be a (2m-1)-sphere. Q.E.D. 

2. The differential equation at the singular boundary 

We will frequently need the following observations on solution curves of (*). 

LEMMA 1. Let (r(s), O(s), a(s)) be a solution curve o f  (*). We then have: 

(i) any relative maximum (minimum) o f  r(s) occurs with r>�89 (r<�89 

(ii) any relative maximum (minimum) o f  O(s) occurs with 0>00 (0<00). 

(iii) any relative maximum (minimum) o f  a(s)-occurs with a in the first or third 

(second or fourth) quadrant. 

Proof. From (*) we have: /~=-a  sin a, at k--cos a = 0  we then have/:=(2m-1) cot r, 

and (i) follows. Similarly 
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---- sin -2 r(a (cos a sin r--sin a cos a cos r)), 

at t)=0 we have 

0 = 2 sin-2 r COS 2 c t ( ( m - -  2) cot 2 0 -  tan 20), 

and (ii) follows. Computing (1 and substituting the relation between a, 0 and r defined 

by d=0 yields 

(i --- K(r , O) sin a cos a, 

where 

K(r, 0) = 2 m -  1 -4  sin -2 r((m-2) sin -2 20+cos -2 20) 

is always negative. Q.E.D. 

PROPOSITION 1. Let  7(s)=(r(s), O(s)), s E ( - e ,  e) be a continuous curve in X, with 

r(0)E(0,:r), 0(0)=0(~:r), and assume that a(s) is a differentiable function on 

( -e ,  0) U (0, e) such that (r(s), O(s), ct(s)) satisfies (*). Then a ( 0 - ) = -  �89 and a(0+)=�89 

(respectively a(0-)=�89 and a(0+)=-�89 i f  0(0)=~:r). 

Proof. This can be seen from standard ODE and estimates based on (*). 

PROPOSITION 2. Let  7(s)=(r(s), O(s)), s E ( - e ,  0], be a continuous curve in X with 

r(0) E (0, :r), 0(0)=0 or �88 which defines ct solution curve o f (* ) for  s E ( - e ,  0). Then y is 

analytic. 

Proof. By Theorem 1 and the proof of Theorem 2, the lift ~r-l(y) is a smooth, 

minimal hypersurface of s2m(1). Analyticity follows by standard regularity theorems. 

Q.E.D. 

The differential equation (*) becomes singular at the boundary of X (0=0 or 0=41:r). The 

question of the existence and uniqueness of analytic solution curves originating at the 

boundary was investigated (for a special case) in [ll]  by a method which is generally 

applicable. 

THEOREM 3. Let  (b,0) with bE(0,:r) be a point on the singular boundary o f  X.  

Then there exists a unique, continuous curve yb(S)=(r(s), O(S)) in X, which defines a 

solution Fb(S)=(r(s), 0(s), ct(s)) of (*) for  s>0, with r(O)--b, 0(0)=0. Here Fb(S) is 
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analytic in (b, s) (as long as s is restricted to an interval o f  the form [0, c] where the 

curve ~,b(s) does not intersect the singular boundary again), and a(0+)=�89 

PROPOSITION 3. Let ~,(s)=(r(s), O(s)) and (r(s), 0(s), a(s)) be as in Proposition 1. 

Then (r(s), O(s), a(s)=(r(-s), O(-s), a ( - s )+  :t) for  s E (0, e). 

Proof. Define (rl(s), 01(s), al(s))=(r(-s), 0(-s) ,  a( - s )+x)  for s E [0, e). By Remark 

1 this is a solution of (*) for s E (0, e), by Proposition 1 and the uniqueness result of 

Theorem 3 it must coincide with (r(s), O(s), a(s)) for s E [0, e). 

Hence any solution curve which hits the singular boundary continues back along 

the same trajectory, with a discontinuous jump in a at the boundary. Closeby solution 

curves will generically avoid the boundary, i.e. a(s) is smooth; by the next proposition 

a(s) will nevertheless turn sharply near the boundary. 

Definition 1. Let Fr, o,a(s)=(r(s), O(s),a(s)) be the unique solution curve of (*) 

with initial conditions r(0)=r, 0(0)=0, a(0)=ct, where rE(0,z0. 0E(0,~z0, 

aER(mod2x) ,  and let ~,,,o,a(s)=(r(s),O(s)) be its projection to the orbit space. We 

extend to initial conditions on the lower boundary 0=0 by defining 

Fr(s)=(r(s),O(s),a(s)) as the unique solution curve with r(0)=r, 0(0)=0, and 

~,r(S)=(r(s), O(s)) its projection. 

PROPOSITION 4. Let bE(0 ,x)  and eE(0,~r). Then there exists a positive 5 such 

that for any 0 in (0, 5) (resp. in (~ t -5 ,  ~zt)) there exists an s o in (0, e) such that with 

Fb, o,a(s)=(r(s), O(s), ct(s)) we have 

O(s o) E (0, e), 1�89 < e (respectively O(s o) e (tzt-e, ~zt), 1�89 < e). 

