ON CERTAIN THEOREMS IN OPERATIONAL CALCULUS.
By

8. C. MITRA and B. N. BOSE

Lucknow, India.

The object of this paper is twofold: firstly to establish certain theorems in
Operational Calculus and secondly to obtain the Laplace transforms of several

funections.

1.
1. Let us suppose [1]

Op)=p [ et f1)de &)

where p is a positive number (or a number whose real part is positive) and the
integral on the right converges. We shall then say that @ (p) is operationally related
to f(¢) and symbolically

D (p) ==/ () or {(t)==D(p) 2)

Many interesting relations involving @ (p) and f(¢) have been obtained. The following
will be required in the sequel.

pO@) - 410, i /0)=0 ®)
P @)= =30 )
o) Of foar )
p(:f %dp ’i(;) (6)
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Also Goldstein [2] has proved that if

then

provided the integrals converge.
It is known that if % (¢) is another function which satisfies (1), then

JO)—h(@)=n (),

where % (f) is a null-function, i.e. a function such that
t
fn dt=0, for every ¢>0.
?

If f(¢) is a continuous function which satisfies (1), then it is the only continuous

function which satisfies (1). This theorem is due to Lerch [3].

2. Our object is to investigate that if either of the two functions {(7) and D (¢)
has an assigned property, then will that property or an analogous property be true
of the other function?

We know that

P . Vn t\"
Applying Goldstein’s theorem, we get
o fmdt an v
sz (b2+t2)"+é = Tnti j I (bt)dt, R(n)> — 1. (10)

. . 1,
Les us now put b2=p and interpret. Assuming that ;}'——,:x, we get

2” 1nl

£ / e"z"f(t)dt—i—]/n L [t""@(t)Jn (Vpe) de, (11)
h P20

provided the integrals converge.
Again let us divide both sides of (10) by & and put b=p. On interpretation,

we get
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= n “ n—-1
[(’t‘) FO) T (x 1y dit = f(‘) @) J. (pt)dt, R(n)> — . (12)
¥ o/ P
This can also be writtén in the form
1A ¥
%"’2fl/mz“" 2f () () i - "'}?if L@ (1) T (1) . (13)
b L
1
Suppose ¢ 2f(t) is self-reciprocal in the Hankel transform of order m. Then
~ t n-1
f(%)/,tf (1;) Dty (pt)dt. (14)
b
But by (6),
[ W, 100
. D *
D
Therefore
/ £71 @ (1 Jn(pt)dz:p"f»—;?)»dp, (15)
b b

provided the integrals converge.
Dividing both sides by p” and differentiating with respect to p (assuming that
differentiation under the sign of integration is permissible and that @ (2)/¢t is a con-

tinuous function of ¢ in (0, o)), we get on writing n—1 for n,

Votd 200, ) di=0" % B ), (16)

showing that tnfé@(z) is self-reciprocal in the Hankel transform of order n, when
(16) converges.

Thus we have

1
Theorem I. If ¢ 2/(f) is self-reciprocal in the Hankel transform of order n
3
and D(l)/t is continuous in (0, co) then ¢ 2 @ (t) is self-reciprocal in the Hankel

transform of order x.

We can also write (12) in the form
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o0

f(-};)nf(t)Jn(xt)dt% ! fVEt“"z¢(t)Jn‘(pt)dt- (17)

i
al
p 20

3
Let ¢ 2®(/) be self-reciprocal in the Hankel transform of order n. The (17) becomes

f (i:)nf(a) TGty dt = Qg’) : (18)

But by (5),
2w . [
b Off(t)dt.

Hence by Lerch’s theorem

f (%‘)nf(t)Jn(xt)dt=ff(z)dt. (19)

Differentiating both sides with respect to » (assuming that differentation under
the sign of integration is permissible and f(¢) is a continuous function of ), we get

on writing n+1 for »

f Vit z’"’if(z)J,,(m)dz:;["‘;f(x), (20)

1
showing that ¢ = 2/(f) is self-reciprocal in the Hankel transform of order n. We

thus have conversely,

3
Theorem IL. If {* 2 ®(f) is self-reciprocal in the Hankel transform of order

1
n and [(¢#) is continuous, then ¢ "2 f(t) is self-reciprocal in the Hankel transform

of order =. *

In (12) let us put n=}%. We obtain

ff(t)sinxtdt%fgt(t)—sinptdt (21)
b

By (4), we get
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where we again assume that differentiation under the sign of integration is per-
missible.
If @ () is self-reciprocal in the cosine transform, we obtain

]/—72;%/ @) cos wtdt == — p D(p). (23)

But by (3),
p D(p) = f' (%), 1f [(0)=0.

