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Introduction 

A real valued number  theoretic funct ion is said to be additive if for every pair of co- 

prime positive integers a and b, the relation 

/(ab) =/ (a )  + /(b) 

is satisfied. Thus an addit ive funct ion is determined by  its values on the  prime-powers. 

If,  in addition, for each prime p 

/ ( p )  = / ( p ~ )  = . . . ,  

then  f(m) is said to  be strongly additive. I n  this paper  we shall confine our a t tent ion to 

strongly addit ive functions. 

The paper falls into three sections. 

I n  the first section we consider those s trongly addit ive functions f(m) which, after a 

suitable translation, possess a hmit ing distribution. Theorems 1 and 2 provide a charac- 

terization of such functions, essentially in terms of their values on the  primes. 

A classic result of ErdSs and Wintner  states t ha t  an addit ive funct ion f(m) has a 

limiting distr ibution if and only if the two series 

y / ' ( P )  (*) 
v P 

and "~ (/, (p))2 
v P 

converge.Q) These two conditions are quite restrictive, however, so i t  is desirable to s tudy  

(~) See Notation. 
10-  712905 Acta mathemat@a. 126. Imprim6 lo 7 Avril 1971. 
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a wider class of additive functions. I t  is natural  to begin with those functions for which 

only the series (*) does not converge. 

I f  this is the case, t hen / (m)  cannot possess a limiting distribution. An old result of 

Turs however, says, in effect, that  "if a strongly additive function has a finite variance, 

then the values of the function do not differ from the mean very often". (We give a precise 

s tatement  of this result in Lemma 4.) Thus we might expect tha t  if the frequencies 

v~(m: /(m)< z) are suitably translated; i.e., by an amount  

then the resulting frequencies 

f '(P), ( n = 1 , 2  . . . .  ), 
~<~ n 19 

vn(m:/(m)- ~ /'(P)<z) 
p < n  19 

will have a limiting distribution. That  this is indeed the case was first stated by  ErdSs 

(Theorem II ,  [4]) and proved with the additional hypothesis tha t  If(P) I is bounded. ErdSs 

claimed tha t  even more is true: 

THEOREM I I I  (ErdSs). Let/(m) be additive. Assume that a constant c exists such that i/ 

we p u t / ( m ) -  c log m = g(m), then g(m) will satisfy 

t 2 (g (p)) < ~ .  
p P 

Then the frequencies 

~n (m: / ( m ) - c l o g m -  ~<, g'(P~) <~ 

have a limiting distribution. (1) 

ErdSs also stated tha t  the converse to Theorem I I I  is probably true, although he 

claimed he could supply a proof only i f / (p)  > 0. All of these cases are included in Theorem 

2 o f  the present paper. We also determine the characteristic function of the limit law, 

whenever it exists; and necessary and sufficient conditions are given for the continuity of 

the limit law. 

The second section deals with various continuity properties of certain distribution 

functions associated with additive functions. 

In  the third, and final section we consider the place of strongly additive functions in 

(1) We remark that the above theorem of Erd6s does not coincide with his original formulation. 
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a more general framework. The assumption tha t / (m)  has a limiting distribution is relaxed; 

and we prove two theorems under weaker hypotheses. In  particular (Theorem 4), we prove 

an analogue of a classical result of Paul L~vy, which has also been considered by  ErdSs 

in his paper [4]. 

Notation 

We denote by [El the cardinality of a typical set E. For each positive integer n, 

we define the/requency 

1 ~ 1, 
~n(m: .. .)=~ l<m<n 

where the sum counts those integers m for which property ... holds. For an additive func- 

t ion / (m)  it will be convenient to define the distribution functions 

Fn(z ) =vn(m: / (m)< z), n = 1, 2, 3, ...; 

and we say tha t / (m)  possesses a limiting distribution (or a limit law) if there exists a left 

continuous function F(z) with the properties F ( - o o ) = 0 ,  F ( + o o ) = l ,  such tha t  

lim~-.oo Fn(z) = _F(z) for all real points z at  which F(z) is continuous. 

We shall also use the standard notation u ~ v  for functions u and v when there exists 

a positive constant B so tha t  [ u [ ~< By, the inequality being uniform over some well-defined 

region. 

We adopt the conventional notation 

/ ,(p)={/(lp) if ]/(p)[~< 1 
otherwise. 

Section 1 

TH]~OREM 1. Let/(m) be a strongly additive/unction. Then there exist constants c~1, c~, ... 

so that the/r~uencies 

~n(m:/(m) - ~ < z )  (1) 

possess a limiting distribution i /and  only i / / (m)  has the/orm 

/(m) = c log m + g(m), (2) 
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where ~ (g, (p))2< oo. (3) 
p P 

In  this case we can set 

~n = e log n + ~ g'(p~) + cons tan t  + o(1), 
~<n p 

and apart/rom the last two terms in this expression, the choice o] the numbers o~ n is unique. 

