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Introduction.

Let f(z) and K (z) be two functions integrable over the interval (— oo, + oo).
It is very well known that their composition

+oo

[ WK @—1)dt
exists, as an absolutely convergent integral, for almost every x. The integral can,
however, exist almost everywhere even if K is not absolutely integrable. The most

interesting special case is that of K (z) = 1/a. Let us set

The function f~ is called the conjugate of / (or the Hilbert transform of f). It exists
for almost every value of z in the Principal Value sense:

(@) :hi“:l;(f+ fw)xf(_t)tdt.

Moreover it is known (See [9] or [7], p. 317) to satisfy the M. Riesz inequality
+o0 - 1 +o0 u
0 (Fi7past < al firp asf” T

where 4, depends on p only. There are substitute result for p =1 and p = oo,
The limit ]7 exists almost everywhere also in the case when f(¢)d¢ is replaced there
by dF (), where F(¢) is any function of bounded variation over the whole interval
(— o0, + co0). (For all this, see e.g. [7], Chapters VII and XI, where also biblio-
graphical references can be found).
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The corresponding problems for functions of several variables have been little
investigated, and it is the purpose of this paper to obtain some results in this direc-
tion. "~ To indicate the problems we are going to discuss let us consider two classical
examples.

Tet f(s,f) be a function integrable over the whole plane, and let us consider in
the half-space 2> 0 the Newtonian potential u (x, ¥y, %) of the masses with density
f(s,2). Thus

u(w’w)=fff(s,t)dstt, R=(o—sP+@y—1f+2,

the integration being extended over the whole plane. Let us also consider the par-

tial derivatives

wo o[ [re0td - [16.07 5 wsa.

Here — (47) " u. is the Poisson integral of f, and it is a classical fact that it tends
to f(z,y) as z— 0, at every point (z,y) at which [ is the derivative of its indefi-
nite integral. On the other hand, by formally replacing z by 0 in the formula for

u; we obtain the singular integral

xr—S
JPeng—s e

It can be written in the form

(2) [[160K@—sy—t)dsdt,
with

xr
(3) K (z,y) = PER

It is a simple matter to show that at every point (z,, #,) at which f is the deriv-
ative of its indefinite integral the existence of the integral is equivalent to the ex-
istence of lim wu;, as the point (z,y, z) approaches (z,, %, 0) non-tangentially (and
that both expressions have the same value), but neither fact seems to have been
established unconditionally. Here again the integral (2) is taken in the principal
value sense, which in two dimensions means that first the integral is taken over the
exterior of the circle with center (z,,y,) and radius ¢ and then & is made to
tend to 0.

Another example, of a somewhat similar nature, arises from considering in the

plane the logarithmic potential % of masses with density f (s, ). Hence
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u(x,y)=fff(s,t)log;dsdt; = (z—s)®+ (y — )%

If in order to avoid unnecessary complications we assume that f vanishes in a
neighborhood of infinity, then in any finite circle « is the convolution of two inte-
grable functions, and so the integral converges absolutely almost everywhere. The
integral obtained by formal differentiation, say with respect to z, is

r—S
(4 ~ [ [ie0 o s e

and so, as a convolution of two integrable functions, again converges absolutely

almost everywhere and represents a function integrable over any finite portion of
the plane. Using this fact one proves without difficulty (see [1]) that the integral
actually represents w,. Thus u, and wu, exist almost everywhere.

Let us, however, differentiate the integral (4) formally once more, with respect
to # and with respect to y. We get the integrals of type (2) with
x? — o 2zy

@ KTy

5) K (x,y) = @+ g

respectively. These two kernels are not essentially different, since one is obtained
from the other through a rotation of the axes by 45°. It may also be of interest
to observe that they appear respectively as the real and imaginary parts of

1 1
2 (z+iy)

The existence almost everywhere of the integrals (2) in the cases (5) has been
established by Lichtenstein for functions f which are continuous (or, slightly more
generally, Riemann integrable). This result seems not to have been superseded so
far, though the existence almost everywhere of w,,, u,,, 4zy together with the rela-
tion wuz; + uyy = — 27 f was established by Lichtenstein [6] (see also [2], [8]) in the
much more general case of f quadratically integrable.

The kernels (3) and (5) have one feature in common: they are of the form
g(p)e™, z=gcosg, y=ogsing,

where ¢(p) is a function of angle ¢ (actually a trigonometric polynomial) whose
mean value over (0,2s) is zero. Several examples of kernels of this type could be

considered, but we shall now state the problem in a more general form.
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Suppose we have a function f(x;, #,, ... Z.) integrable over the whole n-di-

menstonal space, and a kernel
-n
Kz, @y, . ..2n) =0 "2y, 0tg, ..., &a),

where @; = p cos o; for all 4, and «,, oy, ..., @, are the direction angles. What can

be said about the existence and the properties of the integral

(6) (@, Tay ooy Tn) = [F(S1, 8oy vy $a) K (@ — 815 ooy @ —sn)dsy ... dsy?
An answer to this problem is our main object here.

This is the plan of the paper.

In Chapter I it will be shown that, if f€L”, 1 <<p << oo, then the integral (6)
converges, wn the metric L7, to a function 'fEL", provided

a) the mean value of £2 over the unit sphere s zero,

b) the function Q (o, oy, ..., &) satisfies @ smoothness condition (See Chapter IT).

(In the case p = 2 condition b) can be considerably relaxed).

The function / satisfies the condition analogous to (1). The cases p =1 and
p = oo are also investigated.

The main result of Chapter IT is that under conditions a) and b) the integral
(6) exists almost everywhere not only for p>1, but also for p = 1. The result
holds, if /ds, ... ds, is replaced by du, where u is an arbitrary mass distribution
with finite total mass. If € L?, p>> 1, the partial integrals of the integral (6), that
is the integrals over the exterior of the sphere of radius ¢ and center (z;, z,, ... )
are majorized by a function of L?, independent of e.

Chapter III is devoted to some applications of the results previously obtained
to the problem of the differentiability of the potential.

Other problems connected with our main topic will be considered in an an-

other paper.

CHAPTER 1.

Mean Convergence of Singular Integrals.

Let E"™ be the n-dimensional euclidean space. If P and () are points in E",
(P — @) will denote either the vector going from @ to P, or the point whose coordi-
nates are the components of (P— ). The length of (P— Q) will be denoted by
[P—@Q|, and £ will stand for the surface of the sphere of radius 1 with center at

the origin of coordinates, O.
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We shall be concerned with kernels of the form
E@—Q)=|P—Q"QUP—9)|P—Q[],
where Q(P) is a function defined on X and satisfying the conditions
(1) [QE)ydo=0
and )
| 2(P)—=2@)| s w(|P—Q]),

where o 1s an increasing function such that w (¢f) = ¢, and

1 =]
[w(t)dt:fw(l)dt<oo‘l
. t t] ¢

0 1

More precisely, we shall investigate the convergence of the integral

(2) Ji(P)= [ K\ (P—Q)[(Q)dQ,

where /(@) is a function of L”, p =1 in E*, dQ is the element of volume in E" and

K(P—Q) it |P—Q|>1/2,

0 otherwise.

K}.(PQ):{

Using Holder’s inequality, or the boundedness of K;, we see that (2) is absolutely
convergent for 1 <p<Coo and p = 1 respectively.
We shall begin by proving that in the case when the function [ in (2) belongs to

Ly . [, converges in the mean of order two as A —> co,

Let
_[E®@—0) ifp=|P-0]|21/3

10 otherwise.

K A

As we shall see, the Fourier transform of K;, converges boundedly as u and 2 tend
to infinity successively, and then the desired result will follow easily.

In polar coordinates we have the following expression for the Fourier transform
K;, of K;,,

N X i .
KM(P):fKM(Q)ezrgcoszde:j@—ldeQ(Q/)ezrgcosq:do,’
P 1/A x

o

c\ di
1 This implies the convergence offa) (Z) t_ for every ¢ > 0, a fact we shall use in what follows.

It may be added that the condition w (¢) 2 { is quite harmless, since we can always replace
w (t) by Max {a) (¢), t}. The case w () = t% o > 0, is, of course, the most important one.
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where 7=|P—0], p=|Q—0}|, @ =(@—0)[¢—0)|", and ¢ is the angle be-
tween the vectors (P — 0O) and (¢ — 0). Introducing the variable s = g7 we can write

T
k) ~ [ 2 [ 2@y,
373 P
and owing to the fact that
[2@)do =0,
E

we also have
Tu

IA{M(P) :f%fo(Q’)[eisCOSW_e—s]do_

TiA
TM is cos¢g —s
- [e@as [ <7
z ti4 §

Now, if ¢+ ;—Z, the inner integral in the last expression converges as 4 and u tend

to infinity, and it is not difficult to verify that it never exceeds 2 log la)—za n ab-

solute value, where ¢>1 is a constant. But 2(@') is a bounded function and

c
J % s
x

is finite, and therefore I%M is bounded and converges, as x and A tend to infinity

the integral

successively, Therefore, if IA{Z is the Fourier transform of K, (P — 0)€ L? we have

lim K,, — K,

B0

and Ib converges boundedly to a function K as 41— oo.

Let now

fu(P) = [ K3 (P—Q)f () dQ.
En
Then, if ]%,1” i1s the Fourier transform of ]7,1”, we have
fiu = Ko,

and since IAQM—>IA{,1 boundedly as u— oo, f;,, converges In the mean to K, f On the

other hand, flu converges to f; as 4> 0o and therefore we have

~ ~ A

(2a) hh=Kf.
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Letting now A tend to infinity, K, will converge boundedly to If, and ,7;, will converge
in the mean to K fA. Therefore f; will converge in the mean to the Fourier trans-
form of K fA. This completes the argument.

Remark. In the above argument we used the fact that £ (P’) was merely

bounded. Actually the only property of £ we need (except for (1)) is the uniform

boundedness of f | 2(Q)] log féé?[d"‘ This condition is certainly satisfied if
Py

| 2] log* | 2] is integrable.

Before we pass to the general case we shall prove some lemmas which will be
needed also in a later section.

