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I n t r o d u c t i o n  

One of the problems in the theory of overdetermined systems of linear partial dif- 

ferential equations is to prove the existence of local solutions. I f  9 is a differential operator, 

we would like to determine when we can solve the inhomogeneous equation 9 u  =v. In  

general, it is necessary that  v satisfy a compatibility condition 9 ' v  = 0  for some operator 

9 ' .  We would like to prove tha t  this compatibility condition is not only necessary but  

also sufficient for the existence of local solutions. That  is, if E, _F, and G are the sheaves 

of germs of differentiable sections of the vector bundles E, av, and G, where 9 :  E - + F  and 

9 ' :  _F-~_G, then the complex of sheaves, 

0 , 0  , E  D v' _ , F , O (1) 

is exact, where 0 is the sheaf of solutions of the homogeneous equation. 

D. C. Spencer [7] has shown that ,  granted certain reasonable assumptions about  9 ,  

there exists a complex 

0 , 0  , g 0  D, ~1 " '  . . -1  C" . . . . . . .  o (2) 

of sheaves and of first order differential operators such tha t  the cohomology of (2) at  _C 1 

is the same as the cohomology of (1) at _F. Thus, it is sufficient to consider the Spencer 

sequence of 9 .  

In  general, the Spencer sequence is not exact, but  we would like to show tha t  it is when 

D satisfies some other conditions, such as ellipticity. Even in this ease, however, it has not 

been shown tha t  the cohomology of the Spencer sequence is finite dimensional. 
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In this paper, we consider several properties of a homological condition on the ~- 

complex of 9 ,  which we call the ~-estimate. I t  seems that  this condition is a reasonable 

generalization to overdetermined systems of the notion of "diagonal" or "uncoupled" 

operators. With ellipticity, it  guarantees tha t  the D-Neumann problem for 9 is solvable 

and that  the Spencer sequence is exact. 

If  9 :  E ~ F  is a differential operator of order It, then the highest order part  of 9 may 

be considered a map a(9): SkT*|  The kernel of this map we call gk. We may define 

the prolongation g~+z, /~>1, of g~ and obtain the complex 

0 ' gk+2 ~ ' T*| , A~T*| 

We assign metrics to T* and E, which then induce metrics on the g's. Then we may define 

the (Lestimate. 

Definition. A differential operator 9 of order k satisfies the ~-estimate if and only if 

I[Ox][~>~ �89 1) 2 ]]x[[ 2 for all x6 T*| N ker ~*. 

We shall prove (Theorem II.3.1) tha t  this is equivalent to the following definition. 

Definition. 9 satisfies the ~-estimate if and only if in the sequence 

0 ,g~ ~ ,T*| ~ , A 2 T * |  ~ 

[]Ox]]2~> �89 ]]x[] 2 for all x6 T*|176 N ker ~*. 

Here gl ~ is the kernel of a(D~ where D O is the first operator of the Spencer sequence. 

Since it is more convenient to work with the Spencer sequence than with (1), we 

shall take the second definition as the definition of the ~-estimate, keeping in mind that  

we shall prove that  it is equivalent to the first in Theorem II.3.1. 

The ~-estimate, although it can be stated entirely in terms of the operator D ~ 

actually gives estimates for the other operators D l, 1 >/1, in the Spencer sequence. In  fact, 

we have that  in the sequence 

0 ,g~ ~ ,T*| ~ ,A2T*@C t, 

l](~xH2~> �89 I[x]l 2 for all x6 T*Qgl fl ker ($*. 

Here g~ is the kernel of a(D'). 

In  the course of proving these estimates, we shall prove that  if D satisfies the 5-esti- 

mate, then gk+l is involutive, where k is the order of 9 .  
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The importance of these estimates is tha t  they enable us, in Chapter III ,  to 

prove that  the Kohn-Nirenberg estimate holds for the Spencer sequence, and therefore 

that  the D-Neumann problem is solvable and the Spencer sequence is exact. 

The 0-estimate was discovered by I. M. Singer, who recognized its role in the proof 

of the Kohn-Nirenberg estimate, 

o, 11 11  < 

for uEF(~ ,  C 1) and u Edomain (DO) *. 

W. J. Sweeney published the first proof of the Kohn-Nirenberg estimate for elliptic variable 

coefficient operators satisfying the 0-estimate, as well as the proof of his stronger esti- 

mate (Theorem III.2.1). V. W. Gufllemin proved that  the 0-estimate implies that  gk+l is 

involutive, but  his unpublished proof is quite different from the one presented here. The 

new results in Chapters I I  and I I I  are extensions of the 0-estimate to estimates on 

AZ-IT * (~ gOk +1-"> A s T* | g0~ AZ+IT , | ' 

which give a new proof of Guillemin's involutiveness theorem with a weaker hypothesis 

discussed in Section II.1, and which enable us to prove the Kohn-Nirenberg estimate and 

Sweeney's estimate for all 1 >~ l, which gives exactness of the Spencer sequence. 

We state without proof the justification for considering the 0-estimate to be a reason- 

able generalization to over-determined systems of the notion of "diagonal" or "uncoupled" 

operators. To see this, we must consider the Guillemin normal form of the operator D ~ 

Suppose that  locally we have a foliation :~ of the manifold which is given in local 

coordinates by x~=const., i = 1  ..... m, and suppose that  the leaves of the foliation are 

non-characteristic; that  is, U|176 g~ where U is the sub-bundle of T* which anni- 

hilates the tangent spaces of the leaves of the foliation (and is generated by dx 1 ..... dxm). 