The characteristic/unction o/the limiting distribution, when it exists, will have the/orm 

l (1 l k=l et ta(~ e-~t(a'(P)lP)' 
~(t)-----'i'+itc I~p --~)(1 + ~ - ~ ]  

to within a/actor exp ( - i t ( cons t an t ) ) .  

The distribution/unction will be continuous i/ and only i/ ~r(~).o (I /p)  = ~ .  

We  shall deduce this theorem f rom L e m m a  1 and  file following 

TrTwol~.M 2. Let/(m) be a strongly additive/unction. Then a necessary and su//icient 

condition that a constant c and real numbers ~1, ~ . . . .  exist so that the/requencies 

vn(m:/(m) - c  log m - ~ n <  z), (n = 1, 2, 3 ...), (4) 

possess a limiting distribution is that there exist a (/urther) constant d, and an additive/unction 

g(m), so that 

where 

/(m) = d log m +g(m), (5) 

(g'(P))* < oo. (6) 
P 

Moreover, when these co~ulitions'are satis/ied we can take c =d, and o~n =~<ng'(P)/P. The 

characteristic /unction o] the limiting distribution, when it exists, will have the/orm 

The distribution/unction will be continuous i /and  only i/ 

1 

g(p)~:0 P 

We r emark  t h a t  it would be desirable to find necessary and sufficient conditions so 

t h a t  there  exists two sequences al, as . . . .  and  ill, f12 . . . .  such t h a t  the  frequencies 
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v,(m: fl,J(m)--o:,< z), ( n = l ,  2, ...), 

possess a limit law. I n  the above theorems we consider the  case flt=fl2 . . . . .  constant.  

L v.MMi 1. Let a)t, c%,.., be a sequence o/real numbers/or which the limit limn_~oo e~% exists 

uni/ormly in some neighborhood o/the origin. Then the sequence cot, eo~, ... itsel/ tends to a limit. 

Proo/ o/ Lemma 1. Set 

Then if t 1 = 2 t, I t l <~ to, we have 

r u`~ Itl<to, 
n--~Qo 

l ime ~t'~" = lim (dt~'") ~ = r (t); 
n--)r162 n - ~  

and it follows tha t  the limit ~b(t) exists and  is cor~tinuous for all real t. Moreover, the  conver- 

gence is uniform on any  bounded interval of the  real line; and, in particular,  r is con- 

t inuous at  the origin. 

F rom what  we have said it follows tha t  the distr ibution functions 

W'~(z)=[lo ifif z~<e%z>~~ 

converge to  a distr ibution funct ion W(z) (with characteristic funct ion r in the  usual 

probabilistic sense. And  by  a classical result  of probabil i ty theory  we know t h a t  

lim 1 ~  fTr]r  ( 0 < A ~ < I )  
r-*~ 2 T  

is equal to  the sum of the squares of the  jumps  of W(z). Since Ir l = 1 foral l t ,  i t i s  clear 

t h a t  A = 1 and tha t  W(z) consists of a single step. I t  follows tha t  the sequence eo 1, co2 . . . .  

converges to the point  at  which this step occurs. 

Proo/o/  Theorem 1. I t  is clear t ha t  the necessity of conditions 2 and 3 follows f rom 

the  case c = 0 of Theorem 2. 

We now assume t h a t  conditions (2) and (3) are satisfied, so tha t  the first assertion of 

Theorem 2 holds. The characteristic funct ion of the f requency (4) assumes the form 

n-1 Y e~t~(m)-cl~ C. = Z g'(P), 
rn<~n ~ 4 n  

so tha t  by  Theorem 2 there exists a characteristic funct ion r with 
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n -1 ~ ett(I(m)-cl~162247 (n--> oo). 
m<~n 

Since the right side is continuous at t = O, by a standard theorem in the theory of probability 

this is equivalent to the assertion (1) of Theorem 1. 

Suppose now that  for some further sequence of numbers ~1, ~2 .... 

rn(m: /(m) - - ~  < z) 

converges to a limiting distribution with characteristic function ~F(t). Then 

ea(=,-',,~r r162 (n~oo) ,  

the convergence being uniform on any bounded t-interval, so that  in some neighborhood 

of the origin on which r does not vanish, 

lim e ~t(a'~-~'~) 
7Z---~r 

exists uniformly. From Lemma 1 it follows that  

~Tn = cr + constant + o(1), (n~  c~), 

and this completes the proof of Theorem 1 except for the assertion concerning the 

(possible) continuity of the distribution function. The proof of this assertion is essentially 

included in the proof of Theorem 4, where the necessary and sufficient condition for 

continuity is shown to be 

either c =~ 0 

1 
or c=O, and ~. - = c o .  

g(~),O P 

By means of the convergence of the series (6), this condition is readily seen to be equivalent 

to that  given in the statement of Theorem 1. 