Given a non-negative function f(P) not identically zero in E", we shall denote
by f*(¢), 0 <<t < oo, any non-increasing function equimeasurable with 7 (P). If f be-
longs to I”, 1 = p<<oo, in E" then f*(¢) belongs to L? in 0 <t < oo and thus is

integrable over every f{inite interval. In this case we introduce also the function
[
?/:ﬁf(ﬁ):; ffde; >0,
0

which is continuous and either strictly decreasing or possibly constant in an interval
(0, z) and strictly decreasing for z = x,. In both cases we have f; (z}) >0 as
x—>00. The function inverse to y = B;(z) will be denoted by = = p’(y). If B;(z)
tends to infinity as z tends to zero, f’(y) is well defined for y > 0. If B, (z) is
bounded, p’(y) is well defined for all y less than the least upper bound y, of 8 (z).
In this case we extend the domain of §'(y) by defining p'(y) = 0 for y >y, and
B (yo) = lim ' (»).
Yy,
Thus we have

BlBr@Nza fIF @<y

lim § () = o0, lim §' (y) = 0.

y—0 Y00

We now have the following:

Lemma 1.1 Gwen an f(P) =0 of L?, p = 1 and any number y > 0, there is a

sequence of mon-overlapping cubes I, such that

1 In the one-dimensional case this lemma is contained in a lemma by F. Riesz (See [7],
page 242),
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1
ygl,lklff(p)dps 2%y; (k=1,2,...),
I

and f(P) <y almost everywhere outside Dy = UI,. Moreover | Dy| < ' (y) and
k

< 1 n

Proof. On account of the properties of B, (), for the given y we can find an

x such that f;(z) <<y. Then over any cube I of measure x we have
1 1
1@< 1o pe <y

I 0

Divide now E" into a mesh of cubes of measure z and carry out the following
process: divide each cube into 2" equal cubes and select those where the average of
the function f(P) is larger than or equal to y. Then divide the remaining ones
again in 2" equal cubes and select those where the average of the function is larger
than or equal to y. Continuing this process we obtain a sequence of cubes I, which

we shall show have the required properties. First of all, we obviously have

f;ﬂ ff(P)dP > 4.

Moreover, since every selected cube I, was obtained from dividing a cube I where

the average of the function f(P) was less than y, we also have

[1PyaP = [{(P)dP < |I|y=|T[2"y,
I 1
and therefore

1
I

Now, every point outside D, = U I} is contained in arbitrarily small cubes over
which the average of f(P) is less than y. Therefore the derivative of the indefinite
integral of f cannot exist and be larger than y, and since f(P) is almost everywhere
equal to the derivative of its indefinite integral, we conclude that f(P) <y almost
everywhere outside D, .

Finally we have
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ylL] = [{(PyaP < 2"y |L.,
Iy

and hence
u| 1] = [1@apr < 2"y Y| el
('Jllk
1
or
vz o | HPrap <2y
2Ll
1 Lljfk

Since | U I, = 3|1;|, it follows that
1 1

o |i@ar<p(En).
2Ll
Therefore '
v=p (31el),
and

m

2L = F @)

1
and letting m tend to infinity we get | D,| < f’(y). Therefore | D,| is finite, and

m‘ o0

repeating the argument above, replacing now  |I.| by X|Ix|=|Dy|, we shall
1 1

finally get

y < B [f(P)dP < 2"y,
| Dy
Dy
This completes the proof.

Lemma 2. Let > 0 belong to LP, 1 <p <2, in E", and let E, be the set of

pownts where the function

()= [Ex(P—Q)f(@dQ

E'Il

exceeds y in absolute value. Then

2 Y 2 %
3) B =% [[f(P)]ydP e W),

where [f(P)], denotes the function egqual to [ (P) if {{(P) <y and equal to y otherwise,
and ¢; and ¢, are constants independent of .

Proof. In order to simplify notation, every constant depending onlv on the
dimension n and the function £ will be denoted by ¢ simply.
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Let Dy be the set of Lemma 1 and define

1
7] d if Peli;
h(P) = lzk|}kff(Q) 0, if Pe

f(P) otherwise.
Then f(P) = h(P)+ ¢ (P), with g (P) =0 outside D,, and
fo@dP=0, k=12, ....
Define now "
ha (P) =Eanz(P—Q)h(Q)dQ,
91 (P) =Eana(P—Q)g(Q)dQ,

and denote by E,; the set of points where Ik} (P)| = y/2, and by E, that where

[2:(P)| = y/2.
As we have already shown (see (2a)),
(4) [ (P)FaP <[ @0,

where ¢ is a constant independent of 4. From this it easily follows that
4c 2
|E1|S"y7 h(Q)dQ.
En

Now, on account of the definition of A, we have A (P)=f(P) <y outside D, and
therefore A (P) = [f(P)], outside D, ; moreover A (P) < 2"y in D,. Therefore, denoting
by D, the complement of D,, we have

JH@*dQ=[h@FdQ + [h(QPdQ <2y |D,| + [/ (PP,
and ! ’ :

¢ 2
iEI‘S yé%‘[[f(z))]ydp“*'chyi-

To estimate the measure of K, we proceed as follows. Denote by Si the sphere
with the same center as I,, and radius equal to the diameter of I, and call

D, = llJS;g and D, its complement. Then |D,| < ¢|D,| and

|Ey| < | Dy |+ |EynDy| < e|Dy| + | EynDy|.
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Since ¢ (P) = 0 outside D,, we have

zfg ) K (P —Q)dQ.

Let us now estimate the integral of |g,(P)| over D;. Suppose that P belongs
to D} and consider one of the cubes Ir. If I, has no points in common with the

sphere with center at P and radius 1/1 we have

fg QK (P—Q) dQ — fg K(P—Q)dQ

since K; = K outside that sphere. Since the integral of g over I, is zero we have,

furthermore,

{g )K1(P—Q)dQ = {g Q)[K (P —Q) — K (P~ )]0,

where @, 1s the center of Ir. Now, if P is outside Sy and @ is in I, from the
continuity properties of £ and, by an elementary geometrical argument, we deduce

that
|[K(P—Q)—K({P—@Q)| <c|P—Qc| "wlc|L['"|P— Q™1

and therefore

|{g VEK: (P~ QdQ| < el P—Qul " wle| L " |P— Qi1 9(@)]dQ.

On the other hand, if I intersects the sphere of radius 1/A and center at P, and P

is outside S, I, is entirely contained in the sphere of radius 3/, and center at

1 Since this argument is going to be used repeatedly, we shall give it here. Let us denote
by R and S the projections of @ and @ on the unit sphere with center at P. Then K (P —Q)—
K (P — Q) can be written

_ﬁ(ﬁ).n — ,,',Q (S> j— (R) f L,, 41‘} Q( )
[ P-Q" |[P-Qel® |P- Qki” BV

The second term on the right is numerically

¢ | I |1/" < ¢ (llk jrm )
[P—@kl|/

For the first term on the right, we have
[BR-S|=clIx|'™ | P-Qk]™,
and thus
2B -2©)|=o(R-S)<o |l |P-Q]™).

Collecting the results we obtain the desired inequality.
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P
bound for £, we have

so that, if y(¢) is the characteristic function of the interval (0,3) and ¢ is a

2

| KPP — Q)| <e2”,
or, for all @ in I,
|[Ki(P—Q)| <c"y[A] P —@Q]].

From this it follows that

UQ(QW“P"Q)M < can[wzlP—Ql)lg(@)ldQ,

and this combined with the estimate above gives

|92 (P)| g%{dPﬁQk |7nw[0|1kllm|P"Qk|*1].“g(Q)ldQJF

ted [yl P—@|)e (@140}

or

|3:(P)] < cl"bfy(7~lP~Ql)lg(Q)|dQ+
T Z_{cyp—Qk]fnwmzk|1'R|P—Qk|-1]lflg(Q)ld@}.

Integrating this over the complement D} of D, we get (denoting by Sy the comple-
ment of Sg)

[1a@)dP <e[lo@ldQ [ 4y AP —Q1 P +
+§'{CS>[IP-Qk|*"w [e] L '™ [P—le‘l]dPIf|g(Q)|dQ}.

Now, on account of the properties of  (f), the integrals with respect to P inside the
summation sign are easily seen to be less than a constant, and the inner integral in
the first integral on the right is a constant, regardless of the values of 2 and P. Thus

the last inequality reduces to

[P =c[lo@]ae

Now, according to the definitions of g and A, we have

lg(P)] < f(P) -+ h(P),

and
[la(P)lapP < [1f(P)+h(P)dP =2 [ f(P)QP,

and by Lemma 1 the last integral does not exceed 2"y|D,|. Therefore
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J13:(P)|dP < cy|D,|

and _
|E.nDy| < c|Dy].

Collecting all estimates we get

EARRIAER [U(p) P + | D,|.

P
Since B, c E,UE, and |D,| < p’(y), Lemma 2 follows from the preceeding inequality.
Theorem 1. Let f(P) belong to L7, 1 <p<<oo, in K", then the function

- [E:(P— Q) (@4dQ.
also belongs to L*, and )

[ (1) aP[” < 4,] [17(P)PaP]”,

where A, 1s a constant independent of A and f.

Proof. Without loss of generality we may assume that f(P) = 0. We shall
start with the case 1 <p << 2. According to Lemma 2,

6 2 7
lEylsyzE[[f(P)]ydPHzﬂ )

where E, is the set of points where |/, (P)| exceeds y, and ¢; and ¢, are absolute
constants.

We have
[IE@)PdP =p [|E, |y dy,
En 0

and replacing on the right | E,| by its estimate we get

f[fa Ide<01f”}/"— [F(P)EdP dy+czfﬂ’ py* tdy.

E

For the first integral on the right we have

f-——f[f ]ydey—clfde By,

7—523804. Acta mathematica. 88. Imprimé le 29 octobre 1952.
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and since [f(P)]y =y for y < f(P), and [f(P)], = f(P) for y = f(P), the right hand
side of the last expression can be replaced by
Fyed) oo
clfdP[fpy”1dy+fpy“f2(P)dy]=
£, o 7P

- clf[f(P)” + ﬁ—;f(P)p]dP:q;%—l;[/‘(P)de.

ETL

To estimate the second integral, we set y = B, (z) and get

o0 oo

I'ﬁ’(y)py”"dy = —f xdfF ().

0 0

zff (x) = 5,}:1 [fzf* (t)dt]pg jf* P de,

and since f(p) belongs to L” so does f*(¢), and z§f (z) >0 as x> 0. Therefore

Now

we have
— [wdpr (@) < [ 7 (@) du

and by a familiar theorem of Hardy (See [7], p. 72) the last expression does not exceed

Collecting all inequalities, we finally get
: e
) 1 Y p
(5) Jia@par < | 2o v o (25) | [1erar.
ET En

In the case when f belongs to L” with p > 2 let ¢ be any function belonging to
L (1/p+1/g=1) and vanishing outside a bounded set. Then

[a(PYLi(PydP = [¢(P)dP [Ki(P—Q)[(Q)dE,

and inverting the order of integration, which is justified since the double integral is

absolutely convergent,
Jo(P)L(P)dP = [}(@)dQ [ K:(P—@)g(P)dP = [](—Q)5;(Q)d0,

where ¢’ (P) = g(— P).
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Therefore
|[o@) fuPyap|=|[1(—Qa@de| <[ [l/rar]”| [lgl a0 ]",

and since g <2 we may replace the last integral by the corresponding integral of
lg(@)] times 4%, and we get

[P hi@yaP| < 4 [I1@FdQ " [[la@ldQ]",
which implies that
L[1h@) P ar[" <4 [1i@)rapr|”.
This completes the proof.

Remark. The inequality (5) leads to a very crude estimate for the least value
A, of 4,, namely

* 1 .
This can easily be improved to
(7) A*~0( ! ) 1<p<?2
» p_l 3 P = a.

