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Introduction

A real valued number theoretic function is said to be additive if for every pair of co-

prime positive integers @ and b, the relation
f(ab) = f(a)+1(b)

is satisfied. Thus an additive function is determined by its values on the prime-powers.

If, in addition, for each prime p

then f(m) is said to be strongly additive. In this paper we shall confine our attention to
strongly additive functions.

The paper falls into three sections.

In the first section we consider those strongly additive functions f(m) which, after a
suitable translation, possess a limiting distribution. Theorems 1 and 2 provide a charac-
terization of such functions, essentially in terms of their values on the primes.

A classic result of Erdoés and Wintner states that an additive function f(m) has a

limiting distribution if and only if the two series
A6 .
s °
i 2
nd 5 (')
D

r

converge.(*) These two conditions are quite restrictive, however, so it is desirable to study

() See Notation.
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a wider class of additive functions. It is natural to begin with those functions for which
only the series (*) does not converge.

If this is the case, then f(m) cannot possess a limiting distribution. An old result of
Turan, however, says, in effect, that “if a strongly additive function has a finite variance,
then the values of the function do not differ from the mean very often”. (We give a precise
statement of this result in Lemma 4.) Thus we might expect that if the frequencies

v,(m: f(m)< z) are suitably translated; i.e., by an amount

> ’—;”i) (n=1,2,..),

p<sn

then the resulting frequencies

Vs (m: fim)— > I < z)
psn P
will have a limiting distribution. That this is indeed the case was first stated by Erdos
(Theorem II, [4]) and proved with the additional hypothesis that |f(p)| is bounded. Erdss

claimed that even more is true:

TrrorEM III (Erdos). Let f(m) be additive. Assume that a constant ¢ exists such that if
we put f(m)—c log m=g(m), then g(m) will satisfy

Z(g'(ﬁn))2 o
Y4
Then the frequencies )
Vo (m: fim)—clogm— 2 g—%@< z)

psn
have a limiting distribution. (2)

Erdés also stated that the converse to Theorem III is probably true, although he
claimed he could supply a proof only if f(p)>0. All of these cases are included in Theorem
2 of the present paper. We also determine the characteristic function of the limit law,
whenever it exists; and necessary and sufficient conditions are given for the continuity of
the limit law.,

The second section deals with various continuity properties of certain distribution
functions associated with additive functions.

In the third, and final section we consider the place of strongly additive functions in

(!} We remark that the above theorem of Erdds does not coincide with his original formulation.
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a more general framework. The assumption that f(m) has a limiting distribution is relaxed;
and we prove two theorems under weaker hypotheses. In particular (Theorem 4), we prove
an analogue of a classical result of Paul Lévy, which has also been considered by Erdés
in his paper [4].

Notation

We denote by |E| the cardinality of a typical set E. For each positive integer n,
we define the frequency

where the sum counts those integers m for which property ... holds. For an additive func-

tion f(m) it will be convenient to define the distribution functions
F (2) =v,(m: f(m)y<z2), n=1,2,3, ..

and we say that f(m) possesses a limiting distribution (or a limit law) if there exists a left
continuous function F(z) with the properties F(—o0)=0, F(+o)=1, such that
lim, ,, F,(z) = F(z) for all real points 2z at which F(z) is continuous.

We shall also use the standard notation u<v for functions u and v when there exists
a positive constant B so that |u| < Bv, the inequality being uniform over some well-defined
region.

We adopt the conventional notation

if <1
g = {f(p) if [f(p)| <

1 otherwise.

Section 1

THEOREM 1. Let f(m) be a strongly additive function. Then there exist constants oy, dy, ...
so that the frequencies

vo(m: f(m) — o, < 2) (1)
possess a limating distribution if and only if f(m) has the form

f(m) = ¢ log m+g(m), 2)
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! 2
where > M< oo, (3)
) p

In this case we can set

a,=clogn—+ 2 Q—(;L)+ constant + o(1),
p<n

and apart from the last two terms in this expression, the choice of the numbers a,, is unique.

