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In [2] C. B. Morrey proved a Holder estimate for quasiconformal mappings in the
plane. Such a Hélder estimate was a fundamental development in the theory of quasi-
conformal mappings, and had very important applications to partial differential equations.
L. Nirenberg in [3] made significant simplifications and improvements to Morrey’s work
(in particular, the restriction that the mappings involved be 1—1 was removed), and he
was consequently able to develop a rather complete theory for second order elliptic equation
with 2 independent variables.

In Theorem (2.2) of the present paper we obtain a Holder estimate which is analogous
to that obtained by Nirenberg in [3] but which is applicable to quasiconformal mappings
between surfaces in Euclidean space. The methods used in the proof are quite analogous
to those of [3], although there are of course some technical difficulties to be overcome
because of the more general setting adopted here.

In §3 and §4 we discuss applications to graphs with quasiconformal Gauss map.
In this case Theorem (2.2) gives a Hélder estimate for the unit normal of the graph. One
rather striking consequence is given in Theorem (4.1), which establishes the linearity of
any C%R?) function having a graph with quasiconformal Gauss map. This result includes
as a special case the classical theorem of Bernstein concerning C?(R?) solutions of the
minimal surface equation, and the analogous theorem of Jenkins [1] for a special class
of variational equations. There are also in § 3 and § 4 a number of other results for graphs
with quasiconformal Gauss map, including some gradient estimates and a global estimate
of Hélder continuity. § 4 concludes with an application to the minimal surface system.

One of the main reasons for studying graphs satisfying the condition that the Gauss

map is quasiconformal (or (A;, A,)-quasiconformal in the sense of (1.8) below) is that such
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a condition must automatically be satisfied by the graph of a solution of any equation of
mean curvature type (see (1.9) (ii) below). However we here only briefly discuss the applica-
tion of the results of § 3 and § 4 to such equations; a more complete discussion will appear
in [7].

§ 1. Terminology

M, N will denote oriented 2-dimensional C? submanifolds of R", R™ respectively,
n, m>2. Given X €M (1) and Y €N we let Ty(M), T,{N)} denote the tangent spaces (con-
sidered as subspaces of R* and R™) of M at X and N at Y respectively. § will denote the
gradient operator on M; that is, if h€CY(M), then

SH(X) = (O, B(X), ..., uh(X)) € T'x(M)
is defined by

(L1) 8, HX)= 3 §(X) DK X),
<1

where % is any C! function defined in a neighbourhood of M with %|,,=h, and where
(*(X)) is the matrix of the orthogonal projection of R onto 7T ,(M).

We note that of course the definition (1.1) is independent of the particular C! extension
% of h that one chooses to use. We note also that in the special case n =3 we can represent
§(X) explicitly in terms of the unit normal »(X) = (v,(X), v5(X), v4(X)) of M at X according

to the formula
(1'2) g‘U(X) = 6U_yi(X)yj(X)’ i’ ? = l’ 23 3.
7, 6 will denote area forms for M, N respectively; that is, # and 6 are C* differential

2-forms on M and N respectively such that

f 7 =area (4), f 6 = area (B)
4 B
whenever A< M and B< N are Borel subsets of finite area.

(1.3) Remark. We can always take a C' 2-form { on M to be the restriction to M of a ("
form { defined in a neighbourhood of M < R*, so that £(X)€A2(R?) for each X € M. Thus

in case n =3, we can write

LX) = Ey(X)day A diy+Eo(X)day A day+Ea(X)dy A day,

(1) We will use X =(x,, ..., ) to denote points in M; the symbol x will be reserved to denote
points (z;, 7,;) € R%.
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where {3, {5, {3 are O in some neighbourhood of M. Using the notation *5(X)=(C1(X),
—Z5(X), £4(X)) (3¢ is the usual linear isometry of /A%(R3) onto R3) we then have

fc=fv.(*5)dy2’ A<M,

where v is the appropriately oriented unit normal for M and H? denotes 2-dimensional
Hausdorff measure in R3. In particular, we see that { is an area form for M if and only if
(81(X), —Cu(X), {5(X)) is a unit normal for M at each point X € M. Thus there is no diffi-
culty in recognizing an area form in case n =3. (Of course one can give an analogous, but
not quite so convenient, characterization of area forms for arbitrary =.)

Our basic assumption concerning4N is that there is a 1-form w(X)=>7"; w,(X)dz,
which is C2 in a neighbourhood of N and such that

m 1/2 m 1/2
(1.4) dwy =0, sup{z w?} +sup{ > (D,w,)z} SAy<oo.
N i=1 N i,7=1
Here A, is a constant and wy denotes the restriction of @ to N; henceforth we will not

distinguish notationally between w and wy.

(1.5) Examples. (i) If N is an open ball of radius R and centre 0 in R2, we can take w=
—Yx,dx, +32,dx, and Ag=R +1.

(ii) If N is the upper hemisphere 82 of the unit sphere S2c R3, we can take w=
(—xo/(1 +25))day + (2, /(1 +25))da, +0dzy and Aj=4. One can easily check this by directly
computing dw and using the relation >;.; 27 =1 on 82%; to check that dw is an area form
for 8% it is convenient to use the characterization of area forms given in Remark (1.3)
above. (Alternatively one obtains dw as an area form by using an elementary computation
involving example (i) above and stereographic projection of S% into R2.)

(iii) More generally, we can let N be the surface obtained from a compact surface
LcR™ by deleting a compact neighbourhood of an arbitrary chosen point y,€L. There
will then always exist w as in (1.4) because the 2-dimensional de Rham chomology group
H3L~ {y,}) is zero. (And this of course guarantees that any 2-form { on L~ {y,} can
be written in the form dw for some 1-form w on L~ {y,}.) To check that H*L~ {y,})=0
we first note that de Rahm’s theorem gives an isomorphism H2(L~ {y,} = H¥L~ {y,}, R),
where H¥L~ {y,}, R) denotes the 2-dimensional singular cohomology group with real coef-
ficients. Next we note the duality isomorphism H(L ~ {y,}, R) = Hom (Hy(L ~ {,}), R), where
Hy(L~ {y,}) denotes the 2-dimensional singular homology group with integer coefficients.
Finally we note that H,(L~ {y,})=0. This follows from the exactness of the homology
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sequence for the pair (L, L~{y,}), together with the fact that the inclusion map
(L, )= (L, L~ {y,}) induces an isomorphism Hy(L) = Hy(L, L~ {y,}) (see [9]).
We now consider a ' mapping

Q= (¢1; evey ¢m)' M-N.

In order to formulate the concept of quasiconformality for ¢ we need to introduce some

terminology. Firstly, for X € M we let
0p(X): Tx(M)~ Ty x)(N)

denote the linear map between tangent spaces induced by ¢. We note that the matrix
(0,9,(X)) represents Jp(X) in the sense that if v={(vy, ..., v,)ET (M), w=(wy, ..., W)
€Ty x)(N) and w=3¢p(X)(v), then

n
wl=‘zlai¢I(X)vb i=1,...,m.

(Here 6,p,(X) is defined by (1.1)). The adjoint transformation (dp(X))* is represented in
a similar way by the transposed matrix (6,¢,(X)). We define

n m 1/2
| 6gp(X)| = {glgl (X ))’} ;

thus |dg(X)| is just the inner product norm {trace ((5p(X))*dp(X))}. Next, we let Jp(X)
denote the signed area magnification factor of ¢ computed relative to the given area forms
7, 6. That is, letting

N(B3(X)): N(T (V) >N T (M)
be the linear map of 2-forms induced by dp(X), we define the real number Jop(X) by
(17) Na(dp(X))dor(p(X)) = Jo(X)n(X), XEM.

