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Introduction. 

This paper continues the work of our previous paper 1, with which we shall as- 

sume that  the reader is familiar. There we were mainly concerned with finding the 

inhomogeneous minimum M (/) of a rational indefinite binary quadratic form; and 

occasionally the methods yielded also the second minimum M2(/). We show here 

that  our methods may be extended to deal with the problem of finding an enumerably 

infinite sequence of minima, 

This problem has been solved for the particular forms x ~ + x y- :  y2 and x 2 -  2y  2, 

by Davenport  [1] and Varnavides [2] respectively. The method used by these authors 

is synthetic, and has the disadvantage of giving no information on the values of 

M (/, P) close to (but less than) the limiting value M ' =  lira M (1, P). 

We consider in sections 1 and 2 the norm-forms x 2 -  11 y2 and x 2 + x y -  3 y2. 

The first of these was chosen as the simplest form whose second minimum was not 

easily established by the me th o d s  of our previous paper. We obtain for it, in 

Theorem 1, a result precisely analogous to those found by Davenport  and Varnavides, 

with an additional clause on the existence of a non-enumerable infinity of incongruent 

points P with M (/, P) > M'  - ~ ; and we may regard this as an entirely typical result. 

In Theorem 7 of our previous' paper, we proved tha t  for the form x ~ + x y - 3 y  ~ 

the first minimum M (/) is taken at both rational and irrational points;  its behaviour 

might therefore be expected not to conform to the usual pattern. We show in fact, 

1 "The inhomogeneous minima o] binary quadratic ]orms (I)" ,  A e t a  Math .  VoL 87, 1952. Refer -  
ences  to  l i teral  ~heorems a n d  to t h e  b ib l i og raphy  refer" to  t h i s  paper .  
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in Theorem 2, tha t  the enumerable sequence of minima extends below M',  and 

establish the complete enumerable sequence. 

The proof of these two theorems uses the ideas and general results of our 

previous paper. I t  should be noted, however, tha t  the fundamental concept is not 

tha t  of a point but  of a point-series, i.e. a point and all its transforms under posi- 

tive and negative powers of the fundamental automorph T. This distinction was 

not made previously, since we were mainly concerned with points fixed under a 

small power of T. 

In section 3 we establish two genera] results on the set of values of M (/, P), 

and make some conjectures. Finally, in section 4, we indicate how our methods may 

be extended to higher dimensions. 

We wish to express our indebtedness to Dr. J. W. S. Cassels for his criticisms 

and encouragement. 

. 

so tha t  

the field k ( l /H) ,  and we have 

Throughout this section we shall write 

/ (x ,  y )  = x 2 - 11 y~, ~ = x + y V ] I ,  

T = l0 + 3 VH = 1 9 .9 4 9 8 . . . ,  

33 

T is the fundamental automorph of [ (x, y) and V the fundamental unit  of 

T h e o r e m  1. With the notation above, we have 

,j :x:yV . 

v ' =  1 0  - 3 = 0 . 0 5 0 1  . . . .  

where 

19 325 1 2 
M k ( ] ) - 2 2  ~ 0 ~ / ~ k , ~ - - ~ # ~ _ ~ ,  (k=3 ,  4 . . . .  ) (3) 

T3k+3 __ T-3k-3 
~ k  = T3k+ 4 - -  T - 3 k -  4 ' ( 4 )  

M~ (])= l imMk (/) 5 (3 711 V l l ,  11 684) 
~-,~r 3 971 = 0.785689 . . . .  (5) 

3 125 
Me (/) = 3 9 ~ '  (2) 

19 
M 1 (/) = ~ ,  (1) 
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All these minima are attained, and the points at which M (/, P ) =  Mk (]) [orm a 

pair o] conjugate point series, o~ /inite order, generated by the points ++_ Pk where 

(except that /or k=  1,2 the two series eoineidel. There are thus 2 distinct points (mod 1) 

/or which M (/, P) = M~, 6 /or which M (/, P) = M 2 and 4 (3 k - 5 ) /o r  which M (/, P) = 

=Mk (/~= 3, 4 . . . .  ). The points /or which M (/, P ) - M ~  /orm two conjugate infinite 

point series generated by the points ++ P~  where 

P~ : 2 '  is- - ]  (9) 

However, ]or any ]ixed e>O, the set o/ points P /or which M~c(/)> M ( / , P ) >  

> M ~  ( / ) - s  has the cardinal number o~ t]~e continuum, and includes an in/inity o/ 

rational points. 

These results are exactly analogous to those for x 2 + x y -  y2 and x ~ -  2 y2, though 

Davenport  and Varnavides have not given the results corresponding to the last two 

sentences of Theorem 1. In order to make the argument clearer, each main step 

has been stated as a separate lemma. The ]emmas represent, however, successive 

steps in a single argument, rather than distinct results which have to be combined 

to prove the theorem. 

We shall assume the portion of Theorem 1 contained in (1) and (6), which is 

in fact the special case n =  1 of Theorem 4 of our previous paper. We could clearly 

obtain this again with the rest, of Theorem 1, but  it is convenient to have the 

precise upper bound for M (/, P), in the application of Theorem B. 

L e m m a  ~1. / ]  M (/, P ) >  0.78, then P lies (rood I) in one o] the three regions 

~ : 1 . 4 5 5 4 < ~ < 1 . 7 1 2 5 ,  - 0 . 7 1 2 5 < ~ < - 0 . 4 5 5 4 ,  

~ : 2 . 6 0 4 1 < ~ < 2 . 8 6 1 3 ,  - 1 . 8 6 1 3 < ~ < - 1 . 6 0 4 1 ,  

~ : 1 . 5 2 2 1 < ~ < 1 . 7 9 4 5 ,  - 1 . 7 9 4 5 < ~ < - 1 . 5 2 2 1 .  

Moreover, the same is true /or T n p  /or every integer n. 
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The number  0.78 has no special significance; we could equally choose any num- 

ber near to but  less than  M ~  (/). This will be clearer after Lemma 3, in which the 

bounds for the three regions are refined to values which appear  natural  in the 

problem and which do not directly depend (as the bounds above do) on the con- 

s tant  0.78. 

The regions ~ ,  ~ are each symmetr ic  about  x = � 8 9  and are images in y = � 8 9  

the region ~ is symmetric about  x =  0 and about  y=�89 I t  is therefore sufficient to 

prove the lemma for points of the region 0 < x, y <_ �89 since it  can then be extended 

to the whole unit  square by  suitable reflections. 

Suppose tha t  

P=(x, y) has M(/, P ) > 0 . 7 8  and 0_<x, y_<�89 

I t  is impossible tha t  / ( x - 1 ,  y ) >  0.78 for this would require 

O<_11y2=(x-1)2-/(x, y ) <  1 - 0 . 7 8 = 0 . 2 2  
and therefore 

[](x, y ) [ = [ x  2 -  11 y 2 ] < m a x ( ~ ,  0.22)<0.78.  

Thus we may  take / ( x - 1 ,  y ) < -  0~78, which is 

($ - 1) (~ - 1) < -- 0.78. (10) 

We now consider the two possible alternatives for ] ( x+  1, y): 

(i) ] (x§  

Then 11 y2 < (x + 1) 2 - 0.78 _< 2.25 - 0.78 = 1.47, so tha t  ~ < �89 + V1.47 < 1.7125. Now since 

(~ § 1) (~] + 1) = / (x + 1, y) > 0.78, this gives 

0.78 
~] > 2.7125 1 > 0 .2875-  1 = - 0.7125. 

0.78 0.78 
+ 1 > - -  ~- 1 > 1.4554, and since x < �89 Now it follows from (10) tha t  ~ > 1 - ~  1.7125'  

11 y2 ~ (1 - x) ~ + 0.78 _> 1.03, and so 

= x -  y _< 0 . 5  - VV.o  < - 0 . 5 1 4 8 .  

These bounds on ~, ~ together show tha t  (x, y) lies in ~ .  

(ii) / ( x + l , y ) = ( ~ + l ) ( v + l ) < - - 0 . 7 8 .  

We have tr ivially ~ _< ~ (�89 �89 < 2.1583, and therefore 

- 0 . 7 8  
�9 ] + 1 < 3.1583' ~] < - 1.2469. 
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Now / (x -- 2, y - 1) = (2 + ~/H - ~) (2 - 1/li - ~). I f  this is negat ive,  the  second factor  

mus t  be so and we have  

I]  ( x -  2, y - 1 ) [ <  (2 + V ~ )  (VH -- 2 - 1.2469) < 5.3167 • 0.0698 < 0.78. 

Bu t  this  is impossible,  and  we therefore  have  

] (x - 2, y - 1) > 0.78. (11) 

This  gives 11 (1 - y)2 < (2 - x) ~ -  0.78 < 3.22, whence y I / H  > 1.5221, 

= x + y V H  > 1.5221. 

Subs t i tu t ing  this back  in (11) we find 

0.78 0.78 
2 - I / H  - ~ > 2 + 1 / ~ _  ~ > ~ > 0.2055, ~] < - 1.5221. 

On the  other  hand,  it  is ~rivial t h a t  ~ > _ - � 8 9  H > - 1 . 6 5 8 4 ;  and  since ~ - ~ =  

= 2 y l / ~ < _ ~ H ,  we have  ~ <  1.7945. These bounds  on ~. ~ toge ther  show t h a t  (x, y) 

lies in R~. 

This proves  the  Lemma .  

These bounds  are ve ry  rough, however ,  and  we have  nex t  to improve  t h e m  as 

m u c h  as possible. For  this We mus t  know someth ing  abou t  the  behav iour  of T n P  

for given P.  

L e m m a  2. Let M (], P ) >  0.78. Then, using (x, y) co-ordinates, 

(i) /] P E ~ ,  T P E ~ + ( 1 5 , 4 )  or T P E ~ + ( 1 5 , 4 ) ;  

(ii) / /  P E ~ ,  T P E ~ ; + ( 2 7 , 8 )  or T P E ~ + ( 2 8 , 8 ) ;  

(iii) i / P E ~ ,  T P E ~ + ( 1 7 , 5 )  or T P e ~ + ( 1 5 , 4 ) .  

There  are similar  results  for /~-~P,  which m a y  be deduced f rom these ira- 

media te ly .  

The  bounds  in L e m m a  1 give us :  

In  ~ ,  0.3714 < x < 0.6286, 

In  ~ ,  0.3714 < x < 0.6286, 

In  ~ ,  - 0.1362 < x < 0.1362, 

0.2879 < y < 0 . 3 6 5 5 ;  l 

/ 0.6345 < y < 0.7121 ; 

0.4589 < y < 0.5411. 

(12) 

The t r ans fo rma t ion  T is equiva len t  to  mul t ip ly ing  ~ and dividing ~ b y  T. 

Thus  T R~ is 29.0349 < ~ < 34.1643, - 0.0358 < ~/< - 0.0228 whence, since ~ - ~ = 2 y ~fil, 
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4 .3806<y<5.1559.  Now from Lemma 1, TPER;+(xo ,  Yo) for i=1,  2 or 3 and some 

integers x0, Y0. Comparing the bound here for y with (12) we see that  

either i=2,  yo=4 or i=3,  Yo=4. 