Proof. This can be seen by standard theory of ODE and rather delicate estimates 

of (*). Q.E.D. 

To study the phase portrait of (*) near the corner singularity it is advantageous to 

deform (*) to a homothetically invariant equation, which can then be reduced to a two- 

dimensional dynamical system. 
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Let  k>0. We define: 

/" = COS tX 

= k s i n a  sin -I  kr (*)k 

& = - ( 2 m -  1) k sin a sin- 1 kr cos kr+ 2k cos a sin- 1 krKo. 

in the region r E [0, at~k], 0 E [0, ~at]. 

For  k--1 this coincides with (*). For k=O we have the limit equation: 

/" = COS O~ 

= r -1 sin a (*)o 

6t = - ( 2 m -  1) r -1 sin a + 2 r  -1 cosaKo 

in the region r~>0, 0 E [0, ~at]. 

Definition 2. We denote by Fk:r,O,a(S)-----(rk(S),Ok(S),Ctk(S)) the solution of (*)k 

with initial conditions .(r, 0, a) at s=0,  and by ~k: ,, 0, ~(s)=(rk(s), Ok(s)) its projection to 

orbit space. As in Definition l Fk: �9 and 7k: �9 are the special cases of  0=0,  a=�89 If  c>0,  

we denote by cFk:r,O,a(s) the homothetic image of  Fk:�9 i.e. 

CFk: r, O, Ct ( s )  = (crk(s), Ok(s), ak(s)). 

PROPOSITION 5. We have Fr, o,~(s)=kFk,�9 

Proof. Straightforward differentiation. 

From this proposition it follows that solution of (*) can be analyzed by homotheties of  

solutions of  (*)k. For  small k, (*)k is approximated by (*)o, and we now analyze this 

system. 

In the (0, a)-plane an equivalent system under reparameterization is: 

= sin a sin 40 

~t = - ( 2 m -  1) sin a sin 40 + 4 cos aLo, (**)o 

where Lo=(m-  2) cos 2 2 0 -  sin 220. 

Singularities of (**)0: 

(A) 0=0o, a = 0 ,  at, corresponding to the solution 0=0o of (*)o. 

(B) 0=0,  ~at, a =  +�89 corresponding to all solutions of (*)0 with initial values 

r E (0, at), 0=0,  ~at. 

13-878289 Acta Mathematica 158. Imprim~ ie 28 juillet 1987 
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PROPOSITION 6. For m<8 the singularity (A) of (**)o is a focal point. For m>~8 the 

singularity (A) is a nodal point, with generic direction of entry 
(1, -~{2m-  1 - ( ( 2 m -  1)2-32(m - 1))v2}) and exceptional direction of entry 

(1, -�89 { 2m-  l +( (2m-1)2- 32(m-1))l/2} ) in ( O, a)-space. Furthermore, the singularity 

(0,�89 is always a saddle point with separatrices given by the a-axis and by 

( m - 1 , - ( 2 m - 1 ) ) ,  and ~zt, -�89 is always a saddle point with separatrices given by the 

a-axis and by (2, - ( 2 m -  1)). 

Proof. The matrix of (**)o at the singularity (A) is given by 

2 sin 200 cos 200(_8(0m_ l) _l(2m_l) ) 

with eigenvalues sin 20o cos 200( - (2m-  1)+((2m- 1)2-32(m - 1)) v2) i.e. for m<8: two 

complex eigenvalues and focal type singularity, for m~8: two negative eigenvalues and 

nodal type singularity. The focal point case m<8 is the one investigated in detail by 

Wu-Yi Hsiang [9, I0]. The proof of the proposition is easily completed by computing 

the eigenvectors at the various singularities. Q.E.D. 

From now on we always assume m~>8. 

PROPOSITION 7. The separatrix (other than the a-axis)from (0,�89 enters the 

nodal point (0o, O) along the generic direction of entry, without first crossing 0=00. 

Remark. We believe this result, although not explicitly stated in the literature, will 

be known to specialists. The above proposition is equivalent to the statement that the 

one-parameter family of solutions Yo; r, r>0 of (*)o never cross the meridian 0=0o. An 

immediate corollary is non-interior regularity for solutions of the Plateau problem in 

R 2m with boundary an orbit corresponding to a point p on 0=0o (this fact was observed 
in (14)). 

Proof. Here a < 0  initially. For 0<00 we have 4>0  at a=O and ~t<0 at a=�89 (from 

(**)0), it follows that a remains in (0,�89 before any crossing of 0=00. Let 

v=O~ I a+(m-�89 where 01=0-00. Here v>0 for -01>~t(2m-1) -l, in particular v(s)>0 

initially (00>:t(2m- 1)-l). 

LEMMA 2. v(s) is positive for all s. 
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Proof. Direct computation and substitution from (**)o gives: 

0 = - v2a -t  sin a sin 40-r (2m-  1) 2 a_ t sin a sin 40+4L o 0~ t cos a. 
4 

(***)o 

A delicate estimate now proves that b>0 at v=0 and Lemma 2 follows. 