Notice that this makes sense as a definition for Jp(X) because AXT (M) and A3(T (V)
are 1-dimensional vector spaces spanned by the unit vectors 7(X) and dw(p(X)) respect-
ively. Notice also that [Jo(X)| =||A%dp(X))|- In fact,

Jo(X) = + [ ASp( X)),

with + or — according as @ preserves or reverses orientation at X.
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(1.8) Definition. We say ¢ is (A;, A,)-quasiconformal on M if A,, A, are constants with
A, =0, and if
|0p(X) |2 < Ay Jp(X) + A,

at each point X €M .(%)
The geometric interpretation of this condition is well known:

Op(X): Tx(M)~Tyx)(N)
maps the unit circle of 7'y(M) onto an ellipse with semi-axes @ and b, a 2b, in T x,(N), and
|dp(X) |2 =a?+0b%, |Jp(X)| =ab.
Thus the definition (1.8), with A,=0, implies

a24'b25;I1\1|ab,

-
a< (l—A2A+ V%—l—l) b.

Furthermore, (1.8) can hold with |A1| =2 if and only if a =b; that is, either dp(X)=0 or
dp(X) takes circles into circles. This latter property holds if and only if ¢ is conformal at X.

which implies |A;|>2 and

In case A,=0 a similiar interpretation holds if a2 +b? is sufficiently large relative to
A, an important point however is that in this case condition (1.8) imposes no restriction
on the mapping ¢ at points X where |d¢(X)| is sufficiently small relative to A,.

(1.9) Examples. (i) A classical example considered by Morrey [2] and Nirenberg [3] involves

equations
2

2 ay(x) Dyu=b(x)

f,1=1

on a domain Q< R?, with conditions

2
€< ’ Zla,,(z)£,§,<11|§|2, z€Q, E€ER?

b ]=

|b(z)| <2y xEQ.

Provided thatsupg | Du| < oo, we can define M, N,p by M =Q, N = {x €R2:|z| <supqg| Du|}

(see example (1.5)(i)) and
g=Du: M—-N.

(?) Notice that we do not require ¢ to be 1-1.
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In this case we have J(p)=(Dyu)(Dyu)— (Dyu)?, |dp|2=|Dp|2=3%,1 (Du)?, and ¢
is (A, Ay)-quasiconformal with A, = —24,, A,=A4,4. To prove this last assertion we choose
coordinates which diagonalize (D,,u(x)) at a given point #=x,; in these coordinates the
equation takes the form

ay Duy i+ oty Dy i = B,
where

1<q<h, i=1,2 |B] <k

Squaring and dividing by «, «, then gives
1 o . . .
7 (D1, 9)* + (Dpg @) S — 2(Dyy ) (Do 1) + 23.
1
In the original coordinates, this gives

2
i IZI (Du’”')2 < = 244((Dyy u) (Dga u) ~ (Dyg “)2) + X4 VE;

as asserted.

(ii) Another important example of a quasiconformal map arises by considering the
equations of mean curvature type; that is, any equation of the form
2

> ayl(x,u, Du) Dyu=>b(z,u, Du), =x€Q,
1

iJ-

where the following conditions (see [7] for a discussion) are satisfied:

2 2 2
(a') Z g”£l£1< Z at/(x)u’Du)E]§;<\: 11 z 91,5151
i,j=1 i,7=1 t.4=1
where
9" =0,—wv; v, = —Du/V1+|Du|?
(b) |b(x, u, Du)| < AV1+|Dul2.

It is shown in [7] that (a), (b) imply that the graph M ={X =(x,, ,, #3): ¥y =u(z,, z,)}

has principal curvatures x,, », which satisfy, at each point of M, an equation of the form

%36 Faaxs =,
where
1<oy<dy, 1=1,2, |ﬁ|<22.

Squaring, we obtain
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o &
o+ Puf= — 2y 005+ ——,
oy % 0y %y
so that
(1.10) 23+ x5 < Ayseses T Ay,
where

Ay= =24, Ay=ih.

We now let N=35% (see example (1.5) (ii)) and we.let ¢p: M — N be the Gauss map »,
defined by setting »(X) equal to the upward unit normal of M at X; that is,

»X) = (— Du(), )/V1+|Du@)|2, X = (2, u(z)), 2EQ.

Then, as is well known,

Jv = K =ux,%, (= Gauss carvature of M).

(This is easily checked by working with a ‘“principal coordinate system at X”; that is,
a coordinate system with origin at X and with coordinate axes in the directions e,(X),
e5(X), ¥(X), where e,(X), e,(X) are principal directions of M at X))

Furthermore (and again one can easily check this by working with a principal co-
ordinate system at X)

[0v]2 =2 +ad.

Thus the inequality (1.10) above asserts that the Gauss map v is (A, A,)-quasiconformal
with A, = —24,, A,=4,43.

Thus the main Hélder continuity result we are to obtain below (Theorem (2.2)) will
apply to the gradient map x— Du(z), £€), in the case of uniformly elliptic equations (as
in (i)) and to the Gauss map X—>»(X), X € graph(u), in the case of equations of mean
curvature type. In the former case one obtains the classical estimate of Morrey-Nirenberg
concerning Holder continuity of first derivatives for uniformly elliptic equations; in the
latter case we obtain a new Holder continuity result for the unit normal of the graph of
the solution of an equation of mean curvature type. (See the remarks at the beginning of
§ 4 below and the reference {7] for further discussion and applications.)

We conclude this section with some notations concerning the subsets obtained by

intersecting the surface M with an n-dimensional ball. We write
8,X,) ={XeM: |X-X,| <o}
whenever X, €M and g>0. Xo€M and R >0 will be such that

(M ~M)n {XER™ | X—~Xy| <R} =0
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(here M denotes the closure of M taken in R"), so that Sy(X,) is a compact subset of M.
A; will denote a constant such that

(1.11) (BR/4)2| S3r/a(Xo)| < A,

Here and subsequently we let |S,(X;)| denote the 2-dimensional Hausdorff measure of
So(X,).

In the important special case when M is a graph with (A,, A;)-quasiconformal Gaunss
map, we will show in § 3 that Az can be chosen to depend only on A; and A,R2.

It will be proved in the appendix that

(1.12) o 2|8,(X )| < 40{9-”|SQ(X1)1 + szA}

Sg(Xs)
for any X, € Sx(X,) and any o, ¢ with 0<o<p<R— |X,~X,|. (Here H denotes the mean
curvature vector of M.)

§ 2. The Hilder estimate

The main Holder continuity result (Theorem (2.2) below) will be obtained as a con-
sequence of estimates for the Dirichlet integral corresponding to the map ¢: M—>N (cf.
the original method of Morrey [2].) For & given X, €8;,(X,) and g €(0, R/2), the Dirichlet
integral is denoted D(Xj, o), and is defined by

D0 [, lopPad.
ot X2

Before deriving the estimates for these integrals, some preliminary remarks are needed.
We are going to adopt the standard terminology that if { is a k-form on N(k=1, 2) then
¢*¢ denotes the “pulled-back” k-form on M ,defined by

@* X)) =Np(X)Nl@X)), XeM.

Thus, letting % be an arbitrary C? function on M, and using the definition (1.7) together
with the relation

o*d =de*,
we have

2.1) d(hg* N) = dh A g*o +hJpdA,

where dA denotes the area form 7 for M. We also need to note that if X, €S,(X,) and if
rx, is the Euclidean distance function defined by
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(2.2) r(X)=|X-X,|, XE€ER®
then, by Sard’s theorem, we have that, for almost all o €(0, B — | X, — X|), 6rx, vanishes
at no point of 08,(X,). For such values of g we can write
N(p)
(2.3) 28,(Xy)=U TP,

i=1

where N(p) is a positive integer and I'J, j=1, ..., N(p), are C? Jordan curves in M. Thus,
by Stoke’s theorem, for almost all p €(0, R— | X, —X,|) (2.1) will imply

No)

(2.4) hpdA= —f dh A p¥Fw +}=Zl rg)htp#w.