Moreover, since T P -  (x o, Yo) E ~ ,  U ( T P) + yo~ll  - xo must be an admissible value 

for ~] in ~;, and a comparison with Lemma 1 gives (i) of Lemma 2. 

(ii) now follows from (i) by simple reflexion in the point (�89 �89 

T R~ is 30.3655 < ~ < 35.8001, - 0.0900 < ~ < - 0.0762, from which it follows tha t  

4 .5892<y<5.4107.  Comparing with (12) and then considering possible values of 

as above, we now obtain (iii) of Lemma 2. 

L e m m a  3. / /  M (/, P ) >  0.78, then P lies (mod 1) in one o/ the three regions 

R1 : 42_<~_<41, 1-41_<r/_< 1-42; 

where 

67 + 39 l / l l  59 + 39 Vi i  13 + 63 VH 
126 1.55832 . . . .  42 = 126 .......... 1.49482 . . . .  4 3 -  126 - 1.76148.. .  41 

Each region ~ is covtained in the corresponding ~ o/ Lemma 1. 

Coro l l a ry .  Lemma 2 still holds i/ every ~ is replaced by the corresponding ~ .  

The point series defined by (1) and (6) has no points in ~ ,  and satisfies the 

conditions of Lemma 2. Thus the two cases 

P E ~ ,  T P E R ~ + ( 1 5 , 4 )  and PER~,  TPeR;+(27,8) (13) 

of Lemma 2 are certainly possible, and there exist points in ~ ,  ~ with M (], P ) ~ 0 . 7 8 .  

First, if there are no points in ~ with M (/, P ) >  0.78, then only the two cases (13) 

of Lemma 2 can occur, and we can easily deduce from them that  if P E ~ ,  T -1P  E 

E ~ + ( - 6 , 1 ) ,  and that  if P E ~ ,  T - 1 P E ~ + ( - 1 8 , 5 ) .  Now Theorem D ; shows that  

the only points with M (/, P ) >  0.78 are those given by (6), in which case Lemma 3 

can easily be verified, 

Hence we may assume 1 that  ~3 contains points with M(/ ,  P)>0 .78 .  Let  the 

1 We could also have shown this from the point series generated by (7), but this would have 
been anticipating the subsequent course of the proof. 
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upper and lower bounds of ~, taken over all P E R~ with M (], P ) >  0.78, be ~; and 

2s respectively. By symmetry, the bounds for ~ in ~ ,  and for 2, ~ in RE, must 

take the forms given in Lemma 3, writing 2~ for 2, throughout. Similarly, if 2~ is 

the upper bound of ~ over all P E Rs with M (/, P )>  0.78, the remaining bounds in 

R~ must take the form shown. We have from Lemma 1 

1.7125 > 2~ > 2~ > 1.4554, 1.7945 > 2~ 2 �89 I/1-i > 1.6583. (14) 

Now i t  follows from Lemma 2 that 

! ! 

Min [16+51/H-2~,  15+5t  l~-X~]_<v;t2, 

~2;<Max [16+5l f l i -2~ ,  15+4Vi1+2~]; 

Min [27+8Vli+2s 2 8 + 9 ~ f i ] - ~ ] < v ( l + g i i - 2 ; ) ,  

(1 + / i ~  - ~)  ~ Max [27 + 8 Vii + h;, 28 + 8 g~i + ~] ;  

Min [ 1 7 + 5 / / i + ~ ' ,  16+SVH-,~;]<_~(V~-~), 
v~,~<Max [17+51/ i i+2; ,  16+5Vli - ; t s  

We may resolve the Max, Min by (14), and we find that these six inequalities become 

v;t; +2~ < 16 + 5 Vil, 

~ + ~ _> 15 + 5 / i i ,  (15) 

~s  17 + 5~/ii, 

! 

each twice repeated. Eliminating any two of ;t~, ;ts ;t3, we deduce that 

, 67+39]/1-1 ~_>59+39Vf l  ~_<1316236]/1-1 
~ -< 126 ' 126 ' 

and these results prove the first sentence of Lemma 3. The rest now follows by 

comparing these bounds with those of Lemma 1. 

The Corollary is trivial. Since we shall henceforth work with the regions R~ of 

Lemma 3, rather than the R~' of Lemma 1, future references to Lemma 2 will be 

to it as affected by the corollary. 

We note that the ~ satisfy the equations (15) with equality, i.e. 

�9 ~ +2~= 16 + 5 Vn, ~t~ + ~  = 15 + 5V~,  
(16) / ~2~-t~= 17 + 51/li. 

It is convenient to break up R3 into smaller regions. For this p}lrpose we define 

R~( i , ]= l , 2 )  as the set of points P for which T -~PeR~ (modl) ,  PeNa,  T P e R ~  
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(rood 1). I t  follows from Lemmas 2 and 3 tha t  if M( / ,  P ) > 0 . 7 8  and PER3,  then 

P lies in one of the four R~j. We next  show the stronger 

L e m m a  4. I /  M (/, P)  > 0.78, P E ~3 then P E ~n or P E ~22. These regions are 

R22:Vi-l-~<_r -~ I<_V<_~-VH.  

By Lemma 2, Rll is the set of points common to T R 1 -  (15,4), R3 and T -1R1 + 

+ (5, - 1) = T -1 [R1 + (17,5)]. Now from Lemma 3, T R 1 -  (15,4) is 

~ ; t2 -  1 5 -  41/11-< ~_< ~ ~ -  1 5 -  4 ~ ,  

~-~(1 -~1)-  I5+ 4V~ <v < ~-~ ( 1 - ~ ) -  15 + 4V1], 

which reduce by (16) to 

Similarly T -1 ~1 § (5, - 1) is 

T-I  ~2-~ 5 -  ~ ~ ~ ~ T-1/~1-~-5-  V H ,  T (1 -- ~tl) -t- 5 -- V ~  __< ~'] < Z" (1 -- ~,2) -]- 5 + l / ~  , 

which reduce to 

V i i - ~ ,  < r  ~ - l - V i i < ~ - V i ] .  (18) 
Also Ra is 

I/H-~_<r -~_<V_<~- VH. 

A comparison of these three results gives the bounds for ~ stated in  the Lemma. 

We m a y  in the same way obtain the bounds for R~ above and those for R~, R~ 

below : 

R~2 : I / H -  ~ <_ r <_ ~I, - ~ <_ ~ <_ ~ - V i ]  ; 

Now consider1 in R~, / ( x + 5 ,  y - 2 ) = ( ~ + 5 - 2 V H ) ( ~ + 5 + 2 V H ) .  Since ~_<21< 

< 2 VH - 5 < 1.6333, we have 

I/(x+ 5, ~ -  ~)l< (~+ Vii -5)  (~+ 5 +Vi]) 

< 0.07812 • 9.875 

= 0.771435 < 0.78. 

1 To consider this apparently obscure hyperbola is equivalent to considering ](x--1, y--1) 
for the point in ~2 congruent to TP. That this last is a natural thing to do will be "clear from the 
proof of Lemma 8 below. 
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Thus M (/, P) < 0.78 for P E ~1~ ; by reflexion in (0, �89 the same result holds for 

PE ~2~; this completes the proof of the Lemma. 

We now define a point P as admissible if, for each n, T n P  lies (rood 1) in some 

} ~ ( i = 1 , 2 ,  11,22) and either PE/~I or PE~2e. By Lemmas 3 and 4, for any P 

with M (/, P )>0 .78  there is just one admissible P*~  + P (rood 1). We now define, 

for all admissible P, 

~ . = ~ . ( P ) =  ] 1  if T " ~ I P E ~ I ~  or )7~ (modl ) ,  

( 0 if T n+IPE~I  or /~ (rood1). 

I t  is clear that  to every admissible P there corresponds the doubly infinite 

sequence { ~ } of elements 0 and 1, in which two consecutive terms cannot both be 1. 

Conversely we now show: 

L e m m a  5. Given any doubly-in]inite sequence o~ elements O, 1, such that no two 

consecutive elements are both l, there is an admissible P which has this sequence /or 

its { ~ }, and P is uniquely defined. 

For the proof of this Lemma, we need the intermediate 

L e m m a  6. Consider any one o/ the six /ollowing cases : 

(i) PE~I ,  T P E ~ 2 + ( 1 5 , 4 ) ;  (if) P E ~ ,  T P E ~ I  +(27,8); 

(iii) P E ~ ,  TPE~11+(15 ,4) ;  (iv) P E ~ 2 ,  TPE~2~+(28,8) ;  

(v) PE~11, T P E ~ I  +(17,5); (vi) PE~22, T P E ~ 2  +(15,4). 

In  each case, the set o] points P satis/ying these conditions ]orms a parallelogram with 

sides ~ = const, ~ = const ; the bounds on ~ are those given by the condition on T P, and 

the bounds on ~ are those given by the condition on P. 

(i) and (if) follow at once from (16); (iii) and (v) from (17), (18) and the ex- 

pression for ~11 in Lemma 4; (iv) and (vi) by  symmetry from (iii) and (v) respectively. 

Now we  could clearly write in each case of Lemma 6 T P E ~  (rood I) instead 

of T P E ~ , + ( x , ,  y,), for we can obtain the x,, y, from Lemma 2. Let us now write 

P(~) for the point congruent to T ~ P  (rood 1) which lies in one of R1, ~2, ~11, ~2z. 

Lemma 6 now states that  if the conditions P E ~*o, P(1) E ~q, are compatible (as given 

by Lemma 2, or restated as the six cases of Lemma 6), then the only restrictions 

they put on P are the bounds for ~ obtained from ~q and those for ~] obtained 

from ~,0. I t  follows from this by induction that  if in the doubly infinite sequence 

of conditions p(n) E ~*n ( -- c~ < n < co) every consecutive two are compatible, then all 
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are compatible and define P uniquely, the $ co-ordinate being given by the behaviour 

of p(n) as n-+ + c~ and the ~ co-ordinate by the behaviour of p(n) as n - + -  c~. 

To prove Lemma 5, it remains to show that  the sequence { ~ }  of elements 0 

and 1 corresponds to just one doubly infinite sequence of conditions on the P(~) 

compatible in pairs, l~ow, from Lemma 2 or Lemma 6, we must have i~ = 1 o r  22 

for n even, in=  2 or 11 for n odd. I t  follows at once that  the only possible sequence 

of in is 

i ,  = 

1 if ~_ ~=0, n even; 

2 if ~n ~=0,  n odd; 

11 if ~n -~= l ,  n odd; 

22 if ~=-1=1, n even; 

and that  with this definition, the conditions on two consecutive p(,) are compatible 

(remembering that  two consecutive in cannot both be 1). This proves the Lemma. 

L e m m m a  7. Let P be admissible. Then using (~, ~) co-ordinates, P is given by 

2 +  V H + ~ ( - ~ ) - n : r  ~ - ~ V l l -  o:_~ . Further, is given by 
1 1 

( ) ~ 1 + ( - - ] )  n ~ ( - - T ) - m ~ , m + n - 1 ,  [ A 2 - - ( - - 1 )  n ( - - T )  1 mo~n m 
m =1 m=l  

where /~/1, /A2 are given by 

1 7 VH, 

1 15 

P(") E Rn : 

7 / i i -  # ~ = ~ - ~  , 

1 151 /~ .  
/z2 = 2 22 ' 

1 15 - -  1 15 
+ ~ V l l ,  = -  - -  - v - .  