Since v(s) would approach -oo when 0 crosses 00, this would contradict Lemma 2. 

It now follows that the separatrix must enter the nodal point (0o, 0) from above without 

first encircling it. The proof of Lemma 2 holds for any solution curve F0; r, 0, a(s) of (*)0 

with 0 E (0, 00), a E (0, �89 v(0)>0. Consider a one-parameter family Ft(s)=(Ot(s), at(s)) 

of solution curves of (**)0 such that Ot(O)=t, at(0)=c E (0, �89 )'0(0) lies on the separa- 

trix. Then ~,s(s) crosses 0=00 for some t<O o. Since any such crossing is transversal, 

this crossing condition is open. Let t I =sup {t<00, ),t(s) does not cross 0=00}, then ytt(s) 

does not cross. By the uniqueness theorem for differential equations ~'tt must be the 

unique solution curve which enters the nodal point along the exceptional direction. 

Q.E.D. 

3. Some qualitative features of solution curves 

PROPOSITION 8. Let  b E (0, �89 and let Fb(S)=(r(s), 0(s), a(s)) be as in Definition 1. 

Then there exists a positive s I such that O(Sl)=O0, r(s)<�89 a(sl)E(0, �89 and ~t(s)<0 

for  s E (0, sl], i.e. 7b(s)=(r(s), O(s))escapes the region III: (r, 0) E (0, �89 00) by 

crossing 0 - 0  o. 

Proof. In III we have fi>0 at 6=0  and fi<0 at a=�89 (from (*)), it follows that 

a(s) E (0, �89 until Yb(S) escapes III, and that ti(s)<0 for small s. By Lemma 1, (iii), a(s) 

has no relative minimum for a E (0, �89 hence ~t(s) remains negative until the escape 

from III. By (*) t~>0 at r=~'t, 0<00, hence yb(s) can only escape across 0=00 . Q.E.D. 

Let Fb(s)=(rb(S),Ob(s),ab(S)) be as in Definition I, and let Rb=rb(Sb) be the first 

relative maximum of rb(S). 

PROPOSITION 9. Let  bE (0, �89 Then s b varies continuously with b. All critical 

points fo r  ab(S), S E [0, S b] are non-degenerate and occur in the interior (0, %). 

Proof. B y  Theorem 3 ~b(S)=COS ab(s) varies continuously with b. By Lemma 1, 



200 P. TOMTER 

~b(S)=(2m--1) cot rb(S) at a critical point for rb(S). Hence an inflection point coincides 

with a critical point at s=s '  only if COStZb(S')=0, cosrb(S')=O, i.e. for the equator 

solution, b=�89 It follows that s b is continuous for b E(0,1~r). We have 

ab(Sb) = - ( 2 m -  1) sin a(sb) sin-lRb cos Rb=l:O unless gb=�89 COS O~b(Sb)=O'~ which again 

would imply b=�89 by the uniqueness theorem for differential equations. Let s 1E (0, s b) 

be a critical point for ab(S), from Lemma 1, (iii) we conclude that it is non-degenerate 

unless sinab(sl)=0. But then ~t(Sl)=0 gives Ko(sl)=O, i.e. O(sl)=O o. By the uniqueness 

theorem again this must be the meridian solution 0 - 0  0, i.e. b=0. Q.E.D. 

Definition 3. Let ll(b), I2(b) and l(b)=Ii(b)+IE(b) be the number of relative 

maxima, relative minima and critical points for ab(S), S E (0, Sb], respectively, defined if 

Ob(s b) E (0, ~:r). 

PROPOSlTIOI~ 10. I i (b ) , IE(b)andI (b  ) are locally constant  as long as 

Ob(S b) E (0, ~r). I f  Ob(sb)=O, 11 is constant  around b, but I 2 may jump  +_ 1 at b. Similarly, 

i f  Ob(Sb)=~r, 12 is constant  around b, whereas 11 may have a jump  + 1. 

Proof. Since critical points in (0, Sb) are non-degenerate, they are stable; since no 

end point can be critical, it follows that ll(b), l~(b), I(b) are locally constant. Now, 

assume c E (0, �89 0c(sc)=0 , rc(Sc)>�89 Then ac(S)-*-�89 as s--~s c - .  For any positive 

e there exists a 6 such that for [b-cl<6,  we have ab(sc--6)E(--�89189 

Ob(S~--6)E(O,e), rb(S~--6)>�89 If ~tb(Sc--6)~O, it follows from Lemma l, (iii) that 

~b(s)>0 until ab=0, and from (*) that &b(s)>0 until a(s)=�89 i.e. s=s  b. If ~tb(Sc-6)<O, 

we either have: (i) ab(S)<0 until ab(S)-------�89 for s=s  b, or (ii) ab(S) decreases until it 

reaches a relative minimum at s=s ' ,  by Lemma I, (iii), a(s ' )>-l~r,  and by (*) and 

Lemma 1, (iii), &(s)>0 for s E (s', Sb). It follows that 11 is constant and I 2 may jump + 1 

as b crosses c. A similar argument near 0=~r shows the rest of the proposition. Q.E.D. 