For, anyway, A, is finite, and so, using instead of (4) the inequality

flhafe dP < 4, [heaP,
ET

ER

and repeating the proof of Lemma 2, we obtain instead of (3) the inequality

lEyls;t[[ﬂPnzdezﬂ’(w

for all f€L®, 1 <p <4 which, by an argument similar to the one used in the
preceding theorem, leads to (7). Since A, = 4, for ¢ = _p_i’ we have
p—
4,=01(); ¢=2.

Another way of obtaining (7) would be to apply the theorem of M. Riesz on the inter-
polation of linear operations (See [7], p. 198) to the two exponents p <2 <gq.



100 A. P. Calderon and A. Zygmund.

Theorem 2. Let {(P) be a function such that

[1HP)1(1 +log" | f(P)])d P < oo.

Then ]7,1 is integrable over any set S of [inite measure and

n

SflledPscflfIdPﬂflfl log* (|S] ™ |f1)dP +c|S| ™,

where ¢ 1s a constant independent of S and 1.

Proof. We may assume, without loss of generality, that f(P) = 0. Let E, be
the set of points where |]‘~,1(P)|> y and E, = E,nS. Then

[1h1dP = [1E,|dy.
8 0
Now |E,| <|E,| and |Ey| < |8/, and therefore we may write
- Yo o o
[1h1dP <[[S|dy + [1B,|dy =S|y + [ Eys|dy,
S 0 Yo Yo

Y, being any positive number,

According to Lemma 3, we have

12,1 < % [UPRIr o ),
En
and from this it follows that
[1Bav=e [ hay [u@par e [#wa
Yo 1] N Yo

Now, in the proof of Theorem 1 we have shown that the first integral on the right
does not exceed a constant multiple of the integral

[tPpap.

On the other hand, if we select y, = (| S]), the integral on the right reduces, after
introducing the variable z = 8’ (y) and integrating by parts, to
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fﬁf fxdﬁf fﬁf dx—fd‘”ff f (t)log|f|dz.

n+l
Now, the convex functions @ (z) = z log* (]S| " ) and

_n+l
[y[S| " for 0=y <1,
- n+1

y S
ley‘llSl_T for 1 <y,

are conjugate in the sense of Young!, so that Young’s inequality gives

ff* log dt—ij [dt
_ntl ISI|S| 172
s [ (18

0

IA

n+1
2 [ 110t (181" pap+
En

fl

n+l
fo log" (|S| ™ HAP + 4|8 1"

Finally, collecting results and observing that

S

ISI?/():lSlﬁf(lsl):Of (tydt < [fdP,

EN

we establish our assertion.

Theorem 3. Let [ be integrable in E". Then if S is a set of finite measure

we  have
- 1-¢
[1@p-ar<se| flrear]™
S N

where ¢ 1s a constant independent of ¢, S, 1 and {.

Proof. Again we shall only consider the case when f > 0. We have

B,| = g’gf[f(Pnz",dPHzﬁ’(y).
En
From this it follows that

y|E|<cf[f ]ydP e B ().

1 See [7], p. 64.
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Since le [f(P)]y <1, and since for f’(y) = = we have

T

yB ()= 2f (@) = [ de<[f(P)dP,

0
we get
y|B,| <c[[(P)dP.
E"

If we write E, = E,nS, we have

|Ey | <|8|, |E/|<|E|

and
o]

Sfm(f’) [P = Mofyl"edlELIS(l"e)f%éldys

s<1—a)jgn'—§dy+<1—e>c[ff(P)dP] w;fi-

Yo

If we set here
vy =8| c [f(P)dP,
Eﬂ

our assertion follows. This completes the proof.

Theorem 4. Let u(P) be a mass-distribution that is a completely additive func-
tion of Borel set wn E™, and suppose that the total variation V of u in E" is finite.
Then 1f _

h(P) = [E,(P—Q) du (@)
EN

over every set S of finite measure we have

flfl(P) feap < | ST
S

Proof. This theorem is a straightforward consequence of the preceding one.
Let H(P) be a non negative continuous function vanishing outside a bounded

set and such that
[H@P)IP - 1.

En

Then it is known that (see e.g. Lemma 1 in Chapter II)

fu(P)= lim k" [ H[k(P~Q)/(Q)dQ
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almost everywhere. But

K [HE(P—Q1h(@dQ =k [H[k(P—@)dQ [ Ki(Q—R)du(R) -
= [K;(P— Q)+ [H[k(Q— RN du(R)]|dQ,

and thus from the preceding theorem it follows that

/

S

v [me—enh@ao| ar<st| [| [ @ manm|ee]

It is now readily seen that the last integral on the right does not exceed V.
Therefore, substituting V on the right and applying Fatou’s Lemma to the left-hand
side we get the theorem.

Theorem 5. Let f(P) be a function in E™ such thot

[1/(P)| (1 +log* | P— O] + log* | f(P)]|)dP < o0;

then fo% A =1 the function

Fy(P)=[;(P)— K, (P—0) [{(@)dQ
15 integrable and

[1F:(@)dP <c [1f(P)|(1 +log"|P—O| + log" | f(P)])dP +c,

where ¢ 1s a constant independent of A and f.

Proof. For the sake of simplicity of notation we shall denote any constant by c.

Let
fo(P)=f(P)if |P—0| <1,
and
f(P)=0

otherwise, and f, (P) = f(P) if 2* ' <|P — 0| < 2%, fx (P) = 0 otherwise, k=1, 2,....
Let )
Fea(P) = [Bi(P— Q) f (Q)dQ

and

Fii = — K (P—0) [ 1+ (Q)dQ.
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Now, if k=1 and Sj denotes the sphere |P— 0| < 2", then |Six| = c2%*’", and

Theorem 2 gives

ni1

[1iealdP <cf[f]dP +cf|fillog" (18] ™ |/e])dP +¢| 8] ™ <

<ecf1hl( +log" |P—0] +log" | fe])dP + c275 7,

En
since | P — O] = 27" wherever f; (P) 54 0. As easily seen, this inequality, with suitable
¢, also holds for £ = 0. On the other hand,
[1K (P—0)]dP < clog 2°*,
Sk

so that
| [E.(P—0)dP [(Q)dQ]| < clog 2 [ |/ (Q)]dQ <

<c[(1+1log" [P—0])|£:(Q)dQ.

This, together with the estimate for the integral of lfk A (P)], gives

[1FealdP <c[|h| (1 +log"|P—0] + log* | fi])dP + 27",
Sk ED

Since for A= 1 and |[P—@| =1 we have K, (P — Q) = K(P — ), and since [ (P)
vanishes outside Sy;_:, for P outside S; we have

Fir(P) = [[Kr(P—Q)— Ky (P—0)]fx(Q) dQ =

Sg-1

~ [[K(P—Q)—K(P—0)]}(Q)dQ.

S-1
Now, an argument already used (see footnote to Lemma 2) shows that, on account
of the continuity condition satisfied by £ (P), for every P outside Sy and @ inside
Si_1 the following inequality holds:
|[K(P—Q)—K(P—0)|<c¢c|P—0|" w(c2*|P—0|).
Thus, if Sk denotes the complement of S,, we obtain

Slf]ﬁ“]dP < fdec|P~0]’" w (2P -0/ (Q)dQ =

ETL

=of1h@1dQ [rmwE2 "y tdr—c [ 1/ (@)]dQ,

gk +1

and collecting the results we have
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[1Fei]dP < [|fe] +log® | P— 0] + log* | fu|)dP + ¢ 27D,
E" E™
Since F, (P) = ii’m(P), the theorem follows by adding the above inequalities.
[

This result can be worded in a different manner. Since the functions

D (z) =z log" ax
and
yalfor 0 <y<1

W) =
@ { et for y > 1
are conjugate in the sense of Young, setting z = |/(P)|, « =1+ |P —O"" and
y = logt |P— 0], for y = 1, Young’s inequality gives

2|/ (P)[log™ [P — O] <[/ (P)|log" [(1 + |P—O[")[f[] +

FP—O[2 (1L + |P— 0"

so that if |f]log™ [(1 +|P—0O]""")|/|] is integrable the same is true for the prod-
uct |f]| log" |P— 0], and since |f| < |f|log"|P— O] for |P— 0| = e, and |f] < 1+
4+ |/ log™ |f| for | P— O] < e, it follows that

[+ log" [P~ 0] +log" |f))dP = ¢ [|f|log" [(1 1 |P—O]""Y)|[|]dP + ¢,

En

and we have the following:

Coroliary. The function F, (P) of the preceding theorem satisfies the inequality

JIF AP AP < c[|f(P)|log" [(1+|P—O0"")|[(P)[]dP +c.

If the integral of f extended over the whole space is zero, then in the last
inequality we can replace 17',1 by ]7;_. For » =1 this result reduces to a known

theorem about Hilbert transforms of functions on the real line [5].

Theorem 6. Let {(P)be a function bounded in E" and | (P)| < M. Then the
wntegral

Fi(P)= [[E.(P—Q)— K, (0— Q)1 (Q)dQ

s absolutely convergent, and

[ M| Fy(P)|, P)dP < 1,
En

where ¢ s a constant independent of f and A = 1, and ¥ (y, P) is the function defined by
YwPy=yat for 0<y<1l, P@wP)=¢"a'fjory>1 a=1+|P—0]""
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Proof. First we observe that for fixed P and A the function
Kiy(P—0Q)— K, (0—0)
is bounded. Moreover as ¢ tends to infinity this function is of the order
@ —0["wc|P—0]|Q—0]7],

and thus is absolutely integrable, and the integral of its absolute value is a func-

tion of P bounded on every bounded set. Consider now the functions

D (x, P) =z log" [(1 +|P—0|""")x]
and
fy(L+|P—0O") for0<y<1

Y (y
B = leyl 1+ |P—0O""* for y = 1,

which, for fixed P, are conjugate in the sense of Young, and let ¢ (P) be a function

vanishing outside a bounded set and such that
[@g(P)], PP <1.
Then we have

fg P)dP - fg )dP [[K:(P— Q) — K, (0— @)1/ () dQ,

and since the double integral is absolutely convergent we may invert the order of

integration and write

fg P)dP - ff(@ de[KAP——Q) K, (0—Q)g(P)dP

But, according to the corollary of Theorem 5,
[ [1B:(P—@) — K, (0—@Q))g(P)dP|dQ < ¢
ET gD

and therefore, if |f(P)| < M, then

| [o@)Fspyap|=cm.

The same conclusion holds if we multiply ¢ by any function of absolute value 1; there-

fore we also have the stronger inequality

(7 a) flg | | F,(P)|dP < c M.
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Let us now define

FMP):{'F’I(P”’ if Ii’A(P)ISk and |P—O0| <k,

0 otherwise,
and denoting the function 3% ¥ (z, P) by ¥’ (z, P) let us also define

(¥'[c' BM ™ Fi (P), P] for Fy(P)#0,

5B =10 tor 1, (P) =0,

where ¢ is the same as in (7a) and where, assuming that F, =0, we select the

constant § in such a way that

[ @ (g (P), PydP - 1.