SO(X by SQ(X 1)

(We are assuming that the I'{’ are appropriated oriented.) In case & has compact support

in S,(X;) we can write
(2.5) hWpdA= — f dk A p*w,
Sg(Xn ERES)

and of course this holds for all p€(0, R— | X; — X,}).
The following lemma gives a preliminary bound for D(X,, R/2).

LemMma (2.1). If @ is (A, Ap)-quasiconformal, then
D(X,, B[2) <c,
where ¢ depends only on Ay, Ay, Ay R? and A,

Proof. We let y be a C* “cut-off function” satisfying 0 <y <1 on M, p =1 on Sg/(X,),
=0 outside Sy,,(X,) and sup, |dy|<5/R. (Such a function is obtained by defining
w(X)=p(] X — X, |), where y is a suitably chosen C1(R) function.)

Since

(2.6) gro= 2 wopdp,
we can easily check, by using (1.4), that
[ (dy A p*w)(X)]| < Ag|op(X)| |0(X)| < BR-1A,|dp(X)|, XEM.

(Here, on the left, | | denotes the usual inner product norm for forms on 7x(M).) Then
by using (2.5) with X, =X, 0 =R and h=y?, we easily obtain

L (X)w2J<pdA’< IOR‘lef v|dp|dA.
R(Xo

S gp(Xo)
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The quasiconformal condition (1.8) then implies

f w2|6q)|2dA<10R“A0|Al|f 1p|6<p|dA+A2f e
SR(Xo) Sgp(Xo)

Sgp(Xo)

Using the Cauchy inequality ab <4a?+4b2 and the definition of A,;, we then obtain

f v?|dplPdA < %f V¥ OpPdA + (50 AZ AT+ A, RY) A,.
Sp(Xo) SRr(Xo)

Since ¢ =1 on Sg/y(X,), the required inequality then follows (with ¢ = (L00A] A +2A, R2)A,).
The next theorem contains the main estimate for D(X,, o). In the statement of the

theorem, and subsequently, A, denotes a constant such that

f H*dA<A,,
SR/2(Xo)

where H is the mean-curvature vector of M. (See [4].)
THEOREM (2.1). If @ is (A, A,)-quasiconformal, then
D(X,, ¢) <c(g/R)*

for all X, €8y,{xy) and all p €(0, R/4), where ¢ >0 and «€(0, 1) are constants depending only
on Ny, Ay, Ay R%, Ay and A,

Proof. Since the curves I'Y’ of (2.3) are closed we have [I'{’dgp,= Ty dg,/ds=0.
(Here ds denotes integration with respect to arc-length and dg,/ds denotes directional
differentation in the direction of the appropriate unit tangent 7' of I'Y’; that is dg,/ds =
T-d¢,.) Then by (2.6) we have

fr‘g’ prw 121 J‘Ffeh (w00 - w;0p(XP)) Td—; ds,

where X” denotes an initial point (corresponding to arc-length =0) of I'’. Then using
(2.4) with A =1, we obtain

Jopdd|=
f%‘xﬂ 4 ~

N(@)
<> {sup|woq)— wogv(X“”)]f (,)I(S(plds}.
1=1 P‘(!D Te

N(g) mn

dy
Z FZ”E; (w09 — in(p(X(D))ﬁds

=1

(2.7)
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But clearly

dwog
(2.8) ?}I)) lwogp —wop(X?P)|< frg) “ds
Q

ds< fr(,)|5wo¢|ds.
e

Since
|dwop|< sup | Do || 0| < Ag|dg],

(2.7) and (2.8) clearly imply

N(g)
f J<;odA‘<Ao {f(,)|6<p|ds}
Se(X1)
N(g) 2
<Ao{ f(,)l6¢|ds} =A, (f lé(p]ds)
85p(X1)
2
([, (8018r %) s ) 25)
g 1
<A0{LS X)l‘s‘Plzla’X:l lds}{fas (X)lérx,|ds}
o(41 o\
d
= 2dA4 ) (= 2d4).
A (d@fsg(xl)l <P|d )(defsq(xl)|6erl 4 )

Here 7y, is as in (2.2) and in the last equality we have used the differentiated version of the

(2.9)

co-area formula:

d

4 hdA=f B8 |ds
do Jspcxn 85o(Xy)

whenever % is a continuous function on M.
Now by using (1.12) and the identity (A.2) with A =1, it is easily seen that

4

2.10
( ) dg Jsexn

|67, |PdA < ¢, 0,

where ¢, depends only on A4 and A,. Hence, by combining (2.9) and (2.10) we have

f JpdAd
So(X1)

The condition (1.8) then implies (after using (1.11), (1.12))

<61 D(Xlx 9)

, d
DX, 0)<¢ (' A1|A09(}é D(X,, o+ A-zgs)
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for almost all g €(0, R/4). If we now define
E(o) = D(X,, g) +Aq0?
we see that this last inequality implies
E() <cy0€'(p), a.e.p€(0, R4),

where ¢, depends only on Ay, A;, A; and A,. This can be written

d% log (o) > cz'071, a.e. p€(0, R/4).

Since E(p) is increasing in g, we can integrate to obtain

log (E(0)/ E(R[4)) <c¢;'log (49/R), o < R/4;
that is

(2.11) E(o) S4*E(R[4)(o/R)*, a=c3',0€(0, R/4).
Since Sg({X;) < Sz/e(Xy), we must have
(2.12) E(R/4) < D(Xo, BJ2) + Ao BJ4)2.

The required estimate for D{(X,, o) now follows from (2.11), (2.12) and Lemma (2.1);
note that the exponent « is actually independent of A,.

We next need an analogue of the Morrey lemma ([2], Lemma 1) for surfaces; this will
enable us to deduce a Hélder estimate for ¢ from Theorem (2.1) (cf. the orginal method
of Morrey [2].)

LeEMMA (2.2). Suppose b is C1 on M and suppose K >0, B€(0, 1) are such that
f |0h|dA < Ko(o/R)?
So(Xy)

for all X,€85,(X,) and all €(0, R/4). Then
sup |A(X)-- MXo)|<cK(e/RY, ¢€(0, R/4),

XeSg(Xo)
where ¢ depends on Ay and A,, and where Sy (X ) denotes the component of Sy(X o) which contains
X,
This lemma is proven in the appendix.
We can now finally deduce the Holder estimate for quasiconformal maps.
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THEEOREM (2.2). If ¢ is (A, Ay)-quasiconformal, then

sup |@(X)—@(Xo)|<c(o/R)*®, @€(0, R/4),
XeSp(Xo)
where ¢>0 depends only on Ay, Ay, Ay R?, Ag and A, and where «€(0, 1) is as in Theorem
(2.1); S5(X,) s as in Lemma (2.2).

Proof. Let X, be an arbitrary point of Sg/(X,). By the Hélder inequality, (1.12) and

Theorem (2.1) we have

L (X)\a%ldA <c'(0)"%0(0/R)*®, 0€(0,R[4), i=1,...,m
o(Xa

where c, « are as in Theorem (2.1) and ¢’ depends on Ay, A,. Hence the hypotheses of
Lemma (2.2) are satisfied, with §=a/2 and K =c'c'".

§ 3. Graphs with (A, AA,)-quasiconformal Gauss map
In this section M will denote the graph {X =(z, 2): x€Q, z=u(x)} of a C*({2) function
u, where Q< R? is an arbitrary open set. z, will denote a fixed point of Q, and it will be
assumed that Q contains the dise Dg(z,) ={x€R% |z —zy| <R}. X, will denote the point
(20, u(x4)) of M and v will denote the Gauss map of M into 8% defined (as in (1.9) (ii))
by setting »(X) equal to the upward unit normal at X; that is,

3.1) W X) =(x) = (1 + | Du(2)|2)H(— Du(z), 1), X = (z, u(z)), z€Q.