Then 

D o = Do + ~ aa~ (D ~ D~, 
t=1 

where Do: Co~C 1 is an operator tangential to the foliation and D,: U~ ~ is ~]ax,+L,, 

where L~ is tangential to the foliation. There exist operators D~ and D~'~, 1 ~<i, j ~<m, such 

that  
DoD~ = D~ D o l <~ i < m 

and [D,,DsJ=D,'jD o 1 <~i , i<m.  

Therefore, for ~6T*, the symbol maps a~(D~), l<~i<~m, are a commuting set of linear 

maps on the kernel of a~(D0). The 0-estimate implies that  each a~(D~) restricted to the 



86  BARRY MACKICI~A~ 

kernel of at(Do) is normal, and hence that  the a~(D~)'s may be diagonalized simultaneously 

on the kernel of a~(Do). However, this condition does not in general imply the 0-estimate. 

If  ~) is hyperbolic then the maps ~(D~), 1 ~<i <m, are symmetric on the kernel of a~(Do), 

so there is justification in asserting that  hyperbolic overdetermined systems satisfying the 

0-estimate are a generalization of symmetric hyperbolic systems. Details will appear in a 

subsequent paper. 

The author would like to express his appreciation to Prof. D. C. Spencer for his advice 

and guidance in the preparation of this paper, which overlaps the author's Stanford doc- 

toral thesis, and to Professors V. W. Guillemin and W. J. Sweeney for several helpful 

suggestions. 

I. Preliminaries 
0. Introduction 

In Sections 1 through 4 we define the 0-cohomology and the Spencer sequence. For 

proofs of the theorems in these sections, the reader should consult Goldsehmidt [1]. Another 

introduction to the formal theory of linear overdetermined systems of partial differential 

equations, as well as motivation for the Spencer sequence, appears in the survey ar- 

ticle by  Spencer [7], on which portions of this chapter are based. 

In Section 5 we define elliptic operators and complexes, and state Quillen's theorem, 

which guarantees that  the Spencer sequence of an elliptic operator is an elliptic complex. 

In  Section 6 we define inner products on the fibers of various bundles. In Section 7 we 

calculate the eigenvalues of the formal Laplacian operator, which we must know for 

several of the proofs in Chapters I I  and III .  

1. Jets 

Let X be a differentiable manifold of dimension n. Since we shall confine ourselves to 

the C ~ differentiable category, "differentiable" here means "differentiable of class C ~''. 

If  E is a complex (differentiable) vector bundle over X, we denote, for each non-negative 

integer k, by Jk(E) the vector bundle over X of k-jets of E. The fiber of Jk(E) over a point 

x of X is the quotient of the space of germs of sections of E at x by the subspace of germs 

which vanish to order k + l .  We identify Jo(E) with E, and denote by ~: Jk(E).-->X and 

~k-l: Jk(E)~Jk_l(E) the natural projections. The sheaf of germs of (differentiable) sections 

of E we call _E. We denote by ?'~: E_-~Jk(E) the map which takes germs of sections of E into 

their k-jets. 

We denote by T* the complexified cotangent bundle of X, and by SkT *, AZT *, and 

| the k-tuple symmetric product of T*, the /-tuple exterior product of T*, and the 
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m-tuple tensor product of T*, respectively. There is a natural vector bundle morphism 

i: S~T*| and the sequence 

0 ' S k T * |  .... ~ , Jk(E) ~-1 J k - l (E )  , 0  (1.1) 

is exact. 

2. Differential operators and their prolongations 

Let E and F be vector bundles over X, and let ~: Jk(E)-+F be a morphism of vector 

bundles. Then ~0 induces a sheaf morphism ~: Jk(E)-+_F. 

Definition 2.1. The symbol a(~) is the composition 

~(~) = ~oi: S k T * |  

Definition 2.2. A sheaf morphism ~:  E ~ F  is called a differential operator (from E 
to F) of order ]~ if the triangle 

s 
_~:,,..... 'J,,(.~) 

commutes; i.e., if O=~o]k , where ~: Jk(E)-->F is a bundle morphism. The symbol 

~(~) of ~ is the symbol of ~0; i.e., a(O) =a(~). 

Definition 2.3. The lth prolongation p~(~): J~z(E)-+J~(F) of ~0 is the unique morphism 
of vector bundles such that  the following diagram commutes: 

Jk+~(E) Pz(q~) ' J l (F)  

_E , F  

The differential operator Ol=j~oO=jlo~ojk:  E_~Jz(F ) is the lth prolongation of the 

operator O=q~ojk: E-->F. We shall sometimes write p~(O)=pl(q) and p(O)=p0(~0)=q. 

In particular, let 1 k: Jk(E) -+ Jk(E) be the identity map. (The corresponding differential 

operator is then Jk: E_ -->Jk(E).) Th e / t h  prolongation of the map lk is a monomorphism of 

vector bundles 
Pl(lk): Jk+z(E)~Jl(Jk(E)), 

and we identify J~+l(E) with its image in Jz(Jk(E)). 

De/inition 2.4. For l >~ 1, define 
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a~(~): S ~'+ ~T*| ~ S~T*|  

to be the unique morphism of vector bundles such tha t  the following diagram is exact 

and commutative: 

0 0 

S~ +~T* | E , S~T* | F 

J~_ ~ (E) , J~(F) 

1 I 
J~_: ~_~ (E) ' J~_~(F) 

[ [ 
0 0 

We set a0(~)=a(~), and a~(D)=a~(p(~)). I f  ~ T * ,  we define a~(D) by  letting a~(D)(e)= 

a(D) ( ~  | e). 