Then (see [7], p. 64) Young’s inequality degenerates into equality,
gk (P) (¢ BM ' Fi (P)] = @ (g, P) + W (¢ M Fi, P),

and integrating with respect to P we get

M fgk P)dP = j@(gk, P)dP+ (W (M Fy, P)dP =
E"

=1+ [W[c M Fi(P), P1dP.

But we also have
fgk P)dP - fgk(PlF,I(PIdP<cM
Thus we get
1+ [¥[cBM ' Fy(P), PldP < p.
En

This implies, first of all, that g = 1 and secondly that

f%?[c“ﬁM"‘Fk (P), P]dP < 1.

Now, since ¥ (z, P) is convex, increasing and vanishes for # = 0, and since f§ > 1,

we have

1—5{- (e M Fi (P), Pl = ¥ [c M~ Fi(P), P],

and from this and the inequality above it follows that
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[Pl M Fe (P), P] < 1,
EN

a relation which also holds for ¥, =0. Finally since F, (P)—>|F;(P)| as k— oo,

an application of Fatou’s lemma establishes our assertion.

Theorem 7. Let f(P) belong to L7, 1 <p << oo then

h(P)= [E.(P—Q) (@ dQ

converges wn the mean of order p as A — oo, to a function f~ (P) of L* in E™.

If {(P) 1s such that

(7D) [1#log* [1 + [P —0["*)|}]1dP < o0,

then F; (P) comverges in the mean of order 1 to a Junction F {P) integrable wn E”.

Proof. If ¢g(P) is a function with continuous first derivatives and vanishing
outside a bounded set, then

31(P) = [K:(P—@Q)g(QdQ

converges uniformly to a function g (P) and moreover, outside a bounded set,
9. (P)=g(P) for A= 1. This is easy to verify on account of the properties of
K; (P— @), of the differentiability of g, and of the fact that

3:(P)= [K:(P—Q)[0(Q) —a(P)]dQ.
Therefore, not only g;(P) - g (P) but also
[la(P)—g@)aP~>0

as 1-—oo, for any p > 1.

Let now f be a function of L?, 1 <p<<oo. Given any &> 0 there exists a

function ¢ with continuous first derivatives and vanishing outside a bounded set
such that

[[11)—ap)faP]” <e.

Then, if 2 =f—g,
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fo= 1+ b,

[fwl_f;!pdp]lmﬁ [fl!}z‘fl,ﬂde]WJr [flill—}zyldeJw.
E" an I

and

Now, since 7
| [1aPaP]” <,
ET?.

Theorem 1 gives _
[ [Tkl dP|” < 4ype,
P2

and thus we get

[[1h—=FfldPT” <[ [los—a.PdP]” + 2 4, e
ET En

As 2 and p tend to infinity, the integral on the right tends to zero; therefore for
A and u large we shall have

[f‘fl—fylpdp]lw<3x4ps,

and, since e is arbitrary, the first part of the theorem is established.

For the second part we shall begin by showing that, given any &> 0, there
exists a function g with continuous first derivatives and vanishing outside a bounded
set, such that

S

For let S be a sphere with center at O and so large that

o f—

F:
For the points P inside S we shall have

1%*DLHP—OWﬂMiﬁqusL

Jog* [(1 +|P— 0y HdP <%.

zlogt[(1 + [P— 0" 2] < ca?,

for all z > 0 and a suitable c.
We now select & so large that

f/‘—[é‘]zc

and then ¢ in such a way that g = 0 outside § and

log* [(1 Y P =0

f= Uk
e/2

]dPs%,

&
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f,g_[f]k i
e/2 2
Then
and, applying Jensen’s inequality,
f "—:—2 log* [(1 + |P -0 f{ﬁ’] dP <%,
s

which in conjunction with (9) gives (8).
Let now A (P) = f(P)—g(P); then
[1F:—F,|aP < [|G:— G, dP + [ |H,—H,|aP,
ET ET ET
where

= [E:(P—Q){ (QdQ— K, (P—0) [}(Qde,

and similarly for C;‘,l and H 1.
Now _ 3
[16—6.1dP 0

En

as A and g tend to infinity. On the other hand, since

I :
&

E"

by the corollary of Theorem 5 we have

log+[ +|P—0|"")

]dP<1,

a, dP < 2¢;

E_n
therefore for 4 and u large we shall have

[1Fi—F,|dP < 4ce,
En

and since ¢ is arbitrary the theorem is established.

Remarks 1°. Under the assumptions of Theorem 2, the function ]71 (P) converges

to a limit f (P), in the mean of order 1, over every set of finite measure. Under

the assumption (7 b), this mean convergence holds over E", but, unless f fdP =0

E’ﬂ

{or K=0), neither fi nor f are of the class L.
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2°. Under the assumptions of Theorem 3, the function ]?,1 (P) converges to f (P),

in the mean of order 1 —eg, over any set of finite measure.

3°. If /(P) satisfies the assumptions of Theorem 6 and, in addition, vanishes
in the neighborhood of infinity, the function exp {¢™* M~ (P)} is integrable over
any bounded set S. If f is also continuous, exp k|/| is integrable over S for any
E>0.

CHAPTER II.

The pointwise convergence of the singular integrals.

In this section we shall investigate the convergence of the singular integrals at
individual points. In the case where f(P) belongs to L”, p> 1, we shall prove that
the singular integrals converge almost everywhere and that moreover they are domi-
nated by a function of L”, uniformly in A. On the other hand, we shall show that
the pointwise limit still exists almost everywhere even if the function f (P) is replaced
by a completely additive function of Borel set of finite total variation.

We shall begin by proving two lemmas.
Lemma 1. Let N (P) be a function wn E" and suppose that
| N (P)| < ¢ (|P—0]),
where @ (z) s a decreasing function of x such that

[e(P—0])dP <co.
En

Then, if f(P) 15 a function of LP, 1 < p < oo we have

lim 2" [N [2(P—Q)1/ (@) dQ =/ (P) [ N (@) dQ
E" E"
at every point P of the Lebesque set of f(P).
(One says that P is a Lebesgue point for f if the derivative of [|f(P)—f(@)|d@Q
is equal to zero at P. This implies in particular that the derivative of [f(Q)d@
at P is f(P)).

Proof. Let P be a point of the Lebesgue set of f(P) and let I (o) be the
integral of |/(P)—f(Q)| over the sphere with center at P and radius p. Then
I(p)o™" is a bounded function and tends to zero as g tends to zero.
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We have
P[NP QU@ dQ =7 [ NLP QI @/ (PNdQ +
HIE) [N (P10

and the second integral on the right is equal to f(P) fN () dQ so that if we show
En

that the first integral tends to zero as A->oo the lemma will be established. Now,

this integral is in absolute value less than or equal to A" f p (Ao)d I (o), and thus it
0
suffices to show that the latter tends to zero.
Since ¢ (9} is decreasing and

J = [g)e" do<oo
0

@ (0) 0" tends to zero as g >0 and p — oco. On the other hand, we have I (9)p ™ < ¢
where ¢ is a constant, or I (p) < cp", so that integrating by parts we have

A"bfqa (Ao)dI (o) = — 2" [1(0)d (L),

0

and since ¢ is a decreasing function, if ¢ () denotes the least upper bound of I (p) ¢™"

in 0 <p<d we can write

=) [} oo
— 2 [1@dy(he) s =7 @) [ dpe)— 2o dy (o) <

o0

8
<nc@®) [ pAe) e do+nc g Ao)" T do + A" cd" p(A8) =
0 8
A8 [
=ne(d) [ 0" ple)do + e [o" g lo)do + ¢ 8" ¢ (20).
H 7
Now as A-—>o0 the two last terms tend to zero and the first remains less than

nc(0)J. Therefore
lim 37 [ (ho)d I (o) < ne(d)J,
4]

and since ¢ (6) >0 as 6 — 0, we have

lim 2" [ ¢ (Ag)dI (o) = 0,
I

A2ro0

and the lemma is established.
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Lemma 2. Under the assumptions of Lemma 1, the [unction
NP —QHQ)dQ
Eﬂ

converges to [ (P) fN(Q)dQ w the mean of order p.

ETL

Proof. Let us denote by f;, the integral in question and by fA 1ts pointwise

limit. If f is bounded and vanishes outside a sphere of radius r with center at 0,
f2 is bounded for [P —0|< 27, and less than ¢ 2" ¢ (]P*Olg) for |P—0| =27,

where ¢ is a constant. Inside the sphere |P-— 0|< 27, f; converges to fA bound -

edly and almost everywhere. Thus over the sphere |P — 0| <27 we have
lim [|j;—f]PdP = 0.
Y

Over the exterior of the sphere we have

f‘?alpdpgclm’ftp(u)*Olg) dPgc[l"¢p(¢l)]”’1l"ftp(|P—0|%)dP,

and the last expression tends to zero as A — oo,

To extend the result to general functions we observe first that, with 1/p+1/¢=1,
[1hlFap = [aP|[ 7 NAP— Q1 @dQ| <
< far|[{realP—QD} (" e 2P — QD) 1f(@)]dQ| <

< [ar{[roalP—@NdQf ([ ¢@|P—QIIF Q]
and since
[7e@lP—@hdP =1 ¢(4|P—Q)dQ = [¢(|P—0])dP,
we obtain o .
L[1h@)par[” <c[ [1H@PdQ]",
where ¢ = [¢(]P—0|)dP.
Thus, given f € L”, we may split f into two functions, f = g -+ %, where ¢ is bounded

and vanishes outside a bounded set and [ f |h}P dP]m7 <e. Then we have
EN

]?127;/11"!}1 and

8 — 523804. Acta mathematica. 88. Tmprimé le 29 octobre 1952.
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[[1i—= P ap]” <[ [1h—
E™ E"

As 1> 00, the last integral tends to zero, and since

[fm‘ |”dP]1'”<[f]kil"dP]1’p+[f|h{de] (¢ + 1)e,

“Ji/p

gl ar]”.

for A sufficiently large we shall have

[ (1= aP]" < (+2)e,

and the assertion follows from the fact that & is arbitrary.

Lemma 3. Let N {P) be equal to 1 in the sphere of volume 1 and center at 0,
and zero elsewhere; and let f (P) be defined by

f(P)=sup 2" [ Ny [A(P—Q)1|/ @] d@Q.
Then, if | belongs to L?, 1 <p < oo, the same is true of f (P) and

[1@ypdP=zcflfP)ap,

where ¢ is a constant depending on p only. If |f| log" | }| is integrable then f (P) is

locally integrable, and over every set S of [inite measure we have
. n+l 1
ff dP<c{|f AP +c [ logt [|S[™ |/(P)|]dP+c|S] *.
. 3

In general, under the assumptions of Lemma 1 we have

z"fN[zP QN (QdQ| <f (P f«p |P—0l)d

sup

where [ (P) is the function defined above.