We already mentioned in (1.9) (ii) that Jy=K =ux,x, and |6v|2=2x]+23, where x,, x,
are the principal curvatures of M. Hence the Gauss map v is (A,, A,)-quasiconformal if

and only if
(3.2) B+ < A K+Ay;

this inequality will be assumed throughout this section. The remaining notation and
terminology will be asin § 1 and § 2.

In order to effectively apply Theorem (2.2) to the Gauss map, we first need to discuss
appropriate choices for the constants A,, Agand A,

To begin with, we have already seen in (1.5) (ii) that in case N =82 we can take A,=4.
Next we notice that, since |8v|2 =2} +x3, Lemma (2.1) with g =v gives {5, (x, (22 +32)dA
<¢, where ¢ depends only on A,,A; R? and A,. Thus since »% +3&> 3 (x, +,)2 =3 H? we
can in this case make the choice A;=2¢. The next lemma shows that we can choose Ay

to depend only on A,, A, R2.
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LeMMa (3.1). If X, €84(X,) and 0€(0, }(R— | X, - X,|)), then
[ S,(Xy) | < cg?,
where ¢ is a constant depending only on A, and A, R2.
Proof. We will use the well-known identities
(3.3) Av, 40,6 +3) =6,H, 1=1,2,3,

where H =ux,+x, is the mean curvature of M and A=3%., 4,4, is the Laplace-Beltrami

operator on M. We will also need the first variation formula:
(3.4) f (5,hdA=f v HhdA, ©¢=1,2,3,
M M

which is valid whenever A is a C1 function with compact support on M. Finally, we will
need to use the fact that if [ €C?%Q x R), then

3 3
(3.5) A= 2 (511‘7’17’/)]—)116*‘3121”11)15

i,9=1

on M; one easily checks this by direct computation together with (1.2).
We now let A0 be a C*(M) function with compact support in M. Multiplying by &
in (3.3), with 4=3, and integrating by parts with the aid of (3.4), we obtain

f {( +#E) b+ Ah}vydd = f {wa(ry + #)%h — (3¢, + 25) O3B} dA.
M M
that is, since »§ +x3 — (%, +2,)2 = — 2, %, = — 2K,
- 2f KhvydA = f (—vg Ah— (2, + x,) O3 h) dA.
M M

Choosing & of the form k(X) ={(z), X = (z, u(x)), £ €L, where { € C%((2) has compact support
we then deduce, with the aid of (3.5) and (1.1)-(1.2),

2

2
(3.6) 2f KC(x)v,dA=J- va{ > (6y—mv) D,,C(x)+2(x1+x2)121v,D,-C(x)}dA.
M M i =

F=1

Replacing { by {% and using (3.2), it is easily seen that this implies
f (52 + #3) L3 (x) vyd A
M

2
< f 2|A1|{IDC(x)|2+C(x)”ZIID,, L) |+ |x1+x2|C(x)|DC(x)|} vsdA+A2fMC2(x)v3dA.
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Since we have
2| Ay | +s|C| DE| <30 +23) 02 +3(2A,| DE))3,

this gives
2
(3.7 %fM(x% + #3) ((x) vy dA < f {cl(lDC(x) [2+ C(x)‘ 121 | Dy L)) + Ay Cz(x)} vedd,

where ¢, depends only on A;.
Now let V€Q be such that X;=(z, u(z™)), note that D,,(z™)<=Q and choose ¢
such that

0<{<1onQ, {=1 on Dyx™), {=0 on R*— Dy(z"),

2
sup|D|<cylo, sup 2 |D,l|<cylo?,
Q Q {,5=1
where ¢, is an absolute constant. Then, since A, < (A, R?)/g?, (3.7) implies
(3.8) f (23 + 23) C”(x)vsdASc,g‘zf vadA,
M

MA(Dyg(z() X R)

where ¢, depends only on A; and A, R2.
Next we notice that, since M is the graph of u, if f is any given continuous function
on M then

f/dA=J () V1 + | Du(z) [P de,
M Q

where f is defined on Q by f(z) =f(x, u(x)). In particular since V'1+ | Du(z)|? = (vs(x))~,
we have

(3.9) f frsdd = f f(z) dz.
M o)
Hence (3.8) can be written
(3.8) J (%3 + %) CPda < csg"f dx = 4cgo 'mp? = dcym
Q Deg(z)
where

x(x) =z, u(x)), z€Q, i=1,2,
Writing H =%, +%,, noting that A2 <2(x}+%3) and using Holder’s inequality, we then have
1/2 —
(3.10) J;) |A|Ldx< {J;) Hzé'zdx} | Dy ™) [V2 < (8cq 1) 3(470%)12 < 8V ey .

3 — 772904 Acta mathematica 139. Imprimé le 14 Octobre 1977
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We now let M _ denote the region below the graph of u; that is,
M_={X =(z,2): 2€Q, z <u(x)}.
Also, letting B,={X€R? |X —X,| <o}, we take y to be a (? function on R?® such that
0 <y <1onR3y=1on B,y =0on R3—B,, supg|Dy| <c,o.

Applying the divergence theorem on M _ we have

f yC(x)v-vdA=f div (y{(z)v) dx dz.
M M-

Here we take v to be a C1{Q xR) function defined by
(@, 2) =v(z)=(1+| Du(z)|?)~"*(— Du(z), 1), z€Q, z€R.

Hence we obtain

(3.11) |8, <

f {yL(z) div v+ »- D(yl(x))} dzdz|.
M_

Finally, noting that
2 2
(3.12) divy(X)= > Dv(X)= 2 Dyv(x)=H(z), X=(z,2)€EQxR,
i=1 i=1

and using (3.11) together with the fact that |D(yl(z))| <2cy0~!, we easily deduce the
required area bound from (3.10).

Thus we have shown that A, A, can both be chosen to depend only on A,, A;R2
Hence Theorem (2.2) gives the Holder estimate
(3.13) sup [M(X) -9 X,)|<cle/B) @€(0,R),

XeSg(Xo)

where ¢>0 and «€(0, 1) depend only on A,, A, R2 Notice that we assert (3.13) for all
2€(0, R) rather than g€(0, R/4) as in Theorem (2.2). We can do this because [»| =1
(which means an inequality of the form (3.13) trivially holds for o € (R/4, R)).

We now wish to show that an inequality of the form (3.13) holds with S,(X,) in place
of 85(X,); we will in fact prove that there is a constant 6 € (0, 1), depending only on A,, A, R?
such that Sg(X ) =8,(X,) for all p<OR.

We first use (3.13) to deduce some facts about local non-parametric representations
for M. Let

S = Spr(X,)

8 ={(&0: (&) =(x—2,2-2)Q, (2,2)€8}
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where 6€(0, 1), 2z,=u(x,) and @ is the 3 x3 orthogonal matrix with rows e,, e,, ¥»(X,),
where e,, ¢, are principal directions of M at X. Since M is a C? surface we of course know
that for small enough 0 there is a neighbourhood U of 0€R2? and a C?(U) function # with
Dii(0)=0 and

(3.14) 8 = graph @i = {(& {): £€U, ¢ =W(&)}.

Furthermore, letting
3.15) 7(&) = (L+| D) | (- Di#&), 1), £€U,

we have by (3.13) that
|#(8)—=5(0)] <cBe, €U,

where ¢, « are as in (3.13). That is, by (3.15),

(1+| D) |5 Da&) |2+ (1 + | DEE) ) — 1) < (b2, &€,
which implies
(3.16) | Da(é)| < (1—(ch2)?)~¥ch= <}, £€U,
provided § is such that
(3.17) chx <1/4.
Because of (3.16), we can infer that a representation of the form (3.14) holds for any

0 satisfying (3.17).

For later reference we also note that (3.16) implies

(3.18) Dypjp(0) = U.

The next lemma contains the connectivity result referred to above.