De]inition 2.5. A homogeneous linear partial differential equation R~ of order b on E 

is a subbundle of Jk(E). A solution of Rk is a section e of E over an open set U c  X such tha t  

?'k(e) (x)ERk for all x E U. The /th prolongation of R~ is the subset 

R~+z = Jz(R~) fl J~_l(E) 

of Jk+z(E) where both Jz(Rk) and Jk+z(E) are regarded as subsets of Jz(Jk(E)). 

If  q~: J k ( E ) ~ F  is a bundle morphism of locally constant rank with Rk as kernel, we 

say tha t  R k is the equation associated to the differential operator ~0o~'k: E ~ F .  Con- 

versely, given a sub-bundle Rk of Jk(E), we can find a vector bundle iv and a morphism 

q~: J k ( E ) ~ F  of locally constant ran such tha t  Rk = k e r  ~. We set Rk-z =Jk_~(E) for 1 ~<l ~<k. 

I t  is easily seen tha t  Rk+z is the kernel of Pl(~); i.e., 

0 , Rk+z ' Jk+z(E) ~'(~, Jz(F) 
is exact. 

L e t  g~+l~Sk+zT*| be the kernel of the map ~rk+z-l: Rk+z-~R~+~-~; i.e., for l>~O, 

0 ' gk+t ' Rk+l ~+'-~' Rk+z-1 

is exact. Then g~z is also the kernel of ~(~): Sk+ZT*|174 i.e., 

0 ~ gk+z ~ S~+ZT.| ,,z(~) S Z T . |  
is exact. 

De]inition 2.6. We call gk the symbol of the equation R k and set gk-~ =Sk-ZT*| E for 

1 <l<]c.  
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I t  is important to note tha t  R~+~ and g~+~ are families of vector spaces over X and are 

not necessarily vector bundles for l>~0 (with the exception of R~, a vector bundle by 

definition). 

De/inition 2.7. Let O=~o]k:  E - ~ F  be a differential operator of order k, and let 

Rk=ker  ~. Then 0 is formally integrable if, for l~>0, R~+l is a vector bundle and 

~k+z: Rk+l+l-~Rk+z is surjective. 

Formal integrability means that  the ranks of the prolongations of O are locally con- 

stant, and that  formal solutions of the equation exist. A formal solution to the equation at 

a point x E X  is a sequence (r~, r~+~, ...} where r ~ R ~  such that  g~+~(r~+~+l)=r~+~ for 

all 1 >10. I t  corresponds to a formal power series solution of the homogeneous equation. 

3. The $-cohomology 

Let  ~: SmT*-->T*| * be the unique linear map such that  

= 

t - 1  

for all ~1 ..... ~ e T*. We extend (~ to a linear map 

(~: AZT*| ~ AI+IT*|174 E 

by setting (5(u|174 A~v| if uEAZT *, veS '~T  *, and eeE. Clearly, 52=0. 

One can show that  the following square commutes: 

AIT*|174 AIT*|174 

Az+IT,|174 "~(~), AZ+IT,|174 

From this we conclude that  

~(AtT*| ~ AZ+lT*| 

Thus, we have a complex for each m >~]r 

0 'gm " T*| . . . . .  | , A~-k+IT * @ Sk-IT * | E. 

(3.1m) 

De/inition 3.1. The ~-cohomology of gk is the cohomology of the sequences (3.1m) 

where m>~k. We denote by  Hm-l"*=Hm-Z'z(gk) the cohomology of the sequence (3.1m) 

at  AZT*| We say that  gk is involutive if the sequences (3.1m) are exact. We say that  

g, is q-aeyclic if Hm.Z=O for m>~k, O<.l<~q. 
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We remark that,  for each m >~k, the sequence 

0 ' gm+l ' T*|  ' A~T*|  

is easily seen to be exact. Because of this, it is possible to define gm inductively by  setting 

gm+l = T* |  N Sa+IT  * | E for m/> k, where T* | and S'~+IT * | E are both considered 

to be subspaces of T * | 1 7 4  We shall occasionally use this fact. 

The following theorem states tha t  if we prolong a differential operator sufficiently 

often, its symbol becomes involutive. 

THEOREM 3.2. (~-Poincard lemma). I / t h e / i b e r  dimension o / E  is <~e, there exists an 

integer lu >~k, depending only on n (dimension o/ X), k (order o/ the di]/erential operator), 

and e such that H~n'z=0/or  all m>~/~ and l>~O. 

Proo/. See Sweeney [8]. 

4. The Spencer s c i ence  

We wish to construct the Spencer sequence of Rk which is a complex 

0 , 0  J~ ,_C O D' _~1 o, D--~ _C~ . . . . . . .  0, (4.1) 

where DZ: _Cz-~_C ~+1 is a first order differential operator. 

Let  C ~  and set Ct=(AZT*|176174 for 1~>1. The exterior multi- 

plication map T*QAZT*-+AZ+IT * induces an epimorphism ~z: T*|  Cz-~Cz+l. 

We have: 

THEOREM 4.1. Assume that the equation Rk i s /ormal ly  integrable and that C z is a vector 

bundle, /or 1 <~ 1 <~r. The/o l lowing statements are equivalent: 

(i) g~+l is r.acyelic. 

(ii) There exists a unique complex 

Dr- -1  
0 ,0 s, , ~  O . ,C  1 ~ , . . .  � 9  

satis/ying the /ollowing properties: 

(a) The map Dl: C_z~C_ z+l is a /irst order operator induced by a morphism o~ vector 

bundles O V J l  ( Cl) --> Cl + l, whose symbol is the morphism T l: T* | Cz-+ C z + l, 0 <<. l <~ r - 1 .  