We now prove the necessity of the conditions (5) and (6) of Theorem 2. To do this we 

need the following lemma. 

L~MMA 2. Let h(m) be an additive function. For each real number t, we define the sum 

S(n, t) by 

S(n, t) = n -1 ~ e ah(m). 
rn~n 

Then if there exists a set o /pos i t ive  measure on which S(n, t) does not converge to zero as 

n ~ co, the function h(m) has the form 
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where 

and b is some constant. 

h(m) = b log m § u(m), (7) 

(u'(P))~< ~ ,  (8) 
P 

Proo/o /Lemma 2. We recall the definition of a finitely distr ibuted addit ive funct ion 

as given b y  ErdSs in [4]. This states t ha t  an addit ive funct ion h(m) is finitely distr ibuted 

if there exist constants c~ and c~ and infinitely m a n y  integers n so tha t  there exist 

1 ~< a 1 < a S <. . .  < a~ ~< n so tha t  x > c i n  and I/(ai) - / (aj )  I < c2" 

I n  [6] it was shown tha t  any  finitely distr ibuted addit ive funct ion h(m) must  have the 

form given in (7) and (8). An  inspection of the proof given there shows tha t  the hypo-  

thesis of L e m m a  2 yields the same conclusion. 

Proo/ o/ Theorem 2 (Necessity). Let  the frequency functions (4) possess a limiting 

distr ibution whose characteristic funct ion is r The characteristic functions, r of 

these ffequences have the form 

r = f ~  e~tZdv n (m: / (m) - c log m - ~n < z). 

We adopt  the  nota t ion of L e m m a  2 with h ( m ) = / ( m ) - c  log m, and we obtain 

Cn (t) = S(n, t) e~% 

Since Cn(t)-~r then IS(n, t) l-+ Ir l. But  r if a characteristic function, so it is non- 

zero in some neighborhood of the  origin. I t  follows from L e m m a  2 tha t  

/(m) - c  log m = b log m+u(m) ,  

and this is a representat ion of the desired type.  

For  the proof of the sufficiency of the  conditions (5) and (6) of Theorem 2 we require 

a fur ther  preliminary result. 

L]~MMA 3. Let h(m) be a strongly additive/unction/or which the series ~(h~(p)/p) < co. 

Then the/requencies 

\ "" ~ n "1 J 

converge to a limit law with characteristic/unction 
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Moreover, i / the  series ~h(p).0(1/p) converges, then the limit law is discrete; but i] it diverges, 

then the limit law is continuous (either singular or absolutely continuous). 

Proo/ o / L e m m a  3. This lemma can be found as Theorem 4.4 of Kubilius' mono- 

graph [5]. 

(Sufficiency). I t  will clearly suffice to prove that  if an additive Proo/ o/ Theorem 2 

function g(n) satisfies 

5 (_g'(P))~< ~ ,  
P 

a n d  if  c o n s t a n t s  g~, ~2 . . . .  are d e f i n e d  b y  

a~= Z g'(P), 
p<n p 

then the frequencies ~,n(m: g(m) - ~n < z) have a limiting distribution. Accordingly, we define 

a strongly additive function ~(m) by 

y(p) = {~'(p) p > 2  

p = 2 .  

Hence, we can apply Lemma 3 to ~(m) to deduce that  

g'(2) z) ~ F(z), (9) v~ \m: y(m) - ~n -t- T <  

as n ~  co. The characteristic function of F(z) has the form 

We next define a multiplicative function h(m) by 

1-1  
h(p j) = e ~tol~) - e ~(~ ~ h(pk), j >~ 1, 

h(1)= 1. 

I t  follows from the definition that  
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h(p) = d tg(~) - e m'(~). 

We now show that  for each value of t the series 

h(d)  (10) 
d~l  d 

is uniformly absolutely convergent. To this end we note that  the following inequalities 

hold: 
I h(p')[ < 2J, p/> 3, 

(11) 
Ih(2~)l ~< 2, j = l , 2  . . . . .  

These are readily verified by induction noting that  

h(2 j) = e~tg(~) _ e~tg(~J-1). 

I t  follows that  

,~=o ~ h(p')p, 1 + e'tr(" z ,~o p ' h(p') + em'''' ~__oh(pk) - 19 ' 
~ p - Z  = -" 

1=0 

where the change in the order of summation is justified since the series involved are ab- 

solutely convergent. Hence, 

j~o pt ~ p -  / j~o " 

Since h(m) is multiplicative, for each positive integer n, 

,~=1 ~ v i<n P / 

I t  will therefore be sufficient to prove that  the double series 

~j  = pi 

converges. :But for primes p > 2, we have 

j=i T P = +~=z p p ( p - 2 ) '  

j_~ 2 j 2 + 1. 
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_ _  l e ag'm - ear(m I 4 Ih(P')l < le"O'~'- II e I + 2 + 5 p (p_2)  Z 5  
laCp)l >a 

~<2+2 ~ + 
IO(p)]~>l p (p  -- 2) 

Hence, the series (10) is uniformly absolutely convergent. Moreover, it is convenient to 

note at this point tha t  the same series is uniformly bounded for all real t. 