LeMMA (3.2). There is a constant 0€(0, 1), depending only on A,, Ay R?, such that
S(X,) is connected for each p <HR.

Proof. In the proof we will let ¢, ¢, ... denote constants depending only on A,, A, R2.
B,, for 0>0, will denote the open ball {X€R?: |X - X,| <c}.

Let 6€(0, 1) satisfy (3.17), let p =0 R/2, let $€(0, }) and define §; to be the collection
of those components of S,,5(X,) which intersect the ball Bg,. For each S€S§; we can find
X,€8N B,,, such that

(3.19) 8 8%X,),



36 L. SIMON

and hence, replacing X, by X, and R by R/2 in the discussion preceding the lemma, we
see that 8 can be represented in the form (3.14), (3.16). Using such a non-parametric
representation for each S€S§; and also using the fact that no two elements of §; can
intersect, it follows that the union of all the components S€§, is contained in a region

bounded between two parallel planes 7, 7, with
(3.20) dizy, 755) < c{f +6% 0.

Here d(r, 7z,) denotes the distance between 77; and 7, and « is as in (3.17).

Our aim now is to show that, for suitable choices of § and 6 depending only on A,
and A, R?, there is only one element (viz. S;5(X,)) in §;. Suppose that in fact there are
two distinct elements 8,, S,€ §5. We can clearly choose 8,, S, to be adjacent in the sense
that the volume V enclosed by 8,, S, and 9B, intersects no other elements S€ §;. Thus
V N By, consists either entirely of points above the graph M or entirely of points below Jf;
it is then evident that if the unit normal » points out of (into) ¥V on §,, then it also points
out of (into) ¥ on 8,. Furthermore by (3.20) we have

(8.21) volume (V) < ¢y(8+6%) 02,
(3.22) area (V N 0B,;) < cg(f+0%) 0%

An application of the divergence theorem over V then gives

f v-vdA-i—f v-vdA=-¥_-{f divvdxdz—f n-vdA},
5 S v 2BganV

where 7 is the outward unit normal of 8B,,. By (3.22) and (3.12) this gives
(3.23) area (3,) + area (Sp) < f | H(x)|dxdz + cq( B + 6%) 0°.
v
Also, by {3.8)" and (3.21),
12
f | B(z)|dzdz < (f H’(x)dxdz) {volume (V)}!/*
v v

1/2
<( f B dsds) {alf+0)0)"
Bq/a

< (cg0) V3 {ca( B+ 6%) 0%}V = Veyca( B+ 6%) 0%



A HOLDER ESTIMATE FOR QUASICONFORMAL MAPS 37
Hence (3.23 gives
(3.24) area (S;) +area (8;) < cﬁVm‘ga.
On the other hand by using a non-parametric representation as in (3.14), (3.16) we

infer that
(3.25) area (S) = cgp?

for each S€§y, where ¢;>0 is an absolute constant.
(3.24) and (3.25) are clearly contradictory if we choose 8, 6 small enough (but depending
only on A, and A, R?). For such a choice of 8, § we thus have

Sgo(Xo) =M 0 Bp, =8,5(X,) N By, = Sgia(Xy) N B,

But by using a representation of the form (3.14), (3.16) for Sp5(X,), we clearly have
832(X,) N By, connected. Thus S8p,(Xo) =8sgr/s(X,) is connected. The lemma follows
because the choice of 8, # depended only on A;, A, R2.

Because of the above connectivity result we can replace S;(X,) in (3.13) by 8,(X,)
for ¢ <OR. However since |»| =1, an inequality of the form (3.13) is trivial for ¢ >0R.

Hence we have the result of the following theorem.
THEOREM (3.1). For each o €(0, R) we have

sup )|V(X ) —(Xo)| < cle/R),

XeSp(Xo

where ¢ >0 and «€(0, 1) depend only on A,, A, R
Remark. The above inequality implies
(3.26) #(X) —v(X)| <c¢(|X -X|/R)°‘, X, X€8z(X,)

(¢’ =4%). This is seen by using X in place of X, and R/4 in place of R.

§ 4. Graphs with (A,, 0)-quasiconformal Gauss map

Here the notation will be as in § 3, except that we take A, =0 always; that is, we
assume that the graph M of u has (A, 0)-quasiconformal Gauss map. It will be shown that
there are a number of special results which can be established in this case.

We note that, in particular, the graph of a solution of any homogeneous equation of
mean curvature type (i.e. an equation as in (1.9) (ii) with b=0) is (A, 0)-quasiconformal.
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Hence the results of this section apply in particular to these equations. (See [7] for further
discussion.)
Our first observation is that if Q=R2 then we can let R— oo in (3.26) to obtain

» =const.; that is, « is linear. Thus we have

THEOREM (4.1). Suppose Q=R?2 and v is (A,, 0)-quasiconformal. Then u is a linear

function.

Remark. Actually this theorem can be deduced directly from Theorem (2.1) (by letting
B+ o0) without first proving (3.26) (or even (3.13)). However note that Lemma (3.1)
is still needed to show that A; can be chosen to depend only on A,.

Before proceeding further, we want to establish an interesting integral identity
(equation (4.5) below) involving the Gauss curvature K of the graph M.

Recall first that K is the area magnification factor for the Gauss map; hence since the
area form for 8% is dw, where w(X) = (1 +,)"}( — 2, dx, +x,dx,) (see (1.5) (ii)), we have the
identity

4.1) KdA =dw*, o*=7v%w=(1+v)"1(—vydy, +v,dv,),
where d4 is the area form for M. Since >7_; vZ=|»|2=1, we have

(4.2) dvg = —v3! (v, dv; +vydvy),

and using this in (4.1) yields the identity

(4.3) KdA =v3'dv, A dv,,

Now, by using (4.1) together with Stoke’s theorem, we deduce

(4.4) f CKdA= —f e A o*
M M

for any {€CY(M) with compact support in M. In particular, choosing { of the form {=
y(vg)8y, where y is a CY(R) function and {, €CY(M) has compact support in M, it can be
checked, by using (4.2) and (4.3), that (4.4) implies

f Eu(p(rg) — (1= )/ () K d = — f YR ALy A o0*,
M M
which can be written

(4.5) fM L((1—vg) y(vg))' K dA = fMV(Va) gy A w*.
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We will subsequently need the following inequalities for the principal curvatures

#q, %q of M

(4.6) (1 — %) min {o?, 3} < | 0,2 < (1 — 95) max {xf, »3}.

To prove this, first recall that the 3 x3 matrix (d,v,) is the second fundamental form

for M in the sense that there are orthogonal tangent vectors (principal directions)

e = (e, e, ef’), =1, 2, such that

M

Ov) e =neld, i=1,2, k=1,2,3.
1

-~
]

Since >3_1(8,v)v,=0, k=1, 2, 3, we can set k=3 in these identities to give
(Ovg) = (1 68", 2y €57, 0) Q,

where @ is the orthogonal matrix with rows e®, ¢®, ». Thus
Ol = e+

(1) @

4.6) now easily follows by noting that (e§)2+ (e§”)2=1—14%, because (ef", e, »
y y g 3

third column of the orthogonal matrix @.

Now we are assuming the Gauss map of M is (A,, 0) quasiconformal; that is

(4.7) [6v]2 =2k +33 < Ayryreg = Ay K.

This implies
max {x3, %5} < A3 min {s}, »3},

and hence, since |dv|2=s} +23, (4.6) implies

(4.8) 31— 3 AT2| v < | vy < (1 —3) | O]

) is the

This inequality will be needed in the proof of the following theorem, which gives an

interesting Harnack inequality for the quantity »(X), defined by
v(X) =VIT|—EL(T)|E, X =(z, u(x)), z€Q.
(Note that v=»3! on M.)
THEOREM (4.2). If v is (A, 0)-quasiconformal, then

sup v<c¢ inf v,
S*R(Xu) S3R(X0)

where v is as defined above and ¢ is a constant depending only on A,.
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Before giving the proof of this theorem we note the following corollary.
COROLLARY. If w0 on the disc Dg(x,), then
| Du(z,)| < ¢, exp {c,u(x,y)/ R},
where ¢, and ¢, depend only on A,.