The characteristic function of the limiting distribution, when it exists, will have the form

( L I (1 1) (1 E eua(pk)) it (@"@)Ip)
13 - + e s
70 P x p*

=1+’Lt6 » =1

to within a factor exp (—it(constant)).
The distribution function will be continuous if and only if 2 sp+o (1/p) = 0.
We shall deduce this theorem from Lemma 1 and the following

TEEOREM 2. Let f(m) be a strongly additive function. Then a necessary and sufficient

condition that a constant ¢ and real numbers oy, oy, ... exist so that the frequencies
vo(m: f(m)—clogm—ea,<2), (n=1,2,3..), 4)

possess a limiting distribution is that there exist a (further) constant d, and an additive function
g(m), so that

f(m) =dlog m+g(m), (5)
where > QL;)f< o, (6)

Moreover, when these conditions 'are satisfied we can take c=d, and o, =2 ;< .9’ (p)/p. The
characteristic function of the limiting distribution, when it exists, will have the form

¢t)=I1 (1 —%) (1 + E e“g(:k)) " HIDID),

D k=1 P

The distribution function will be continuous if and only if

1

Z=oc0,
9(0)+0 P

We remark that it would be desirable to find necessary and sufficient conditions so

that there exists two sequences o, &y, ... and fy, f,, ... such that the frequencies
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vn(m: ‘Bn/(m)_‘xn<z): (n=1: 2, ):
possess a limit law. In the above theorems we consider the case f§; =f,=...=constant.

LeMMA 1. Let y, w,, ... be a sequence of real numbers for which the limit lim,,_,  €"“» exists

uniformly in some neighborhood of the origin. Then the sequence wy, Wy, ... ttself tends to a lim:t.

Proof of Lemma 1. Set
#O) =lim etor,  |o] <ty

N—>00

Then if ¢, = 2t, |t| <t,, we have

lim e#9n — Tim (eftom)? = $(t);
n—>00 n—->w
and it follows that the limit ¢(¢) exists and is continuous for all real t. Moreover, the conver-
gence is uniform on any bounded interval of the real line; and, in particular, ¢(t) is con-
tinuous at the origin.

From what we have said it follows that the distribution functions

1 if z>w,

0 if 2<w,

W.(z)= {

converge to a distribution function W(z) (with characteristic function ¢(t)) in the usual
probabilistic sense. And by a classical result of probability theory we know that

1 T
lm —- 2= <A<
Tim o7 f_quS(t)l A (0<A<])
is equal to the sum of the squares of the jumps of W(z). Since |4(t)| =1 forallt, itis clear
that 4 =1 and that W(z) consists of a single step. It follows that the sequence w,, w,, ...
converges to the point at which this step occurs.

Proof of Theorem 1. It is clear that the necessity of conditions 2 and 3 follows from
the case ¢=0 of Theorem 2,

We now assume that conditions (2) and (3) are satisfied, so that the first assertion of
Theorem 2 holds. The characteristic function of the frequency (4) assumes the form

!
nl Z eit(f(m)—clogm—{,.)’ an Z M’

m<n p<n P

so that by Theorem 2 there exists a characteristic function $(#) with
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n—~1 z eit(f(m)—clog m) _ eit§n¢(t) + 0(1)’ (n_> oo)_
m<n
Since the right side is continuous at ¢ =0, by a standard theorem in the theory of probability
this is equivalent to the assertion (1) of Theorem 1.

Suppose now that for some further sequence of numbers 7y, 7, ...

va(m: f(m) —n, < 2)

converges to a limiting distribution with characteristic function ¥'(t). Then

et g () >W(t),  $a()=$(t), (n=>o0),
the econvergence being uniform on any bounded t-interval, so that in some neighborhood
of the origin on which ¢(¢) does not vanish,

lim et~

n—>o0

exists uniformly. From Lemma 1 it follows that

N = &, +constant +o(1), (n—> o),

and this completes the proof of Theorem 1 except for the assertion concerning the
(possible) continuity of the distribution function. The proof of this assertion is essentially
included in the proof of Theorem 4, where the necessary and sufficient condition for

continuity is shown to be
either ¢=+0

1
or c=0,and > ==co.
a+0 P
By means of the convergence of the series (6), this condition is readily seen to be equivalent
to that given in the statement of Theorem 1.
We now prove the necessity of the conditions (5) and (6) of Theorem 2. To do this we

need the following lemma.