We now note tha t  the relation 

e itg(m) = ~ h(d) e u~(mla~ 
dim 

holds, since it is true for prime powers and both sides of the equation are multiplicative. 

Thus, if Cn(t) denote the characteristic functions 

1 ~ eUg(,n, 
r n m.<. 

1 Z ~ h(d) cur(m/a)= 1 5 h(d) Z e'tr(m). (12) 
then r (t) = ~ m<n dim n a < ~ n  m<~(n/d) 

We shall now show that  the frequencies 

[m m "~ g' (p) < z~ ~l :g( ) - Z  
\ v<n P ] 

possess a limit law by  showing that  the corresponding characteristic functions 

~, m<.n 

converge. To do this we shall use the representation (12) and the convergence of the 

frequencies (9). 

From the convergence of the frequencies (9) we see tha t  

e f t~ ' (m)  = ne -~tl~ ~,2" x (t) + o(n). 
m ~ n  

Now choose s > 0 and choose D so tha t  

5 Ih(d)l< ~. 
d>D d 
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We divide the sum (12) into two parts  according to whether d ~< D, or d > D. We estimate 

the first of these two sums by 

.~h(d)<D . 1  (?~)d' e-~t(g'(2)/2) lFl (t)d2. ~d- ea~"/~ ~ h(d) o 
n d~D 

and for all sufficiently large n, 

If  d ~</), an application of the Cauchy-Sehwarz inequahty shows tha t  

(uniformly for 1 ~< d ~< D) as n-~ c~, since the series (6) converges. Hence, for sufficiently 

large n, 

~ h(d) ~ eitrlm)=e~t(-lo'12)/2)+~)~12(t) -t-20e, 
d~ D m~ (nld) 

where [0] ~< 1. 

The second of the two sums (corresponding to D ~< d ~ n) is estimated by  

\d] m<(nm) eit'(m) <~ D<d~n m4(n]d) ~ D<d d " 

We deduce tha t  

f~ r  a r "-~ ~ h(d) e~tZdrn(m:g(m)-~n<Z)-~e - ( ( ,t )~21(t) ~ . ~  
dffil 

a s  n --'->oo . 

Since the right hand side is continuous at  t = 0, then the frequencies 

p<n P ~ n  P 

possess a limit law. A straightforward calculation yields the characteristic function of 

this limit law: 

r 
j=l pJ ] 

In  order to consider the (possible) continuity of the limit law we recall tha t  

lim 1 fo" 
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equals the sum of the squares of the jumps of the distribution; and, hence, the distribution 

is continuous if and only if the previous limit is zero. We show that  

l lira ~ r (13) 
T--+ c:~ 

1 foTj if and only if lira ,~ ~tel(t)l~dt = O, (14) 
T - - ~  

were r and u-2' 1 (t) are connected by the relation 

r  = dt(g'(~)/2~ ~1(t) ~ h(d) 

d~l d 

Since the infinite series (10) is uniformly bounded for all t, it follows that  the t ruth of (14) 

implies that  of (13). We now prove the opposite implication. 

Choose a large prime q. From the inequalities (11), we see that  there is a positive 

constant ~1 depending at  most on q so that  

For  the odd primes p < q we employ the estimate 

where he is a positive constant. 

We conclude that  

ala2 ] !~21 (t)I ~ 2 ] ~(t)] ,~0 e ] , 2-) itg(21)-1 

whenever the right hand side is defined. We may suppose that  g(2)~: 0; for if not, then 

I ~ 2-'eUO(",l ~ 1 , 
t=0 

and (14) would follow immediately from (13). 

Let  ~ satisfy 0<  e<  4]g(2)1, 



T H E  D I S T R I B U T I O N  OF T H E  V A L U E S  OF A D D I T I V E  A R I T H M E T I C A L  F U N C T I O N S  155 

and define the set E by 

If t ~ E, then 

Re{1 + e~tg(2)}=2 cos~ ( ~ ) ~ >  2 cos~ (2  (2l+ 1)+ sg--(22)) = 2  sin~ ( ~ )  =~ta >0 .  

Re { ~ 2-~ e~(~'} I> ~ Re {1 + e~'~'} + ~ - ~ 2-~ >/~, 
.~=0 t=2  

Hence 

Therefore 

1 1 

f < T-l#([0, T] N E) § 4 (2~ 2~ ~a) -~- T -1 ]r I~dt. 