Proof. Without loss of generality we may assume that f(P) > 0. Denote by
D, the set of points where f (P)>y. The sets D, are closely related to the sets
D, of Lemma 1 of the preceding chapter and we shall refer part of the argument
to that lemma and Theorems 1 and 2 in that section. ‘

Let P€D,. On account of the definition of D, then there exists a sphere with
center at P over which the average of f(Q) is larger than y. Suppose that r is the

radius of this sphere and consider a subdivision of the space in equal cubes of edge not less
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than /2 and less than r, as in Lemma 1 of the preceding chapter. Consider all the cubes
in the subdivision intersecting the sphere. Their total measure or volume does not exceed
a fixed positive number 1/« (depending only on the dimension of the space) times the vol-
ume of the sphere. Therefore the average of f(P) over the union of those cubes is
larger than «y, and hence there exists at least one cube where the average of the
function exceeds «y, and which is therefore contained in D,,. If we define D} to
be the set obtained from D, by enlarging five times the edges of the cubes whose
union is D, , while keeping their centers and orientation fixed, it will turn out that
the center of our sphere, that is P, is contained in D,,. But since P is an arbitrary
point of D, it follows that D, < D,, and thus

| Dy| < | D%y| = 5" | Duy | < 5" f ().

From this the assertion on the class of f (P) would follow as in Theorems 1 and 2
of the preceding chapter. We omit the argument because it would be a mere re-
petition.

In the general case we have

e

| [ NA@—Qt@dQ| < [ P—QD |/ (@]dQ,

and, denoting by I (p) the integral of |f(Q)] over the sphere with center at P and
radius p, the last integral can be written as follows

[ g o)d I (o).

0

Now, if v, denotes the volume of the sphere of radius 1, we have I (p) < v, 0" / (P),
and since @ (Ag)o™ —~ 0 as o tends to zero or infinity, we can integrate the last
integral by parts and write

o0 o

[1gGodl@) == [I@dgGto) < = [ene'] (P)dg(io) -

0 [1]
~J(P) [ 2 ¢ (ho)dvag" = (P) [¢(|P—O|)dP.
0 N
This completes the argument.

Remark. The first part of Lemma 3 concerning N, and for n = 1 is the very
well known result of Hardy and Littlewood (see [7], p. 244). In the general case

spheres with center at P can be replaced by cubes with center at P (which also
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follows from the result concerning the function N). In this case, and for p> 1, the
case of general n can easily be deduced from the original Hardy-Littlewood result
by induction and the cubes can even be replaced by arbitrary n-dimensional inter-
vals with fixed orientation. (See [4]). However, the case of |f|log® |/] integrable
seems to require a special treatment.

An alternative proof for the latter case was communicated to us by Professor
B. Jessen. He pointed out that it is enough to prove the result for differentiation
with Tespect to a net of cubes, and that in this case the result for general n is
deducible from the result for » = 1 by a measure preserving mapping of E" onto

E', which transforms the cubes of the net into intervals of E'.
Theorem 1. If f(P) belongs to L7, 1 <p < oo then

1Py = [E.(P—Q)[(Q)dQ

converges almost everywhere to a function [ (P) as A-—>oo. Moreover the function

sup | 12(P)] belongs to L* and

[ sup [i(P)PdP <e [ /(P dP,

En
¢ betng a comstant which depends on p and on the kernel K; only.

Proof. In the 'preceding chapter we have shown that ]7,1 converges in the mean
of order p to a function fof L?.

Let H(P) be a non negative continuous function with everywhere continuous
first derivatives, vanishing outside the sphere with center at 0 and radius 1, and
such that

[H(P)aP - 1.
o

Then the function

fuP) = u" [ H{u(P—Q)1] (@) dQ

converges almost everywhere to f as u — oo and moreover

[swlfuPapr<c[|ipaP=c[|iPdP,

En

¢ and ¢’ being two constants independent of f. Since f; converges in the mean
of order p to f and H[u (P — Q)] belongs to all classes L” we have
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Ju(P) = lim [ " H (P~ Q11(Q)dQ =

EP

=lim [ H[u(P— Q)] [ Ki(@ —8)[(8)d5,

or, Interchanging the order of integration,

Jo(®) = lim [[(S)aS[ [ " H{p(P— Q) K:(Q—8)dQ)].

Now, since H[u (P — Q)] belongs to all classes L” and has continuous first derivatives,

p
—1

as A — oo the inner integral converges pointwise and in the mean of order ¢ =

b

so that we can pass to the limit under the integral sign and write

fu(P) = [1(S)| lim [ w" Hu(P— Q) K, (Q —8)dQdS.

Since K; (@ —8) = A"K,[A(Q —S)], introducing the variable u (P — @) = R the inner

integral can be written as

n Ao A e
E[u 1) K -8 R an

and, setting

HP) = lim [ 2K [A(P—Q)1H (Q)dQ,

A—>oc0

we have )

lim [ " H{p(P— QK2 (Q —8)dQ = " H[p(P—5))
and )
fulP) = [w" Hp(P—8)]] (S)dS.

E'ﬂ

Now H(P) has continuous first derivatives and vanishes outside the sphere with
center at 0 and radius 1 and therefore fI(P) is bounded and, for |P— 0| = 2,

H(P)= [K,(P—Q)H (9)dQ.

On the other hand, since
[HP)dP -1,
Eﬂ

for [P— 0| =2 we have also
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H(P)—K,(P—0)= [[E,(P—Q) —E,(P—O)]H(@)dQ,

and on account of the conditions satisfied by the function £ in the definition of
K;(P— Q) it follows that, for large |P — 0| and |Q — O] < 1,

IK1(P_Q)*K1(P‘O)|SCIP_Ol—nw(IPMOrI)
and thus 3
{H(P)— K, (P—0)|<c|P—O0]"w(|P—0]),

where ¢ is a constant. Now K, (P — 0) is bounded, as well as H (P), so that for all
P the inequality

| H(P)— Ky (P—0)| < cmin {1; | P~ 0" w (| P— 0] ™)}

will hold, ¢ being again a constant.
Now R _ i 3
fa(P)—1u(P) = | p" {H[u(P—Q)— K [u(P—Q)]} /(@) dQ.

Thus from Lemmas 1 and 3 it follows that ]‘Aﬂ (P) —]7,1 (P) converges almost every-
where and that

[ 5w fu(P)—fu(PYP AP < [ | (P)] P,

o
Since R _

lim f,(P) = [(P)
almost everywhere, and

[swll.(P)PaP<c [1f(P)FaP

ETL

and ]7,,—>]7 in mean of order p, the theorem follows.

Theorem 2. Let pu(P) be a mass distribution, that is a completely additive func-
tion of Borel set in E™ and suppose that the total variation V of u(P) in E™ is finite.
Then the wntegral

L) = [EKy(P—Q)dp (@)

has a limit ]‘~ almost everywhere as 2 tends to infimity, and over every set S8 of finite

measure we have

[iip=ar<2ysive

N
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Proof. We may assume that g (P) >0, and we shall show that, given any
sphere of finite radius and an ¢>> 0, the integral converges in that sphere outside a
subset of measure less than e, We shall begin with the following observation. Let
P be a point, I, a cube with center at P and edge equal to g, and D any set con-
tained in I, such that |D|> a[l,|, « being a fixed positive number. Then

. (D)
lim 22/
o0 [ D]
exists and
sup 40)
o |D]

is finite for almost every P in E™.

Let now S be an arbitrary sphere and S the sphere with the same center as S
and radius twice as large. Fix o« = 27%". (iven an &> 0 choose y so large that
the set of points P in S such that

¢ (D)
sup S0 >
gp IDI Y

be of measure less than 27" =2

, and let 4 be an open set covering this set and
the set of measure zero carrying the singular part of x4 in S, and such that also
|4| <e27 " n ™. Now call ;, «,, ..., &, the coordinates of a point in E* and cover
A by means of half open cubes

m; my 1 .

27Sxi<‘2r; (r=1,2,..., n)
where m; and %k are integers, in the following manner: first let %, be the smallest
value of k& for which there is a cube of the above form entirely contained in 4, and
take all such cubes contained in A then let k =k, + 1 and take all the new cubes
contained in the remaining part of 4 and so on. Thus we shall obtain 4 as the union
of non-overlapping half-open cubes which we shall denote by I, with the property
that every Iy is contained in a cube with edge twice as long and containing a
point outside A.

Denote by A4, the union of all those I intersecting S. Then it is clear that,
if ¢ is sufficiently small, every I in A; will be contained in a cube with edge twice
as long and containing a point P outside 4 and in 8. Thus from the definitions
of 4 and of « it follows that w(Ix) < y|Ix| for every I, € 4,. Moreover, outside 4
and in S, and therefore also outside 4, and in S, the function x(P) is absolutely

continuous and its derivative does not exceed y. Let finally 4, be the union of all
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spheres S, with center at the centers of I, and radius equal to the diameter of I, < 4;.
Clearly, | d,| < n™?2"| 4, <<e. We shall show that outside 4, and in S the integral
converges almost everywhere. For this purpose let g (P) be the function equal to
the derivative of u(P) outside 4, and in 8, equal to u(Ix) |I:|™ In every cube
I, of A4;, and equal to zero elsewhere. Let also »(P) be equal to s (P) minus the
indefinite integral of g(P). Then »(Iy) =0, g(P) is less than or equal to y, and

[ldv(P)| <2y| Il
T

Let now P be a point interior to S, outside A,, and where the density of 4, is
zero. Then, denoting by a prime the complement of a set,

JE.P—@Qdu@ = [K:(P—Q)du(Q) +

4; U8y

+sz(P—Q)g(Q)dQ+AfK;,(P—Q)dV(Q).

Since P is interior to S, its distance to the set (4,US) is positive and therefore

the first integral converges. Moreover since ¢g(P) is a bounded function which

vanishes outside a bounded set the second integral converges almost everywhere, so

that the whole problem reduces to showing the convergence of the last integral.
We have

[E, =0 iv(@ =3 [Ka(P—Q)dv(@ + 3, [ Ki(P—Q)d» (@),

where the first sum is extended over the cubes of A4, intersecting the sphere with
center at P and radius 1/1 and the second over those entirely outside this sphere.
Now, since P is outside A,, if I, intersects the sphere with center at P and radius
1/2 it follows that I, is contained in a sphere with center at P and radius equal
to 3/4. Therefore we have

|5 [ Ka(P = Qdv (@] = 2 e 5 [1dv(@] = 297" 2| Le].

But since all the cubes in >, are contained in the sphere of radius 3/4 and Pisa

point of density zero of A4,, we have
lim 2" 3, | 72| = 0,
A—> 0

and therefore

S Ki(P—Q)dv (@)~ 0

as A tends to infinity.
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On the other hand, since v (Ix) = 0, for every I in D, we have
[E(P—Q)dv(@Q = [[K(P—Q) —K(P—Quldv (@),

where ) is the center of I,. Now, on account of the conditions satisfied by
and the definition of A, it follows, as in Lemma 2 of the preceding chapter, that

for every @ in I and P in 45 we have
[K(P—Q) —K(P —Q)| <c|P—Q|"wlc| L] P —Q™,
and therefore

JIE@=Q—K@—QliP < [e|P—Qul " ole| 1" |P— @[ AP <,

¢ being a constant. Hence
JaPE[IKP—Q—KP—@)lldr@]=cX[lir@]=
<2cy2|Ii|=2cy| 4],

the sum being extended over all intervals in 4,. But this implies that for almost

every P in A; we have

22|IfKa<P~Q>dv(Q>| < z}f|K<P~@)—K(P~Qk)lldv(@)l<<>o,

and since each of the terms on the left hand side converges as 4 — oo and is ma-
jorized by the corresponding term on the right which is independent of 4, it fol-
lows that
. [ K (P~ Q)dr(Q)
k

converges as A —> 0o,
Thus we have proved that ;z (P) converges almost everywhere to a finite limit.
Finally, the last part of the theorem is an immediate consequence of Theorem 4

of Chapter I and Fatou’s lemma.