Remark.  By observing that {Tb} is a variation through geodesics relative to the 

modified metric ds2=vEds 2, and considering the corresponding Jacobi-field along )'c, it 

is not hard to see that such jumps do in fact occur. 

THEOREM 4. Let  0<bl<b2<~zr , and assume that I1(b2)=0, Ii(bl)>~l. Then 

0b(Sb)=~r for  some b E (b l, b2). 
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This follows from Proposition 10. 

COROLLARY 3. Let bl and b2 be as in Theorem 4. Then there exists a non- 
equatorial minimal imbedding of S 2m-1 into s2m(1). 

Proof. This follows from Theorem 4 and Theorem 2 applied to the curve 

7b(S)=(rb(S), Ob(s)) for s E [0, Sb]. 

4. Analysis of small perturbations of the equator solution 

Corollary 3 reduces the spherical Bernstein problem to estimating the variation of the 

number of critical points of ab(S) along a one-parameter family of pieces of solution 

curves I'b(s), b E (0, �89 In this section some analytical effort succeeds in providing 

sufficiently good estimates near the end point �89 of the interval. 

By the discussion of section 1 we may consider F~(s)  as defiried for all s, with a 

discontinuity in a~/2(s ) at s=�88 k E Z, which disappears when imposing a suitable 

metric on phase space. A corresponding "continuous dependance" on initial condi- 

tions beyond intersections with the singular boundary is provided at b=�89 by the 

following. 

PROPOSITION 11. For any n and any e>O there exists a di>O such that 

Oh(s)- s - k  < e for s E 2 2 .... 

Oo(s) - (k2-s  ) <e for sE [(k-�89 k 2  ], k = l  .. . . .  n 

ab(S)-- 2 
I . . - -  - -  . . , t  

lab(s)+21<e forsE[(k- �89  k 2 - e ] ,  k = l  .. . . .  n 

whenever b E (�89 �89 
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For convenience we give: 

Definition 4. The regions I - IV in orbit space are defined by: 

I: (r ,O)E(2,at)•  

II: (r ,O)E(0 ,2)•  

i i i  ,r 0, (0 0o, 

IV 0o, 

We first prove: 

LEMMA 2. Let 0</~<0, 1. Then there exists a 61>0 and an s 2 E [~zt, ~r+/~] such that for 

b E (�89 �89 

rb(s)-- 2 < I* for s E [0, s2] 

Ob(S)--(2--S ) <~t f o r s E [ 4 ,  sz] 

ab(S)-- 2 <I~ forsE[O,4--1~ ], ab(S2'+ 2 <1~. 

Proof. Let /z2=~/~. By Proposition 4 we may find a ~//IE(0,~/,/2) such that if 

~t--Ob(Sl)<21z I, then I~:r+a(s2)l</z2 for some s2E [s I, sl +/~2]. By Theorem 3 we may find 

a 6>0  such that ]rb(s)--�89 I, [Ob(S)--S[<IZ i, and ]ab(s)-�89 for s E [0, ~:r--/zl], 

when bE0.~t-6,�89 Setting Sl=~:t--/Zl, we have ~:r--Ob(sl)=~:r--Sl+sl--Ob(Sl)<-21Zl. 
Furthermore,  Irb(s)--�89 I +/z2</~ for s E [s 1, s2], IOb(s)--sl<<-Izl +3/ZE</Z for s E Is 1, ~:r] 

and [Ob(S)--(�89 for s E [~:r, s 2] (recall that from (*) we get lObl<2 in the 

region Irb-�89 Q.E.D. 

To reach the conclusion of the proposition we need to apply continuous depend- 
ance on initial conditions. Since yb(s2) approaches the singular boundary 0--~t as/~--->0 

(and hence b--->�89 the point s = s  2 is useless for obtaining estimates. 
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LEMMA 3. Let v>0 and let -1 1 ~ - s3-~et+2(-~:t 00). Then there exists a I~E(O,v) and a 

corresponding s 2 as in Lemma 2 such that 

[rb(S)-- 2 <V, [Ob(S)--(2--s)l<v,  and ctb(s)+21<v forsE[Se, S3]. 

Proof. By Lemma 2 it suffices to find a constant K such that Irs(s)-�89 l, 
IOb(S)-(�89 and las(s)+�89 are less than K/z for s E [s2,s3], i.e. to control these 

quantities in terms of #. By Lemma 1 (ii), as(S) E (-at ,  0) for s E [s 2, s3]. 

