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1. Introduction

Let U be a von Neumann algebra and G a group of *-automorphisms of % with fixed
point algebra B in A. If A is semi-finite and B contains the center of U the normal G-in-
variant states of & were analysed in [3], [12], [13]. In the present paper we shall extend
these studies to the general situation, in which the center is not necessarily left fixed by G.
The main result, from which the rest follows, states that if U is semi-finite and w a faithful
normal G-invariant state of I, and if @ acts ergodicly on the center of I, then there exists
a faithful normal G-invariant semi-finite trace v of 9 which is unique up to a scalar
multiple, and a positive self-adjoint operator BeL*(Y, 7) affiliated with B such that
w(4)=1(BA) for all 4€. For example, if ¢ is ergodic on U then v is a trace, hence A
is finite. As an application to C*-algebras we show that if 4 is an asymptotically abelian
C*-algebra (more specifically G--abelian) and p is an extremal G-invariant state, then
either the weak closure of its representation, viz m,(A4)", is of type III, or the cyclic
vector z, such that o(4)=(n,(d4)z, z,), A€ A, is a trace vector for the commutant of
7 o(A). This has previously been shown for invariant factor states [12].

The basic technical tool used in this paper is the theory of Tomita [15] and Takesaki
[14] on the modular automorphisms associated with faithful normal states of von
Neumann algebras. It will, however, mainly be applied to semi-finite algebras. We recall
from [14] that if A is a von Neumann algebra with a separating and cyclic vector x, then
the *-operation 8: Ax,—~A*x, is a pre-closed conjugate linear operator with polar de-
composition S =JA?, where J is a conjugation of the underlying Hilbert space, and A is a
positive self-adjoint operator—the modular operator defined by x,. The modular auto-
morphism ¢, of A associated with x, (or rather the state w,,) is given by ¢,(4) =A¥AA™"
Furthermore, J satisfies the relation JIJ=3'. For details and further results from this
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theory we refer the reader to the notes of Takesaki [14]. For other references on von
Neumann algebras the reader is referred to the book of Dixmier [1].

In most of the discussion we shall study faithful normal G-invariant states of 9.
If a normal G-invariant state  is not faithful then its support & belongs to B, hence we
can restrict attention to the von Neumann algebra FUE and the automorphisms EAE—
Bg(A)E, g€d, of this von Neumann algebra, and then apply the results for faithful states.

2. Automorphisms of von Neumann algebras

In this section we prove the main results concerning invariant states of von Neumann

algebras.

LeEmMmA 1. Let A be o von Neumann algebra and let G be a group of unitary operators such
that UNU2=WU fjor U€G. Suppose x, is o separating and cyclic vector for U such that
Uzy=x, for UEG, and let A be its modular operator. Suppose A¥=T'(t)T"(§), where I'(f)
(resp. I'(t) is a strongly comtinuous one-parameler unitary group in A (resp. W'). If
Ur¢)Ut=T@) and UT'@Q)U2=T"(t) for all t and UEQ, then A has a foithful normal

G-invariant semi-finite trace.

This lemma follows from the proof of [14, Theorem 14.1], because the trace constructed

in that proof will clearly be G-invariant.

LeMma 2. (1) Let U be a von Neumann algebra acting on o Hilbert space . Suppose
is a separating and cyclic vector for U, and let A be its modular operator. Suppose U is o uni-
tary operator on. W such that UNU-1=U and Uxy=wn, Then UA=AU and UJ=JU.

Proof. As in the proof of [14, Theorem 12.1] ¥ is made into a generalized Hilbert
algebra via the representation 4—wxy(4)=Axz, with multiplication x,(A4)z,(B)=x(4B)
and involution xy(A)* =x,(4*%), 4 €. The unitary operator U defines an isometric *-auto-
morphism of the generalized Hilbert algebra U by Uwxy(4) =x,(UAUT), which extends to
an isometry of the domain D* of At onto itself, cf. [14, Theorem 7.1]. Now for A€ we
have

JA (A) = 2y(A)* = A*xy = U UAU Yz, = UNWJA UAU 2,
= (U-JU)(U1AU)z,(4).
Since the generalized Hilbert algebra ¥ is dense in the Hilbert space D* [14, Lemma
3.4] we have that JAYz= (U-1JU)(U-AtU)x for all z€D*. Hence from the uniqueness
of polar decomposition we have J=U-1JU and A*=U-1AU, hence A=U-1AU.