(b) The complex i s /ormal l y  exact in the sense that the sequences 

~r /,'~0~ Pm--l(Oe) ~- /.,'~lx Pm--2(-~ 0 ' Rk+m ' amt(J ) , ,Im-l((J ) ' ... ' J ,~-r(C r) 

are exact at Rk+ m /or m>~l, and at Jm_~(C z) /or m>~l+ l,  O<~l<~r-1. 
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Proo/. See Goldschmidt [1]. 

Remark. In  Chapter I I  and all of Chapter III ,  except Theorem 111.3.1, we shall not 

have to assume that  R~ is formally integrable or that  C z, l >~ 1, is a vector bundle. We shall 

not be considering the operators D z, b u t r a th e r  their symbols, a(DZ), which exist as maps 

of vector spaces at each point of P without these assumptions. 

The operators D ~ are essentially the difference of exterior differentiation and formal 

exterior differentiation (see Spencer [7]). 

I t  is easy to show that  the sequence 

0 , 0  j ~ , C ,  o D. ,_01 

is exact, so we see that  the solutions of the homogeneous equation Ou = 0 are the same as 

solutions of D~ =0. 

5. Elliptic complexes 

Since T* is the complexifieation of the real cotangent bundle, we can identify the 

sub-bundle consisting of real cotangent vectors. An operator ~:  E ~ F  is called elliptic if 

for every real cotangent vector ~, the bundle morphism a~(O): E-~ F is injective. A complex 

of operators 
E0 ~. , _ ~  ~, ~ 2  . . . .  ~--1,  E~ , 0  

is called elliptic if for every real cotangent vector ~, the complex of bundle morphisms 

0 , Eo  a~(Do), E i  a~(m) E2  ~. a~(~,,-1)~. E n ~" 0 

is exact. 

If there are metrics in the fibers of the bundles E 5, we may define the formal adjoints 

05* of the operators O5 and the generalized Laplacian 

�9 * E' E'. O S - 1 O i - 1  + O , O S :  --> 

If ~ is a real cotangent vector, and if O~ is first order, a~(O~) = -a~(Os)*. Therefore, 

- (~(0 , -10"1 + 0 ;  05) = (~(~-1)(~(05-1)* + a~(05)*~(05), 

which is injective if the symbol sequence is exact. Therefore the generalized Laplacian 

of an elliptic complex is a determined elliptic operator. 

The following theorem due to Quillen guarantees that  the Spencer sequence of an 

elliptic operator is an elliptic complex. 
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TH~.OR~.M 5.1. (Quillen). I /g~- i  i8 involutive, and i / ~ E T *  is a non-zero covector, then 

the /ollowing conditions are equivalent: 

(i) The sequence 

is exact. 

(ii) The sequence 

is exav2. 

(iii) The sequence 

0 
is exact. 

0 , E ec~v), F 

0 * Co o}(D*) U1 

~, ~ a~(D*) C1 ~(D 1) ai~(D n- l )  
. . . . .  ~ , C "  ) 0  

Proo/. See Quillen [5], Goldschmidt [1], or Sweeney [8]. 

6. Extens ion o f  metr ics  

We assume tha t  we are given inner products  on the  fibers of T* and E. We shall extend 

these to inner products  on A~T * |  E; C ~, 0 ~ 1 <~n; and all the  other  spaces we shall 

consider. 

I f  V1 ... . .  Vm are finite dimensional complex hermit ian spaces, we obtain an  inner pro- 

duct  on VI |174  Vm by  sett ing 

(Vl | | v~, Wl| | win) = (Vl, w~)...(v~, w~) 

and extending linearly. Therefore we have an inner product  on |  We define an inner 

p roduc t  on S~T  * as follows. Le t  a be the  monomorphism of S~T  * into | generated by  

1 

where S(m) is the permuta t ion  group on {1 .. . . .  m}. Then  a induces an inner product  on 

S ~ T  *. Similarly, let fi: A Z T * - ~ |  * be given by  

fi(~lA ... A~Z) = 1 ~ ( _ 1 ) ~ ( 1 ) |  ... |  ~E  S(l). 

This induces an  inner p roduc t  on ArT  *. 

We now extend the metrics to Jk(E). This cannot  be done canonically; we mus t  choose 

a splitting p of the following exact  sequence for each k >~ 1: 
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O.._..S~T,| jk(E) ~-1, Jk_l(E)~O. 

For  k = 1, the  choice of such a splitting is equivalent  to  the  choice of a connection on E.  

Fur thermore,  given connections on E and on T* (say the Riemannian  connection) we can 

define canonically a splitting of the above sequence for every k, and therefore a canon. 

ical isomorphism 

J~ (E) ~ | SZT * | E,  (1 = 0 . . . . .  ]r 

This clearly induces an inner p roduc t  on Jk(E) for which the maps  i and ~ - 1  are isometric 

injection and projection, respectively. See Palais [4, Chap. IV, w 9] for details. This inner 

p roduc t  induces one on R~ = C  ~, which gives us one on A I T * |  ~ Since C l m a y  be identified 

with the  or thoeomplement  of O(AZ-iT*| in AZT*@C ~ we assign it the  inner p roduc t  

i t  has as a subspace of A t T * |  ~ 

These inner products  and the volume element on X allow us to  define Lz inner products  

on sections of bundles. I f  F is a bundle over X and if ~ is a compact  manifold- 

wi th-boundary  contained in X,  we define F(O, F)  to  be the space of sections of F over 

which can be extended to smooth  sections over some neighborhood of ~ .  Then if 

e , / E F ( ~ ,  F)  we define 

and we define 

a(e, D = f~ (e, D dv, 

~ -- foa (e,/) da, 

where da is the  induced volume element on ~ .  