LemmA 2. Let h(m) be an additive function. For each real number t, we define the sum
S(n, t) by
S(n, t)y=n"1 ethm,
m<n
Then if there exists a set of positive measure on which S(n,t) does not converge to zero as

n— oo, the function h(m) has the form
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h(m) = b log m + u(m), (7
where > %}0))2< oo, (8)

and b is some constant.

Proof of Lemma 2. We recall the definition of a finitely distributed additive function
as given by Erdés in [4]. This states that an additive function A(m) is finitely distributed
if there exist constants ¢; and ¢, and infinitely many integers n so that there exist
1<a,<a,<...<a,<n so that >c;n and |f(a;) —f(a;)]| <c,.

In 6] it was shown that any finitely distributed additive function 2(m) must have the
form given in (7) and (8). An inspection of the proof given there shows that the hypo-
thesis of Lemma 2 yields the same conclusion.

Proof of Theorem 2 (Necessity). Let the frequency functions (4) possess a limiting
distribution whose characteristic function is ¢(f). The characteristic functions, ¢,(f), of

these frequences have the form

Pa(t)= fw e#dy, (m: f(m) —clogm—o,<2z).

— 00

We adopt the notation of Lemma 2 with h(m)=f(m)—clog m, and we obtain
¢ (8) = S(n, t) e

Since ¢,()—=>(t), then |S(n, t)| ->|$(£)|. But ¢(¢) if a characteristic function, so it is non-
zero in some neighborhood of the origin. It follows from Lemma 2 that

f(m) —c log m = b log m +u(m),
and this is a representation of the desired type.

For the proof of the sufficiency of the conditions (5) and (6) of Theorem 2 we require

a further preliminary result.

LeMMA 3. Let h(m) be a strongly additive function for which the series 2 (h?3(p)/p) < oo.

Then the freqﬁencies

7, (m:h(m)~— ZM < z), n=1,2,...),

p<n P

converge to a limit law with characteristic function
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1-— eith(p)
W) = 11 (1 — ___) e~ i@
D P

Moreover, if the series 2 ymy10(1/p) converges, then the limit law is discrete; but if it diverges,

then the limit low is continuous (either singular or absolutely continuous).

Proof of Lemma 3. This lemma can be found as Theorem 4.4 of Kubilius’ mono-
graph [5].

Proof of Theorem 2 (Sufficiency). It will clearly suffice to prove that if an additive
function g(n) satisfies

(g’ (p))?
27

< oo,

and if constants «,, a,, ... are defined by

then the frequencies v, (m: g(m) — a, < z) have a limiting distribution. Accordingly, we define
a strongly additive function y(m) by

( )z{g’(p) p>2
ne 0 p=2.

Hence, we can apply Lemma 3 to y(m) to deduce that

v, (m:y(m) —ocn+g;2)< z)—»r(z), (9)

as n— co. The characteristic function of I'(z) has the form

=11 (1 -1 oo,
P

»

We next define a multiplicative function h(m) by

i-1

}L(pj) . eim(pi) — etty(m z h(p"), 7-> 1,

k=0

B(1)=1.

It follows from the definition that
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h(p)= ety — (ity(D)

‘We now show that for each value of ¢ the series

(10)

is uniformly absolutely convergent. To this end we note that the following inequalities
hold:

(11)
[r2h[<2, j§=12,....

These are readily verified by induction noting that

h(gj) —_ eitg(zi) _ eitg(gf—l)'
It follows that

o

3_5_(1%"”‘”210 ) 27" (h(p +6W(mzh )=§

1t0(177 )

i=0 i=0

where the change in the order of summation is justified since the series involved are ab-
solutely convergent. Hence,

e i it -1

Z h_(_}_) - (1 + e 7’(:0)) § p_;eitg(pi).

i=0 p—1 j=0

Since k(m) is multiplicative, for each positive integer =,

5101 g (1 5 o)
z p<n * z v’ '

vign

It will therefore be sufficient to prove that the double series

g§|h(p’)l

=1 7P

converges. But for primes p >2, we have

N 122 (%)j -

ito(2) _
and Z |h |\|e 1
i=1 2

eitg(p) —_ eity(p)

r

gitow) — gitv()

p

4
p(p—2)