Since #([0, T] N E) ~< 2 T Ig(2) l s, 
7~ 

we have if lim sup ~ I~z'l(t)12dt<~ 2 l g ( 2 ) l s  
T--*~ 

As e > 0 can be taken arbitrarily small, (14) holds. I t  follows from Lemma 3 that  the limiting 

distribution of the frequencies (4):are continuous if and only if ~g(p).0 l i p  diverges. This 

finishes the proof of Theorem 2. 

Section 2 

We see from Lemma 2 that  an additive function is finitely distributed if S(n,  t) fails 

to converge to zero on a set of positive measure. I t  is natural, therefore, to inquire what 

properties of /(m) correspond to the converse proposition; namely, that  S (n, t)-~ 0 in 

measure as n-~ ~ .  We consider this question in Theorem 3. Moreover, as a corollary 

to this theorem, we give a necessary condition that  real numbers fl,, f12 .... exist so that  

the frequences vn(m: f l J ( m ) - ~ <  z) possess a limiting distribution. 

T H ~ O R ~  3. The  /oUowing three conditions are equivalent: 

(i) For  any  (~ > O, Fn(z + (~) - Fn(z ) -+ 0 un i formly  for all real z as n -+ co. 

(ii) f l S(n, t) l dt  -~ O 

/or all real T as n -~ ~ .  
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(iii) 

Proof. ((i)~ (ii)) 

limr_.~sup hmn._>~sup f ; r  IS(n' t) l dt= O. 

We employ the representation (see [1]), 

f ~  ~sin yet] 2 nl ~,.~<~ (1-l/(kO-f(k2)l)= :r  yet ] dt. 
I f (kD-f (ka)]~l  

(15) 

From the hypothesis (i) with ~ = 1, we see that  

1 ~ 1-~0 
Tb kt= l 

z~ f ( kx )<z+l  

Tb --> oO) 

uniformly in z. Applying the last result with z = f(1), f(2) . . . . .  f(n) in turn, we obtain 

1 
n~ 7 1 ~ 0  (n-~ co). 

kl, ks~ n 
If(kx)-f(kl)l  <~ l 

(16) 

I t  follows from (15) and (16) that  for all real T, 

lim f_r r IS(n, t) l dt= O, 
n--->oo 

which is (ii). 

((ii)) * (iii)). The proof is immediate. 

((iii) * (i)). 

We again appeal to an integral representation: 

- f e 'yt(sin~rt~'dt 1 ~ ( 1 - 1 f ( k ) - y l ) =  s ( n , t )  - 
n ~.<n _~ \ - ~ / - !  

[ f ( k ) - y l < l  

(17) 

From the inequahties 

f 8( 't) ' '(sinyeq dtl Snt  , yet / ' ; < ( ) [--~/-) dt < r Is(n'  t) l' dt + -  

we deduce that 

2 
ye~T ' 

lim S(n, t) e-~t ~sin yet~ 2dr <~ lim sup lim sup IS(n, t) l dt= O, 
n-~  \ yet ] T-*oo n-~oo J - r  

by hypothesis (iii). Therefore, for each y, the left hand side of (17) tends to zero as n-+ co. 

Noting that 
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1 
- -  ~ 1 <  ~ ( 1 - ] / ( k ) - y [ ) - , . , - O  
2 n  k<~n k ~ n  

[f(k)-Y~<�89 ] f (k ) -y]<l  

as n-~ ~ ,  we may  apply this result with y = z, z + 1, ..., z + [~] + 1 in turn to obtain 

[~]+1 1 

n k ~ n  =0 n k ~ n  
z~f(k)<z +(~ ]f(k)- Yl< �89 

tha t  is lim (F~(z + ~) - F~(z)) = O, 
n-->r 

which is condition (i). This establishes Theorem 3. 

COROLLARY. Let ~1, ~ . . . .  and f l ,  f~ . . . .  be two real sequences such that the/requences 

v,(m: f n / ( m ) - ~  < z) have a limiting distribution/unction F(z). Then, either, lim,--,oo fn =0,  

or we may  choose f~ identically equal to 1. 

Proo/. Assume tha t  lim supn-** ]fn [ =  cl >0.  Then there is a subsequence fin,, f . . . . . .  

for which either fnj>~cl/2 or f ~ j < - c l / 2 .  We assume first tha t  the former case holds. 

Since F(z) is a distribution function, there exist real numbers z and ~ so tha t  

F ( z + 5 ) - F ( z ) = % > O .  For this choice of z and ~, we have for all sufficiently large n 

~,(m: f , / (m)  - ~,  < z + ~) -~ , (m:  f , / ( m )  - ~,  < z) >1 c2/2. 