In region II: By (*) d>0 ilt a =  -�89 hence as(S) E (-�89 0) implies ab(s+t) E (-�89 O) 

as long as ?b(s+t)EII. By (*) Irb(s)--�89 must decrease. If as(s)<0, lab(s)+�89 de- 

creases, otherwise ab(s)<--(2m-- 1) sin as(s) cot rb(S), hence we control both Irs(s)-�89 
and las(s)+�89 in terms of /~ in this region. By IOb(sO-(�89 and 

Os(s)=sin as(s) sin -l rb(S) it follows directly that we also control [Os(s)-(�89 I in terms 

of/z. 

In region I: For a E (-�89 0), ~t<0, i.e. [ab(s)+�89 [ decreases. Since bs(s)=cos as(s) 

decreases, we also control [rs(s)-�89 [ in terms of /z in this region. For 

aE(-~,-�89 Irs(s)-�89 decreases. If &b(S)>0, [ab(s)+�89 [ decreases, otherwise we 

control las(s)+�89 in terms of/z by applying the estimate 

0 > ~ts(S) > - ( 2 m -  1) sin Otb(S ) cot rs(s). 

Control of Os(s) then follows as above. 

Finally, ~s(s) may cross back into region II with as(s) E (-:t ,  -�89 By (*),/ts>0 at 

a=-~Tt now, hence as(s) E (-:t ,  -�89 rib(S)>0 until ys(s) leaves II again. So las(s)+�89 

decreases, and [rs(s)-�89 I, I Os(s)-(�89 [ are controlled in terms of/z as above. Q.E.D. 

Proof of Proposition 11. Let vl>0. By continuous dependance on initial conditions 

at the point F~/2(s3)=(�89 ~:t+�89 o, -~:t) there exists a v E (0, v I) such that for Irb(s3)-�89 

10b(s3)-(�89 and lab(s3)+�89 we have Irs(s)-�89189 and 

[ab(s)+�89 I for s E [s 3, �89 Determine/z as in Lemma 3 and 61 as in Lemma 2. 

Let n=l. We have now solved the problem for s 6.[0, �89 By the same argument as 

in Lemma 2 (near 0=0) we can extend beyond s=�89 Repetition of this argument 

finishes the proof for general n. Q.E.D. 
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THEOREM 5. There exists a 6>0 such that ll(b)=O for bE(�89189 

Proof. Let b E (0, �89 Then ~,b(S) starts out in III, by Proposition 8 it crosses into II 

at s=s r Let 0<e<0,  1, choose ~ as in Proposition 11, and bE(�89189 By Proposi- 

tion 8 and (*), &b(s)<0 for s E [0, ~:r-e]. By Lemma l, (i) Ctb(S ) (= (--�89 1~) until either: 

(a) ~,b(s) crosses into I for s=s2, or (b) ~b(S) crosses back into III for s=s 2. By (*) and 

Lemma 1, (iii), ab(s) has no relative maximum for s E [0, s2]. By an estimate of the 

linearization of (*), only (a) can actually occur. By Proposition 4 and an easy estimate 

of (*) it follows that ab(s)=--�89 for an s=s b close to ~:r. 

By Lemma 1, (iii) and (*) ~tb(S2+t)<O until ab(S)=--�89 at S=Sb, in which case 

ll(b)=0. Q.E.D. 

5. Analysis of small perturbations of the meridian solution 

We need the following extension of Theorem 3: 

PROPOSITION 12. Let  b E (0, x/k). Then there exists a unique solution curve I'k; b of  

(*)k; for  this curve Ctk;b(0)=lgt (see Definition 2). The curve Fk.b(s) is analytic in (k, b, s), 

including k=0, as long as s is restricted to an interval where the curve does not hit the 

singular boundary. 

Proof. We need only observe that when reformulating the equations as in the proof 

of Theorem 3 and expanding the right hand side in power series, the coefficients a,qnv 

are analytic in k and b, including k=0. From the recursion formula for the coefficients 

of the solution [11] it follows that the solution is analytic also in k. Q.E.D. 

Let v=a(O-Oo)-l+(m-�89 For any solution curve (r(s),O(s),a(s)) of (*) we 

define v(s) as v evaluated along that solution curve. 

PROPOSITION 13. For any e>0 there exists a 6>0 and an SoE(O,e) with 

O<O0--Ob(SO)<e, O<ab(so)<e, Vb(So)>O, and O<Oo--Ob(S) for s E[0,s0] whenever 

bE(0,5).  

Proof. By Proposition 6, interpreted back to (*)o, we can find a K such that 

Fo, l(s)=(rol(S), Ool(s), aol(S)) satisfies: 

Oo--Oo,(S),aol(S)E (O, 2 ) ,  
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and 

t~01 (S) (001 (S)  - -  0 0 )  - 1 + (m - 1/2) > I ((2m - 1 )2 - -  32(m - 1))1/2 

for s~K (recall that the solution enters the singularity along the generic direction). Let 

R be a tubular neighbourhood of (F01(s)ls E [0, K]} of radius less than e/2 and so small 

that it does not intersect 0-00.  By Proposition 11 we can find a/z>0 such that Fk, l(s) is 

in R for sE[0,K] if 0<~k<#. Let 6=min~ ,eK-1) ,  and let kE(0,5). By Proposition 5 

with r=k we have Oo-Ok(kK), ak(kK)E(O,e ) for kE[0,5). Furthermore, by again 

applying Propositions 11, 5 and 6 it is clear that we can further reduce 5 to obtain 

vk(kK) =akl(K) (OkI(K)--00)-I+ (m--�89 cos rkl(K)>0. Q.E.D. 