3 [A)] _

+1.
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Therefore,
leita(p) — gitv(®) I 4

+1+ —_—
r>2P(Pp—2)

p>2
lg(m]>1
1 4

<242 e
|a(pz)|>1 P p>2p(p—2)

< )] _letno 1,
<
%:igl P’ 2

Hence, the series (10) is uniformly absolutely convergent. Moreover, it is convenient to
note at this point that the same series is uniformly bounded for all real .
We now note that the relation

eita(m) — z h(d) eity(m/d)

dim

holds, since it is true for prime powers and both sides of the equation are multiplicative.
Thus, if ¢,(t) denote the characteristic functions

_1 itg(m)
¢n(t)_n Z € 3

mgn

then $a(t)=

ERES

z dzl:h(d)eiw(m/d):l z k(d) Z em'(m)' (12)

7 g<n m<(n/d)
We shall now show that the frequencies

v, (m:g(m)— s gi;ﬂ)< z)

p<n

possess a limit Jaw by showing that the corresponding characteristic functions

¢n (t) e-itac,,=1 Z eitg(m)—itam
N m<n

converge. To do this we shall use the representation (12) and the convergence of the
frequencies (9).
From the convergence of the frequencies (9) we see that

S e#1m = eI @I P, (1) 4 o{n),
m<n

Now choose ¢ >0 and choose D so that

[h(d)]
2

d>D

<é&.
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We divide the sum (12) into two parts according to whether d < D, or d>D. We estimate
the first of these two sums by

e—it(a'(z)/z)\yl(t) Z (;) itan/d+ S hd (d)

d<D " a<p

h(d)o (g)

If d< D, an application of the Cauchy-Schwarz inequality shows that

g' (p) ( 1)2 ( (g'(p))2)
—|< - 2 ———=])=o0(l
<n/d>§p<n P (n/d)gpsn P/ \midy<psn P )

(uniformly for 1<d< D) as n— oo, since the series (6) converges. Hence, for sufficiently

and for all sufficiently large =,

s

" a<p

< é&.

I‘xn—(xn/dl =

large n,
h(d)
1 4

M3

fl z h(d) z eitY(rn):eit(—(a’(z)/zﬁan)qf'(t)

d d<D m<(n/d) d

+ 20,

where |6] <1

The second of the two sums (corresponding to D <d < n) is estimated by

e

D<dgn d d m<(nid) D<d

L3 M) 3 et =

D<dgn m<(nidy

We deduce that

f 6 dy, (m: g(m) =ty < 2) - DD (¢ 2(7

-0

as n > oo,

Since the right hand side is continuous at =0, then the frequencies

YL B I

pgn pgn P

possess a limit law. A straightforward calculation yields the characteristic function of

0 =TI (1 1) (1 § e””“’i’) 1#(9'(0) /)
i)y= - + e .
s P j P’

=1

this limit law:

In order to consider the (possible) continuity of the limit law we recall that

.1 [T 2
i 5 [ lsopa



154 P. D. T. A. ELLIOTT AND C. RYAVEC

equals the sum of the squares of the jumps of the distribution; and, hence, the distribution
is continuons if and only if the previous limit is zero. We show that

T
lim f |$(t)|*dt=0 (13)
T—>oo T 0

if and only if lim — f ¥ (@) Pdi=0, (14)
T—c0 T

were ¢(t) and W', (f) are connected by the relation

31— ety g 3 M0,

Since the infinite series (10) is uniformly bounded for all ¢, it follows that the truth of (14)
implies that of (13). We now prove the opposite implication.

Choose a large prime ¢g. From the inequalities (11), we see that there is a positive
constant 4, depending at most on ¢ so that

0(2")

For the odd primes p< ¢ we employ the estimate

0 h I ity(p)\ ~1 0 itg(vi)
B (z—"’—,i)= I (1+25) 5

3gp<q \j=0 P 3<p<a p—1 7=0 P’

5) (50-5))
> L+——| (1-2{1-3) }=2,
sgq( p— 1) p\" » :

where 4, is a positive constant.
We conclude that

>1,.