/~1 ~ /~ = 2 2 2  

Let  the point given by the formula be _P("): (~,, ~'n). Then after the uhiqueness 

clause of Lemma 5 i t  is enough to prove that  

(i) p(n) lies in the same R*, as P(~), 
and 

(ii) if p(~)=p(n), then p(n+l)=p(,+l),  and conversely. 

If P(")E •1, then n is even and ~r = 0. Hence 

,/:-2 ~ __ T -1  ~r 
~ T  - 2 m >  - ~ T 1 - 2 m  

1 ~:-2=~, -~--/~1->1 z-2 1 - -  1 
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1:-1 ~:..r~_=,,,_>#,_u~> _y.v--=',, - ' r  -= 
2 - -  ..,s - -  = " 1 1 1 -v-~- 

31 - -  - 1 10V~I, 1 1 0 . ~  31 
These reduce to ~ 1/11> ~ > 2 + ~ ~ _ __ ~ I / H ,  _ - ~ ~ 11 > ~l~ > 1 - so that  by Lemma 3, 

P(~)E ~x. Similarly for the other three regions. 

Now suppose pro)= ~(n) E ~1. Then from Lemma 2, remembering that  n is even, 

p ( n + l )  : ~/~ p ( n )  _ (15 + 4 VH, 15 - 4 I/H) 

1 l ~ d  i '~ = ~:+ + �9 ( -  W '  5 ( - ~ ) - "  ~, , ,+, , - , ,  
1 

[1 15 = ~ + ~ i ]  

= ~ ( n + l )  

1 15 ~ 
2 - -  ~ ] / ' ~  - -  "t" ( - -  ] ) n  E ( - -  " t ' ) l -m r  J 

- a n + (  - 1)'~+1 ~ ( - "r) -m ~r 
1 

) 1 15 H i  - ~,, - ( -  1 ) " + ' 5  ( - - 0 1 - "  ~,,+,-,,, 
2 22 1 

and this argument can clearly be reversed. Similarly for the other regions. This 

proves the Lemma. 

L e m m a  8. Let P be admissible, and write 

M~(a)=M~ }/~---~+~(-'0- ~m+n-1  ~ 2 V ~ I - T - ~ q -  1 - O~n-m 

Then M (/, P ) =  Min { M~ }, taken over all n and both signs. 

I t  is clear that  every M~ > 0, since both factors are positive. 

19 
By Theorem B, the set of values less than ~ = M I ( ] )  taken by ] at  points 

19 
congruent to P is the same as the set of values tess than ~ taken by / at  points 

(x, y) congruent to sbme P(') with 

19 
y~ < ~ ,  l yl < 0.6572. (19) 

19 
From this and l z~ - 11 y2 ] < 2"2' we deduce also that  

x~ 247 
< ~ - ,  I xl < 2.3694. (20) 
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We mus t  now find which hyperbolae  we need to  consider in each of the  four  regions. 

We write a suffix n for the co-ordinates of P("). 

(i) P(n)e ~1. Then f rom L e m m a  3 

223 - 1 -<~n -~]n = 2 yn ~/H -< 2 2~ - 1, 

whence 0.2999 < yn < 0.3192 ; and by  (t2), 0.3714 < xn < 0.6286. Thus by  (19) and (20) 

we need only consider / (x, - 2, yn), / (Xn -- 1, Yn), ] (Xn, Yn) and  ] (x, + 1, Yn). Bu t  

[] (xn - 2, yn)[ = [(~n - 2) (~n - 2)[ > (2 - 2,) (1 + 2~) > 0.441 • 2.494 > M (/), 

t /(x~+ l, yn)l=l(~n + l)(.In + l ) l>~(2-;~)( l  + ;~)> M(/), 

so t h a t  we m a y  neglect these two ;  for the other  two we have 

/ (xn-1,  yn)= M;,  ] (Xn, yn)= M +, 
since n is even. 

(ii) 

(iii) 

P(n) ERz. By  s y m m e t r y  from the previous case we need only consider 

/ (x ,~- l ,  y n -  1 ) - M  + l) = M ; .  - n ,  t ( x ~ , y ~ -  

p(n) E ~3- Then we have an-~ = 1, ~n-2=  an = 0, so t h a t  

7 V l l  1 T -4 ~-~ 

< 0.5053 x 1.5580 < 0.79. 

Bu t  since. _P(n-1) E R 1 or R2, the earlier par ts  of the proof of this L e m m a  show t h a t  

we have M (/, P)<M;_~ <0.79 ,  so t h a t  in R3 we need consider only values less t han  

0.79. We now show there are none such. 

In  R3 we need consider, by  (12), (19) and (20), only 

](Xn, yn), /(Xn, yn:~l); /(Xn+__l, yn), /(Xn_____I, y n - - 1 ) ;  

](Xn• yn), /(Xn• yn--1). 

By the s y m m e t r y  of Ra we need consider only one funct ion f rom each group. Now 

we find 

I t ( x . ,  yn)l=l~n,Tnl>_(Vi]-~)~> M (/); 

It (xn - t ,  ~n)l = 1(~. - 1) (~. - l) f>  ( V i i -  ~ 3 - 1 )  (Vli  - 23 + 1) > M (1); 

l~ (x. - 2, yn)l= I ( # .  - 2) ( # .  - 2) t_> ( 2 - 2 3 )  (2 + V i i  - ~ )  

> 0.2385 • 315551 > 0.8478 > 0.79, 
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To conclude the proof, we need merely remark  tha t  if P(n) E ~11 then M~ + = 

=/(xn,  yn--1), M ~ = / ( x = +  I, y , -  1); whileif  PE~22, M+~=/(xn, y ~ ) , M ; = / ( x ~ - l , y , ) .  

Lemmas 5 and 8 a t  last give us a sound algebraic basis on which to work. 

We have obtained in the course of the proof the further  results:  

C o r o l l a r y  1. I[ the sequence { 5~ } contains any e/ements 1, M (/, P)  < 0.79 < M ([). 

C o r o l l a r y  2. In  evaluating the Min  in Lemma 8, we may con/ine ourselves to 

those n /or which ~ - 1  =0 .  

I t  follows from the first of these t ha t  the first minimum corresponds to the 

sequence 5~ = 0, as may  be verified by  direct calculation. 

Now write 6~=~_n,  so tha t  the sequence (5=} is the reverse of the sequence 

{ ~= }. Then if an-1 = 0, 

) / ~ + ( ~ ) =  1~+2+ ( - -T ) -mo~m+n 1 -~- ( - - T ) - m o ~ n  m 1 = / 2 - n ( ( ~ ) ;  
1 

so tha t  by  Lemma  8 and Corollary 2 we find the more symmetr ic  form 

M (], P)  = Min [ M ;  (~), M ;  (a)], (21) 

which we shall use henceforth. 

Now we want  a simple rule for comparing the values of two M ;  (:r and since 

changing n in M~ (~) is equivalent merely to s tar t ing the doubly infinite sequence 

( ~  } in a different place, it is enough to compare M0-(~), Mo (8). 

L e m m a  9. Let { c~}, ( fl } be two sequevwes satis/ying the conditions o/ Lemma 5. 

Let the terms be written, /or comparison, in the order 

~-1~ 0~0, 0~--2, 0~1~ O~ 3, 0 ~ 2 , . . .  

~-,, ~o, ~-~, ~,  fl-~, ~ , . . .  

and let ~o, fl~o be the first distinct pair. Then 31o ( ~ ) -  Mo (fl) has the sign o/ 

( -- 1) r.+l (sro -- fifo). 

Write 
or 1 

5 n - l ,  

1 5 - n ,  

so tha t  

M -  (~) - M -  (~) = ~ (~) ~ (~)  - ~ (~) ,~ (~) = ~ (~) {,7 (5)  - ~ ( ~ ) )  ~ ,~ (fl) { r (5) - ~ (/~) }. 
19-523804.  Acta mathematica. 88. Imprim6 le 16 d~ccrnbre 1952. 
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I t  is easily seen (cf. the  proof  of L ~ m m a  7) t h a t  for any  sequence { e }  

l~ ]_<~(~)_< 1, gg ~ V i i -  101/i~ 1 ~ -  --33 - 2  + 2 < 7 ( ~ ) < ~  1 / 1 1 + 1 " -  - (22) 

L e t  r l > 0 ,  r 2 < 0  be the values of r neares t  to  0 on each side for which a~r  so 

t h a t  ro=r ~ or r 2 according as r ~ + r 2 < - 2  or > -  1. The first  non-zero t e r m  in 

( ~ - f l )  is given by  n=r~+] ,  and the first  non-zero t e r m  in 7 ( ~ - f l )  b y  n = - r 2 .  

Hence,  since 

s-Vii  s + / i i  
1 - ~  ~ _ ~ - 2  . . . .  1 + ~  ~ + ~  2+ - _ _  

6 ' 6 ' 

we deduce t h a t  

9 - l / i ]  3 + l / i l  
< ( --  T) r l+ l  (~(rl - -  ~r l )  (~ (0~) --  ~ (~) < 

6 - - 6 

9-Vii ~+Vii 
< ( --  T) -1--r2 (~r~ --/~ru) (7 (~) --  7 (~)) "Q - - "  

6 - - 6 

(23) 

I f  to=r1 ,  we have  r l+r  ~< - 2  and i t  i s  easily verified f rom (22) and  (23) t h a t  

I ~ (~) (7 (~) - 7 (~)i < 17 (fl) (~ (~) - ~ (fl))i, 

and so Mff ( : r  (fl) has the  sign of ~ ( : r  (fl), i.e. of ( - T )  r~ (~r0--flro). 

Similarly,  if r 0 = r 2, we have  r 1 + r~ _> - 1 and  

and  so Mo ( : r  (fl) has the  sign of 7 ( ~ ) - 7  (fl), i.e. of ( - z )  ro+l (~r. -- fir.). 

We m u s t  nex t  consider sequences { e }. To save space, we wri te  [ ]e to indicate  

t h a t  the set  of e lements  inside the square  b racke t s  is to  be repea ted  k t imes.  In  

the  special ease k =  0% the side(s) of the  bracke ts  on which oo lies wilt r epresen t  

in which direction(s) the  infinite repet i t ion  happens .  

Af ter  Corollary 1 of L e m m a  8, we m a y  assume t h a t  not  every  en is 0. We look 

for those sequences { e}  giving a larger Min [Mn (:r Mn  (a)] t han  the  sequence 

{e(~)} :  ~[100] 100001 [001]~. (24) 

This sequenc e is symmet r i c ,  and  i t  is easily seen f rom L e m m a  9 t h a t  the  least  

M ;  (~r occurs when ~ r  1, preceded b y  four  e lements  0. Thus  for the  corre- 

sponding p o i n t ,  t ak ing  n = 0 for convenience,  
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M ( / , P ) = M o = ( 7 V ~ 1 - 1 - 2 - - v  1+3-4-3-7+ . . . . . .  ) ( 7 [ / H ~ - 1 2 + v - 4 - ~ 7 +  ) 

1 ~r 2 1 1 1)) =( 71/~ 2 ~3+l)(7V~+2+~(T3+ 
5 (3 71i I/H - 11 684) 

3 971 

the value we have asserted for M~ (/). We shall call a sequence strongly admissible 

if it  has an M (/, P) not less than this, i.e. if Mn (r162 Mo (~(~0)) for all n. 