(1) A partial result in this direction has been obtained by Winnink [17, Lemma IV, 5].
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We next show our main result. In the theorem we assume that the group G of auto-
morphisms of U acts ergodicly on the center C of ¥, i.e. BN C=C, where Bis the fixed points
of @ in 9. This assumption is made mainly for convenience and is analogous to that of

studying factors rather than general von Neumann algebras.

TrEOREM 1. Let U be a semi-finite von Newmann algebra and G a group of *-automor-
phisms of W acting ergodicly on the center of N. Suppose w is a faithful normal G-invariant
state of . Then there exists up to a scalar multiple a unique faithful normal G-invariant
semi-finite trace T of U, and there is a positive self-adjoint operator BELMN, 1) affiliated
with the fixed point algebra B of G in U such that w(A)=1(BA) for all A€.

Proof. Uniqueness. Suppose ¢ is another normal G-invariant semi-finite trace of ¥.
Then it is an easy consequence of the Radon—-Nikodym theorem for normal traces
1, Ch. III, §4] that its Radon—Nikodym derivative with respect to T will be affiliated
with both B and the center of 9, so it is a scalar by hypothesis. Thus ¢ =pz, with u>0.

Existence. We first make a digression. Since G is ergodie on the center C of U it follows
that ¥ is either of type I, IL,, or II,. In the type I and I, cases it is easy to show the
existence of the invariant trace 7, and we may even weaken the assumptions and only
assume that @ is a normal G-invariant state of C. (I am indebted to G. Elliott and R.
Kadison for valuable comments on these cases.) Indeed, since G is ergodic on C, w is faith-
ful on C. Suppose first U is of type I. Let B be an abelian projection in 9 with central
carrier I. Let ¢ be a faithful normal center valued trace of I such that w(E)=1[1, Ch. TI1,
§4]. If g is a *-automorphism of U then g(E) is an abelian projection in U with central
carrier I, hence g(F) is equivalent to E [1, Ch. III, §3]. Thus I=y(H)=yp(g(E))=
g~ Y yw(g(H))). Now g—1yyg is a faithful normal center valued trace on 9 which coincides with
w on K. Therefore they are equal, hence y is G-invariant. Then woy is a faithful normal
G-invariant semi-finite trace of . Note that if I is finite there exists a unique faithful
normal center valued trace y of U such that y(I)=1I. By uniqueness y is G-invariant,
and the proof is completed as in the type I case. Thus all that remains is the II,, case.
Since the type I and 1L, cases come under the argument we shall give, we only assume
A is semi-finite.

Considering the Gelfand-Naimark—Segal construction for » we may assume w =w,,
with x, a separating and cyclic unit vector for ¥ in the underlying Hilbert space #, and
that there is a unitary representation g—U, of G on } such that U,z,=x,and U,AU;'=
g(4) for all ge@, A€,

Let E, be the orthogonal projection on the subspace‘ of # consisting of all vectors y €Y
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such that U, y=y for all g€G. Then Eyx,=x,, so E,=+0. From the ergodic theorem [11,
§ 144] there exists a net {47 Ug?}aezr in conv (U,: g€G) which converges strongly to X,
By [7, Theorem 2] there exists a unique faithful normal G-invariant projection map @
of A onto B, and by [2, Corollary 1] we have

®(A4) =strong liin IZ AF Ug;xA U;?l (1)
for all A €.

Let Tr be a faithful normal semi-finite trace of U [1, p. 99], and let H be a positive
self-adjoint operator in LY, Tr) such that w, (4)=Tr(HA) for all A€ [1, p. 107]. Let
A be the modular operator and J the unitary involution defined by x,. By Lemma 2
U,A®=A"U, and U,J=JU, for all g€@. By [14, Corollary 14.1 and end of §14]
Aft=H*JH"J so that H*=JH "*JA" (recall that JUJ=U'). Thus for g€G we have

U,H®U;' = JU H ®U; ' JA®,
Therefore we have from (1) that
OH?) = JOH M) JAY,
Let B,=®(H*). Then B,€B, and furthermore
B,=JBfJJH"JH",
so that B,H #=JBfH*JeUANA =C, where C is the center of A. Therefore B,=C H*
with C,€C.