7. The eigenvalues of the formal Laplacian 

Consider the  exact  sequence 

0 - - - * S m T  * ~ '  T * |  * ~ ' ... ~ ' A m - I T * |  * ~ , A m T  * , 0. 

Since we have inner products  on all spaces, we m a y  define the  adjoint  6" of 6, and the  map  

6" ~ + ~ * :  S m-zT* | AZT *-~ S~-ZT * | AZT *. 

Since ~ is the  formal analogue of exterior differentiation, we call 6*6 + ~ *  the  formal La- 

placian. 

The proofs in Chapters I I  and I I I  require t ha t  we know the  eigenvalues of this map,  
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so we calculate them here. The reader, if he wishes to avoid the calculations, may  omit  

this section after reading the statement of Theorem 7.1 and Corollary 7.2. 

THEOREM 7.1. SmT*| * is the sum of the eigenstrtce~ ker~  and ker ~*; on ker~,  

the eigenvalue o/5*~+~tS* is (m + l ) (m +l)/l, and on ker t~* the eigenvalue is m(m +l)/(l+ l). 

COROLLARY 7.2. On SmT*| *, the identity map is equal to 

/ + 1  l - -  6" ~ ~ ~*.  
m(m + l) (m + l ) (m + l) 

The corollary is an obvious consequence of the theorem. To prove the theorem, we 

need a series of computational lemmas which we give without proof. 

LEMMA 7.3. 17/ (.~)m is the symmetric product o /~  with itself m times, and i/ ( | 

is the tensor product, then ~(( .~)m)=(@~)% where ot is as defined in Section 6. Therefore we 

shall write (~)~ /or both (.~)k and ( | 

LEMMA 7.4. I f  fl is the map defined in Section 6, then 

LEMMA 7.5. 

1 ~ (_l) ,_~,|  A A~'A A~'). /~(~1 A... A ~z) = 7 ,_1 . . . . . .  

LEMMA 7.6. ((~)m, (~)m-1 ~,> = <~, ~)m-1 <~, ~'>. 

LEMMA 7.7. 

Z+l 
~. ((~F_I | A A ~,+1) = m . . . . . .  ~z+l. �9 .. ~ - ~  ~ (--1)t-'t(~)m-l~t| A $ ' A  A 

t=l 

Proof. Since SmT*| * is generated by  elements of the form ( ( ) m |  . , .  A (t, it 

is sufficient to verify tha t  

<~((()~|  (1 A ... A (z), (~)m-~| A. . .  A #~+~> 

/+1 
m ... ~+1). (7.1) 

i-1 

The left-hand side is 

m<~, ~>~-~ ( $ | 1 7 4  |  ~ ( ~  A. . .  A ~+~)> 
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by  L e m m a  7.6 and  L e m m a  7.4. B y  L e m m a  7.5, this  becomes 

1 I+' (_  ~),-~|  ^ ... ~ , ^  ... ~ ~+,)) m(r162174174162 l + l  ~.~ 

which is equal  to  the  r igh t -hand  side of (7.1). Q.e.d. 

Now we proceed to the  proof  of Theorem 7.1. Any xE SmT*| * m a y  be wr i t ten  

x = ~ j x j ,  where x j =  (~o)m|  A ... Ar Then  

J J 

m 

1 |~0 

5 * ~ = Z -  7 -  ( -1 ) ' - l (~ )~r174  

(~5*x = ~  T ( - - 1 ) ' - ' [ m ( ~ ) m - ' ~ Q ~ A . . . A $ ~ A . . . A ~ ] §  

I f  xE ker  5*, then  0 = (I/(m+ 1)) 55*x, so 

l 

l x = m ~  ( -  1)' ( ~ ) m - 1 ~ |  A ... ASiA ... A~ .  

Then  ((1 + 1 )/m) 0" 5x = lx § mx, so 5" (~x = (m(m + 1)/(l + 1)) x. 

I f  x e  ker  5, then  0 = ((1 + 1)Ira)5"8x, so 

l 

0 = m S  5 ( - 1 ) '  (~)m-'r174 A ... ASiA ... Ar 

Then  (1/(m + 1)) 55* x = (m + l) x, so &~* x = ((m + 1) (m + l)/l) x. Q.e.d. 

H. The 6-estlmate 
O. Introduction 

The purpose of Chapters  I I  and  I I I  is to  prove  the  exactness of the  Spencer sequence, 

THEOREM III .3 .1 .  I[ O: E~F_ is a formally integrable elliptic di//erential operator 

which satisfies the 5-estimate, then: 

(i) The Spencer sequence 

o , 0  , g o  ~" 0_1 , '  , . - 1  O_" > �9 . . ,  ) �9 O 
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is exact, and is a /in, resolution o/ the shea/ 0 o/ germs o/solutions o/ the homogeneous 

equation Z)u=O. Consequently the cohomology o/ 

0 * F(X, O ~ ~' ' P(X, C 1) .1 , ... 0"-1, F(X, ~ ' )  , 0  

is isomorphic to the cohomology o/ the mani/old X with coe/ficients in O. 

(ii) There exists an operator 0 ' :  F ~ G  such that the sequence 

is exact. 

E D D ~ _ ~F_ , g  

The only difficult par t  of the proof is to show tha t  on small, suitably convex domains 

the D-Neumann problem is solvable. In  order to solve the D-Neumann problem on a domain 

~ ,  it is sufficient to prove the Kohn-Nirenberg estimate: 

There exists a constant c such tha t  for all u E F ( ~ ,  C z) in the domain of (DZ-1) * 

0~11~11~ < e(~llfD'-')*~ll* +~IID'~II~ +~11~11'}. 