We shall now obtain certain conditions on strongly admissible sequences�9 In 

each case we use Lemma 9 to show tha t  Mo (~(~r Mo (a), when {~} satisfies some 

condition and the starting point of it is suitably chosen. 

By taking in each case ~o as the element in heavy type, we find that  no 

strongly admissible sequence can contain any of: 

�9 . . 1 0 1 . . . ,  . . . 1 0 0 0 1 0 0 . . . ,  . . . 0 0 0 0 1 0 0 0 . . . ,  . . . 0 0 0 0 0 1 0 0 1 . . .  

or the reversed subsequences. I t  follows from this that  every strongly admissible 

sequence i s  made up of blocks of 001 and 00001, and tha t  we cannot have two 

consecutive blocks of the lat ter  sort. 

Now suppose that  a strongly admissible sequence contains 

� 9  00001 [001]m 00001 [001]n 0 0 0 0 1 . . .  

and, taking % to be the 1 in heavy type, compare Mg (~) with Mo (~(oo)). The first 

terms which are different, before and after ~o, are ~a~+a=0 and ~r Thus 

from Lemma 9, for the sequence to be strongly admissible we must have 

n _ < m + l ,  3 n + 3  even (and so n odd) 
o r  

n>_m§ 3 m + 8  even (and so m even)�9 

By considering the reversed sequence, we must have in the same way 

m _ < n + l ,  3 m + 3  even (and so m odd) 
o r  

m_>n+2,  3 n + 8  even (and so n even). 

Comparing the pari ty conditions, since we cannot have both m>_n+2 and n>_m+ 1, 

we must have n < m + l ,  m<_n+], m and n both odd, whence m = n .  

Thus the only possible strongly admissible sequences are 

oo[0]o0, o0[()01]oo, ~r 100001 [001]or o~[00001 [001]2k+,]oo (k = 0, 1, 2, . .). 

I t  only remains to find M (/, P) and a generating point for each of these sequences. 
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The sequence oo[0]oo is already known to be that  given by (1) and (6) - -  the 

first minimum. 

For the sequence oo[001]oo we have at once 

M(/,p)=(7V~I_ 1 ~-~ ~-7 )(~2 1 ~-5 ) - + ~ - ~ -  + . . .  1/~1+~+~-~- + . . .  

(;  , ) ( ;  , , ) 
= l/1-i 2 ~3+1 1 / l i + 2 + ~  =3971" 

The generating point, in (~, ~) co-ordinates, is ~ i  + - 33 + 1' 2 - ~ i  - ~ , 

which reduces, in (x, y) co-ordinates, to ' ~-9 " The transforms by T of this are 

0, and {~, 209 ' with their images in the origin. 

For the sequence ~r we have already found M(/, P). The 

( ;  ' point series is generated by Vii +2  z3+ 1' 2 - ~ ' ~ ' - ~ a + ~ ]  in (~, ~) co-ordi- 

nates, which reduces, in (x, y)co-ordinates, to (31/~2l~-9, 189Vii-497).418 

I t  remains to study the sequence 

[00001 [00112 ~ +l]oo. 

I t  follows from Lemma 9 that M(f, P)=Mo (e), where ~0=1 is preceded by four 

elements 0. This gives, remembering the definition of #k in (4), 

oo 
E ( _ _ T ) - n  o~n_I=(__T-1}_T-4 . . . .  q_T-6k-4) j t _ ( . T - 6 k  9j[_ ... "@T 1 2 k - 1 2 ) _ ~ _  . . . .  

1 
[tk 

=(- -T  x+T 4 . . . . .  t _ ~ - . k - 4 ) ( I + ~ - B k - S + . . . ) = _ I + T ~  ; 

and similarly 

Thus 

( _ ~ ) 1 - .  ~ . = 

1 I + T  ~ 

M(/'P)=M~ 71/i~-12 1+~  -~#k ) ( 7 y ~ i + ~ + ~ / ~ k  ) 

19 325 1 
-22  555 ~k - 7~i~ ~"  
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The corresponding poin t  is, in (~, ~]) co-ordinates, 

Vi +l 7 Vii-   
2 I + T  -~' 2 - ~  

simplifies, in (x, y)coordinates ,  to ( ! ~ ,  
1 3 3 -  63#k'~. 

which 418 / x 

Thus the possible Strongly admissible sequences have the values of M(/ ,  P)  

given in (1), (2), (3), (5), and are obtained from the corresponding point series 

specified by (6), (7), (8), (9). All that  remains is to arrange these minima in de- 

creasing order. This we could do from Lemma 9 ; but  it is simpler to argue as follows. 

19 3125 19 325 1 2 
We can verify directly that  ~ > 2 9 ~  > 22 ~ / z ~  - }~2/Zo.  Moreover 

5 (3 7111/H - 1 1 6 8 4 ) _ 1 9  325 1 ~-1 -- _T-2 
3971 22 209 7942 

All the results we want now follow from the fact that/~k is monotone increasing and 

tends to v -1. 

I t  only remains to prove the last sentence of the theorem. I t  follows from the 

proof of Lemma 9 that if ~ = fin for all In [ < n o (e), then [Mo (~) - Mo (fl)] < s. From 

this, we deduce that  a l l  sequences consisting of blocks 00001 and 001, with the 

00001 all very far apart, have M (/, P) very near M:r (/) and less, by the main 

result of the theorem. The number of such sequences has the cardinal number of 

the continuum, and there are an infinity of them which are periodic and so correspond 

to rational points. 

This concludes the proof of the Theorem, 

2. Throughout this section we write 

/ (x, y)=x2 + 3 x y  .y~, 
3+Vi  3-Vi  

~ = x + ~ - - -  y, rl = X q- -T-- ~ -  y, 

~ = T '  2 ' 

so that  T is the fundamental automorph of ] (x, y )=  ~V, and T is the fundamental 

unit of the field k ( V ~ ) ,  with V ~ ' = -  1. 

Owing t0  the existence ~ the trivial aut~m~ ( 0T-1 0 1 )  ~ 1 7 6  

(x, y) has not one conjugate as in the previous section bu t  three: ( - x ,  = y), (y, - x )  

and ( - y ,  x). However, a point series may have 0, 1, 2 or 3 distinct Conjugate 
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point series, and if they are finite they need not all be of the same length, as we 

can see from the example 

, ; ; 1 13) . (~ ~ ) ( - 1 3 ' - ~ )  ( ~ ' - ~ ) - ' (  3'  

We know already that  /(x, y) cannot, in its chain of minima, behave exactly 

as x s -  t l  yS, for Theorem 7 of our previous paper shows that  M~ (/) is taken for 

two distinet types of point series, one rational and the other irrational; but  if we 

ignore this distinction we could state a Theorem very similar to Theorem 1 above, 

whose proof, as we shall see, would be relatively simple. However, the analogy 

breaks down when we come to the last sentence of Theorem 1, for we find tha t  

there are only an enumerable infinity of values of M (/, P), each corresponding to 

one point series and its conjugates, in a neighbourhood of Moo (f). Thus we may 

continue the investigation below Moo (/), obtaining the more complete result of 

Theorem 2 below. 

T h e o r e m  2. With the notation above, let us write 

1 4 2 6 - 4 V i 3  M1 v 511/~--177 5 1 3 - 1 6 5  (25) 
M 1 = 3 ,  M s = ~ - 3 ,  M ' -  39 ' = 26 - =  13 

Then there are constants M~ (k > 0), M"e (k > 0), M'"k.h (h, k > 0), M~" (k > 0), M1, M s, M"k 

alone being rational, satis/ying 

I t  I l l  

>Ms >Ms 
> . ~  

> M TM, 

M1 Ms > M~ > M4 > ... > M ' > . . .  > M3 > M1 j 
I 

>M1 > " ' > M 1 , 3 > M 1 , 2 > M r ' ;  > 

! 

M " '  ! > > M;:~ " '  2.1 I �9 "" > M s . s >  (26) 

with limit points 

M ' =  limM~, M ; " =  limM;"h, M Iv= l i m M ; ' =  limM~", 
k--~oo h--~oo k -~ r  k--~ oo 

such that the set o/ values o~ M (/, P) not less than M TM is precisely the set o/ numbers 

in (26). Any  such value o~ M (/, P) is taken only at the points o] one point series and 

its conjugates - -  /inite i~ M (/, P) is rational and in/inite otherwise ; except that M1 

is taken both at ]our rational points and at the points o~ /our in]inite conjugate point 

series. All these values o~ M (], P) are attained except M 1. 



The Inhomogeneous Minima of Binary Quadratic Forms (II). 297 

On the other hand, /or any fixed e > 0 the set o/values o / M  Iv > M (/, P) > M Iv - e 

has the cardinal number o/ the continuum, and contains an infinity o/ values taken 

at rational points. 

The precise values of M~, Mk, M " '  M " '  " k , k.h will be obtained below (equations 

(34), (36), (39), (41) respectively) together with the points that  generate the corre- 

sponding point series. 

The proof of Theorem 2 is basically similar to tha t  of Theorem 1, and we shall 

set it out similarly as a chain of lemmas. To save space, where the proof of a 

lemma is sufficiently similar to tha t  of a lemma in w 1, we shall omit it, giving 

instead a reference. 

L e m m a  10. I /  M (/, P ) > I  then P lies (mod 1) in the region 
4' 

1 + 3  2 + 2 3  7 - 2 3  5 - 3  
~ :  3 s ~_<--~,-- ,  ~_<~_<-~-, 

and the same is true /or T ~ P  /or every integer n. 

Moreover, i] P E R, then 

and 
T P E R + ( O , 1 )  or T P  E R + (0,2), 

T - 1 P E R + ( - 1 , O )  or T 1 p E R + ( - 2 , 0 ) .  

This is the analogue of Lemmas 1, 2 and 3. 

In the unit square O<x,  y_< 1 we have 

0_<~_< 1+~,  3-3_<~1< 1. 

1 
Now in the region 0_<~_<1, 0 < ~ < 1  we have ] / ( x , y )  l=]~,] l_<4 or ] / ( x - l , y )  l=  

1 
= [ ( t - ~ ) ( 1 - ~ ) [ < ~  according as ~+f l_<l  or ~+~_>1; thus we may neglect this 

and the three conjugate regions, 

3 < ~ < r + l ,  3 - v _ < ~ < 4 - 3 ;  

0 < $ < 3 ,  3 - 3 < ~ < 0 ;  

l < ~ _ < r + l ,  4 - r < ~ < 1 ;  

and we have only to consider 

~ ' :  l < ~ < r ,  O < ~ < 4 - r .  
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Now since y ] /~  = ~ - ~, x 1/~ = �9 ~ - ~' ~ = T ~ + (v - 3) ~, we have in R' 

~ -  3 < y ~ / ~ < L  v -  3 < x V] 3  <~. (27) 

But  TR' is z < ~ < ~ 2 = 3 ~ + 1 ,  ~ ' ( 4 - ~ ) = 1 3 - 4 ~ < ~ < 0 ,  so that  

T < y ] / ~ <  7 ~ -  ]2, T -  3 < x ] / ~ < ~ .  (28) 

Comparison of (27) and (28) shows tha t  the transformation laws stated in Lemma 10 

for R hold already for R'; now an argument analogous to tha t  of Lemma 3 shows 

that  we can reduce R' to R, in virtue of 

and the three similar equations. This proves the Lemma. 