Proof of Corollary. Let
G = {2 € Dy () = u(®) < u(z,)}
and let ¥ €G be such that
| Du(y)| = int | Du|.
G

Now take a sequence X, X, ..., Xy of points in M N (G xR) with |X,—X, ,|<}R,
t=1, ..., N, and with X, =(y, u(y)). Clearly, repeated applications of Theorem (4.2) imply

(4.9) V14 | Dulzy)P< V1 + | Du(y)P.
Also, it is not difficult to see that it is possible to choose N such that
(4.10) N <¢y(1 +u(z)/ R),

where ¢, is an absolute constant. The required result now follows from (4.9) and (4.10),
because |Du(y)| <2u(z,)/R. (To see this, we note that either Du(y) =0, or else one can
apply the mean value theorem to the function g(s) =wu(x(s)), s€[0, B/2], where x(s) is the
solution of the ordinary differential equation dz(s)/ds = — Du(x(s))/| Du(x(s))|, s€[0, R/2],
with z(0) =x,.)

Proof of Theorem (4.2). Since we can vary X, it suffices to prove the lemma with
6R in place of R, where §€(0, 1), provided the eventual choice of § depends only on A,.

We first consider the case when »4(X)>} at some point of Spz(X,). Then provided
6 is small enough to ensure c6* <}, where ¢ and « are as in Theorem (3.1), we can use
Theorem (3.1) to deduce v4(X)>¢, >0 at each point X of Sep(X,), where ¢, depends only
on A,. Then, since v=v;', the required result is established in this case. Hence we can
assume 74(X) <} at each point of Sy,(X,). In this case we can replace y(vs) in (4.3) by
y(v5)/(1 —3), provided y(vg){, has support contained in Sgz(X,). This gives

(4.11) f L' (v) KdA = f ) i, A o*.
M ul—7
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Now one easily checks that

(4.12) |dg; Aw*| <162,] |69,

and, by the quasiconformal condition (4.7) we can use (4.8) to deduce
(4.13) fMCIy’(v3)|6v3|2dA <ec fMy(v3)|6é‘1| | ov4]d A

whenever {,9(»5) has support contained in Sy,(X,), where ¢ depends only on A;.

Now if we also take § small enough (depending on A,) to ensure that (3.17) and the
conclusion of Lemma (3.2) both hold, then Sg5(X) is topologically a dise, and one can
easily check that (4.13) implies that »; satisfies a maximum and a minimum prineciple
on each open subset of Syp(X,). (If, for example, v4(X,) >sup,y v3 for some X, € U< Syx(X,),
U open, then we choose y such that y(t)=0 for t<}{vy(X,)+supyyvs}, ¥'(£)>0 for
t>4{vg(X;) +supyy vg} (so that y(v4(X,)) >0) and choose {; =0 on Syx(X,)~ U and ;=1
on {X€U: vy(X)>4(vy(X,) +8upsy v5)}. Then 6, =0 when p(v;)=+0, and hence (4.13)

gives

f y'(vs)|Ovs|2dA = 0;
v

that is, »3 =const. on each component of {X: v4(X) > }(v4(X,) +8up,y ¥4)}, which is clearly
absurd. Similarly one proves that v, satisfies a minimum principle on U.)

We now choose {; in (4.13) such that {; =1 on Sggz,,(X,), &, =0 outside Sgp(X,) and
supy |6¢;] <5/(OR). Also we choose y(vg) =v;'. Then using the Cauchy inequality, Lemma
(3.1) and (4.13) we can prove

f |6w|*dA < ¢,
S3op/4(X0)

where w=log »;' (so that dw= —»;'dv;) and where ¢ depends only on A;. Thus, again

using Cauchy’s inequality and Lemma (3.1), we have

(4.14) f IéwldAéc'R,
SgoR/4(Xo)

with ¢’ depending only on A,.
Now let

W= sup w, w= inf w,
SoR/a(Xe) SpRrje(Xa)

and, for A€ (w, @), define
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E;, = {X €8ypp/4(Xo): w(X) >4},

0, = {Xesaen/4(Xo)1 w(X) ZA}-

By the co-area formula

(4.15) J‘w?ll(Cz)dl =f || dA <f |dw|dA.
z Ep~Ew S30m/4(X0)

However we note that
0, N88,(X,) +9

for each p €(10R, $0R), A€ (w, ). (Otherwise either B, or ~ £, has a component contained
in 8,(X,), which contradicts the maximum/minimum principle for »; on open subsets of
Ser(X,).) Hence

(4.16) H(C,) = ?f—’, A€ (w, ).

Combining (4.14), (4.15) and (4.16) we then have

w—w ¢,
ie.

sup vg<e® inf
Sarja(Xe) S)RrjaXod

where ¢ depends only on A;. This is the required result because v =»3".
We can use the Harnack inequality of Theorem (4.2) to prove the following strengthenecl
version of (3.26)

THEOREM (4.3). Suppose v is (A, 0)-quasiconformal. Then

-l <of_int s} {IELH x xes, o,

SpjalXe)

where ¢>0 and a€(0, 1) depend only on A,.

Proof. Supposing that vg>} at some point of Sg/(X,), the theorem is a trivial con-
sequence of Theorem (4.2) and (3.26). Hence we assume that v, <} at each point of Sp/(X,).
We can then use (4.5) with (v4) =v,/(1 —»,), thus giving (by (4.12))

!f ¢, KdAd
M

where ¢ depends only on A; and ¢, has support in Sg5(X,). Then by Theorem (4.2) we

<cf s 88, | |8v]dA,
M

obtain
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(4.17) U LiKdA|<c{ inf vy} | |68,||6v|dA4,
M SR/2(Xo) M
where ¢’ depends only on A;. Then by an argument almost identical to that used in the

proof of Lemma (2.1), we see that (4.17) implies

f |6v[PdA<c"{ inf w,}?
SR14(Xo) SR/2(Xo)
where ¢” depends only on A;. Thus in the case ¢ =v», with » (A, 0)-quasiconformal, we see
that the inequality (2.12) can be improved by the addition of the factor {infs, . x, 73}
on the right. (Note however that we must now use R/2 in place of R in (2.12).) Then
Theorem (2.1) gives in this case
f |6v|*dA <c{ inf »}%(o/R)*
Sgis(X1) SR/2(Xo)

whenever X, € 8p/4(X,) and p€(0, R/8), where ¢>0 and «€(0, 1) depend only on A;. Then
applying Lemma (2.2) as before, we obtain an inequality of the required form.

Next we wish to point out the following global Hélder continuity result for graphs

with (A, 0)-quasiconformal Gauss map.

THEOREM (4.4). Suppose u is continuous on Q, graph (u|Q) has (A,, 0)-quasiconformal
Gauss map v, and let ¢ be a Lipschitz function on R? with | Dg(x)| <L, x€R2. Then, if u=¢
on 0Q, we have

ju(@ ~u@)| <c{M'"*+|z—3F|t-e}{o—E|o, =, ieQ,
where M =supg|u—@| and where ¢>0 and o €(0, 1) are constants depending only on L.

Remarks. 1. Note that there is no dependence in this estimate on Q.

2. Using the above estimate as a starting point, various local estimates for the modulus
of continuity of 4 can be obtained near boundary points at which « is continuous. (See
Theorems 3 and 4 of [8].)