We define z = - c o s r ;  then v=a(O-Oo)-t-(m-~)z. 

LEMMA 5. For any e>0 there exists a 6>0 and a K E ( I - e ,  l+e)  such that: 

,( 
whenever lal, IO-Ool<& 

Proof. Let u=a(O-Oo) -1. Then: 

(**) 

sin-lr(--a-l(sina)v2+a-l(sina) (2m-- l) 2 = cos 2 r+2 (cos a) (0-00) -1Ko). 
4 

do = sin_ 1 rcos_ 1 a0 
dz 

= (1-z2)-l(  -v2a-ltana+ (2m-I)24 z2a-ltana+2Ko(O-O~ 

Expanding K o we find limo_,o ~ Ko(O-Oo)-l=-4(m-1), and the conclusion follows easi- 

ly. 

Definition 5. We define Ck=(~k) ta (18m-- 17) m (4m 2-1) -la. 

Let yb(s) have its ith crossing with 0=0o at s=si. 

LEMMA 6. There exists a 5>0 such that Z(Sl)=--cosrb(sl)>--CI6 whenever 
bE(O,5). 
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Proof. Clearly V(Sl-)=-oo.  From (**) we see that for any e>0, there exists a 6>0 

such that 

dVdz >(1--e)(1--Z-2)-'(~-~ -~z2 18m-17)  - e 2  

at v=0 whenever b E (0, 6). Let /~>0.  By choosing e sufficiently small we see that 

dv/dz>O at v=0 for z>-c~6-1~, hence v cannot decrease below zero in that region. By 

(**) dv/dz is bounded in [ -c l6- /z ,  -c16], the conclusion follows by choosing/z suffi- 

ciently small. 

PROPOSITION 14. For any e>0 there exists a 6>0 such that ]O0--Ob(S)l<E , 

]ab(s)]<e for s E [e, : t - t ]  whenever b E (0, 6). 

Proof. Choose a 6>0 which simultaneously satisfies Proposition 13 and Lemma 6. 

Then, from Proposition 8 and (*) it follows that ab(s) and Oo-Ob(s) are both in (0, e) for 

s E [So, sl]. Hence we obtain an approximation of ?b(s) to the solution 0---0 0 with 

arbitrary accuracy at a point independent of 6, e.g. at cosr=�89 0=0 o, a=0.  The 

conclusion follows by continuous dependance on initial conditions applied to the 

meridian solution 0 - 0  0 at the above point. Q.E.D. 

COROLLARY 4. For any e>0 there exists a 6>0 such that (**) holds for the solution 

curve yb(S), S E [e, :t--t], whenever b E (0, 6). 

PROPOSITION 15. There exists a 6>0 such that Sb>S 4 for bE(0,6) .  

This will be proved by estimating the variation of v along ?b in the interval 

ZE[--cl6,cl6]. Notice that for Si<Sb we have v(si-)=-oo,  v(si+)=~, regardless of 

whether ?b crosses 0---0o from above or below. Hence v(s) passes from oo to -o0 for 

s E[si, si+l], and it suffices to show that this occurs at least four times for 

z E [-c~6, c~6]. 
Consider the equation 

dv = _v2 + 4m 2-1 z2 18m-17 (***) 
dz 4 2 

Then dv/dz<O for ZE(--Cl6 ,  CI6 ). Let v(z) be the solution of (***) such that 

v( -c16+)=-oo.  When v ( z l - ) = -  oo we can extend the solution beyond the discontinu- 

ity z=z~ by setting v(z~ +)=  oo, etc. Notice that w(z)=arctan v(z) satisfies the differential 

equation: 
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d - - ~ - W = - l + c ~  z 2 - d z  18m-17).2 

By Corollary 4 and comparison it now suffices to show: 

LEMMA 7. For w(z)=arctan v(z) we have: w(-cl6)-W(Cl6)>4:r, i.e. v(z) decreases 

from oo to -oo at least 4 times in [c-16,c16]. 

The computational details of Lemma 7 are given in the Appendix, and we are then 

ready to conclude with our main results. 

THEOREM 6. There exists a t~>0 such that II(b) > - 1 for b E (0, 6). 

Proof. We have ~b(Sl)<0, furthermore, it follows from (*) that ~b(si) and ~tb(si+l) 

have opposite signs if rb(si), rb(si+l) are either both in (0, ~r) or both in (~:r, :r), i= 1,2, 3. 

By Proposition 14 ab(s) now has at least one relative maximum for s E (0, sb), and the 

conclusion follows. Q.E.D. 