This is sufficient to prove tha t  the cohomology 

p ( ~ , C o )  D. , F ( ~ , ~ I )  D, , ... ~,-1,  F(~2, C n) , 0  

is isomorphic to the harmonic space H = Z H  Z on ~ ,  and tha t  the harmonic space is finite 

dimensional. To prove tha t  the harmonic space is zero, we need the following estimate, 

due to Sweeney [10]: There exists a constant c such tha t  

~11~11] < ~{~ll(D'-h*~ll ~, + ~IID'~II~} 

for all u e F ( ~ ,  C t) in the domain of (DZ-l) *. 

When we a t tempt  to prove these estimates, we find tha t  the only obstacle is the pos- 

sibility tha t  the integral of a certain bilinear form may  be negative. The role of the ~-esti- 

mate  is tha t  it guarantees tha t  this bilinear form and, a/ortiorl, its integral are non-nega- 

tive. Thus the estimates hold. 

Here is a brief outline of the argument and results of Chapter I I .  We star t  with the 

following definition. 

Definition. ]O satisfies the O-estimate ff and only if, in the sequence 

0 , e ~ ~ '~ , T*|  ~ , A2T* |  ~ 

II0xll~> �89 Ilxll ~ for an xe  T * o g  ~ n ker ~*. 
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Here g~176 This definition is equivalent to the following statement,  which 

shows tha t  to verify the 0-estimate, we need not construct the Spencer sequence. 

THEOREM 3.1. A di//erential operator Z) o~ order ]r satisfies the O-estimate i/and only i/ 

IIo l? > �89 (k+ 1)'ll ll /or all T*Og +, n ker 6*. 

Although we have begun with an estimate in the sequence 

O~g~ T* | ~ A'T* | 

only, we shall see tha t  it implies estimates in the sequences 

AZ-'T*|176 AZT* |176 ~ AZ+~T* |176 1 

for 1 and b/> 1. In  particular we shall prove the following in Section I L l .  

THEOREM 1.6. I /7)  satis/ies the O.estimate, then [[0x[[ ~ ~> (]cs/l)lxl[ s /or all xeA~-~T*| 

g~ fl kcr 6*. 

As an immediate consequence we conclude tha t  the sequences 

O , 0 O-~ gm-~ T | -~ ... Am-IT* |176 ~ A"T* | 

are exact. Hence gl ~ is involutive and, equivalently, g~+l is involutive, which is the conclusion 

of Theorem 1.7. 

In  Section II.2, using the estimates of Theorem 1.6, we extend the 0-estimate to all 

operators in the Spencer sequence. 

T H E O R E M 2.1. I /  0 satisfies the O-estimate, then HOxH2 >~ �89 I[ xH s/or all x E T* | N ker 6*. 

Thus, by assuming the &estimate on the symbol of D ~ we obtain the same estimate on 

the symbol of Dk This is exactly what we shall need in Chapter I I I  to prove the K o h n -  

Nirenberg estimate for each l ~> 1. 

1 .  The 5-estimate and involutiveness 

The proofs in this and following sections are diagram chases with norms added, and 

are simplified if we observe that  if / :  V-~ W is a linear map of complex hermitian spaces and 

is the least eigenvalue of /*/ ,  then ~>70 and H/vI]2>~[[v]] ~ for all v E r .  

The 0-complexes 

O~g~ -~ T* | . . . -~AZ-IT*|174  ~ (1.1=) 

are related to each other by  the following diagram: 

7 - 712904 Acta mathematlca 126. Impr imd  16 8 J a n v i e r  1971 
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0 

l 
0 SmT * | CO 

, Ea-IT*| , S z - I T * |  T* |  CO 

... ~ Sa-2T,|174 6, Sa-2T,|174 
1 ~ 1 ~ 

0 : : 

0----, T*|176 5_~ ... ~ T,|174 6 ,  T,|174 

1 
o ~ - ,  o ~ 6 A , ~ - I ~ , ~  o 6 0--'*'gin T | . . . . . . . .  ~ g l  * A~T*|  Co 

1 1 l 
0 0 0 

(l.2m) 

Each row is the usual 6-complex with a symmetric tensor space added, on which 6 

acts as the identity. The vertical maps, denoted by  e, act on ST*| and as the identity 

on the g's and C ~ Clearly the diagram commutes and the columns are exact. 

Diagram chases will relate the eigenvalues of 6*6 on the various spaces. These calcula- 

tions, however, require several lemmas. 

LE~MA 1.1. The composition 6*6, 

~/0+ 1 6 6"  , T,| o 
' gg+l ,  

is (k+  1)~I. 

Proo/. The above composition 6*6 is the composition 6*6 in the sequence 

Sk+IT*| T*QSkT*| , Sk+IT*| 

restricted to g~ followed by  projection onto 9~ But since the eigenvalue of the formal 

Laplacian is (k + 1)3 on S k + 1T, | C c, the composition 6*6 is (k + 1 )31 on S k + 1 T* | C ~ Thus if 

we restrict it to g~ the projection onto g~ is the identity, The lemma results. Q.e.d. 

De/inition 1.2. Let 

7: AZ-IT*QS~+IT*@ Co ~ T*|174 

be the unique linear map satisfying 

~(z)  = (k + 1 ) U |  A ... A ~,-1@ (U)~ 

when x =~1 A ... A ~z-1| (~z)k+l. 
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Since ~ is the identity on AZ-IT * and ~ on Sk+IT*| e, it restricts to a map 

: A*-IT * |176 T* |  * | 

By Lemma 1.1, we know that  if xeg~ then 1)'ll ll', so for 

x e A t - l T * |  we have I1  11 = ( k +  1) 3 II~lr= 

In the diagram (1.2m) we know that  r and e commute, and therefore that  ($* and e* 

commute. The following lemma, which is important in almost all the proofs in this chap- 

ter, indicates by how much ($ and e* fail to commute in a special case. 