Remark. Suppose that the mass distribution is differentiable at the point P. De-
noting by g’ (P) the value of the derivative (of course, u' (P) is a real-valued function
of the point) let us consider the mass distribution up (@) = p (Q) — u’ (P) x (§), where
2 (@) 1s the indefinite integral of 1. Due to the properties of the kernel K, the two
integrals

EfK(wa(Q), EfK(Pw)dm(@
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converge or diverge simultaneously, and in the case of convergence their values are the
same. Let I, (P) denote the sphere with center P and radius g. At almost every point
P we have

[ldpr @l=0@")  (@—0),

e

(an analogue of Lebesgue’s condition). At every point P at which this condition holds,
the convergence of the second integral is to a great extent independent of the shape of
the neighborhood excluded around P. For let D, (P) be any set containing I (P) and
contained in I’y (P), M being a fixed number. Then the difference between the integrals

[E@P—Qdur©), [K@P—Q) dpr(Q)

P r.®
(where I and D’ are the complements of [* and D) is numerically

< [IE@—Q)||dur@]=0@ET) o(Me) = 0(1),

Tppe(PY — T'g(P)

and so tends to O with & Thus, for almost every P, and for the sets D, of the type
just described (we might call them regular neighborhoods} we have

JP)=1lim { [E(P—Qdun(@ +u (P)[KP—QdQ}

[ ,
E2>Y D D' (P)

almost everywhere. The second integral on the right here exists for every £¢>0. If it
tends to O with & (a situation which can occur, due to possible symmetries in the
structures of K and of D), then in the last formula we may drop the second term on
the right. This is, for example, the case of the kernels (3) and (5) of Introduction, if
D, (P) is any square with center P and sides 2 &

CHAPTER III.

The preceding results can be used to establish differential properties of certain
functions. We shall primarily consider the problems of the existence of the first
derivatives of the Newtonian potential of a single layer, and of the second derivatives
of the logarithmic potential (more general situations we shall consider elsewhere).

Thus again we shall be concerned with the kernels of the forms

z 2 — P zy

(wz + y2)3/2 (xz + y2)2 (wz + y2)2

(1)

Let us consider a mass distribution g over the plane, and the Newtonian
potential
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(@9, ffRdu(s 0, R=[m—sf+ (y—0P + 2"

in the half-space z>>0. We assume that the total mass [|du| is finite. Obviously

(x, 9,2 ff Iz du(st

Suppose that the point (x,, ¥,, z) approaches (z,, ¥,, 0) vertically, and that the mass
4 has a density at (z,, 9,) (by this we mean that u is differentiable at (x,, ),
with respect, say, to concentric circles). Without loss of generality we may assume
that (z,, ¥,) = (0, 0) and that the density in question is zero. Let us split the last
integral into two, P and @, the former extended over the circle I', defined by the

equation s* + 2 < 2%, and the latter over the complement I, of I,. If we set
1()= [[sdu(st)
TT

then, as easily seen, I (r) = o (r*) for r -~ 0. Hence
2 2 z

f dlp) Iz rl(r)dr I (i
P—J 5 5 _(2z2)3"2+30f——(72 =o(l) +2 jo(r)dr (1),

(r* -+ 222 + 222
[}]

o f [t [l oo~
- 16| o) +3frl<r>[(,, L] ar-

(=]

=0(*)0(z™® + 3'[0(74)0(52) dr =

2

==}

=o(l) + zzfo(r‘a)dr = o ().

2

Collecting the results, we see that at every point of differentiability of u the
difference

(24,4 — [ f oo Ty
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converges to 0 as z— + 0. In particular, since the integral

r—s

exists almost everywhere, we see that lim u; (z, v, z) exists for almost every (z, y)

as z— + 0. A slight — and well known — modification of the above argument
shows that lim u, (x, v, #) exists for almost every point (z, y) as (z, v, 2) approaches
(%, ¥, 0) non-tangentially.

Let us now assume that g is absolutely continuous, that is that du = fdsdt¢,
with [ integrable. We shall investigate the problem of the differentiability of the
function

s, tydsdt
@ v o) ff[w—s)z v — 071"

which is the potential » in the plane z = 0.

In what follows, we shall systematically denote by I (z, y) the circle with
center (z, y) and radius r. The complementary set will be denoted by I7 (z, y).
Instead of I7 (0,0) and I7 (0,0) we shall simply write I} and I7.

Theorem 1.

a) Suppose that | is integrable over the whole plane and that |f|log" |f]| is inte-
grable over every finite circle of the plane. Then the integral (2) converges over almost
every line parallel to the x-axis and represents an absolutely continuous® function of x.

In particular, w, exists almost everywhere. Moreover
s—ux)f(s, 1)
(x, dsdt
) ff[x—s R R e

b) If [ is inlegrable over the whole plane and belongs to L, q> 2, over every

almost everywhere.

finite circle, then w (x,y) has a complete differential at almost every point of the plane.

Proof. It slightly simplifies the argument (though it is not essential for the
proof), if we assume that / vanishes outside a sufficiently large circle.
Let us consider

(3) u® (z, y) fff (x—s, y— )(s +t21 )l,zdsdt

1

4.e. absolutely continuous over every finite interval.
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and let us compare

u® (x ff@~s y— )(s +t2+ )mdsdt

with the function

f (z, ¥) —{ff (x—s,y )(S2+ )Wzdsdt
We have

) ey fff @5 u— 0 ey apdsdt s
s s
+fff(m*”3,?/"“i) [(82+t2+82)3/2w(82+t2)3/2] dsdt,
I"E

x
@i e ¥ <1

and if we set

N(w’ ?/):

z B z
@+ 2+ ¥ (@ + P

55 for & + 2 > 1
it is readily seen that

—uf (x ,y)+]75(o:,y)=gz—fff(s,t)N(x:S, yTﬂ)dsdt.

Now, an application of Lemma 2 in Chapter II shows that, as &= 0, —u¥ (z, y) +
+ fE (x,y) converges to zero in the mean of order 1, and, according to Theorem 7
of Chapter I, over every set of finite measure f:(w, y) converges in the mean to the

function
}“v(w,y)=~—‘£ff(m-s,y-)( ’|‘t2)3/2d8dt

Thus, over every set of finite measure, u’ (z,y) converges in the mean to f (@, ).
Now we can select a sequence &, - 0 such that, for almost every line y = y,,
u® (z, y,) converge in the mean to f(z,y,) over sets of finite measure!, and thus

1 If fn (x, y) converges in the mean to f (z,y), we have

Jav[|tatey) —f@u|dz—o0.

Thus the inner integral, as a function of y, converges in the mean to zero, and we can select a se-
quence n; such that

Sin @y —i@y|dz—>0

for almost every y.
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n—>o0

lim [ (z, 45) — u® (g, )] = [ (5, vo) d 5.

If (as we may assume) f > 0, the integrand in (3) increases as & decreases, and this

implies that
y 1 |
ll_zrgu“ fff(:l;——s y— )( +t2)1,2dsdt=u(x,y).

Combining the two last results, part a) follows.

Part b) of Theorem 1 asserts that in the neighborhood of almost every point
%y, ¥o), the difference u (xy + &, yo + k) —u (%, yo) is of the form 44+ Bk +
+o (B® + k)2, where 4 = 4 (x4, y,), B = B(%,, ¥,). This is more than the mere ex-
istence of the partial derivatives w. (x,y,) and wuy (x4, ¥,) established in a), and it
implies, in particular, that u is bounded in the neighborhood of (z,, ¥,). The mere
boundedness of u, however, over every finite circle is a direct consequence of Hol-
der’s inequality applied to the integral in (2), since the kernel (s® + ¢*)~'? belongs to
L?, p <2, over every finite circle.

Let us now consider any point (z,, %,) at which the integral of |f (x, ) — f (o, %) |°
is differentiable and the derivative is zero. (Generalized Lebesgue condition — it
implies ordinary Lebesgue condition with ¢ = 1). Let us also assume that both

integrals

4= —f[]‘(xﬁs, ywt)mdsdt,

fff(xﬁs y— )(2+t2)3,2dsdt.

exist. Let (h*+ k)" =&, and let us split the integral defining the difference
A=wu(xy+h, o+ k) —u(z, y) into two, extended respectively over the circle

(4)

T (%, 4o) and its complement I, (x,, %,). Let us denote the integrals so obtained
by P and § respectively. Without loss of generality we may assume that (2, ¥,) =
(0,0) and that f(x,, y,) = 0. Then, with H (z,y) = (2® + ¥?) "% we have

Q=fff(s,t) [H(s—h, t—k) —H (s,{)]dsdt = h Aae + & Ba, +

11'28

+ %f f(s,t)[B*Hoo(s— Ok, t—0k)+ 2khH, (s—0h, t—0Fk) +

Tge

+ R H,y (s—0h t—0k)] ds dt
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where 6 1s a function of s and ¢ sueh that 0 <0 <1, 4;, and B,, are the inte-
grals (4) extended over I%..

If we replace here A, and B;, by 4 and B, we ultimately commit an error
o(|k]) + o (1k]) = o (B* 4 &*)'®. The first of the remaining three integrals is numeri-
cally

0 (hz)f /(. 0| [(s—ORh2 + (t— 0k ™ ds dt —

Tge

:0(82)ff[f(s, O+ &) dsdt=0() | ——>
Iy, 23
where I(r) is the integral of |f| extended over the circle I'. Integration by parts
and the fact that, by assumption, I(r) = o(r?), shows that the last expression is
O o(e™") = o (e).

The same remark applies to the remaining two integrals constituting Q. Hence

(5) Q= Ak + Bk + o(e).
An application of Holder’s inequality to the integrals defining P gives, with p = %.l .
|P| < [fflflqu dti]llq{[fpr dsdt]l/p -+ [ff[{(s_k’ t_k)p det]llp} <
Tge Ty, o
ol las L[ 1 2sar] = ot
Ta, Iy,

Hence, using (5), we get 4 =P+ Q = Ak + Bk + o(¢), and part b) of Theo-
rem 1 is established.