Let F, be the range projection of B,. Then F,€B. But F,is also the range projection
of C;, hence belongs to C, so that F,€ BN C, which equals the scalar operators by assump-
tion. Thus either F,=0 or F,=I. Since @ is strongly continuous on bounded sets and H*— I
strongly as t—0, B,=®(H")—I strongly as t—0. Therefore there is a neighborhood #
of 0 in R such that F,=1I for t€ 0. Let B,=V,|B,;| and C;=U,|C,| be the polar decom-
positions of B; and O;. Then V, and U, are unitary operators in B and C respectively
for t€N. Since B,=V,|B,|=C,H"*=U,H"|C,| it follows from the uniqueness of polar
decomposition of an operator that V,=U H* and | B,| =|C,| for all {. Therefore there is
a number 4,20 such that B,=1,V,=1,U,H*, and 1,>0 for tEN.

The map t—V, is strongly continuous for {€ Y. Indeed, t— B, is strongly continuous,
and so is t->B_,=B{. Since ||B,|[<1, t—>2,=|B,| =(Bf B, is strongly continuous [6].
Therefore t—V,=1;' B, is strongly continuous for ¢€ H.

We next want to define V, for those ¢ for which B,=0. Let A€, 20, and let N =
[—4, A]. Consider V, as only defined for tEN. If s¢ N with s>0 let ¢ be the largest number
in N such that s=¢n with n a positive integer. Let V,=(V )" If s<0 let V,=V*,. We

show that s— V' is strongly continuous for s=nr4 and continuous from below (resp. above)
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if s=nl, n>0 (resp. n<0). Indeed, it suffices to show this for s>0. Let s=nt with ¢
the largest number in N which divides s in an integer. Since the function {—#»# is open and
continuous there exists a neighborhood U, of s such that if s'€ U, then s’ ==t with ¢
in a neighborhood of ¢. Assume first ¢t 4. Let s'€,, so &' =nt’, '€N. If s’=(.n~l—lc)t1
with ¢, €N, k a positive integer, then &, <¢. If s'=(n—1)¢,, {, €N, then if s’ is sufficiently
close to s it, follows from the above argument that s=(n—1)i, with {;€N. But then ;>
contradicting the maximality of ¢ Therefore s’ is not of the form (n—1)¢, with {,€N.
If s'=(n—k)t, with t,€EN, n—k>1, then also s’ =(n—1)¢, with ¢, =(n—k)(n—1)"1t,<t,,
80 4, €N, a case which is ruled out. Therefore there is a neighborhood Y, of s such that if
&' €Y, then ' =nt' with ¢ in a neighborhood of ¢, and ¢ is the largest number in N which
divides s in an integer. If s=nl then the same holds for s'€ W,={s’€ Y,: &' <s}. Now let
@y, ..., %, be r vectors in H and £>0. Since i~ V, is strongly continuous for tEN, so is
t— V7. Therefore, if X, is a sufficiently small neighborhood of s contained in ¥, (or in. WY,
if s=nd) then |(V,—V,)z||=|(Vi—-Vi)=)|<e for s’€X, Thus s>V, is strongly
continuous for s=+ni and strongly continuous from below for s=nl, as asserted.

Let s=nt, t€N. Then V,=U,H" with U,€C, and V,=V}=U}H". Hence if A€
we have V. AV;'=H®AH"*. Note that

V Ve AVAVA=HC*O AR+~ AVFL,..