Consequently, for all sufficiently large n in the subsequence nl, n 2 . . . .  we have 

~z+ ~n+ ~z+ ~ , ~ .  c 2 

Thus, with z replaced by  ( z + ~ ) f ~  1 (n =nj)  we seethat  condition (i) of Theorem 3 fails. I t  

follows tha t  condition (ii) also fails, in which case/(m) has the form (7) and (8) by Lemma 2. 

Hence, we may  choose the fin = 1 by  Theorem 1. 

Similarly, if there is a subsequence f , , ,  f ,  ..... so tha t  f , j  < -(cl /2) ,  we can deduce 

the same conclusion. Q.e.d. 

Section 3 

Suppose tha t  the distribution functions F,(z)  converge to a continuous distribution 

F(z). Then for each z 
lim (F(z + ~) - F(z)) = 0. (18) 

&-->O + 

A theorem of P. L6vy [5] states tha t  in the present circumstances, this can occur if and 

only if the series ~I(v),0 l ip  diverges. Even when the functions F,(z)  do not converge, a 

meaning can be given to this result, provided tha t  we replace the condition (18) by  
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lim sup lim sup (F= (z + 6) - F~ (z)) = 0, (19) 
d~*O + rt--->~ 

uni/ormly in z. 

Note  tha t  a distr ibution funct ion is continuous if and only if it is uniformly continuous, 

so tha t  the last condition is a natura l  generalization of (18). 

The sufficiency of Ldvy 's  condition was proved by  ErdSs (Theorem IV [4]) subject  to 

]/(p)] ~< B, and formulated in the following different manner:  

T~]~OREM IV (ErdSs). L e t / ( m )  be a (strongly) addit ive/unction such that (19) holds. 

Then to every e > 0, there exists a ~ > 0 such that i / a  1 < a 2 <... < a x <~ n is a sequence o/integers 

with I / (at ) - / (aj )[  <~, then x < e n  /or n su//iciently large.(1) 

Accordingly, we state the  following theorem. 

THEOREM 4. The /ollowing two conditions are equivalent: 

lim sup lira sup (Fn(z + 5) - F n ( Z ) )  = O, 
~ 0  + n-->oo 

1 
uni/ormly in z, and ~ - =  ~o. (20) 

f(~).0 P 

The content  of this theorem was succintly s tated by  ErdSs ([4], p. 17) in the following 

surrealistic manner:  " I f  ~i(~).01/p = ~ ,  the distr ibution funct ion tries to be continuous 

whether  it exists or no t . "  

P r o o / o /  Theorem (Necessity). We assume to the cont rary  tha t  

1 
~ - - <  o o ~  

f(v)=~o P 

Le t  ~ denote the set of primes for wh ich / (p )  #0 .  Then a simple application of the sieve 

of Eratosthenes shows tha t  the number  of integers in the interval  1 ~< m ~< n which are no t  

divisible by  any  prime in ~) is equal to 

On each of these integers / (m)=0 .  Taking z = - d / 2 ,  we see t h a t  

limsup limsup (F~(5/2)-Fn(-(~/2)) >~ l~ (1-1)  >O, 
d-~O + n----> oo PET) 

which contradicts the hypothesis. 

(1) We note the obvious misprint in the statement of this theorem on p. 2 of [4] in which the rSles 
of e and (~ have somehow been reversed. 
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We now prove the sufficiency. Hence, we assume tha t  (20) holds. Suppose tha t  (19) 

fails. Then there exists a decreasing sequence J l ~ J 2 ~  . . .>0  and a sequence Zl, z 2 . . . .  

(where zk=zk(~k) ) such tha t  

lira sup (Fn(zk + (~k) -- F ,  (zk)) >1 7 >0.  
n - - ~  

Thus, we obtain a sequence of integers n l < n ~ < . . ,  so tha t  for n~ sufficiently large, 

Fnz(z~, + (~k) - Fnz (zk) ~ 2" 

I t  follows tha t  the intervals 1 4m<~n,  contain at  least (7/2)nz integers as on which 

]/(a,) - / ( a j )  I <~k ~<~1, (21) 

and so / (m)  is finitely distributed. Therefore, /(m) has the form 

/(m) = c log m +g(m), (22) 

where ~ (g,(p))2< c~. 
P 

I f  c =0 ,  t hen / (m )  =g(m); and it  follows from Theorem 2 tha t  the frequencies 

~,~ (m: /(m) - ~p<,/' (P) < 

have a continuous ilimiting distribution since ~r(~).0 l ip  = co. Therefore, (21) earmot hold, 

and we may  suppose tha t  c 4 0  hence forth. 