LEMMA 1.3. In  the [oUowing rectan4fle 

T* | A~-2T * | S~+IT* | C o ~-~ T* | AI-IT * | S~T * | C O 

, AlT * | SkT * | C o A Z-1T* | S~+IT * | C o 

we have 

(i) e~  = ( - 1 ) 1 - 1 ~  

and 

(ii) le*~ = (l - 1)~e* + ( - 1 ) l - 1 ~ ] .  

The diagram restricts to 

T* @ iz-2T* @ gO+ 1--~ T* @AZ-IT* @g ~ 

AZ-lT.| (~ , AIT*|  ~ 

and (i) and (ii) hold/or this rectangle also. 

Proo / o/ (i). Let x=~l  A ... A~z-l| Then 

a T = ( - 1) z-1 (k + 1) (~1 A ... A ~ l -1  A ~ z |  (~z)k |  = ( _ 1) l -18x" 

By linearity, we obtain (i) for all xEAI-IT*|174 ~ 

Proo/o/  (ii), Let  x be as above. Then 

/ e * ~ x = ( / c + l ) ( ~ l ( - - 1 ) ' - l ~ ' | 1 7 4 1 7 4  ~ ' ,  

Similarly, 

(l-1)r162 1)C~: ( - -1 ) ' - '~ ' | 174174  ).  
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Therefore, (le*~ - (l -- 1)~e*)x = ( - 1 / - l ~ z .  

Then (ii) follows by linearity. That  the diagram restricts as asserted is obvious. Q.e.d. 

We may now state and prove the main theorems of this section. 

then 

where 

THEOREM 1.4. I f  

lla~ll s i> c(l, I)II~II" 

lla~ll' I> o(1, k)II~II s 

b) = (1 c ( I ,  
\ 

/or all xs  T*|  ~ N ker ~*, 

for all x s T* | go f~ ker (~*, 

(k--1Z ~k' .  
4c(1, b -  1)1 

In  particular, i/ c(1, 1)=�89 then c(1, b)=�89 2. 

Remark. The recursive relationship of the o's indicates the naturali ty of the �89 in the 

a-estimate. I t  is the least constant which guarantees tha t  c(1, b )>0  for all b. 

Proo] o/Theorem 1.4. Consider the following diagram, which is part  of diagram (1.2~+1) , 

0 

for k>~2: 
, T* | go e , T* | T* | !io_ 1 e , T* ~ A s T* ~w-~'~"~ 

, T * | 1 7 6  e A sT*~"~ e A s T * ~ " ~  ~ y k - 1  ~ ~ y k - 2  

(1.3k+l) 

The proof is by induction on k. The theorem is trivially true if k = 1. Assume that  

b >~ 2 and that  the theorem is true for k -  1. Let  x 6 T* | N ker ~* be a non-zero eigenvector 

of a*a with eigenvalue 2. Since 

0 , 0 S , 0 ~k+l'->T (~)~k" '>A T @ ~ k - I  

is exact, we know that  ~ > 0. 

By Lemma 1.1, 5*Se*x/bS=e*x. Because 5" and e* commute and ~*~x=2x, ~*a*~x/~ 

also equals a*x. Therefore a*(~e*x/b s -e*~x/1)=0. This has two consequences. First, 

<(&*x/k s - ~*ax/~), &*x/k'>  = 0 

so  lla~*~ikSll, = (11~.~ s) <8*&, a~*x>. (1.4) 

Second, we can apply the inductive hypothesis to obtain 

Ila(a~*~/k'  - ~*a~/~)  II s ~>c(1, k - 1 )I la~*~/ks  - ~*a~/~ll  ' .  
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Since (~ =0, 
jl~,~,/,~ll ~ ~ c(1, ]c - 1 ){ l l ,~ , ,~ , /kSl lS- (2 / ;~k~)<,~*~,  ~*~> + II~*a~/;ql ~}. 

By applying (1.4) to this we obtain 

lla~*a=lall s ~ ~(I, k -  1){ll~*a~lall s -  lla~*~Ik, ll,}. (1 .5)  

Since lla~*~Ik'll~=k-4<a*a~*~, ~*~>, ~ m m a  1.1 implies that  

lla~*~Ik'll s = k-'ll~*~ll s. 

Since e~* on T*| ~ is the identity map, 

ilo~,~/kSll s = k-Sl l~l ls ,  

and ll~*a=l~ll = ~-s<a.&,  ~> = ~- ' l l~I I ' .  

With these substitutions, (1.5) becomes 

ll~*a~l~ll s >i ~(1,k - i ) ( ; t  -~ - k  -s) II=II s. (1 .6)  

Now apply Lemma 1.3 to Jx with 1=3. Then, 

3e*t~Sx = 0 = 2&*3x + ( - 1)~q3x, 

411a~*a~ll s = ll,Ta~ll ~ = x ( k -  1)s ll~ll ~. SO 

Now (1.6) becomes 

( (k-  1)s/42)]]xilS ~> c(1, k-1)(~t -1 - k  -s) ]]X]I s. 

T h e r e f o r e ,  ~ ~> { ( k -  1) s 
\4 c(1, ]r 1) / /~ = c(1, k). 