Now V,V.Vile=y(s, s')I with y(s, s') in the circle group 7, because V,V, Vil €
BN C=C. One can easily show that y: R x R—7T, is a Borel map. Furthermore, since
V,=H*U} all the V, commute with each other. Therefore it is trivial to show that

V(825 83) (81T 82, S3) Lp(s1, 83 83) (8, 89) L =1

for all s,, 55, s3€R. Thus o is a 2-cocycle as a cochain on R with coefficients in 7',
(with trivial action on T) in the usual cohomology theory of groups cf. [10]. Since
HR, T,)==0 [10, Theorem 11.5] y is a 2-coboundary, so there is a function £(s) on R with
values in 7'; such that y(s, s") = &(s)~1&(s")1&(s +5'), and as pointed out by Kadison [5, p.
1971 it follows from [9, Théoréme 2] that £(s) can be chosen as a Borel function. Since
y(s, —8)=1 and we may normalize £ so that £(0)=1, we have that &(s)"t=§&(—s).

We next show that &(s) is continuous at 0, and for this we modify the proof of [4,
Theorem 22.18]. Let W be a symmetric neighborhood of 1 in 7'}, and let W be a symmetric
neighborhood of 1 in 7'; such that W3< W,. Since 7, is compact there is a finite subset
Y15 s Y, €Ty such that T,=U7%-1 Wy,. Now 7 is continuous in a neighborhood of 0 in
R xR. Let 4 be an open symmetric neighborhood of 0 in R such that if a, 5€A4 then
(o, —b)EW. We have that 4= U%-;(E2(Wy,)N 4). Since &(s) is Borel by the preceding
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paragraph, we have at least one value of n for which £&%(Wy,)n 4 is Borel measurable
and has positive Lebesgue measure. By {4, Corollary 20.17] there is a neighborhood V
of 0 in R such that
Ve EY Wy, n 4y —(EHWy,) 0 4).

Let s€V. Let a, b€5(Wy,)N A be such that s=a—b. Then &(a) =w,y,, &) =w,y, with
w,, wo, € W. Thus we have _

&(s) =E&(a—b) =y(a, —b) E@)EB) L =y(a, ~b)w,w €W W,
Thus & is continuous at 0 as asserted.

Let T'(s)=&(s) V. Then
D(s+s") =&(s+8) Ve =E(s+8)p(s, sV LV, TV,
=&(s +8)VE(3)E(s" ) E(s +) LV Ve =T (s) (s,

so that s—I'(s) is a one-parameter unitary representation in B, which is strongly con-
tinuous at 0, hence strongly continuous everywhere. Furthermore, 1f A €3 then

T(s)AD(—s)=V,AV; = HSAH ' = ABAA.

Let I(s)=T"(—s)A"®. Then s—I"(s) is a strongly continuous one parameter unitary
group in W', and A®=T(s)IV(s) for all s€ R. Therefore the assumptions in Lemma 1 are
satisfied, so % has a faithful normal G-invariant semi-finite trace v. Let B be the positive
self-adjoint operator in LY, v) such that w(4)=1(B4) for A€U. Then if g€ we have

w(U,BU;' 4) =7(BU;* AU,) =w(U;14AU,) = w(4) = 7(BA).
By the uniqueness of B, B=U,BU," for all g€ @, hence B is affiliated with B. This
completes the proof of the theorem.

We note that the converse of the theorem is a triviality.

CoROLLARY 1.(Y) Let assumptions and notation be as in Theorem 1. Then B is semi-
finaite.

Proof. By Theorem 1 w(4)=17(BA4) for A€, with B affiliated with B. Thus the
modular automorphism o, of w is ¢(4)=B%AB~*, Since B is affiliated with B, o, is
also the modular automorphism of w restricted to B. Since ;| B is inner, B is semi-finite
by [14, Theorem 14.1].

The next two corollaries are direct generalizations of theorems of Hugenholtz [3] and
the author [12], see also [1, p. 101, Théoréme 7].

CoRrOLLARY 2. Let U be a semi-finite von Neumann algebra and G an ergodic group of
*_gutomorphisms of . Suppose w is a fasthful normal G-invariant state of A. Then W is finite

and o 18 a trace.

(1) This corollary also follows from [16].
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Proof. Let v and B be as in Theorem 1. Since B=CI, B is a scalar A1, 1>0. Thus
w(A)=21(4) is a finite trace of . In particular U is finite.