As in the previous section, we define P as admissible if, for every integer n, 

1 T~P lies in ~ (mod 1). Thus by Lemma 10 all points with M([,  P ) > 4  are admis- 

sible. For any admissible P and any integer n, we define P(n> as the point of 

congruent to T~P (rood 1). 

We now subdivide ~. We define the four regions ~ , ( i = l ,  2, 3, 4) as the set 

of points P E R for which 

~1 :  TP6R+(O, 1), 

R~: 2 P e R + ( 0 ,  1), 

R~: TPER+(0,2), 

R,: TPER+(0,2), 

Transforming the equations in 

find that  for admissible points 

if P E R1 then 

if PER2 then 

if P 6 R3 then 

if PER4 then 

We now define, for alt admissible P,  

[ 

T - ' P E R + ( - 1 ,  0); 

T-1pER+(-2,0);  

T-1pER +(-1,  O); 

T - ~ P E R + ( - 2 ,  0). 

each line by T 1 T respectively, and comparing, we 

P, 

P(" 6 R1 or R3 and P(- 1) E R 1 or R 2 ; 

P(1)e R~ or R3 and P(-1) E Ra or R4; 

P ( ' e R z  or R4 and P(-1) eR1 or R2; 

P(1) ER2 or R~ and Pc-~)ER3 or R4; 

1 if P(~>ERa or R4, 

0 if P(~)ER, or R~. 
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L e m m a  I I .  Given any doubly-in]inite sequence o/ elements O, 1, there is an ad- 

missible point P which has this sequence/or its ( an }, and P is uniquely de/incd (mod 1) 

by the sequence. Moreover, using (~, U)-coordinates, P(') is given by 

1 "~ T rn am+n~ ( a n - m  " 
rn=O 3 m =1 

The proof of this is similar to the proofs of Lemmas 5 and 7, the existence 

and uniqueness corresponding to Lemma 5 and the actual formula to Lemma 7. 

If  we denote the coordinates of p(n) by a suffix n, the actual formula may be veri- 

fied from the equations 

~ n + l = T ~ n - - T ( l + a n ) ,  ~ } n + l = v - l ( l + a n ) - - T - l ~ ] n .  

We note tha t  the conditions for p(o) to lie in any particular ~ are as follows 

RI: ao=O, a 1=0; R2: ao=O, a_1=l; 

~a: So=l, a-l=O; R4: ao=], a - l= l .  

Now the three conjugate points to (~:, ~]) are respectively ( l + r - ~ ,  1 - r - l - ~ ) ,  

( l+v~],  I - ~ - 1 ~ )  and (~-r~] ,  ~ 1~_r -1 ) ;  and we may now deduce from Lemma 11, 

with a little algebraic manipulation, tha t  the three points conjugate to (an} may 

be obtained from it by the operations 

(i) write 1, 0 for O, 1 respectively; 

(ii) write 1, 0 for O, 1 respectively when n is even, and then interchange a~ 

with a ~_~; 

(iii) write 1, 0 for 0, 1 respectively when n is odd, and then interchange an 

with a _ n- 1. 

We have next to find :which hyperbolae we need consider; in other words, to 

obtain an equivalent result to Lemma 8. 

Lemma i2 .  I] P is admissible and p(n) is (~n, ~n), then 

i (/, P) = i i n  I/n (a) l 

ta~n  over all n, where /~ (a) = (~n - an-1 - ~ an) (~]n - an-1 + v 1 an). 

In other words, if p(n) lies in R1, R2, •a, ~4 respectively, then we need only 

consider / (x ,  y)o ~ ( x - l ,  y), / (x ,  y - l )  or / ( x ~ l ,  y - l )  respectively. 
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I t  is easily verified that  Lemma I2 holds for the known set of points at which 

M(],  P ) = M  1 ( / )=g ;  a result which follows at once from ! , = 3  and the conju- 

gate results. Thus in Theorem B we can take K = ~ ,  so that  the bound we obtain 

5_ 4 
is lyl< , and s o  I + yl< 6, Ixl< . 

1+3 
Now in ~ we have x + , y = ~ >  g , s o  that  if y < ~ ,  x > ~ ;  and x - 3 - 1 y  = 

2 - 3  -1 1 2 2 
= ~ < ~ ,  So tha t  if y < g, x < g. Using also the similar results when y >  3, we 

find that  we need only consider / {x, y), / ( x -  1, y), / (x, y -  1), / (x - 1, y -  1). We can 

deduce either from Lemma 11 or from the definition that  in ~1 and ~ ,  ~ < 2 3+  1 
- -  3 

so that  
4 3 - 8  2 (~/~_. 1) ' 2 

a value 

so that  

so that  in ~1 and ~2 we need only consider /(x,  y), / ( x - 1 ,  y). 

In ~,, we have ~ > 1 + 3  ~ _ > 3 - 2  2 3 - 1 > ~ .  IIP(~)ER1 - 3 - '  T '  so that  It(x, y)l 9 

we have to separate cases. First if p(~+l) E R1, then since x~+i = yn, y~+~ = x~ + 3 y~ - 1, 

we have 

t ( x ~ - l ,  y . ) =  - l (Yn ,  x ~ + 3 y ~ - l ) =  -t(x~+~, yn+l), 

4 3 - 8  
which is already being considered. Second if p(n+l) E ~a, then ~ _> ~ - ,  

4 v - l l  4 3 - 1 1  1 3 7 - 4 0 3  1 
•  

Thus in neither case need we consider / ( x -  1, y). With the similar results for Ra 

and ~a, this proves the Lemma. 

We have now to find a rule for comparing two values of /n(~); or, which 

comes to the same thing, for comparing ]o (a) and /o (8) for a n y  two sequences { :r }, 

{8}. I t  will be seen that  replacing { ~ } by any of its three conjugate sequences 

leaves ]/o(~)] unchanged; so we may assume for our purpose that  c%=:r 

flo = 8-1 = 0, in which case /o (~) > 0, ]0 (8) > 0. 

L e m m a  13. I.~:,! B 2 =1, fl-l=flo=81=O, and let :r162 Then either o/ 

the two /ollowing sets o/ conditions 
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(i) ~ -2=0 ,  

(ii) o:-3 = ~-2 = ~r = 1, 

is su//icient to ensure that 1o (~) >/o (8) > O. 

In fact we have 

) ( ~ _ ~ 5  - 3 - 3  ) 8 - 3  5 ~ - 1 ~  
/ 1 + 3  ~-2 - 3  2 + ~ _ ~  3 1o (8)-< + = •  

( i  

Also in case (i) 

- 1 6  4 1 v - 1 3 3  
3 9 

159 
since 3 < ~ - ;  and in case (ii) 

( ~ _ z  ) ( _ ~  3-4 ) 4 3 - 8  2 8 v - 9 2  8 4 8 - 2 5 6 ~  
1o ( ~ )  > + 3 - 1  - 3 - 2  + 3 -~  - x - > 1 o @  - , 1Z~--2 3 3 9 

981 
since v < 29---7" 

As in the previous section the element % of a sequence { ~} will be printed 

in heavy type. The comparison sequence {fl} in Lemma 13 is . . .  1 0 0 0 . . ,  and 

its three conjugates are, by  the rules above, . . .  0 ! 1 1 . . . ,  , . .  1011 . . . .  and 

�9 . . 0100 . . . .  The two possibilities for { ~ } not covered by the Lemma a r e . . .  1 0 0 0 . . .  

and . . . 0 1 0 0 1 . . .  In the latter case we have 

[ - V   1to( )1, 

since ~ ( ~ ) = - - 3 - 3 + 1  and ~-i ( ~ _ ~ )  4-~__ But  if P(~ is { ocn }, P(-l) is 01001 , , . . . . .  

which is a conjugate bf . . .  1 0 0 0 . . .  Hence we deduce 

Goro l l a ry  t .  I /  { :on } contains none o/ the subsequences 1000, 0111, 1011, 0100, then 

M (/, P) has a higher value than 4 1 v - 1 3 3  1 9 > [~; otherwise not. 

C o r o l l a r y  2. I /  { ~ } contains at least one o] the subsequenees 1000, 0111, 1011, 

0100, then in Lemma 12 we need only take the minimum over those values o/ n /or 

which an is the third term o/ one o] these subsequenees. 
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Obviously our first concern must  be with those sequences tha t  satisfy the condi- 

t ions of Corollary 1; bu t  we shah find tha t  it  is also necessary to consider other 

sequences, and so we next  set ourselves to find selection rules analogous to Lemma 9. 

In  this case, the selection rules are not  complete (and it is in fact  difficult to make 

them so); bu t  they  are sufficient for our purpose. 

L e m m a  14. Let { ,r }, { 8 } be two sequences both containing . . . 1 0 0 0 . . .  ; and 

let - n l ,  n2 be the greatest negative and  least positive values o / n / o r  which  o~ 7Z-Sn. T h e n  

(i) i /  nl  <- n2 + 1, /o (o~) - / o  (fi) has the sign o~ ( - )n,-1 (~_ nl -- 8-n~) ; 

(if) //  n,  >_ n2 + 3, /o (o~) -- ]o (8) has the sign o/ (~,~ - 8it,) ;. 

(iii) /] ( - )~ ~ (~ n, - 8-"1) = 1 and ~n, - 8in, = 1, /o (~) >/o  (8)- 

In the obvious notation,  /o (r162 = }o (~-) 7o (:r Then 

/o (a) - ]o (8) = ~o (~) { 7o (a) - 7o (8) } + 70 (8) { 2o (~) - }o (8) }, (29) 

and in this we mus t  find est imates for the four expressions on the right. In fact  

3+1 8-3 7-2v 5~-16 
3 -< 2o (~) -< - ~ - - ,  3 < 7o (8) -< 3 

and 

3 1 - i_1 i , 

from which we obtain 
7 T + 2  ~o (cr < (3o) 

o < < 2 3 + I  (31) 
7- 3_3 [ gi -:7o<8) 3 

If  nl _< n= + 1 we have ] ~o (~) { 7o (~) - 7o (8) } I > ]~o (8) { $o (=) - 2o (8) } I with equality 

only i f  there is equal i ty  both on the left in (30) and on the r ight  in (31). But  in 

~ + 1  
this case we must  have ~o (*r = T < 2o (8) and 7o (fl) 

terms o n  the r ight  of (29) have the same sign. Thus 

the sign o f  2o (=) { 7o (:r - 7o (fl) } which has the sign 

proves (i). 