THEOREM 7 (Main theorem). Let s2m(1) be the standard Euclidean sphere o f  

dimension 2m. Then there exists a minimally imbedded (2m- l)-sphere which is differ- 

ent from the equator. 

Proof. This now follows from Theorems 5, 6 and Corollary 3. 

THEOREM 8. An isolated singularity o f  a minimal hypersurface o f  an odd dimen- 

sional Euclidean space R 2m+l cannot in general be detected by its local topological 

structure. 

Proof. The cone to the origin on the example of Theorem 7 is a minimal cone in 

R 2m+~ with the vertex as a singular point. Obviously the intersection of this with a 

sphere around the vertex is topologically a (2m-1)-sphere, i.e. topologically indistin- 

guishable from the corresponding intersection around a regular point of the hypersur- 

face. Q.E.D. 

Remark. S(U(2)xU(m)) acts o n  s4m(1)~R4m+I~c2~cmO)R by the "representa- 

tion fl2~lt/m0)1 (/Zk = standard representation of U(k) on CO. The orbit space has the 

same parameterization as in the orthogonal case, and the volume functional is given by 

U(XD X2' X3) = cx2m-31 x2m-3(X2 ~ 1--X2)2 (X 1 +X2)2 = sin 4m-2 r sin 2m-320 cos  220.  
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The modification in the basic equation (*) is now given by: 

~t = - (4m-  2) sin a sin- 1 r cos r+ 2 cos a sin- l r((2m- 3) cot 20 -  2 tan 20). 

With z = - c o s  r and v=a(O-Oo) -1 (2m-�89 we now have the control equation 

dv  = ( l _ z2)_ l ( _ o2 +16m2 - 1 z 2  - 36m-17)  
dz 4 2 ; 

this is the same as (***) when substituting 2m for m. Hence the same proof, with the 

computation in the Appendix, gives the existence also of an S(U(2)x U(m))-invariant 

minimally imbedded hypersphere in s4m(1). Sp(2) xSp(m) acts on 

sam(1)~Ram+I~--H2(~Hm(~R by V2~Vm(~I, in this case the volume functional is: 

O(Xl, X2, X3) = CX 4m-5 x4m-5(Xi--X2 )4 (X 1 -l-X2 )4 = sin 8m-2 r sin 4m-520 cos 420. 

Here 

& = - ( 8 m -  1) sin a cos r sin-1 r+ 2 cos a sin-1 r((4m-5) cot 20-4  tan 20), 

and with v=a(O-Oo)-1-(4m-�89 we have the controlling limit equation 

dzdV = (l_z2)_l (_o2q 64m2-14 72m- 1 7 ) 2  ' 

which again is (***) when substituting 4m for m. Hence we also obtain an 

Sp(2) x Sp(m)-invariant minimally imbedded hypersphere in sam(l). 

Appendix 

To prove Lemma 7 we need to estimate v along a sufficiently fine subdivision of 

[--Cl6, Cl6]. Let Ik, l=[--Cl,--Ck] and Jk, l=[Ck, Cd for 0~<k<l<16. Then, for any solu- 

tion v(z) of (***), we have: 

dVdz.< _(v24 lgm-1732 (16-1)) 

for z EIk, t or Jk, t. The solution of the equation 
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is v=-Tttanq~t, where Tt=32-1/2(18m-17)t/2(16-1) 1/2, cpt=Ttz+C with C a con- 

stant. We call q~t the /-phase of  v. The increase in /-phase of  v over Ik, t or Jk, t is 

estimated by: 

> 63 f16 l ) l /2( l  1/2 k 1/2) (1) 
AtPt 1 - ~ "  - "  " - " 

This follows since 

- ~ l  (18m-- 17) (4m 2-1)  -1/2 ( 1 6 - - l )  1/2 (ll/2-k 1/2) > .6-.6-~3~3~ (16-1)1/2 (l l /2-k I/2) Aq91 ZlAZ 
l b  

(since m~>8). 

The amplitude T1 varies for different subintervals, hence we also need to consider a 

"phase-shif t"  at end-points: 

A t  Z=--Ck: 

--Tttancpt(--Ck)=--Tktancpk(--Ck), i.e. 

qDk(--Ck) = arctan ( (16- l )  1/2 (16-k)-1/2 tan q~--Ck)). (2) 

Similarly, at Z=Ck: 

q0l(Ct) = arctan (( 16-- k) 1/2 ( 1 6 - / ) -  1/2 t a n  ~lgk(Ck) ) . (3) 

For the case l = - 1 6  we compare with the solution v=(z+c16) -1 of do/dz=-o 2. Then 

V(--C,)<(C16--Ck)-l=2S/2(4m2--1)l/2(18m--17)--l/2(4--kV2) -v2. For  the k-phase at 

Z=--Ck we then have: 

128 1/2 !/2 -1/2 9k(-ck)=-arctan(17~lv(-ck))>-arctan--z-z-(4-k )- (16-k)  ( m ~ 8 ) .  