L [P @0 ]<2|4)]| 202“’ eltoh |1,
i=
whenever the right hand side is defined. We may suppose that g(2)=0; for if not, then
|§ 2~ etta@h| <1,
=0
and (14) would follow immediately from (13).

Let & satisfy O0<e< 4_|-g7:2)|’
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and define the set ¥ by

If t¢ E, then

Re {1+ €92} = 2 cos? (@) > 2 cos? (7—; (21+1) +%22)) =2 sin® (%(2)) =4 >0.

Hence Re{> 277"} > 1 Re{l +et0®} 41— 3 277> 4,
7=0 j=2
Therefore

1 (T 1 1
= W (t 2dt=—f (¢ 2dt+—f ¥ @) [2dt
Tfo l 1( )| T teEﬁ[O,T]| 1( )I T te[O.T]-I«.‘| 1()I

T
<T ([0, T1N E) +4 (A Ay A5) 2T 71 f | (t) [2dt.
0

2
Since (10,710 By < 2Lla@]e
7
. 1 (7 2 2]g(2)|e
we have limsup — | |W,@)dt<—="=.
T—o0 T 0 T

As £>0 can be taken arbitrarily small, (14) holds. It follows from Lemma 3 that the limiting
distribution of the frequencies (4) ‘are continuous if and only if > ;y.01/p diverges. This
finishes the proof of Theorem 2.

Section 2

We see from Lemma 2 that an additive function is finitely distributed if S(n, ¢) fails
to converge to zero on a set of positive measure. It is natural, therefore, to inquire what
properties of f(m) correspond to the converse proposition; namely, that S(n, {) >0 in
measure as n—> . We consider this question in Theorem 3. Moreover, as a corollary
to this theorem, we give a necessary condition that real numbers f;, f,, ... exist so that
the frequences v, (m: f,f(m) —a, < z) possess a limiting distribution.

THEOREM 3. The following three conditions are equivalent:
(i) For any 6 >0, F,(z+6) — F,(2) >0 uniformly for all real z as n—> oo.
T
(ii) f |8(n, )| dt—0
-7

for all real T as n— oo.



156 P. D. T. A. ELLIOTT AND C. RYAVEC

T
(iii) lim sup lim sup f |S(n, t)|dt=0.

I—o00 n—>o0

Proof. ((i)= (ii))

We employ the representation (see [1]),

1 * sin 7t)?
=3 |S(n, t)|? (7) dt. (15)

S (| — fka)) = f

ki, ka<n -
|fkD)~fkp)I<T
From the hypothesis (i) with §=1, we see that

1 n
- 1—- —
L3S 1.0 (o)

k=1
2<fk)<a+1
uniformly in z. Applying the last result with z=f(1), f(2), ..., f(r) in turn, we obtain

1
= 2 120 (n—>co) (16)
n k1, kz<n
1ftk)—fkal<1
It follows from (15) and (16) that for all real 7',
T
lim |S(n, t)| dt=0,
T

which is (ii). o
((ii)) = (iii)). The proof is immediate.
((ii) = (i)).

We again appeal to an integral representation:

: 2
S(n, t) e~ vt (%tm) dt. (17)

-

1
LS a-lm-vh-|

17(-y]<1

From the inequalities

i _., [sin mt\? i sin 7t ? T 2
f S(n,t)e ""(7) dt]<f |S(n,t)|( , )dt<f |8(n, ) dt+ 575,

-0 - T -7

we deduce that

-] < 2 T
lim S(n,t) e~ (M) dt < lim sup lim sup f |S(n, )| dt =0,
>0 J -0 7tk T—>00 n—o0 -7

by hypothesis (iii). Therefore, for each y, the left hand side of (17) tends to zero as n—oo.
Noting that
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1

5= 2 1< 3 (1-lik-yh~0
N k<n <n

Ifk)—yt<t 17y —yi<1

as n—> oo, we may apply this result with y=z, 241, ..., 2+[6]+1 in turn to obtain

1 [5]+11
S 3 1<2 3 - 3 10

k<n y=0 N kgn
2 f(ky<z+8 1f()—yl<}

that is lim (F, (z+6)— F,(2))=0,

n—oQ

which is condition (i). This establishes Theorem 3.