Remarks. Neither part of Theorem 1 admits of much .improvement. For,
beginning with part 'a), let us assume that f(s,¢) vanishes outside the square
S, 0<s<1, 0<t¢<1, and that it is constant, equal to ¢ (s,), along every segment
§ =8y, 0 <¢<1. Then, integrating with respect to ¢, one finds that in every smaller
square concentric with, and situated, similarly to, S the function u (z, y) differs from
the logarithmic potential

(6) L(x,y)=L(z)=f(p(s)log|x—s|_1ds

by a bounded function. Let us suppose that ¢ is non-negative. If w (z) is any
function tending to oo with z, then the integrability of w (f) over S is equivalent

to the integrability of w (p) over 0 <s < 1. If w(x) =« log*z, then an application
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of Young’s inequality (see [7], p. 64) to the integral shows that the integrability of
@ log" ¢ implies the boundedness of L (z, y) over S. Suppose, however, that w (z)
tends to + oo more slowly than z log . We can then find a positive function ¢ (s),
0 <s<1, with w[p(s)] integrable and such that the integral (6) diverges to + oo
in a set of points z dense in (0, 1). (See [7], p. 99). Hence u (z, y) equals + oo
on a set of segments s=3s,, 0 <#<1, dense in 8. This shows that at no point

interior to S can w(z,y) have a directional derivative in the direction making an

angle of + gwith the z-axis. Rotating the whole picture byz we obtain a mass

distribution with density f(s, t) such that o (f) is integrable and yet the potential
w(z,y) has no partial derivative u, or 4, at any point interior to a square S’ ob-
tained by the rotation of S.

It is easily seen that u, and u, will be non-existent at almost every point of
§8’, no matter how we modify u (x, ) in any set of measure 0. For, ¢ being > 0,
the function L (z) is lower semicontinuous. Hence given any number M >0, no
matter how large, we shall have L (z) = L (z,y) > M in a set of strips parallel to the
y-axis (e<y<1—g) and dense in 0 < z < 1. Thus no matter how we modify « in
a set of measure 0 1t will be discontinuous, in the direction -+ g, at almost every
point (z,y) €S.

That in part b) we cannot replace the integrability of [/[%, ¢> 2 by the inte-
grability of f2 (over every finite circle) is even simpler. For the kernel H (z, y) =
= (2% + ¥*)'*® is not quadratically integrable near the origin. We can therefore construct
a function f(s, t) > 0 quadratically integrable over every finite circle and such that
the convolution w of f and H diverges to + oo in a set dense over the whole plane.
It follows that % remains unbounded in every circle no matter how we change u in
a set of measure 0. Thus w cannot have a complete differential at any point, even
if we modify « in a set of measure 0.

Of course, we could slightly sharpen part b) by introducing the logarithmic
scale of integrability, but this generalization would be of little interest.

It may also be added that, under the assumptions of Theorem 1, the function
u (z,y) is absolutely continuous in Tonelli’s sense over every finite square I with
sides parallel to the axes. This follows from the fact that u is absolutely continuous
on almost every line parallel to one of the axes, and that both w, and u, are in-
tegrable over I.

On account of certain applications we shall state the analogue of Theorem 1 in

n dimensions.
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Theorem 2. Suppose that f (¥, Xy, ..., Zz) 28 integrable over the whole space
E", and |f|log” |]| is integrable over every finite sphere in the space. Then the po-

tentral

w(ty, ... ) = u(P)= [|P—Q|""{(Q)dQ

converges over almost every line x = const, 1= 2, ..., n and represents an absolutely

continuous function of x,. In particular the partial derivative oo o exists almost
1
everywhere. Moreover

s, = (0 — 1) [ (51 —a) | P — Q" f(Q)dQ

almost everywhere, x, and sy being the first coordinates of P and @ respectively.

If | is integrable over the whole space E™ and belongs to L, q > n, then u (P)
has a complete differential at almost every pownt of the space.

The proof follows very closely that of Theorem 1.

Remark. It is not difficult to see that for the most general mass distribution

du the potential » has at almost every point P = (zy, 5 ... Zs) an approzimate
differential, that is w(m + by, oo T + ha) —u (@ ... ) = 2 A1 b + 0 (3| i), pro-
1 1

vided the point (hy, Ay ... k) tends to (0, 0, ... 0) through a certain set (depending,
in general, on (x; @, ... 2,)) having the origin as a point of strong density. For let
us make the usual decomposition du =g + dv, where g is bounded and coincides
with du in a perfect set S and equals the average value of u in certain n-dimen-
sional cubes constituting the complementary open set S’. Correspondingly v = u, + ug,.
Since ¢ is bounded, u, has a differential almost everywhere. Lemma 2 of Chapter I
easily shows that u, has at almost every point a differential with respect to S.
Making S expand, we obtain the result. This argument shows that « has almost

everywhere all the approximate partial derivatives Uz, -

We now turn to the logarithmic potential

(8) u(x,y)=fff(x~s,y~t) log (5.2—_{_1?)1—/2‘1‘9‘1t‘

Since we are only interested in the differential properties of u, we may again assume

that f vanishes outside a sufficiently large circle. We shall investigate the existence
9 —523804. Acta mathematica. 88. Imprimé le 30 octobre 1952,
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of the derivatives of the first two orders of #, and the existence of the second dif-
ferential of u. We shall say that » has a second differential at a point {x, y,) if,
for 4 and k tending to O,

) w(wg+h yo+h)—u(zove) —Ah+ Bk+3(Ch+2Dhk+ ER) + o (B + )

where 4, B,C,D,E are independent of % and k. The existence of the second dif-
ferential implies that of the first, and in particular that of w; (g, y5) = 4 and
Uy (%9, ¥p) = B. In general, however, it does not imply the existence of the second
partial derivatives in the classical sense. For example, for & =0 the preceding

equation reduces to
U (1}0 + h’, yo) —u (x07 yo) =Adh+ %Ckz + O(hz):

which only implies that u(z, y,) has, for z = z,, a second generalized derivative in

the sense of Peano and de la Vallée Poussin (see e.g. [7] p. 257).

Theorem 3. Suppose that f (s, t) vanishes outside a circle and that |f|log* |f
1is nlegrable (in particular f € L). Then

a) the integral (8) converges absolutely and represenis a continuous function u {z, y).

b) On almost every line parallel to either axis, u (x, y) ts continuously differenti-
able and the integrals

s
—fff(x—s,y“f)mdsa’vé;”fff(ﬂ?—s,?/ t) z+tzd8d5
E? E?

obtained by formal differentiation of the integral (8) converge and represent u; (x, y)
and uy (x,y) respectively.

¢) On almost every line parallel to either axs the derivatives u. and uy are ab-
solutely continuous functions. In particular, Uyy, Uyy, Uy, Uye exist almost everywhere.

They are given almost everywhere by the formulae

wee (5, 9) = — 7 [ (5, ) + ffw—ay )(2+tz)dsdt

©a) gy (2 9) = — 7] (2, ) + f/(x 5 y— t>( dsd

t2)2

Uzy (2, y)=uw(_:c,y)=fff(x— t)(2 z2)2d8dt

. particular, uze + uyy = — 27} almast everywhere.
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d) Thke function u (z,y) vs absolutely continuous (i.e. is an integral).
e) The function u has almost everywhere a second differential, with C, D and E in

(9) equal to ey, Usy and uy, respectively.
Proof. That the integral (8) converges uniformly and absolutely follows from

the inequality

zy <zlogta + e,

(See [7] p. 64) applied to the product |f|-3 log r.
Whithout loss of generality we may assume that f > 0. Let us consider the
function

" 1
(10) u"(az,y)=%fff(w—s,y—t)logmdsdt,
E2

and let us compare u&) with the function

-~ 82_t2
fe(w’ ?/) _[ff($_8,y*—t)(s2+ t2)2 ds dt.
u%—f=ff]‘(x~s y—t)—sz—:fidsdt—k
° A ’ (s* + 12 + &%)?

N 82_t2__82 82_t2
+fff(x—_sy yit)l(82+t2+82)2_(82 +t2)2]d8dt’

ry

‘We have

and if we set

2
2 —y*—1
__.—f +
(w " 1) or z* yr<1,
Nz, y) = s g
22—y —1 T —y

. { 2 2 1
@il @Frgp T Y oh

usy — ~—fff(s t)N( ————— )dsdt.

Then, by Lemma 2 in Chapter II it follows that, as ¢ —> 0, u% —]76 converges

we may write

to —af(z,y) in the mean. But according to Theorem 7 in Chapter I, over every

set of finite measure fe(x, y) converges in the mean to the function

f(z,y) = fff(wMSy )( +t2) ds dt
and thus
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(11) Lim. v} = —af(z,y) fff (x—s8y— )( ) s dsdt = [y (zy).

e—>0
Similarly we get

L.im. u“)*fffx—sy £) 2§L*dsdt—f12(xy),

] &—>0 (S + ?:2)2
(11)
181:;1 uly = —nflz, v) ff]‘ (x—s, ¥ — )(st A s ds dt = fa (xy).

O]

For the first derivative of u® we have

 (2) - _ sdsdt :4]‘ -~ _ﬁeif_dt
E2

at every point where the integral

1
[[1e=s 05 amis
E? :

is finite. But according to Theorem 1 of this chapter, this is in fact so at all points
of almost every line y = y,.
Thus for almost every y and every z we have that «® (z, y) converges and

>0

(12) hmu(s)~~fff(x*s,y—~) o w5 ds dt = f, (z, ).

An analogous result holds for u{’ (z, y).
Finally for «® (z,y) itself we have

lim «® (z, ¥) = w (z, ¥)

e—>0

everywhere, since the integrand in (10) increases as & decreases.

We now select a sequence &, >0 such that, over every set of finite measure
of almost every line y = y,, the left-hand sides of (11} converge in the mean to the
right hand sides. Let y =y, be such a line where in addition (12) is satisfied, and
take any point (x,, ¥,) on it. Then

z

£ & & £
u™ (@, o) = [ (@ —5) w2 (s, o) d's + (2 — o) 'S (xg, wo) + 4™ (zy, W)
Zg
T
Cn) (@, o) = [uSE) (s, wo) ds + 6™ (2, 1),

Zo

U
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and passing to the limit we obtain

x

w(t, yo) = [ (@ —8) fuu (5, yo) ds + (x— o) fy (2o, %) + © (%o, Vo),

f (@, 90) = [ Fa (5, vo) ds + fy (2o, ),

for all z. A similar result holds for almost every line z = x,. This proves the ab-
solute continuity of u, and u,, and gives the first two formulas (9 a).
Let now (z,, yo) be a point such that u be continuously differentiable on z = =,
and on y = y,. Then
zr Yy
u® (2, y) = [ [uf) (s, 0) ds dt + u® (@, yo) + u® (25, ) — U (o, )
Zo Yo
and passing to the limit we have

Ty

u(x,y) = ffflz (s, 8)ds dt + u(x, yo) + u (x5, y) — % (o, Yo)-

To Yo
But by a theorem of Tonelli and Fubini [3] for almost every y = y, the derivative

with respect to y of the double integral above exists for all x and 1s equal to

[fm (s, Yo) ds,

and thus is an absolutely continuous function of x whose derivative with respect to
Z 18 fis (@, ¥y). This completes the proof of part c).

The last formula also shows that u (x, ) is absolutely continuous.