5T--16  
3 > 7o (:r when the two 

in any ca se /o  (r162 " / o  (fl) has 

of ( - )n1-1 ( a - ~ l -  fl-4,)" This 
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Again, if nl>_n2+ 3, we have from (30) and (31) 

I~o (~) { 7o (~) - 7o (fl) }] <17o (fl) {~o (~) - ~o (fl) }l, 

so that  by (29) I0 (~ ) - ]o  (fl) has the sign of 7o (fl){~0 (~)-~o (fl)} which has the sign 

of ( ~  - f l~ ) .  This proves (ii). 

(iii) is trivial, since each factor of ]o (~) is larger than the corresponding factor 

of ]0 (fl). I t  is only useful when n l=  n 2 + 2, since otherwise it is contained in (i) 

or (ii). 

We next consider the sequences satisfying the conditions of Corollary 1. We 

use, for sequences { ~  }, the notation of a square bracket and suffix already defined 

i n w  1. 

L e m m a  IE. There are precisely an enumerable in/inity o] sequences { ~n } which 

do not contain any o/ the ]our subsequences 1000, 0111, 1011, 0100. They are given by 

~[0]~, ~[0] [10]~, ~[1100]~, ~[0][1100]~, oo[0] [1100]k [10]~, ~[0][ll00]k 11[01]~, 

where in the last two cases k > O, k > 0 respectively 1, and the conjugate sequences. 

Since the subsequence 1000 is exc]uded, any sequence containing 000 must extend 

to the left merely as oo[0]. By conjugacy, similar results hold also to the left of 

111 and the right of 101, 010. 

Now suppose the sequence { ~  } contains 1100. Then we select any one such 

occurrence, and take the longest subsequence of alternate pairs 00 and 11 containing it. 

This must take one of the forms 

0011100]k11, 00[l l00]k,  [1100]k11, [1100]~, 

where k is so interpreted as to include the possibility of extending to infinity on 

either or both sides. Suppose first that  this subsequenee is bounded on the left and 

begins with 00. If the previous term is 1, the one before it can neither be 1 (giving 

another pair, against our assumptions), nor 0 (giving the excluded subsequence 0100). 

Thus the previous term is 0 and, by  the remarks above, the whole of the subsequence 

to the left must be simply ~[0]. By conjugacy, we can now deal with the cases 

when the subsequence begins with 11, or when it ends with 11 or 00. Thus all 

1 We suppose k finite. I f  k = ~ we m a y  in te rpre t  the  infinite repet i t ion as extending in ei ther  

direction, and obtain  in each case a sequence which we are already considering explicitly. I t  should 

be noted,  however,  t h a t  we are no t  enti t led to deduce the  value of M (], P)  s imply by  lett ing k tend 

to r162 since this  is equivalent  to invert ing the  order  in a double limit. 
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sequences containing 1100 (or, by conjugacy, 0011, 1001, 0110) are included in the 

list in the Lemma. 

We now consider sequences satisfying the conditions of the Lemma which do 

not include any of these four subsequences. We may suppose that  such a sequence 

contains 00, for it must contain at least one of the four conjugates 00, 11, 10, 01. 

Since the sequence cannot contain either 1000 or 1001, the previous term must be 0, 

and so the subsequence extends to the left as ~[0]. Thus, either the sequence is 

~[0]~ or i t  begins ~[0]1. ]n the latter case, since we can never have a further 

00 or 11 by the previous argument, the sequence must be ~[0] [10]~. 

Conversely, all the sequences given in the lemma obey the conditions. 

We have now to evaluate M([,  P) for these various sequences. In each case 

the relevant point may be found from Lemma 11. In particular, the points corre- 

sponding to the first three sequences of Lemma 15 are respectively, in (~, ~)-coor- 

dinates, 

( 1 + 3  4 - v ) ( 1 3 2 3 , 4 ~  ) [ 9 ~ + 6 , 3 3 - 9 [ )  
3 ' 3 ' - - - -  ' \ 13 13 ' 

and so, in (x, y)-coordinates, 

Thus (by Theorem 7 of our previous paper) they represent the two types of point 
] 

series at which M (/, P) = M 1 (/) = 3, and the point series at which M (/, P) = M~. (/) = 4 .  

(We could also, of course, have obtained the minima for these point series in the 

same way as we shall do below for the other sequences of Lemma 15.) 

We next consider the sequence ~o[O] [1100]o~, defining, for reference, % as the 

last 0 in ~o[0]. We may clearly ignore any values of l/n[ in which one factor is at 

l + v  4 - 3  1 
least ~ and the other at least - ~ - ,  since the product of these is M1([)=}3" 

In particular, for this sequence we need only consider ]/n (~)[ when n > 0 .  Now by 

Lemmas 11 and 12 

23+2 1+3 [ 8 -23  
i3 I - 3 - '  J 3 - 5,o 
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14 N+3 (0~) = --  - - T  2 -~ 1 ~- T 4 J -- ( T-1 -- T-2) ~ T-4rt ' 
0 

l + v  v-l@'~ - 2 '  4 - -T  ~-2 ~T-4n 
/,N+~(X)= ~ +  l_z_4  - - ~ - . (  - z  -s) 

where N >_ 0 in each case. It follows from these that Min I14N~2 (:r Min [14 N+8 (:r ] 

and Min[/4~+4(~)] are all taken at N= cx~, and are thus at least 4 by comparison 

with [ll00]oo. Again, Minl/4N+l(~)[ is taken at N=O and is 

4 z - 6  2 z - 5  3 8 - 8 z  4 
I l l  (~ ) l  = 1---$- • ~ 39 M' < 1-3" 

Thus for this sequence (and its four conjugates) M(/, P)= M'. 

We next consider the sequence 00[0][1100]~[10]o0, defining % as above. By 

conjugacy [/= (a)[ = [hk+l-n (g) [; and as above we need not consider [/= (~)[ for n < 0. 

Thus we need only consider ]~N+I(~), h N + ~ ( a ) ( 0 < N < k ) .  For these we have, by 

Lemma 11, 

k-N-1  T-4(k-  N) t 
/4 N+I (0t) = --  2 1[ --  1 (1 + T -1) ~ T -4n 

3 o i - : - 7~  j 

~-~-1 ~-4(~-N)-~ } /4~+2(~) = 2 ~ + 2  (l+z_a) ~. z-4~ 
3 o 1 - v  -2 

/ 
• 

N-I  } ..v 8 - 2 z  (~ -1_~ , , )  : ~ , - , ~ _ r - , ~ - i  . 
3 o 

Now it is easy to see that [hN+..(x)[ is greater than the correspon'ding [/4~+~(0t)[ 

sequence oo[0][110010o above, and so a ]ortiori greater than ~3; thus we may for the 

neglect it. Also, in [/iN+l (~)[ both factors are increased by increasing N, so that 

3 \ ~ ]  1-~=~ J = 

=M,+~_4k (!1 z-23~.1_~ / 

We argue similarly with ~[0][1100]~11[01]~. In this case conjugacy gives 
[/, (~)[-I/4~+s-,  (~)1, and we need consider only /4~+1 (~) (0_<N_<k) and/~+~ (~) 
( 0 < N < k ) .  In these cases we find 
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2 3 - -  
I ,N+I ( ~ ) =  - ( 3 ( 

k -  N 3 - 4  ( k -  N)- 3 

1 (1+~-') E~-~ ~ ) 1 2 ~ 5  1 +(3  a - , - * )  o v-*= ' 

/4 N+4 (~) = { T~-I- -[- (3 -1 
k N 

+ 3 -~) ~ 3 -4'~ + 
0 

T-4(k-N+I) 

Now 1/4~+4 (~)[ is greater than the corresponding [/,...~4 (a)l for the sequence 

4 
~[0][1100]~, and so a /ortiori greater than ~ ;  thus we may neglect it. Again, in 

I/4N+l (~)] the first factor is 

2 ~ - 1  1 + 3 - '  T-4(k-N+I)/ 1+3-1~ 4 3 - 6  v_,<~_N)_2(3+5 ~ 

3 1 - ~  -4 1 - 3  2 \3 1+ ,_~/  13 \ 39 ] 

and the second factor is 4 3 - 6  v_4N(47-143  ) 13 ~ . It is clear from these two results 

that Min ]/~N+I(~)I is attained either at N = 0  or N = k ,  the two extreme values 

of N. Bu t  

/ , ( = ) ] _ 2 ~ - 5 { 4 , - 6  _ , k . . 2 ( ~ + 5 ~ } : M ,  3__,k 2(!11~723) ,  
3 13 \ 39 ] 

so that 

If we write 

(33) 

(34) 

then (32) and (33) show that M (/, P )=M2k or M' ' 2k+1 respectively; and 2k, 2 k + l  

are the number of alternate pairs 11,00 not included in the semi-infinite ends ~r 

and [01]~ or [10]~r 

In view of Corollaries 1 and 2, we have now proved that part of Theorem 2 

which is concerned with the top line of (26). This is the most interesting part of 

the Theorem, since it shows that / does not behave in the same simple way as the 

other quadratic forms that have been investigated. It  will be clear to the reader 

that if we had only been concerned to prove th i s  much, we could have simplified 

the work in several places (as well as omitting Lemma 14, which is only useful 

later). We shall in fact sketch an alternative proof of Lemma 15 - -  the crux of 
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the argument - -  on lines which make the cause of it much clearer and enable us 

to dispence with the ~ altogether. 

We define the region ~ k ( i , j , k = l ,  2, 3, 4) as being the set of points P for 

which P e ~i, T P e ~j- (rood ]), T - 1 P  e ~k (mod 1). I t  may be verified that  there 

are just 16 such regions, and (for admissible points) any one of them is defined by 

specifying ~ e, ~-1, ~o and al. Moreover, if P is admissible and P(~ then 

P(~)ER~, where h = l  or 3 if ~=1 or 2, h = 2  or 4 if ~=3  or 4. Corollary 1 now 

becomes 

Let P be admissible. Then the necessary and su]/icient condition /or M (/, P ) >  

41 T--133 is that no P(~) should lie in any o/ ~1 2 ~, ~ ,  ~ or ~ .  
9 

In this form, the result can easily be proved in the same way as Lemma 4. I t  

remains to show that  there are only an enumerable infinity of point-series satisfying 

this condition. We group the remaining twelve regions as follows 

S~: R~, R~, 
Ss: R~, Rh, 

I t  may now be easily verified that  

(i) if p(o) lies in a region of S~, then p(1) lies in a region of some Sj with 

j_<i; 
(ii) i f  p(0), p(1) lie in regions of the same S~, then the region in which p(o) 

lies uniquely determines the region in which P(1) lies. 

From these it is clear that  if n~ (which can be + oo) i s  the greatest n for which 

P(~) lies in some Sj. with j >_ i, then the whole route, and so P %  is determined by 

the integers n~ (i = 2, 3, 4, 5) and the regions in which P(~), p(.~+l) lie. Thus the 

routes depend on the n~ and a finite number of choices, and so form an enumera- 

ble set. 

A more detailed consideration of the possibilities (which are most simply repre- 

sented diagramatically) gives the whole of Lemma 15. I t  will be seen that  though, 

for example, ~x  and ~ are conjugate, they play essentially different roles - -  which 

is bound up with the fact that  (o-~) does not commute with T. 
2 0 - - 5 2 3 8 0 4 .  Acta mathematica. 88. I m p r i m 6  le 17 d 6 c e m b r e  1952. 