V%,{[ f(t) cos wtdt= —f (x).

Integrating the left hand side by parts, we have

Hence

o0

l/Zt f(t)sinxtdi=f (x), when f(o00)=0, {24}

,
0
showing that /' (¢) is self-reciprocal in the sine transform. We therefore have

Theorem III. If @ (¢) is self-reciprocal in the cosine transform and f (0) =f(o0)=0,
then f'(x) is self-reciprocal in the sine transform. Again integrating the left hand side
of (22), we have

[f’(t)sinxtdtzfs f@(t)cosmdt,
[} ]

provided f(o0)=0.
If f'(t) is self-reciprocal in the sine-transform, we get

L

/' (x) = ]/gp / D (1) cos ptdt. (25)

4

But when f(0)=0, we have by (3), /' (x)==p D (p), so that

]/;2[ / D(t) cos ptdt=D(p), (26)

o

showing that @(f) is self-reciprocal in the cosine transform. Hence the converse
theorem follows, viz.,
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Theorem IV. If f{0)=/(c0)=0 and /'(x) is self-reciprocal in the sine trans-
form, then @(¢) is self-reciprocal in the cosine transform.
Again in (22) let f(¢) be self-reciprocal in the cosine transform. Then
wf(x) = — ]/;2{7) ] D(t)cosptdt.

0

But by (7),

so that

2 _ 42k ‘
l/?td/ @(t) COS jptdl = d—p[T] (27)

Integrating both sides with respect to p between the limits zero and p and changing
the order of integration on the left (if that is permissible), we notice that if
D(p)/p—~0 as p—0,

o0

]//7—2!/ @z(tzsinptdl=: ggﬂ’ (28)

0

showing that @(¢)/¢t is self-reciprocal in the sine transform. Hence we have

Theorem V. If f(¢) is self-reciprocal in the cosine transform and @(¢)/t—~0 as
t—0, then @(#)/t is self-reciprocal in the sine transform. Conversely, if @ (f)/¢ is self-
reciprocal in the sine transform, we have

]/i[ @t(t) sin pide= (DI()?O) = / Fo)de, by (5).
0 0

Hence by (4),

o0

l/%pf D (t) cos ptdt == —xf(x),

0

provided f(¢) is continuous and diffsrentiation under the sign of integration is per-
missible,
But by (22),

o o0

A[ 7(8) cos st dt == *fp/‘ D (t) cos ptdt.

i 9
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l/y—if f(¢) cosxtdt=f(x), (29)

showing that f(f) is self-reciprocal in the cosine transform. Thus we have

Hence

Theorem VI. If p(¢)/t is self-reciprocal in the sine transform and f(¢) is con-
tinuous, then f(¢) is self-reciprocal in the cosine transform.

Theorem IV can also be extended to reciprocal functions.

Let @ (p=1(x), v(p)==g(x)
and

1(0)=g(0)=/(co0)=g(c0)=0.

Then if @ (p) is reciprocal to o (p); f (%) is reciprocal to ¢'(x) in the sine

transform.
For, by (22)
2 . 2
l/” [ f(&)cosxtdt== — ]/p/ D(t) cos ptdt
T, T,
0 0
= —py(»)
= —g'(%).

Integrating the left hand side and applying Lerch’s theorem, we obtain
5[
]/ = | F@sinxtdi=g (x), (30)
[
showing that j’'(x) is reciprocal to g’(x) in the sine transform.

Conversely, let ' (x) be reciprocal to g(x) in the sine transform, where g(x) is

continuous in the arbitrary interval (0, x). Let G'(x) = f g(xydx, D(p)==f(x) and
0 .
v (p) =G (x). Then if f(oo)=0; D(p) is reciprocal to (p) in the cosine transform.