COROLLARY. Let oy, o, ... and B, fs, ... be two real sequences such that the frequences
va(m: B, f(m) — o, < 2) have a limiting distribution function F(z). Then, either, lim,_, . §,=0,
or we may choose B, identically equal to 1.

Proof. Assume that lim sup,|f.]| =¢,>0. Then there is asubsequence f,,, By, ..
for which either fx>¢;/2 or fn;< —c,/2. We assume first that the former case holds.
Since F(2) is a distribution function, there exist real numbers z and § so that
F(z+0)— F(z)=c,>0. For this choice of z and 8, we have for all sufficiently large n

”n(m: ﬁnf(m) - “n< z'l'a) _vn(m: .an(m) — 0, < z) > 62/2°

Consequently, for all sufficiently large n in the subsequence 74, n,, ... we have

F, (z+ oc,,+2_6) _F, (z+ oc,,) 20_2.
B 51 B 2
Thus, with z replaced by (2+a,)B:" (n =n,) we seethat condition (i) of Theorem 3 fails. It
follows that condition (ii) also fails, in which case f(m) has the form (7) and (8) by Lemma 2.
Hence, we may choose the §,=1 by Theorem 1.
Similarly, if there is a subsequence f,,, £,,, .. 80 that ;< —(c,/2), we can deduce
the same conclusion. Q.e.d.

Section 3

Suppose that the distribution functions ¥,(2) eonverge to a continuous distribution

F(z). Then for each z
lim (F(z+ ) — F(z))=0. (18)

8501

A theorem of P. Lévy [5] states that in the present circumstances, this can occur if and
only if the series D ;).01/p diverges. Even when the functions F,(z) do not converge, a
meaning can be given to this result, provided that we replace the condition (18) by
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lim sup lim sup (F,(z+ ) — F, (2)) = 0, (19)
804 n—>00
uniformly in z.
Note that a distribution function is continuous if and only if it is uniformly continuous,
so that the last condition is a natural generalization of (18).
The sufficiency of Lévy’s condition was proved by Erdés (Theorem IV [4]) subject to

|f(p)| <B, and formulated in the following different manner:

TueEOREM LIV (Erdss). Let f(m) be a (strongly) additive function such that (19) holds.
Then to every &>0, there exists a 6 >0 such that if a,<a,<...<a,<n is a sequence of integers
with |f(a;)—f(a;)]| <8, then x<en for n sufficiently large. ()

Accordingly, we state the following theorem.

THEOREM 4. The following two conditions are equivalent:

lim sup lim sup (F,(z+ d)—F,(2)) =0,
-0+ n—o0

. . 1
uniformly in z, and > —=o0, (20)
=0 P

The content of this theorem was succintly stated by Erdos ([4], p. 17) in the following
surrealistic manner: “If 3, .01/p = oo, the distribution function tries to be continuous

whether it exists or not.”

Proof of Theorem (Necessity). We assume to the contrary that

> l<<><:.

fm+o0 P

Let P denote the set of primes for which f(p) =0. Then a simple application of the sieve
of Eratosthenes shows that the number of integers in the interval 1 <m <= which are not

divisible by any prime in P is equal to

(I+o(1)nI] (1 —1).

pep P
On each of these integers f(m)=0. Taking z= —4§/2, we see that
1
lim sup lim sup (¥,(6/2) - F,(—46/2)) = [] (1 —-—) >0,
50+ N—>00 pep P

which contradicts the hypothesis.

. (1) Wenote the obvious misprint in the statement of this theorem on p. 2 of [4] in which the roles
of ¢ and 0 have somehow been reversed.
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We now prove the sufficiency. Hence, we assume that (20) holds. Suppose that (19)
fails. Then there exists a decreasing sequence J,=>0,>...>0 and a sequence zy, 2z,, ...
(where z, =2,(6,)) such that

lim sup (F,(z + 6) — F, () =y >0.