Proof of Theorem (4.4). As described in § 1 of [8], it suffices to establish the gradient
bound
sup |D(u— @) | <{c,(1 + L)"*V"M Y, x=co(1+ L+ M/p),

Qzo, 012
where
Q,.0={2€Q: |2 — 4| <0} (2, €Q), M=?up |w— g,
2z,
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and where ¢,, ¢, depend only on A,. This can be proved by a method similar to the method
used in the proof of Theorem 1 of [8]. Two main modifications are necessary to adapt the

proof to the present setting:

(i) In the proof of Lemmas 1 and 2 of [8] we need an inequality of the form [8], (3.12).
Such an inequality can be obtained in the present setting by choosing y(vs) =v;'y(w)
(where w=log »;' and x is non-decreasing on (0, o)) in (4.5). By (4.7) and the right-

hand inequality in (4.8) this gives (since y(w) is a decreasing function of »g)

(4.18) f x(w) (w3 ov |2+ (1 — v,) | dw|?) &, dA4

< =18l [xtoprat nor <A [ xt0)si? 0t 1371 a4

by (4.12). Now for »;>} we have |dw|2=v52|dv5|2<4|dv|2, while for v,<} we have by
(4.8) that |dv|2<3A}|dv;|2. One easily sees that then (4.18) implies

(4.19) fo(w) (v5 |02+ [dw|?) £ dA < cfux(w)léclldév] +|éw|)dA,

where ¢ depends only on A,. Replacing { by ¢ and using Cauchy’s inequality on the right,

we then deduce

(4.20) f x(w) (vt dv P+ |dw|?) (3dA < c'f x(w)| 6L, |2dA,
M M

which gives

(.21 [ 20 qovie+ ol gaa <o [ yoriot,aa,
M M

where ¢’ depends only on A,. This is precisely an inequality of the form [8], (3.12).

(ii) The only other essential modification required is in the proof of Lemma 2 of [8].
In this proof equation (0.1) of [8] was used. In place of this equation we can in the present

setting use the mean curvature equation (3.12). It is necessary to note however the bound
[ vl |Ov[Ee2dd < c'f 162, [2d 4
Ju M
(which is true by (4.20)). Using this bound we can easily see that
f (1+|Dul) B dx < c’f |6¢, 74,
0 M

where H is as in (3.12) and Z‘l is defined by Z‘l(x)=¢‘1(x, u(z)), z€Q. This is sufficient to
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ensure that the argument of Lemma 2 of [8] can be successfully modified (in such a way
that (3.12) can be used in place of equation (0.1) of [8].).

It should be pointed out that there is an error in equality (3.3) of [8]; the correct
inequality has supq (¥ —¢) in place of A* on the right. (This is obtained by making the
choice g =0 in (3.2).) This causes no essential change in the proof of Theorem 1 on pp.
270-271 of [8].

We have already pointed out that the above theory applies to any solution u of a
homogeneous equation of mean curvature type; we wish to conclude this section with an
application to the minimal surface system with 2 independent variables.

We suppose that u=(u3, ..., u*) (n>3) is a C? solution of the minimal surface system

2

(4.22) S 0D, u=0, a=3,...,n,

1.9=1

on Q> Dg(0)={x€R?: |z| < R}, where

D‘u’D/u

(4.23) bu=6”— TWD-—uTz’

5,5=1,2,
Suppose also that we have an a-priori bound for the gradient of each component u= of u,
except possibly for u®; thus

(4.24) s‘rl)PID’““KFn a=4,...,n,

where I, is some given constant.

We claim that, because of (4.24), setting & =3 in (4.22) gives (after multiplication by
a suitable constant) a homogeneous equation of mean curvature type for %3, with 4, in
(1.9) (ii) (a) depending only on I'; (and with (1.9) (ii) (b) holding with 4, =0). This clearly
follows from the fact that

2 2 2
(4.25) Co 219"§«§1< Zlb"5.51< 1 219“5151: £ER?,
19= ti= 1i=

where (b%) is as in (4.23) and (¢¥) is given by

D,u*D,u®

gll=6u—1—_+_|‘——‘DuT|2, ’i,i=l,2,

and where ¢, ¢, are positive constants determined by I',. The inequality (4.25) is proved
by first noting that

|69 —g¥| <e(l+ | Dud|¥, 4,j=1,2,
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with ¢ depending only on I'}, and then using the facts that (b¥), (9¥) are both positive
definite, with (") having eigenvalues 1, (1 -+ | Du?®|2)-1.
We thus have the following theorem.

THEOREM (4.5). The results of Theorem (4.2), and its corollary, and Theorem (4.4)
are applicable to the component u® of the vector solution w of (4.22), (4.24), with constants c, «, c,,

¢y depending only on T;.

One can of course also prove that the graph of 3 satisfies an estimate like that in Theorem
(4.3). It then follows that each of the components u*, «=3, ..., %, of the vector solution u

of (4.22), (4.24) satisfies the estimate of the following theorem.

THEOREM (4.6). Let M, denote the graph {X = (x,, 2, ¥3): X3 =u*(2y, 3), (¥, %,) € Dp(0)}
and let v»=1+ | Dux|2)~4— Dux, 1) denote the upward unit normal. Then, writing Sgj,=
{XeM,: | X (0, ux(0))] <R/2}, we have

-— -_— X ﬂ —
,va(X)_va(X)l <C{L%—X|} s X’XGAqEIZ3

where ¢ 0, B€(0, 1) depend only on T';.
If (4.22), (4.24) hold over the whole of R2, then we can let R— oo in the above, thus

giving the following corollary.
COROLLARY. Suppose (4.22), (4.24) hold over the whole of R%. Then wu is linear.

1t is appropriate here to point out a result of R. Osserman [6] concerning removability
of isolated singularities of solutions of (4.22). As we have done above, Osserman also con-
siders the case when all but one component of « satisfies an a-priori restriction (in [6]

continuity is the restriction imposed).

§ 5. Concluding Remarks

We wish to conclude this paper with some remarks about the extension of the results
of § 3 and § 4 to parametric surfaces M. This can be partly achieved provided there is a
constant > —1 such that the Gauss map v of M maps into Si={X=(z,, 2, 2,) €
82 x,>y}; that is, provided »4(X)>y> —1 for each X €M. If this is assumed then the
proof of the main Holder estimate carries over in a straightforward manner, giving

(5.1) sup |v(X)—»(X,)|<c{o/R}*,

XeSg(Xo)

where ¢>0 and ¢ €(0, 1) depend ony, A,, A, R? and R-2|Sy(X,)|. However no appropriate



A HOLDER ESTIMATE FOR QUASICONFORMAL MAPS 47

analogues of Lemmas (3.1), (3.2) are known, even if M is assumed to be simply connected.
Hence S;(X,) cannot be replaced by S,(X,) in (5.1), and the constants ¢, « depend on
R-2| Sx(X)|. In case A, =0 Theorem (4.3) also has an analogue for the parametric surface M.
In fact one can prove, by a straightforward modification of the method of § 4, that

(5.2) sup [#(X)—»(Xp)|<c inf (3g—7){olR}"

XeSp(Xa) SpyatX0)

for 9 €(0, R/2). However the constants ¢, « again depend on R~2|Sgx(X,)|.

In the case when the principal curvatures s,, %, of the surface M satisfy a relation
(5.3) oy (X, ¥(X))y +ao( X, v(X))2ep = B(X, ¥(X))

at each point X € M (cf. (1.9) (ii)), where o, a,, § are Holder continuous functions on M x §2

with
IL<o(X,v) <4, =12, |B(X,»)| <A, (X, »)EM x .82,

one can easily show (by using a non-parametric representation near X, cf. the argument
of [1]) that (5.1) implies
(5 +33) (X,) <c/Re,
where ¢ depends on y, R=2|Sg(X,)|, 4, and 1, R. As far as the author is aware, the only
other result of this type previously obtained, in case A,==0, was the result of Spruck [10]
for the case o, =a, =1, f =constant. In the case §=0 we can use (5.2) instead of (5.1)
to obtain the stronger inequality
(% +33) (X ) < c(vg(X,) —y)% R2.