Let k=15.5. Then tpk(--Ck)>--l.5488754. By (1) applied to l=15.5, k=15: 

Atp~>0.022281, hence tpls .s(-c15)>-l .526594.  At each step we now apply the shift 

formula (2) and then (1): l= 15, k= 14: 

( (  16-15.5 ~ 1/2 ) 63 . 11/2(151/2_ 141/2) > _ 1.443689. 
tPls(-c14)>arctan " 1 6 - ~  / tanq~ + - i ~ -  

l=14, k=13: 

> arctan ((�89 tan cP15(-c14))+67^21/2(14 !/2-131/2) > - 1.297258. tPl4(-cl3) 1 2 8  
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For the convenience of  the reader we list the further estimates obtained: 

(P13(-- C12) > -- 1.119225, 

~010(--C9) > --0.4506929, 

tFT(--C 6) > 0.3548584, 

~4(--C3) > 1.470002, 

(]712(-- Ci 1 ) > - -0 .9151182,  

tpg(- c 8) > - O. 1977776, 

tp6(- c 5) > O. 670213, 
,7"t 

tp3(- c2.798) > 1.571 > -~-. 

tpn(-  Clo ) > -0.6906602, 

tp8 ( -  c7) > - 0 . 6 9 0 0 0 8 ,  

q95(-c4) > 1.0325066, 

Hence it follows that v(z) has reached -oo (and the first crossing of  ~/b with 0-----0o has 

occurred) before z--c2.798.  At the crossing v jumps from -~o to oo, and we may 

continue by comparing with the solution curve of  (****) with phase -�89 at z =-c2.798. 

l=2.798, k=2: 

> - ~ + .6_3_(16-2.798) 1/2 (2.798u2-21/2) > - 1.108495. ~2.798(--C2 ) 2 1 2 8  

!=2, k= 1.5: 

/ [ 1 3 . 2 0 2 \  1/2 \ 63 14v2(2v2_ 1.5v2) > _0.747753. 
t P 2 ( - C l 5 ) > a r c t a n k k ~ )  tantP2798(-c2)) + 128 

l= 1.5, k= l :  

l=1, k=0.0001: 

~pl.5(-cl) > -0.317796 

tpl(-c0.0o01 ) > 1.574 > 2 "  

Hence v(z) has again reached -oo (and Yb has crossed 0=00 again) before z=-Co.ooov 

We continue by comparing with the solution of (****) with phase -�89 at z=-Co.0o0~. 

l=0.0001, k=0: 

Aq~l = 15.999r . 6__.3_3 
128 

over both Ik.t and Jk ,  I. 

Hence 

qOo.oool(Co.oool) > -�89 +2.  Aq9 t > - 1.531422. 
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We have now reached the region z>0. We continue as before, but now use (3) and (1) at 

each stage. 

k=0.0001, 1=0.5: 

+ 63 (15.5)1/2(0.51:2_0.01)>_0.181227 . 
128 

~Pl(Ct)>0.374166, cP2(c2)> 1.148864, ~02.75(C2.75)> 1.58>�89 O(Z) has decreased to - oo (and 

the third crossing with 0-00  has occurred) before z=c2.75. We now compare with the 

solution of  (****) with phase -�89 at z=c2.75. 

63 (13t/2(3~/2 2 751/2) q93(C3)>--�89 l - i ~  ` . - . > - 1 . 4 3 9 9 4 0 .  

q04(c4) > -0.988170, 

~07(c7) > - 0.039172, 

~010(c10 ) > 0.676952, 

q013(cn3) > 1.267694, 

q015.5(c15.5) > 1.560823, 

q%(c 5) > -0.622626, 

~Ps(Cs) > 0.212759, 

~l l (C l l )  > 0.891711, 

r > 1.415526, 
7f 

q015.s(cns.s) > 1.572 > ~-. 

q%(c 6) > -0.313191, 

~09(C9) > 0.450388, 

912(Cl2) > 1 .090671,  

Cpls(Cls) > 1.525198, 

Q.E.D. 

Remark. Since 

d o > - (  v2§ 18m-17 ) 
32 (16-k)  

for z Eli ,  i or Jk, t, one may carry through an estimate of the absolute change of v, [Av[, 

from above in a similar manner. It is then possible to sharpen Theorem 1 to Ii(b)= 1 for 

b E(0,6), thus indicating that one can only expect one example invariant under 

SO(2) xSO(m). 

Thus we have proved--in the nick of  t ime-- that  the fourth crossing with the meridian 

solution occurs for z<c!6. Note that although the equation (***) depends on m, the 

estimates (1), (2) and (3) do not, this enables us to prove the result uniformly for all 

m~>8. For special values of  m the result can be checked by numerical integration on a 

computer; to avoid infinities, it is then more practical to integrate the equation of 

w(z)--arctan v(z) (section 5). Note that v changes rapidly for z near 0, a program with 

subintervals Ik, I of equal size requires far more subintervals (ca 1 000) than our 

computation. 
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