Thus, we obtain a sequence of integers n, <n,<... so that for n, sufficiently large,

Fn,(zk + 61(:) _Fn, (zk) >

DR

It follows that the intervals 1 <m<n, contain at least (y/2)n, integers a; on which

|f(a) —fla;)| <6, <6y, (21)
and so f(m) is finitely distributed. Therefore, f(m) has the form
f(m) = c log m+g(m), (22)

where > M< oo,

P Y4

If ¢=0, then f(m)=g(m); and it follows from Theorem 2 that the frequencies

Vn(Wf(m)— )3 f’(_p)<z)

p<n P

have a continuous limiting distribution since 2 ;<0 1/p = ©©. Therefore, (21) cannot hold,
and we may suppose that ¢==0 hence forth.

For convenience we set

Bul)=> 3 e,

N mgn

It follows from Theorem 2 and from the fact that f(m) has the form (22), that there is a
characteristic function W'(f) so that

1 ’
lim = 3 o™ . exp ( —it > M) =¥().
n-so0 W mgn pgn P
Integrating by parts, using the fact that for any fixed ¢, 0<e< 1,
5 M 110y 3 20
psm P p<n P

uniformly for sn <m< n as n— oo, we obtain

11— 712905 Acta mathematica. 126. Imprimé le 7 Avril 1971.
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¥(t) exp (it > ‘(Zl(—p—)),

itc

1+t

$a(t) = (1 +0o(1))

uniformly for any compact interval of ¢ values.

Employing the representation

* ¢ tz, \ (sinat\® 1 _|fim) =2,
Sl ) e (o) (5 -0 2. 05

for n=mn,, n,, ..., we see that the proportion of g, in the interval [1, n] which satisfy (21)

o t tz, \ [sin 7t\?
2t e (i) ()

Set 7'=§;2. We have the estimates

14 tz, \ (sin 7£\*2
L [P t
2ﬁt|>T6k ¢ (25k) e( 25;)( it ) .

and (for all sufficiently large n taken from the sequence n,, n,,...)

t tz, \ (sin mt\? f T ( uzk) (sin U 6k)2
- - - _ YE) (LYY
‘2ﬁtl<”k(26k) ‘ ( 25k) ( b ) o '26k -T¢n(u) ) 2 mudy *

T du
<2(5k(1+o(1))f_T————1HuI <10 &, |log 8-

<1

) f(m)—2

does not exceed

1o, (7t)? n*’

<4fw i<46"

Combining these last two inequalities we see that

0<y< lileliup (Fo(z +0) — Fozo)) < %-F 10 6, |log &/,
which cannot hold if §; is sufficiently small. This completes the proof of the sufficiency
when ¢=0, and the proof of Theorem 4.

It is clear that the assertion concerning the continuity of the limiting distribution in
Theorem 1 can be proved in exactly the above manner.

Suppose that we again weaken the requirement that the distribution functions F,(z)
have a limiting distribution, and assume only that

Lim sup lim sup (F,(z) —~F,(—2))=1. (23)

2—>c0 N—>o0

This condition is certainly true when the F,(z) have a limiting distribution; and it is natural

to ask whether there exist necessary and sufficient conditions, corresponding to the Erdos-
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Wintner criteria (16) and (17) when F,(z)— F(z), for (14) to hold. The following theorem
establishes such conditions.

TrEOREM 5. The following two propositions are equivalent:

ProPOSITION 1. lim sup lim sup », (m: |f(m)| < z)=1.
2—>00 n—-»o0
ProposiTION 2. (i) liminf| > m‘< o
n->0 |pgn P
’ N2
(i) S (' (p) < oo
» p

We shall need several times the well-known

LeEmma 4 (Turdn). Let h{m) be a strongly additive function. For each positive integer

m sel
h(p)
B(n)= M)
) pgn P
and D)= > hzj(op)‘

Then the following inequality is satisfied for some positive constant C

> | h(m) — E(n)*< Cn D*(n).

mgn

Proof of Lemma. This result was first proved for real-valued functions by Turan.

It was generalized by Kubilius to complex valued additive functions (see Lemma 3.1 of [5)).