For convenience we set 

r =-1 Z ~,,r(~). 
Tb rn ~< n 

I t  follows from Theorem 2 and from the fact t ha t / (m)  has the form (22), tha t  there is a 

characteristic function ~F(t) so tha t  

( x lim -1 ~ e~ta(m), exp - it = ~F(t). 
n.-+oo Tb m~n  \ p ~ n  p ] 

Integrat ing by  parts,  using the fact tha t  for any fixed e, O< e <  1, 

Z g ' ( P ) = ( l + o ( 1 ) )  Z 
g' (p) 

p < m  p p<n  p 

uniformly for en ~< m < n as n-+ c~, we obtain 

11 - 712905 Acta mathematiea. 126. I m p r i m $  lo 7 Avrl l  1971. 
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n 
~,~(t) = (1 + o(1)) ~F(t) exp it ~<n 

uni/ormly for any  compac t  in terval  of t values. 

Employ ing  the  representa t ion  

I 
for  n = n  D n2 . . . . .  we see t ha t  the propor t ion  of a~ in the  in terva l  [1, n] which sat isfy (21) 

does not  exceed 

2f_LCn(~--~e) e ( - t z e ~ { s i n r t t ~ 2 d t  
7~; i  \ - - ~ - /  �9 

Set T = d~ 2. We have  the es t imates  

2fltl>~T~kiCn(~--~k) e(--tze~[sin~t~2dt 4 r162 

and (for all sufficiently large n t aken  f rom the sequence nl, n 2 . . . .  ) 

2 t T 2 fltl<T<~.(--2~k) e( tz~\ [sin:~t'21 2d~f T e ( ' in- a u  dk~ _~: j t~ j< , , i : l  +:(u, ( - ~ ) ,  :u~. ,<'u 

f; <2de( l+o(1) )  _ l+lu-- ~ < 1 0 d ~ l l o g d ~ l .  

Combining these last  two inequalit ies we see t ha t  

4de 
0 < y ~< lim sup (F~(ze + de) - F,~(%)) <<. ~ + 10 de Ilog de[, 

n---> ~ 

which cannot  hold if de is sufficiently small. This completes  the  proof of the  sufficiency 

when c 4~0, and  the  proof  of Theorem 4. 

I t  is clear t h a t  t h e  assert ion concerning the  cont inui ty  of the  l imiting distr ibution in 

Theorem 1 can be proved  in exac t ly  the  above manner .  

Suppose t h a t  we again weaken the  requi rement  t h a t  the  dis t r ibut ion functions .F,~(z) 
have  a limiting distr ibution,  and assume only t ha t  

l im sup lim sup (F  n (z) - F~ ( - z)) = 1. (23) 

This condition is cer ta inly t rue  when the  F,~(z) have  a l imiting distr ibution; and it  is na tu ra l  

to ask whether  there exist necessary and sufficient conditions, corresponding to the  ErdSs- 
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Wintner criteria (16) and (17) when F~(z)~F(z), for (14) to hold. The following theorem 

establishes such conditions. 

THEORV, M 5. The/ollowing two propositions are equivalent: 

PROPOSITION 1. lim sup lim sup u~(m: I/(m)l< z)= 1. 

PROPOSITION 2. (i) 

(if) ~ (I'(P))~< ~ .  
P 

We shall need several times the well-known 

LEM•A 4 (Turs Let h(m) be a strongly additive/unction. For each positive integer 

m set 

E(n)= Y. h(p) 
p<n p 

and hA_ D2(n) = E (P) 
p<<. n p 

Then the/oUowing inequality is satis/ied /or some positive constant C 

[ h ( m )  - E(n)[~ <~ Cn D 2 (n). 
m<<n 

Proo] o/ Lemma. This result was first proved for real-valued functions by Turs 

I t  was generalized by Kubilius to complex valued additive functions (see Lemma 3.1 of [5]). 

Proo/ o/ Theorem (Prop. 1 ~ Prop. 2). We deduce from Proposition 1 tha t  there exists 

a z 0 so that  
~m sup ~(m: [/(m)[ < z0)/> �89 

Therefore,/(m) is finitely distributed; and we can put  

where 

Let  ~)= {p: Ig(P)l >1}, and set 

/(m) = c log m + g(m), (24) 

(g'(P))~< ~ .  (25) 
p P 

p~o 
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Hence,  ei ther  ~) is e m p t y  or O < a < 1. For  the  remainder  of the  proof  we shall  assume t h a t  

0 < a < 1, as the  fo rmer  assumpt ion  involves no addit ional  difficulties. 

We now show t h a t  c = 0. I t  will t hen  follow f rom (24) and (25) t h a t  (ii) holds. 

Choose 8 > 0 so small t h a t  a + 5 ~ < 1. Then b y  Proposi t ion 1, there  exists a z I so t h a t  

l imin f  v,~(m: [/(m)] > z l ) <  s. 