It remains to prove that u (z,y) has almost everywhere a second differential.

Let (x,, ;) be a point such that

1) the indefinite integral of w., is differentiable at (xg, ¥,) with respect to regular

rectangles and its derivative 1S uyy (24, ¥p);
h2

2) u (g + b, yo) = u (2, Yo) + hus (%, Yo) + gum (20> ¥o) T 0 (kz)Q
kz
3) w(mg, yp + k) = u (@ yo) + kuy (x4, + Euyy (Zoyo) + 0 (192)

Since each of these conditions is fulfilled almost everywhere, they will also be sat-
isfied simultaneously almost everywhere. Now

hk
u (g + h, yo + k) :ffuw(rrost,yonLt)dsdtJru(xo + h, y) +
00

+ w (g, Yo + k) — w (g, Yo)
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and on account of 1) the double integral is equal to k% .y (4 %) + o (B% + KL
Thus, taking 2) and 3) into account part e) follows.

We conclude this paper with an extension of Theorem 3 to the potential

(13) w(P)=[{@IP—Q"?dQ (n>2)
En

in E".

Theorem 4. Suppose that f(P) = f (%, Ty, ..., Tx) 18 integrable over E" and
that |f| log™ |f| 4s integrable over every sphere. Then

a) The integral (13) converges on almost every two-dimensional plane parallel to
a fized plane and represents a continuous, indeed an absolutely continuous, function there.

b) On almost every line parallel to a fized line, w (P) is continuously differentiable
and the derivative is absolutely continuous. On almost every line parallel to any coor-
dinate axis all the derivatives Uz , Uz,, . .. Uz, are absolutely continuous and are given

by the formulas

(14) e, (P) = f 1@ 5P —QI " dq.

In particular, all the second derivatives Uz, €St almost everywhere. They are given

almost everywhere by the formulas

%iri:“Unf(P)+ff(Q)£?|P“QI‘(""2)dQ;

(15)
et =f 1@ 754 [P0 OPdQ (79

BN

vn denoting the volume of the n-dimensional wnit sphere. In particulor s, + -+

+ Uz ,z, = —nv.f almost everywhere.
¢) If fel? g>—, then u has a second differential almost everywhere.

Proof. We begin with c¢). Let P be a point such that

k
1 Suppose, in fact, that 0 <<k < k. If E < h <k our assertion is obviously true. On the

k
other hand, if & <T P the integral is equal to

kk kE k
[ [ueydsai— [ [ueydsdi = hkuy (w0 50) + 0 (5%) + o[k (b — B)].
00 h 0
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(16) L= [1/@—fP)laQ=o@";
o= [11@—1(P)ldQ =0

where I, denotes a sphere of radius o with center at P. Let us suppose in addi-
tion that (14) and (15) hold at P. Without any loss of generality we may further
assume that f(P) = 0.

Let ¢ be an arbitrary unit vector with components o; and consider the expression

du d?u
Y — I 2V 120 Y
an wpren—u®)—e(7t) —1e (Ta) - 40
where
duzz,@,}{ N @:Zﬂ L
w P - 8%0(“ d o ” 6;&89@%%

the partial derivatives being taken at the point P.
If we show that 4 (o) = 0(0?) uniformly in & our assertion will be established.

Let us replace in (17) the corresponding integrals. Denoting the complement of
I, by I',, we have

4@ = [P +oe—QI "~ |P—QI "/ (@@~
i-'ZQ

d 2 7 | 2 d2 —-n+2
—o [ fp—err@ao—ie [ Loip—el i @de r
Ty, T,

+f[IP+Qé—Q[_"+2_|PhQI_n+2‘—QdilpﬂQl‘nJrz—
Iy 4
dz
—%Qza—?lP—Q[“””]f(Q)dQ=A+B+O+D.

First, let us remark that on account of our assumption that f(P) = 0 in each
of the preceding integrals we may replace f(Q) by f(@Q) — f(P).
Then, by Holder’s inequality, we have

IAI < Q[flf(Q)—]‘(P)]q dQ]l/q[flP_Ql(z‘")de]lh
Ty I’z

and on account of (16) we get | 4| = o (o?).

For B we have, again on account of (16),

1 Tt is mot difficult to show that I, = o {0") implies that J, = o {¢™). In fact this follows
easily by applying Hélder’s inequality to J,.
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20
|B| < (n—2) gfr‘"“d.]r =(mn—2)27 " 0" g +

0
2¢

+(n—2)(n~-1)gf;l,§dr:0(gz)‘

The integral in C converges to zero and thus it follows that also [C'| = o (o?).
Finally, it is easily seen that the quantity in square brackets in the integral D
does not exceed cg®|P-—@Q| " *. Thus

oo o0

| D| 50@3fr""’1dJ,202‘”'1Q’"+2J2@+c(n—|— 1)Q3fr{:2dr:0(gz),

20 20
and c) is established.
The continuity of « (P) in almost every plane parallel to a given plane, under

the assumptions of the integrability of |f|log® |f|, is less trivial here than the
continuity of w(z,y) in Theorem 4. It is enough, however, to sketch the proof.
We may take the z; z, plane for the fixed plane.

First we consider the function
u?((P)= [[|P—QF + &1 2/(QdQ  (f=0)

and prove that u® converges everywhere to w(P), and that its first and second
derivatives converge :n the mean of order 1 over every set of finite measure. Then
we select a subsequence u{*n) in such a way that the derivatives converge in the
mean over every set of finite measure on almost every plane parallel to the z; x,
plane, and on almost every line parallel to the z; or x, axis. We may suppose that

the z, x, plane is such a plane and the z; and z, axes are such lines. Then

Ty T, azu@
U (xy, %5, 0, ..., 0) = u“(0, 0, "”0)+ff€m18x2 day dz, +
0 0

Zy Za

du® [6u(€)
+ de, + | 22 da,,
fem “T ) b, O
0

0

and, passing to the limit,

0

Zy 2
o oulEn) . oulEn)
+ fllmT%dx1+fllm 8x2“d$2.
0

0

- xz. 82’2,0(6")
w(®y, T, 0, ...,0)=u{(0,0,...,0) +ffhméxlax2«dxldx2 +
0
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This shows the existence almost everywhere of the derivatives wu,,, ., %z, «,,
and the continuity — even absolute continuity — of « in the x; x, plane. The proof
of the remaining statements in Theorem 4 is similar.

As in the case of Theorem 2, we may supplement Theorem 4 by the following
remark. Let u (P) be the potential of a general mass distribution d w. Then almost
everywhere # has an approximate second differential, in the sense that in the for-
mula (17) the expression 4 (g) is o (¢%) for almost every P, p é tends to 0 through
a set of points having 0 és a point of strong density. The proof follows from the
same decomposition du = ¢ + dv as in the case of Theorem 2. The argument also
shows that the approximate second derivatives Usz,z; eXists almost everywhere (being
defined as the approximate first derivatives of the ordinary first derivatives) and

satisfy the equations (15). In particular, the u,,., satisfy Poisson’s equation.

Added in proof, 1. VIII. 52

1°. When this paper was already accepted for publication, Prof. W. J. Trjitzinsky
called our attention to an interesting expository article by 8. G. Mikhlin, “Singular
integral equations”, Uspekhi Matematicheskikh Nauk, No 25 (1948), 29-112, which
treats topics similar to those discussad in the present paper and describes the earlier
work of Giraud, Tricomi and the author himself. However, only functions of the
class L* are considered there, and singular integrals arc treated in the sense of mean
convergence (in the metric L?). On the other hand, considering vector-functions and
matrix-kernels leads the author naturally to the problems of inversion and of the norm
preservation of the transform. (For the case K (2)=1/2% f€ L? these problems have
also been solved in an unpublished work of Prof. A. Beurling.) Combining those results
with the theorems of the present paper, one may present the former in a stronger
form, as we hope to show elsewhere,

2°. In Chapters I and II of the present paper we discussed the case of func-
tions f non-periodic and defined over the entire space E™. Analogous results can be
obtained for periodic functions. We shall limit ourselves here to describing only the
general idea. Let €, &, ..., & be a system of n independent vectois in E”, which
for simplicity we assume to be mutually orthogonal and of length 2 7. Let P, = O,
Py, Py, ... be the sequence of terminal points of the vectors (P,—O0,)=k &+
+kyéy+ -+ kyé,, where the k; are arbitrary integers. The series on the right in the
formula

pg

K*(P—0)=K({P—0)+ 3{K({P—-P)—K(0O—P,)

il
e

E
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converges absolutely and uniformly over any finite sphere in E®, provided we drop the
first few terms. The function K* is periodic, of period 2 7, in each Cartesian coordinate,
and the Fourier coefficients of K, taken in the principal value sense, are equal
to the corresponding values of Fourler transform of K. If

f(Py~Z2ce,. . x, expt(kye, + - + knz,), the function

(P =@ f 1(Q) K* (P—Q)dQ,

n

where R stands for the cube |z;| <z, j=1,2, ..., n, plays a role similar to that of

the ordinary conjugate function in E'. If f* is integrable, its Fourier coefficients

are ¢y, .. .x, Ifkl,,_kn, where Ii';cl x, denote the Fourier coefficients of K*. Familiar
results about f* in E' (in which case K (t)=1/t, K* (1)=14% cot } t) are simple conse-
quences of the theorems established in Chapters I and II and are easily extensible

to general n. The simplest cases for n=2 are the kernels K (2)=2"/|z[**% k= 11,

+2,... The kernel K* associated with K (z)=1/2* is the classical p function of
Weierstrass.

3°. Let &,¢6,,..., & be any system of independent vectors in E™ and P,=0,
P, P,,... the set of lattice points generated by this system. Let z,, 2,,... be

any sequence of complex numbers such that X|x,[|” < oo, where p>1 is a fixed

number, and let

(*) %,= Xz, K (P,—P,).

“Ey
Theorem 1 of Chapter I leads to the inequality
(Z ], )" < 4y (Z]aa ).
(For n=1 this remark is due to M. Riesz [9], and the proof in the case of general
n follows a similar pattern). The last inequality can be written in the form
|y, K (P Ppu)| < Ay (B | ) (2 ]y [
where p>1, ¢>1, 1/p+1/g=1. The case n=2, K (2)=1/2* is of special interest.
The equations (*) can then also be written

z, = 2% v — M)—z’
==t

where # and » now run through all complex integers. This may be considered as
the simplest generalization of the Hilbert-Toeplitz linear form to space E®. The norm
of this transformation is the upper bound of the modulus of the function defined
by the Fourier series X' (k + ¢1)™% exp @ (kz + ly).
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4°. Theorem 1 of Chapter 1 can be written in the form (which again for n=1

was pointed out by M. Riesz)

[ [i®P g @EP—QdPdQ| =4, llelle (1/p + 1/g=1),

ET ET

where the integral on the left is considered as the limit, for & -0, of the integral
extended over the portion | P — Q| = & of the space E" x E".

5°. The case K(P—0)=(P—0)|P— 0| ", feL? is also discussed in a recent

unpublished paper of J. Horvath.
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