308 E.  S. Barnes and H. P. F. Swinnerton-Dyer. 

We have now to consider sequences which do not satisfy the conditions of 

Corollary 1. 

L e m m a  16. For 

we have M (], P) = M Iv. 
the point series defined by the sequence ~[0011]0110[0011]~r 

Moreover, the last sentence o/ Theorem 2 holds. 

We shall for convenience define % as the first 0 in [0011]~. Now, by Corol- 

lary 2, we need only consider in Lemma 12 the cases n = - 3 , 0 ;  and these are 

conjugate points which give the same ]/~(~)], so that  we need only consider the 

latter. Thus 

M ( / , p ) = { 3  3] 3 -2 +3  ~t ~ 4 - 3  3 5 - 3 6  / 
- - +  1 - 3 4  -3 +33+ i - 7 : 4  

4 3 + 7  ] 1 3 3 - 3 7 1  5 1 3 - 1 6 5  _ • _ / I V .  

13 13 13 

The other result in the Lemma follows at once by the same argument as the corre- 

sponding result in Theorem 1, since both the semi-infinite ends of the sequence 

giving M ~v are made up of an infinite repetition of the same subsequence (unlike 

the sequences of Lemma 15). 

We now define a sequence as strongly admissible if for the corresponding point 

series we have M(/,  P)_>M TM and the sequence contains one of the subsequences 

1000, 0111, 1011, 0100. We now obtain some properties of strongly admissible 
�9 1 
sequences by using Lemma 14, noting that  M~V>~. 

L e m m a  t7 .  Suppose a strongly admissible sequence contains 1000. Then it con- 

tains it as part o] the subsequence 0011011000110; and similarly /or the coniugate 

subsequences. 

For convenience of reference we take s o to be the second 0 of 1000. An im- 

mediate application of Lemma 14 (i) shows that  ~ a= 1. We next  see tha t  :r  

and ~2= 1, since any other pair of assumptions conflicts with one of the parts of 

Lemma 14. Repeating this argument, we have further ~_~= 1, ~a = 1. Thus 1000 is 

certainly contained in 101100011. By conjugacy, 0111, 1011 and 0100 must be con- 

tained respectively in 010011100, 011011000 and 100100111. 

Now the sequence we are working with cannot have ~4= 1, since it would then 

contain 0111 in a manner inconsistent with our last result; therefore we must have 

an=0.  Since the sequence now contains 1011, we can insert the result for it, and 

this gives us the whole of Lemma 17. 
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Now let us consider any strongly admissible sequence{an  } containing 1000. 

Let  - n l ,  n2 be the greatest negative and least positive values of n for which ~ 

is not the same as for the basic sequence in Lemma 16. Thus by Lemma 17, 

n129 ,  n225 .  We see at once that  the cases n I z 0 , 2  (rood4) or n2=-0,2 (rood4) 

are impossible, since one of the subsequences 1011, 0100, 1000, 0111 would then 

occur in a manner inconsistent with Lemma 17. 

Applying Lemma 14, we find also 

(i) if n1=-i (rood4), then n 1 > n 2 + 1 ;  

(ii) if n2 ~3  (rood4), then n l < n 2 + 3 ;  

(iii) we cannot have n 1 -==-1 (rood 4), n 2 ---3 (rood 4); 

and to these we may add the conjugate results 

(iv) if n2-=l (rood4), then nl<n2-~ 7; 

(v) if n1 ~3  (rood4), then n 1 > n ~ + 5 ;  

(vi) we cannot have n 2~1  (rood4), n 1~=3 (rood4). 

Thus the only possibility is 

n l ~ n ~ z l  (rood4), n 1 = n 2 + 4 .  

Let us write, for convenience, n 2 -  4 ~: + 1, n~ = 4 ]c + 5 where k > 0. Then the portion 

of {un} which is the same as the basic sequence is [0011]k 01100[0110]k. We con- 

sider how this may be continued on the right. 

We know that  a 4 k ~ - g ~ = l ,  by definition. Now there are two possibilities 

f o r  ~4k+2 : 

(i) ~ k , 2 =  1. We have now the subsequence 1011; and by Lemma 17 and (35) 

the sequence must continue (starting at c(4k}~) ll00[0110]k, with the same value of 

]~ as before. 

(ii) ~ 4 ~ = 0 .  I t  may easily be seen that  the rest of the sequence is simply 

[10]~r since any other continuation would contain a subsequence 0100 or 1011 in a 

manner inconsistent with Lemma 17. 

Thus, using conjugacy, we have 

L e m m a  t_8. T/~e strongly admissible sequences are precisely 

~[0011] 0110 [0011]~r ~[0110 [0011]k]~r ~[0] [[0011]k 0110]~, 

~[0] [[oo~1]~ 01~o]~ [oo~1]~ [lo]~, 

(where l~ > O, ]c > O) 1, and tltei'r conjugates. 

1 We.suppose  h, /c finite, for the reasons already s ta ted in the footnote to L e m m a  15. 
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The first of these sequences has been discussed in Lemma 16. It  therefore only 

remains to find the values of M (/, P) for the other three and to arrange these values 

in order. We shall write the minima for the last three sequences as M~', M " '  M ' "  k ~ k , h  

respectively. 

We first consider M~'. By conjugaey, all the values of ]/n (~)1 which we have 

to consider (after Corollary 2) are equal, and we have 

= {7+4r-13~ + 1 - r  - 4 ( 9 " c §  3)'r -4~-a~ ~ } / 1 9 1 4 r  1 ~  -4k-430-9r } 

9 51T+21 T-4k 4 174-  51 r 1 9~ -4k-4 
=~-3 + I ~ X l _ T - 4 k  4 13 Xl_r~-4  (l_r-4~ 4)~ 

177 5 1 l / ~ ( } + r  4k 4~ 9v-~k 4 
- 2 6  + - 2 6 -  ~2:~]  - (1 - r - 4 k  4)2" (36 )  

M~' is obviously rational, since it is generated by a periodic sequence, i.e. a rational 

point. Also, by Lemma 14, or directly from (36), 

M;'  > Ms 1,  M~' > M Iv, lira M;'  = M w. (37) 

We next consider M " '  k , taking for convenience % to be the last 0 in ~[0]. By 

Corollary 2 we need only consider those /~ (c~) for which 

n = - 4 k + 2 ( m o d 4 k + 4 ) ,  n > 0  or n = l ( m o d 4 k + 4 ) ,  n > 4 k + 4 ;  

and it now follows from Lemma 14 that  the least I]~ (~)] is given by n = 4 k + 2 ;  

and consequently that  

M ; '  > M ; "  > M . . . . .  ~v ~1, l imMk = M  . (38) 
We have also 

k . . . . .  t 1 - ' c  -4  -~ 1 - r  4k ~ - ' c  + ' r  ~ -  ] - ~ ' r  4 

{ 1 1 3 - 3 2 ~  3 ( r - 3 ) ~  4k-4[ / 7 T _ 1 7 + ( 5 r _ 1 4 ) ~  4k} 
= - 13 i = 7  J )  13 39  

~ - 4 k  4 ( 7 - T )  - 4 k  4 7 - 1 4 ~  T 4k =M~ v _ 1 7 4 - 5 1 r •  q • 
13 l -  r 4~ 4 39 13 1 - - T  4k__4 

=M~V+r-4k(7--T) 3-9 1--T-4~-4] " (39) 



The Inhomogeneous Minima of Binary Quadratic Forms (II). 311 

Finally we must consider M~'.'h. If  we define %, as before, as the last 0 in 
Mtf! __ ~[0], arguments similar to those above show that  k.h--I/4k~2(~)l, and we may 

deduce by Lemma 14 that  

. . . . . . . . . . .  (40) M " ' > M k . h > M k ~ 1 ,  Mk h , l>Mk.h ,  l i m M ' "  - M ' "  k , k , h - -  k �9 
h-->~ 

The inequalities (37), (38) and (40), with the results already obtained, complete the 

proof of Theorem 2. I t  only remains to calculate M~'.'h, and we find 

M H t  { " ~ @ ]  ( l__T4h(]c~ l ) ) [~ l~  7f2 
k.h= T 3 I, 1--~ 4-~ 

= M ' " ( I _ T  4a(~+1)) ~ 4h<k~l)(6139 

]--3 2 

(11 ~ - 2 3 )  r 4k~ 
/ o 

117 

T1 4 h (k E 1) 

i _ ~  ~ j x 

(41) 

3. If we apply these methods to a general form, we can no longer obtain as 

much. In what follows, we assume that  / (x, y) = a x 2 + b x y + c y2 is an indefinite 

binary quadratic form with integral coefficients, which does not represent zero. 

I t  is natural to conjecture tha t  M 1 (/) is rational and assumed at rational points - -  

though not necessarily there alone; and it seems probable that  this can be proved 

by the methods of this and our previous paper. All we have been able to prove, 

however, are the following simple results. 

T h e o r e m  L. (i) To any point P there corresponds a point PI such that M (/, P) = 

= M (/, P1) and M (/, P1) is attained. 

(ii) The set o] values o~ M (/, P), as P varies, is closed. 

The second part  of this generalizes Heinho]d's result (our Theorem A) that  M 1 (/) 

is an assumed upper bound. 

Let  T be the fundamental automorph of /. "For any point P and any integer n 

we define p(n> = (x(n), y(n>) as the point congruent to T n P in the unit square 0 < x, y < 1. 

Now from Theorem B, 

M (/, P) = Min Min 1/(X + x (~), Y + Y(~)) I (42) 
Zt X, Y 

taken over all n and a certain finite set of integer pairs (X, Y) depending only on 

] and T. We may choose a subsequenee {n~} of the n such that  

M (/, P) = lira Min {/(X + x (n~), Y + y(~i)) {. (43) 
~-~oo z, y 
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We may without loss of generality suppose that all the n, are distinct; for this is 

clearly possible if M (/, P) is unattained, while if M (/, P) is attained the theorem is 

trivial. Now let P i - ( X l ,  Yl) be any point of condensation of the P("*). Then it fol- 

lows from (43) that  

M (/, P) = Min i / (X q x~, Y + Y~)I > M (/, PI). 
X ,  Y 

On the other hand, since every P[~) is a point of condensation of the P(~), it. follows 

easily from (42), applied to P1, that. M (/, P ) < M ( / ,  Pi).  These results together 

prove (i). 

The proof of (ii) is similar. We suppose a sequence of points P~ such that  

lim M (/, Pd = k, 
i---) c~ 

and we have to find a point P for which M (/, P ) = k .  After (i), we may assume 

without loss of generality tha t  every M (/, P~) is attained. Thus for each i we can 

find an n, for which 

M (/, P0 = Min ] / (X + x~ ~*), Y + y},~0) ], 
X . Y  

in virtue of (i). Now let P be any point of condensation of the P}~*). By an argu- 

ment exactly analogous to tha t  above, we see that  M ( / ,  P ) = k ,  and this proves 

the theorem. 

T h e o r e m  M. Given any ~ > 0, there is a rational point P such that M (/, P ) >  

> 2]/11 (/) -- a. 