Such an inequality was proved by Osserman [5] in the minimal case (o, =0, =1, f=0)
and by Jenkins [1] for the case when the surface M is stationary with respect to a ‘“‘constant
coefficient”” parametric elliptic functional (such surfaces always satisfy an equation of the
form (5.3) with o,(X, v) =o,(») and 8 =0; see [1] and [7] for further details). The results
in [5] and [7] are obtained with constant ¢ independent of R~2| Sp(X,)|, unlike the inequality
above. (We should mention that of course one can obtain a bound for R~2|Sy(X,)| if M

globally minimizes a suitable elliptic parametric functional.)

Appendix. Area bounds and a proof of the Morrey-type lemma for
2 dimensional surfaces

The first variation formula for M (cf. (3.4)) is

fM6~fdA= fo-HdA,
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valid for any C! vector function f=(f,, ..., f,) with compact support in M, where H is the
mean curvature vector (see [4]) of M and &-f=17., §,f, (=divergence of f on M). We
begin by replacing f by ¢(r)(X —X,)k, where @, h are non-negative functions, where
X, =(l, ..., ;) ESx(X,), and where r(X) =ry,(X)=|X —X,|. Since, by (L.1),

0+ X = trace (§¥(X)) =2
and

(X —X,)-Op(r)= r_lfl"(f), él(x, ~2) §¥(X) (z,— z)) = ' (r) | Or [*,
this gives
(A1) 2 f o(r)hdd + f r'(r) h|Or|*dd4 = f @(r) (X — X;)-(— 6h+ Hh)dA.
M M M

Now one easily checks that this holds if ¢ is merely continuous and piecewise C* (rather
than C*) on R, provided we define ¢'(r(X)) is some arbitrary way (e.g. ¢'(r(X))=0) for
those X such that ¢ is not differentiable at r(X). (The proof of this is easily based on the
fact that the set {X€M: r(X)=p and &r(X)==0} has zero H*-measure for each
0€(0, R—|X,—X,|). Hence we can replace ¢ by the function ¢,, defined by ¢,(t) =1 for
t<p—e&, @t)=0 for t<p, and @,(t)=cYo—t) for p —& <t<g. Substituting this in (A.1)

and letting ¢—~0,, we obtain
(A.2) 2f hdA—gif |6r|2dA=f (X—X,)-{—0h+hH}dA.
5o do Js, 5o

Here and subsequently S,=8,(X,) and ¢€(0, R— | X, — X,|).
Noting that H-8=0 (since H is normal to M), we have from Cauchy’s inequality
that

- _ 2
(X—Xl).H=r(XTX1—6r).H<2IX rxl—tsr + } P°H?

= 2(1— |or[?) + § °HE.

(The work of Trudinger [11] suggests handling the term (X —X,):-H in this manner.)
Hence we deduce from (A.2) that

2f |6r[thdA -g'if |or[thdd < f (3 r°H?h + | k) dA.
Se dg Js, Se
This last inequality can be written

—g—{g‘zf |6r|2hdA}<e‘sf (37*H?h +r|0h|)dA,
2 Se Se
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and hence, integrating from ¢ to g, we have

(A.3) o‘zf hlérlszég‘zj hlérlsz+fg{r‘3f (§r2H2h+r|6h|)dA}dr.
So Sp [ Sz

But

fgﬂ(f r2H2de) dr=%f (1—7*lg*) H*hd A < %f HhdA,
5, Se Se

0

and hence (A.3) implies

(4
(A.4) a-zj h|ar|2dA<g—2f h|6r|2dA+2“’f H2hdA+fr‘3(f r]éh]dA)dr
So So Sp i) Sy

(4
<g“2f hdA+2‘4f H2hdA+fz~2(f [6h|dA)dr.
Se Sp 0 Sy

We can also see from (A.2), by again using Cauchy’s inequality,
2J‘ hdA -~ gi f hior[*dA < f (r|H|h+7|0R|)dA
Se d@ So So

< f (1+ irzﬂz)h+ rléhl)dA,
Se

so that

f hdA<gif h|6r[2dA+f (3 7°H?h +r|0h|) dA.
Se de Js Se

Integrating this over p €(0/2, g), we deduce that

J (J hdA) dp< f (Qi f hlér]sz) dg+f (f (37°H?h +r|0h)) dA) do
7,2 Sp o2 dQ Sp o/2 Sp

SGJ (1f h|6r|2dA)dg+gJ }rzHZhdA+af (f |6h|dA)dg
o \d0 Js, 2 Js, a2 \Jse
2 03 2 ¢ -2
<o | mlorPaa+S | Hda+40® | (02| |ok|dA)de.
Se 8 Sg [} Se

In obtaining the last term on the right here, we have used the inequality o~2<4p~2 for
0€(0/2, 0). Multiplication by 8¢~ now yields

(A.5) (6}2)“2f hdA <80 f h|ortdd + f H*dA+ 32 f (9"3 f |5h|dA)d9.
Sqj2 Sa So 4 oS

4 — 772904 Acta mathematica 139. Imprimé le 14 Octobre 1977
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Combining this with (A.4) gives

(A.8) a2 f hdA <40 { f (@ %+ HYhdA + fo (f* f |6h|dA) dr}
Sg So 0 S

for each o, p with 0<o6<g<R—|X,—X,}. Notice that (A.4) and (A.5) initially only yield
(A.6) for 0<p/2; however (A.6) holds trivially for 0€(g/2, ) because of the term
4002 [s, hdA on the right.

It clearly follows from this (by setting A=1) that (1.12) holds, as claimed in § 1.

If we let 0—0in (A.8), then we have

112 -2 2 ¢ _a
(A7) h(X1)<n{J‘Sc(Q +H)hdA+J;(t LJ:SMdA)d)}.

Next we note that if kb is of arbitrary sign and if we apply (A.7) with yok in place of
(where y is & non-negative C! function on R), then we obtain

(A.8) zp(h(xl))<39{ f (@~%+ H%) p(h)dA +sup |y'| fa(rz f |6h|dA)d‘r}.
7 |Js R 0 Sr

Using this inequality we can prove the Morrey-type lemma, Lemma (2.2), for the surface M.
In fact, if & is as in Lemma (2.2), then (A.8) implies

(A9) pX) < f (@7 + H)p(hdA + 2 sup |y/| Kf~"(elRY.
So EL Y

We now suppose g €(0, R/4) and X, €Sp(X,), and we define
h= sup b, k= infh,
So(Xo) Sg(Xe)
and

7=1{40Kf~'(o/RY} .

If A—h<2p-1, then Lemma (2.2) is established with ¢=160. If on the other hand
R—h>2y71, then we let N be the largest integer less than (£ —k)y. Thus we have

(A.10) N = 3(k-hyy,

and, furthermore, we can subdivide the interval [k, %] into N pairwise disjoint intervals
1,, 1, ..., I, each of length >, For each j=1, ..., N we then let y, be a non-negative
C'(R) function with support contained in I, maxgy,=1 and maxg |y;| <3y. (It is clear
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that such a function p, exists because length I,>y~1) Since S;(X,) is connected, we know
that for each j=1, ..., N we can find a point X’ €S;(X,) such that p,(h(X?))=1. Then,
assuming ¢ < R/4, we can use (A.9) with X? in place of X, and w ith y, in place of v, thu
giving

40

et -2 2 -1,,-1
1< 7 Jsxom (072 + H*) yhydA +n 'y 13y/2
<0 (02 + HY) p,(h)dA + };

= T ) sagxn ¢ Vs ’

that is,
80
1<— 24 HY)y,(h)dA.
p- f%(xo) (e ) (k)

Summing over j=1, ..., N, noting that > )., ¢,(f) <1 for each ¢ ER, we then deduce

N<Q (0 *+ HY)dA<c(Ag+ Ay).

T Sgg(Xe)

Lemma (2.2) now follows from (A.10).
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