We have
]/% [f’(t)sinxtdtzg(x). (31)
;

On integration, the left hand side becomes
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- 1/7% z]. f(¢) cos xidt,

which, by (22) is equal (=) to

=

I/2p/ D () cos ptdi.
T,
0

Therefore
5 '
]/7—1 P f D(t)cos ptdit == g(sx)
bt
L6
= py(p).
Hence

]/ %f (1) cos ptdi =y (v),

showing that @ (¢) is reciprocal to w(p) in the cosine transform.

3. A Functional Relation.

Let us now consider the relation (10). Putting b2=p and interpreting, we obtain

o 0

2" / () dt S f 2 Vptk o)1, Vi) ds,

V:%

p?. 40

which is our relation (11).
3
Suppose ¢ 2@ (f) is sel-reciprocal in the Hankel transform of order m. The

right hand side is @ (Vp). But if @(p)=/(¢), then

) 1 3 e '
@ (Vp) = VEJ e 1 (1) d,
so that
2"%"]6"2”f(t)dt=fe““"“‘f(t)dt. (32)

If we write

F () — f e f (1) dd,
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the functional relation becomes
1
2"w" F()=F|—)- 3
P -F (1) (33)

4. If @ (p) is given by (1), then by Mellin’s inversion formula [4],

1 1:+£oo t@ A
0= 5. / PN a1, >0 (34)

The question naturally arises: if f(f) and @ (¢) have these assigned properties, are
there formulae for determining them otherwise if either of the two functions is known?
We know that

n
® n+

P2

;F(n+ HVyp e;pt Doz (V2p1)- (35)
(t+ )" 2

Applying Goldstein’s theorem, we get after slight changes in the variables

T oo

1 /‘ ol @(t) dlt — f t—; GéptD~én,1 (V?}:t)f(l)dt (36)

natz n+’

1
2 2F(’n+1)0 (t+p) 2

Writing ¢2 for ¢ and p? for p, the above relation becomes

=

2n—1 2 f° 1 242 —- .
L [EOR [y e 0

nt

2ln+1)§  (@*+e)"" 2 3

2

Multiplying both sides by p and interpreting, we have on simplification,

1 o0

%n—-é - n—3
-— 2
1’(2%1)_/ Vartt 2@ (2) J, (xt) dt
0

(=]

- 1,0 _
= szv/ &”" Dogn s (V2p0) f()dt, R(0)> 3. (38)
0
R ;
If t"rQQ)(tZ) is self-reciprocal in the Hankel transform of order n, we get

oG

O () 2" 2= V220 +1)p [ 70D 0 (Vapd) j () de. (39)

0

If @(?)/t is self-reciprocal in the sine transform,
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o

D (x3))% %= V2 pj &”" D, (V2 pt) (@) dt. (40)

0

Let us revert back to relation (10) once more. We can write it in the form

o 7 (=]
n n+ - . 3
Qﬁ I'(n+1) M)if = Vot 2@ (1) J, (be)dt. (41)
Vx J @+ b2)n+2 X

3
If ¢ 2 (t) is self-reciprocal in the Haukel Transform of order m, then

2" I'in+1) a f@)de
D(b) = — 2 pe T 42
(b) VTE / (tz + b2)n+é ( )

Conversely if @ (b) is given by (42), then putting b-=p and interpreting, we get
L
after a bit of reduction that ¢ " 2f(f) is self-reciprocal in the Hankel transform of
. 1
order n— 1, provided f(f) is continuous and n>0. If (42) holds and ¢ " 2/(z) is self-

reciprocal in the Hankel transform of order n— 1, then @ (p) == f(¢). Again expressing
the right hand side of (1) as a double integral and changing the order of integration

1
(if that is permissible) we can prove that if f“%‘(t) is self-reciprocal in the Hankel
transform of order n—1, then @ (b) is always given by (42).
We might also have derived similar relations by considering that [5]

f(e2) = V’i; . fo TG (;) dn. (43)

5. A double Integral theorem for @ ().

Let us consider the ralation (12) again, Since by (7)

p%[%@]% —xf(%)

we get on differentiating under the sign of integration (if that is permissible)

(=]

[ tonmas [ Loonaei Rw> -1 (44)
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Also we know

Va ® T (ex) . p?
2" I'(n+3%) ¢’

: 5, R(n)>—1.
(p2+c?)" "2

Making use of Goldstein’s Theorem, we obtain

n+2 -

#" 2 f(t) I (22) xt) Va
dtd%: n+1 3 n X

ff o T Tn+d)o

Xf [xt"Q(t)Jn(cx)Jn+1(xt)dtdx.
b

0

1
Let ¢ = %} where we now assume that 1; = y. Then on simplification, we have

o0 o0

Hf f s, (g)d_tj—xé pnlﬂof(_f %0 D (0) (g)Jnn(nt)dtdx.