Proof of Theorem (Prop. 1= Prop. 2). We deduce from Proposition 1 that there exists

a z, so that
lim sup v, (m: |f(m)|< zg) > 3.
n—->0

Therefore, f(m) is finitely distributed; and we can put
f(m) = c log m + g(m), (24)

@) _
5

Let P ={p: |g(p)] >1}, and set

where (25)
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Hence, either P is empty or 0 <« <1. For the remainder of the proof we shall assume that
0<a<l, as the former assumption involves no additional difficulties.
We now show that ¢=0. It will then follow from (24) and (25) that (ii) holds.
Choose £>0 so small that o +5¢ <1. Then by Proposition 1, there exists a z, so that

lim inf v, (m: |f(m)|>2,) < .
7i~—>00

We may therefore choose a sequence n, <n,<... so that
vy (m: [f(m) >2)<2e (j=1,2,..). (26)
Let ¥’ indicate a summation over integers not divisible by any prime in P. (Note that the

number of such positive integers not exceeding n, is (14o0(1))(1 —a)n,.)
Applying Lemma 4 to the strongly additive function k(m) defined by h(p) =g'(p), we have

2 Jom) = Ben) = 37 |hm) = Bm)['< 3 [hm) =~ B P<m, D*(n), @27)
where Dz(n,)<z—(g’(—;:)—)2<l, (G=1,2,...

Next, by an application of the Cauchy-Schwarz inequality, we see that
’ 2
Bn)< > g (p)y 2 1 <log log n,. . (28)
p<n; P op<m P

Combining inequalities (27) and (28) yields

2 Fm)<2 3 |gm)— Bn)+2 Z | B(n,)[* <y log log . (29)
m<ng m<n;

m<ny
We now suppose ¢+ 0 and obtain a contradiction.
By (26), for all but 2¢n, of the integers m < n,, we have
|g(m)| =] —c log m + f(m)| > |c| log m —2,.
Hence, for all but 3 en, of these integers, with n; sufficiently large,

el

|lg(m)| > log m.

Now, the number of m <n, which are not divisible by any prime in P, and for which

|gtm)| = (|¢|/2) log m, exceeds
(2 1)#3em=(1+0(1)) (1 —o)m;—Ben;> (1 —a— 4 &) my >emy,

mgn;

where these inequalities hold for all sufficiently large n,. Thus, for all such n,,
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2
" §*(m) > (I_;') > log® m>n,;log® n,

msng mgen;

™M

and the last inequality contradicts (29) when n, is sufficiently large. Therefore, ¢ =0, and
(ii) holds.
To show that (i) holds, we restate (27) in the form
2 |fm) — E(n)[*<n;,

mgny

since now f(m)=g(m). In the above sum there are at least (1 —a—3e)n, integers m <n;
for which |f(m)| <z; and so

(1—a—3e)nBn)<2 3 |EBm)—fm)P+2 3 |Hm)}F<n,
s |[(’1"n)<|22|

Hence, E%n,)<1, which proves (i).

(Prop. 2=Prop. 1)
Let D={p: |f(p;)| >1}. It follows from (ii) that

1

-— < 0o,
piep Py

In terms of the set D we define a strongly additive function h(m) by

flp) if pé&D

1 otherwise.

hip)= {

With this definition of A(p), the condition that T (h*(p)/p) <oc is precisely the condition
(ii). It then follows from Lemma 3 that if £¢>0, there exists a z so that for all sufficiently
large =,

Yy (m: lh(m)— > h—(;)—)

<z)>l—e.
pgn

The condition (ii) guarantees the existence of a positive number B and a sequence n; <n, <...
of integers so that |A(n;)| <B, where we have put

=3 12,

pgn P

We deduce that for all sufficiently large n,,
vag(m: |h(m)| <z+B)<1l—e.

Let r be a positive integer. It is clear that for each positive integer n,
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v, (m: |f(m)|<z+B+i§:1(1+[f(p,)]))>vn(m: |h(m)| <2+ B) —v,(m: p,|m for some i >r),

and the last frequency does not exceed

AN

l§[ﬁ]\§l_

=1 LD

Using this last inequality with n=mn,, n,, ... in turn, we obtain

lim lim sup v, (|f(m)| <z +B+ Zr(l+]f(pi)|))>l—a—- §: -1—
121

2500  n—>00 i=r+1 P

Since & >0 and the positive integer r are otherwise arbitrary, we deduce that

lim lim sup »,(|f(m)| <z)=1,
e—>00 n—>00

and this completes the proof of Theorem 5.
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