Suppose that  the linear factorization of / is / - $ ~ ,  and suppose that  ~ > 1  is 

the fundamental unit of k (V~/-), so t.hat T change:~ ~:, ~ into v ~, ~' r/, where ~ T' - + 1. 

Since Mi (/) is attained, there is a P0 such that  M (/, Po)= M1 (/). We shall denote 

the coordinates of any P, or p}n) by the corresponding suffixes and indices; and we 

give (X, Y) the same meaning as in the proof of Theorem L. We choose q > 0  so 

that ,  for any pair of points P2, Pa with ] x 2 l ~ < M a x l X l + l ,  l Y',I-  <Max [  Y I +1  and 

I 2- 31<q, 1 2- 31<q, we have 
Now consider the P~'). We can choose two values ni ,  % of n, with n 2 > n l ,  

such that  1 ~n*) - #5 ~) ] < ~ el, 1,/o ~*) - r]P~) ] < ~ e,. Let A be the integral point such that  

T ~ ~ P8 ~*) = Pg~) + A. 

We define the point P1 to satisfy 

T n2 n l P l = P l + A  ' 
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so tha t  Pi  is rational and mimics p~l) under small positive powers of T. Then 

~(~l) ~(n 2) (n I) (n2~ 

I ~.n 2 n 1 _ 1 ,  ~]1 lo T,n~ n , _ _ ]  

We can clearly assume tha t  T ~ ~' >2 ,  so tha t  these give 

Hence, for n~_< n < n2, we have 

By the same argument  as in the proof of Theorem L we now deduce tha t  M (/, P~)> 

> M (/, P 0 ) -  e, which proves the theorem. 

I t  is clear from Theorem L that  if k is any positive real number  not a value 

of M (], P) for some P, then we can carry through the arguments of the previous 

sections in a finite number  of steps; and tha t  all the points with M (/, P ) >  k can 

be represented by sequences {~,},  subject only to local conditions similar to those 

in Lemma 5. Moreover, there will be an algebraic representation of the point in 

terms of the ~,, similar to those of Lemmas 7 and 11. For any given form, it is 

now possible to lay down selection rules (cf. Lemmas  9 and 14), and so to obtain 

the complete enumerable sequence of minima of M(/, P). However, since these selec- 

tion rules may be of arbi trary complexity, we do not see how to prove any general 

result by these methods. Conversely, though we can lay down selection rules cor- 

responding to almost any behaviour of the M( / ,  P), it is impossible to work back 

from them to a form. The rest of what we have to say in this section is therefore 

conjectural. 

The normal result is that  of Theorem l ;  to this type also belong the forms 

x 2 + x y -  y2, x 2_ 2 y2, investigated by Davenpor t  and Varnavides. This is the behaviour 

we should have expected a priori, by analogy with almost all the results that  have 

been obtained in the Geometry of Numbers. We must  consider what deviations from 

it are likely, and what peculiarities of the form would be needed to bring them 

about. We believe tha t  the following two statements are t rue:  

(i) M~ (/) is rational, isolated and taken a t  rational points (though possibly also 

at irrational points in the field k(1/d)); 

(ii) M 2 (/) exists, and is taken at points in the field k (l/d); 

and tha t  no stronger results are true in general. In particular, there may  well exist 

forms for which M 2 (/) is not isolated. 
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In support of this last statement, consider the effect of replacing - T  by  + 

in the formulae of Lemmas 7 and 8. I t  is easily seen that  then MI(/)  would be 

given by the sequence ~[1]~ and M2(/)by the sequence ~o[l]0[l]~; and that  the 

set of values of M (/, P) in any interval M2 (/)> M (/, P ) >  M2 (/)- s would have the 

cardinal number of the continuum. The suggested alteration is not obviously im- 

plausible, but  it is not clear how to find a form corresponding to it. 

The reader will note that  the proof of Theorem 2 carries over to the general 

form x 2 + (2 n -  l) x y -  y2 as Theorem 7 of our previous paper would suggest. Apart 

from these, the only form we know whose bebaviour does not follow the pattern of 

Theorem 1 is x ~ x y - 1 5 y  ~. In Theorem l l  of our previous paper we proved that,  

for this form, M~(/) is taken at both rational and irrational points; but  we have 

not constructed the complete enumerable sequence of minima, since it is already 

clear from the proof that  M2(/) is isolated. 

I t  would be of interest to find further examples of forms for which there are 

only an enumerably infinite number of values of M( / ,  P) in a small neighbourhood 

of M ' =  lira M (/, P). For any such form, supposing reasonably simple selection rules, 

M' must arise from a sequence { ~  } whose semi-infinite ends are periodic. More- 

over, the periods on the right and left must be different, since otherwise we can 

apply the argument by which we proved the last assertion of Theorem 1; thus, in 

particular, the reversed sequence cannot give the same minimum M'. 
An examination of the proof of Theorem 2, especially Lemma l l  and the second 

proof of Lemma 15, suggests two possible reasons for the irreversibility of {c~n } when 

/=x2+ 3acy-y2: (i) the fundamental nniC ~ has norm - 1 ;  (ii) the form is ambi- 

guous, and so possesses an automorph U =  of finite order which does not 

commute with the fundamental automorph 1'. The second reason is more likely to 

be the deciding factor, since it introduces a lack of symmetry into the definition of 

conjugate points without destroying the obvious symmetry in T and iT-1. I t  seems, 

however, that  if M1 (/) is t, aken at any of ghe points (-~, �89 (0, �89 or (-~, 0), as with 

the forms investigated by Davenport  and Varnavides, this introduces enough extra 

symnletry to prevent any anomalous behaviour. 

We list below those forms with small discriminant which have either of the 

two properties (i) and (ii) given above. We omit forms which may be shown by the 

results of IteinhoId [1] or Barnes [1] to take their first minimum at (1, �89 (0, ~-) 

or (�89 0). Table 1 gives forms with D:~ 1 (rood 4), and Table 2 forms with D/4~2 
(rood 4). In each table, the first section gives forms with both properties (i) and (ii); 
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TABLE 1. 

D = d  :~ 1 (rood 4), t e -  D u  ~= •  

2x2@ 5 x y  2y 2 
3x2@ 5 x y - -  3y 2 
4x2-[ 3 x y - -  4y 2 
4x2~ - 5 x y - -  4y 2 
2x2q - 9 x y - -  2y 2 
5x2@ 3 x ~ - -  5y 2 
4x2~ �9 7 x y - -  4y 2 
2x2~ - II x y : -  2 y  2 

5X2-! - 7 X f f - -  5y 2 
3 X 2 ~ - I l x y -  3y 2 
5X2~ - 9 x y - - -  5y 2 
4 x 2 - ~ l l x y  - 4 y  2 

2x2@ 13Xy  - 2 y  2 

3 x 2 r  l l x y  - 3 y  z 

5x2-~ l l x y - -  5 y  2 
2 x  2 4 1 7 x y - -  2ff 2 

3 x 2 ~ - 1 3 x y  -- 5y 2 
4x 2 + - l S x y - - l l y 2  
3x2-~ 1 9 x y - -  7y 2 

] d t u 

41 
61 
73 
89 
97 

109 

113 
137 
149 
157 
181 
185 
185 

205 
221. 
3O5 

229 
40l 
445 

64 
39 

2 136 
1 000 

11 208 
261 

I 552 
3 488 

61 
213 

1 305 
136 

136 

43 
15 

978 

15 
40 
21 

10 
5 

250 
106 

1 138 
25 

146 
298 

5 
17 
97 
10 
10 

3 
I 

56 
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the second section, forms with (ii) bu t  not  (i); the th i rd  section, forms with ( i ) b u t  

no i  (ii). 

4. Many of the results of this and  our previous paper ma y  be extended to 

norm-forms  in n variables,  bo th  of real and  of complex fields. For  a complete set 

of uni ts  of the field defines an  inf in i te  Abel ian  group 13 of au tomorphs  of the form;  

and  the par t  of the f u n d a m e n t a l  domain  R of 13 in which the form is bounded is 

i tself  bounded.  T h i s  is the analogue of Theorem R ;  the exact  algebraic formulat ion 

presents  no difficulties. 

Theorem D is  now t rue  as it  s tands,  and  Theorem C needs only a few obvious 

al terat ions.  In  par t icular ,  i t  should be noted t ha t  to fix P we do not  need to know 

the behaviour  of P under  every t ransform of 13, bu t  only under  those of a cyclic 

subgroup of 13. 

Most of our general theorems follow from Theorems B and  C, with the Heine- 

Borel Theorem;  thus  they  carry  over immedia te ly  to the. general  norm-form.  I n  
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TABLE 2. 

D=-4d, d ~ 2  (rood4), t 2 - D u  s=  +4 .  

] d t u 

7x2 ~ - 6 x y - -  7 y  2 

3 x 2 + 1 4 x y  - 3 y  2 

5 x 2 + 1 4 x y  - 5 y  2 

9 x 2 +  l O x y  - 9 y  2 

5 x 2 - ~ - 1 8 x y  - 5 y  2 

7 x 2 + 1 8 x y  - 7 y  2 

l l x  22- 6 x y - - l l y  2 

3 x 2 + 2 2 x y  - 3 y  2 

7 xZ + 22 x y - 7 y  2 

9 x 2 ~ - 2 2 x y  - 9 y  2 

11 x 2 §  1 8 x y - -  l l  y2 

1 3 x  2 § 1 4 x y - -  13y  2 

5 x 2 + 2 2 x y  - 5 y  2 

3 x ~ + 2 6 x y  - 3 y  2 

5 x 2 4 - 2 6 x y  - 5 y  2 

5 x 2 §  - 5 y  2 

11 x 2 + 3 4 x y - -  l l  y2 

3 x 2 + 1 6 x y  - 6 y  2 

3x 2  + 2 8 x y  - l O y  2 

6x2-~  2 0 x y - -  21 y2 

9 x 2 4  1 6 x y - - 1 8 y  2 

3x2-~ 3 2 x y - -  6 y  2 

3x2  + 34 x y - - 1 9 y  2 

6x 2  + 3 2 x y  - 15y  2 

3 x2 + 4 0 x y  - 1 4 y  2 

6 x2 -~ 40 x y - 7 y  2 

58 

58 

74 

106 

106 

130 

130 

130 

170 

202 

202 

218 

146 

178 

194 

386 

410 

82 

226 

226 

226 

274 

346 

346 

442 

442 

198 

198 

86 

8 010 

8 010 

114 

114 

114 

26 

6 282 

6 282 

502 

290 

3 202 

390 

223 110 

162 

18 

30 

30 

30 

2 814 

186 

186 

42 

42 

13 

13 

5 

389 

389 

5 

5 

5 

1 

221 

221 

17 

12 

120 

14 

5 678 

4 

1 

1 

1 

1 

85 

5 

5 

1 

1 

particular, this is true of the isolation Theorem G; the lack of this has cost previous 

writers some trouble. 

All tha t  have to be abandoned are the ari thmetical  Theorems H, J and K. 

I t  is possible to obtain analogous results in more variables, but  these are so tedious 

and require the consideration of so many  special cases as to make them almost 

useless. However, these theorems, though convenient, are not essential to our method, 

and it is perfectly possible to  work with the hyperboloids direct. 

Trinity College, Cambridge. 