We  m a y  therefore  choose a sequence n~ < n~ < ... so t h a t  

vnj(m: [/(m) > z l ) < 2 e  (? '=1,  2 . . . .  ). (26) 

L e t  E '  indicate a summat ion  over  integers not  divisible b y  any  pr ime in ~ .  (Note t h a t  the  

n u m b e r  of such posit ive integers  not  exceeding nj is ( l + o ( 1 ) ) ( 1 - a ) n j . )  

Applying L e m m a  4 to  the  s t rongly addi t ive funct ion h(m) defined b y  h(p) = g'(p), we have  

~ ]g(m)-E(nj)]~= ~' ]h(m)-E(nj)]~< ~ ]h(m)-E(nj)l~<njD~(nj), (27) 
m<. n t m<~ n i t n~  n t 

(g'(p))' 
where D2(nj)< ~ < 1, (i= 1, 2 . . . .  ). 

P 

Next ,  by  an appl icat ion of the  Cauchy-Schwarz  inequali ty,  we see t h a t  

E~(~j) < y (g'(p))~ y~ 1 
~.<nj p ~ n ~ P  < l o g  log nj. (28) 

Combining inequali t ies (27) and  (28) yields 

~ '  g2(m)~<2 ~ '  Ig(m)-E(nj)l~ + 2 ~ IE(nj)l~<nj loglog nj. 
m<~ n /  r n ~ n  t m ~  n t 

(29) 

We  now suppose c # 0 and obta in  a contradict ion.  

B y  (26), for all bu t  2 enj of the  integers m ~< nj, we have  

[ g(m) ] = [ - ~ log m + / (m) [  t> I c[ log m - zl. 

Hence,  for all bu t  3 enj of these integers, wi th  n s sufficiently large, 

It(m)] > / ~  log m. 

Now,  the  number  of m < n  s which are not  divisible b y  any  pr ime in ~ ,  and  for which 

I g(m)] >~ (] c I/2) log m, exceeds 

( ~ '  1 ) ~ - 3 e n s = ( l + o ( 1 ) ) ( 1 - ~ ) n j - 3 e n j > ~ ( 1 - t z - 4 s ) n j > e n  j, 
m<~ n t 

where these inequalities hold for all sufficiently large nj. Thus,  for all such nj, 



THE DISTI~IBUTION OF THE VALUES OF ADDITIVE ARITHMETICAL FUNCTIONS 163 

~'  g2(m) >~ ~ log~ m>nsloga nj, 
m<~n t \ /a / m<<sn f 

and the  last  inequal i ty  contradicts  (29) when  nj is sufficiently large. Therefore,  c = 0, and  

(ii) holds. 

To  show t h a t  (i) holds, we restaf~ (27) in the  fo rm 

7.' If(m) - E(nj ) I~<nj ,  
m<~ n t 

since now /(m)=g(m). I n  the  above  sum there  are a t  least  ( 1 - a - 3 e ) n j  integers m<~nj 

for which It(m)] <zi ;  and  so 

(1-a-3e)njE*(nj)< 2 Z' IE(n~)-/(m)l*+2 E' I/(m)l~<n,. 
m<. n f m<. n t 

IHm)k<zl 

Hence,  E~(n~)~l ,  which proves  (i). 

(Prop. 2 ~ Prop.  1) 

Let p={p , :  I/(p,)l > l } .  It follows from (ii) that 

1 
- - < o o ,  

v~EO Pt  

I n  t e rms  of the  set  ~ we define a s t rongly  addi t ive  funct ion h(m) b y  

otherwise. 

Wi th  this definition of h(p), the  condition t h a t  Zv(h2(p)]p)< c~ is precisely the  condition 

(ii). I t  then  follows f rom L c m m a  3 t h a t  if e >0 ,  there  exists a z so t h a t  for all sufficiently 

large n, 

h(p) < z 

The condition (ii) guarantees  the  existence of a posit ive n u m b e r  B and a sequence n i <n~ < ... 

of integers so t h a t  ]A(nj)] ~< B, where we have  pu t  

A(n) = Y h(p) 

We deduce t h a t  for all sufficiently large nj, 

v,,  (m: ]h(m) I < z + B) <<. 1 - e. 

Let  r be a posit ive integer. I t  is clear t h a t  for  each posi t ive integer n, 
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~.(m: I/(m)l< z+B+ ~ (1 + I/(p,)l))>~.(m: Ih(m)l< z + B ) - v , ( m :  p~lm for some i > r),  

and  the last  f requency does no t  exceed 

n | ~ r + l  t ~ r + l  ~9i 

Using this last  inequa l i ty  with n = nl,  n 2 . . . .  in  tu rn ,  we obta in  

l im lim sup~ ,n ( ] / (m)[<z+S+ ~ ( l + l / ( p ~ ) ] ) ) > ~ I - e -  ~ 1 - - ~  

Since e > 0 and  the posit ive integer  r are otherwise arbi t rary ,  we deduce t ha t  

l im lim sup v~([/(m)l <z)  = 1, 

and  this  completes the proof of Theorem 5. 
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