A more direct proof of this corollary can be obtained if we notice that if B,=C,H*
as in the proof of Theorem 1, then B, is a scalar, hence H*AH ™" = A4 for ¢ in a neighborhood
of 0 for all A €. Thus H is affiliated with the center of U, so w(A4)=Tr (HA4)is a trace on .

CorROLLARY 3. Let A be a von Neumann algebra acting on a Hilbert space H. Let G
be a group of unitary operators on W such that UNU2= for UEQG. Suppose there exists a
unit vector xy €W such that

(i) w ts cyclic for A,
(il) Cxy is the set of vectors in H invariant under G.

Then A is of type 111 if and only if x, is not a trace vector for A'.

Proof. Let F =[W'x,]. Then F is the support of the G-invariant state w,,, so F € B—the
fixed point algebra of G in U, Since z, is cyclic for ¥, it is separating for A’, hence A’ =Y’ F.
Thus w,,|A’ is a trace if and only if w,,|A'F is a trace. If A is of type III then so is A/,
hence cw,, |’ is not a trace. Conversely, assume w,, |’ is not a trace, hence w,,|A'F is
not a trace. We show that under this assumption FUF is of type 111, hence A’ F is of type I11,
so that U’ is of type III, and therefore 9 is of type III. We may therefore assume F =1,
i.e. we assume x, is separating and cyeclic for . Let E, be the one dimensional projection
on Cz,. By (ii) and the ergodic theorem [11, § 144] E,€conv (U: UEQ)~, so E,€B’. Thus
®,, is a faithful homomorphism of B onto €, so B=CI. Since the central projections in U
on the different type portions of 9 are invariant under the automorphisms, they are in
B=CI. Therefore U is either semi-finite or of type III. If 9 is semi-finite then by Corollary
2 U is finite and c,, is a trace. Since x, is separating and cyclic for %, w,, |A’ is also a trace,

contradicting our hypothesis. Therefore U is of type ITI.

Remark. If the von Neumann algebra U is not semi-finite we can obtain an analogue
of Theorem 1 as follows. Suppose w and g are normal G-invariant states of U with e faith-
tul. Then there exists a positive self-adjoint operator H affiliated with B such that p(4)=
o(HAH) for all A€¥. Indeed by [7], see also [2], there exists a unique faithful normal
G-invariant projection @ of ¥ onto B such that p=(o|B)o®. By the Radon-Nikodym
Theorem for von Neumann algebras [14, Theorem 15.1] there exists a positive self-adjoint
operator H affiliated with B such that o(B)=w(HBH) for BE B, hence o(4)=o(®(4)) =
w(HO(A)H) for A€U. But the state A~w(HAH) is normal and G-invariant. Hence
o(A)=w(HO(AVH)=w(HAH), A€, as asserted.
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3. Asymptotically abelian C*-algebras

It was shown in [12] that the specialization of Corollary 3 to factors was applicable
to describe the types of invariant factor states of asymptotically abelian C*-algebras. We
can now give a criterion valid for all extremal invariant states, and this can be done for
the most general of the different notions of asymptotic abelianness, namely that of
G-abelian introduced by Lanford and Ruelle [8]; see [2] for the other notions.

Let A4 be a C*-algebra and G a group of *-automorphisms of 4. We say A4 is G-abelian
if for each G-invariant state ¢ of 4 and all self-adjoint operators 4, B€Y we have

0 =inf {|o([4’, B])|: A’ €conv(g(4): gEG)}.

Let p(A4)=(m,(4)z,, x,) be its Gelfand-Naimark—Segal decomposition, and g— U, a uni-
tary representation of G' on the Hilbert space H, such that U,x,=x,, and 7 (g(4))=
U (A)Uy 1, A€ 4. Then g is extremal invariant if and only if « ¢ 18 up to a scalar multiple
the unique vector y € } ,such that U,y =y for all g €G. We thus have the following immediate

consequence of Corollary 3.

COROLLARY 4. Let A be a C*-algebra and G a group of *-automorphisms of A. Swppose
A is G-abelian and that ¢ is an extremal G-invariant state of 4. Then 7w (A)" is a von

Neumann algebra of type 111 if and only if ws, is not a trace when restricted to 7z ,(A)’.
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