C. % . . .
Writing S for x, we get since » and ¢ are independent variables,

y“éfwf ?%an ()T (—yf)dtd—;
nﬂffxt" () Tner (et) dt dr.

Professor Watson [6] has shown that

Bus () = Vy f YACEP (;‘Ty) z,
§ |

237

(47)

(48)

can be taken as the kérnel of a new transform. Let f(x) be an arbitrary function,

and let g(x) be its transform with the Kernel @,,,(xy), so that

o0

g(x) = f By, (2 y) | (y) dy.

-0

Then assuming that the various changes in the order of integration are permissible,

we have
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[T} (49)

When f(x)=g(x), we say that f(x) is self-reciprocal under this new transform. Hence

1
in (48), if "2 /(@) is self-reciprocal under this transform!, the left hand side is f(y),

80 that
/(y) = ;};1/ / wt" @ () J (g) I (xt)dtdx == D (p).

Therefore

1

P) = /w f %l D () (g) T s (xt) dtd . (50)

This can be written in the more symmetrical form, after considerable simpli-

fication,

D (p)= —pzdd— p—l,, [./?o.ﬁt"“ldi(t)Jn (g) Jr (xz)dtdx], R(n)> —1. (51)

1
provided @ (p)/p is continuous. Conversely if (51) holds, then ¢ = 2/(t) is self-reci-

procal under this transform.

1I.
6. Laplace transforms of certain functions.

Let us us now consider the relation (11). We know that

7,(%) = 9. 0300 1,020, 52)
Lit
f@y=4J, (V2a¢) I,(V2at) and @ t)=J, (%) ;
We thus obtain
2"1’/f2 [ e T, (V2ad L,0V2a0 dt + /'Jy (%) T, (Vpd et (53)
7 o pé.nAl s

1 The senior author has been able to construct certain examples giving functions which are
self-reciprocal under this new transform and also the formal solutions of (49), when f(x) =g (x)..
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But
% (Hl)m (%a2)2v+4m '
meo '(m+ D) v+m+1) Iy +2m+1)

J,(a2) 1, (az) = (54)

Integrating term by term and applying a result due to Hanumauta Rao[7], we obtain

1
APV A 1 a?
Pzt wit; — -2
TG+ ) Tep 1) 2(2” bl 16:4)

T\ %v+l)P(v+l) pn—;vd

1 . _ a?p
0F3(§v+1, v +1, 2v n+1; 16) (b4)

T'Gv—n)a®" "p
PP+ D) TEv+n+1)

+ of's (n+1 n—%3v+1, nt+iv+1; ap)}

16
{[-Rn+3)<RMm)<R(»+$2) and a>0}.
Again we know that

(2171 J, (f) = pdoyVip) K, (yV1ip). (55)
Let
J0=@095(1) and @0,V KWV,
We get (when n~0) |

o5 o0

v | e s [ WV EGYID I W0an o)

Putting ¢=22%/y?, the right hand side becomes

o0

4py? / 2dy(2) Ko (2) (Vpi/z;)dz

0

By a result due to Mitra [8], the integral can be evaluated and we finally obtain

1 e N v
Vﬂzfe ‘ J( )dl Vp[( Vp)K(SVp) o0

The integral on the left can be evaluated by expressing it as a contour integral.

Again let
1 —
D(t)y=e "t f()=(n) 2sin 2V ¢.
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We get

o0

1 « = —
(m) 2 f e sin 2V edt = pmf eV sinVptdt
b o (58)

! 1

1 —_ —
= (m)ze” V2P sin V2 pt-
The integral on the left is easily obtainable by direct term by term integration.

Lucknow University and Calcutta University.
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