Since all eigenvalues are bounded below by c(1, k), we have that  I](~xH2~>c(1, k)I]xl] s. 

This completes the inductive step, so the theorem follows. Q.e.d. 

then 

T H E O R E M  1.5. I /  

II~l i  ~ ~> c(1,  k)II~li s 

i i ~ i i  ~ ~> c(~, ~)i i~i[  s 

where c(1, ]r = 

/or all xE T*| ~ N ker ~*, 

/or all x E A  ZT*| ~ N ker ~*, 

lSc(1 - 1, k) - ]~ 
(l + 1) ( t -  1) ' 

(1.7) 

In  particular, i/ c(1, k) =�89 s, then c(l, k) =kS~(1 § 1). 

Remark.. Once again we see that  �89 is the lowest possible value for c(1, 1) such that  

c(l, k)> 0 for all l and k. 
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Proo /o /  Theorem 1.5. Consider the following portion of diagram (1.21+~). 

T* ~ A z- IT* ~ .o  , ~ ~v~ , T * | 1 7 4 1 7 6  

e A i T , |  e A Z + I T , ~ ,  0 
�9 �9 ~ Y k - 1  

0 0 

The proof is by induction on l. If l = l ,  the theorem is trivially true. Assume that  1~>2 

and that  the theorem is true for 1 -1 .  Let  x 6 A I T * |  ~ N ker 5* be a non-zero eigenvector 

of 5*0 with eigenvalue 4. Then [[bx[[2=2[[x[[ ~. 

Since 5*x =0,  by the commutation of 0" and e* we have 5*~,*x =0. Therefore we may 

apply the inductive hypothesis to obtain 

1[5e*~[[~ ~ > c ( l -  1, k)I[e*~[[ ~ = c ( l -  1, k)[[x[[~. (1.8) 

By Lemma 1.3 (ii), we have 

(l + 1) e*bx =/~e*x + ( - 1 ) ~r/x, 

so l~[lS~,~ll ~ = (~ + 1)3 ll~,5~11,_2(l + 1)( - 1)t <e*Sx, ~x> + ll,7~11 ~. 

By Lemma 1.3 (i), 

SO 

Thus, (1.8) becomes 

<~*~, ,~> = ( -  1 ;  115xfl ~, 

~llb~.~il ~ = (~+ 1)~2jl~l i~-e(l+ 1)211~li~ +k~lNI ~ 

( ( l+ 1 ) (~ -1 )2  +k2)Hxl]~/> l~c(z- 1, k)]Jxii ~ 

so 2 >~ 12 e ( l -  1, k) - k S _ c(1, k). 
( /+ 1) ( l - - l )  

Since the eigenvalues of 0*5 are bounded below by c(1, k), we have that  ]lbxll 2 ~c(l, k)Jlxll 2. 

This completes the inductive step, and the theorem follows. Q.e.d. 

Theorems 1.4 and 1.5 together imply 

THEOREM 1.6. I / ~  satis/ies the 5-estimate, then [ibx[i ~ ~> (k~/l) [Ix[[ ~ /or all x e  A t - l T * |  

gO N ker 5*. 

Remark. These estimates are the best possible, since there exist operators such that  

the above inequality actually becomes an equality for some x. The ~ operator in several 

complex variables is such an operator. 
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THEOREM 1.7. I f  ~) satisfies the 8-estimate, then g~+l is involutive. 

Proof. I f  the sequence 

A~-~.T,| ~ , A l - l T ,  Qg ~ ~ , AZT*Qg~ 1 

were not exact for some I >/2 and k/> 1, there would exist an x E AZ-1T * | such tha t  x =~0, 

8x =0,  and 8*x =0.  But  this contradicts Theorem 1.6. Thus go is involutive. This is equiva. 

lent to g~+l being involutive. The proof of this consists in showing tha t  the obvious map  

from AlT*|174 to AZT*| gives an isomorphism between the 8- 

complexes for gk+l and gO. We omit the details. Q.e.d. 

Remark. The hypothesis of Theorem 1.7 is stronger than  necessary. Recall tha t  the 

metrics on T* and E have been given, and tha t  all other metrics have been induced by  

these. Suppose tha t  for every positive e it is possible to find metrics on T* and E such tha t  

with these metrics 

1lSxll ~ >~ ( �89 for all x e  T*|176 ker 8*. 

Then g ~ l  is involutive. 

To see tha t  
AZ-kT|176 ~ ~A~T*| -~ AZ+IT* | g~ , 

is exact, note tha t  c(1, Ic) is a continuous function of c(1, 1). By choosing e small enough 

so tha t  c(l, k ) > 0  when c(1, 1 ) = � 8 9  and by  choosing metrics on T* and E such that  

118 11 for all xET*|176 * 

we can make ker ~* N ker 8 =0,  so tha t  the sequence is exact. Since this can be done for all 

1 and k, gl ~ is involutive, so gk+l is involutive. 

Thus we are led to conjecture tha t  the converse is true; i.e., if gk+l is involutive, then 

for any e > 0  there exist metrics on T* a~d E such tha t  

118xll ~ ~> (�89 for all xE T*| ~ fi ker 8*. 

This conjecture is true for W. J.  Sweeney's example of an involutive differential operator 

with a noncompact Dirichlet norm [9]. We know tha t  this operator cannot satisfy the ~- 

estimate, since the results of Chapter I I I  would then imply tha t  the Dirichlet norm is 

compact. But  the Sweeney operator does satisfy the conclusion of the conjecture. 

2. The 5-est lmate on g~, i ~ 0 

THEOREM 2.1. I f  ~ satisfies the 8-estimate, then 

118~11 ~ > �89 /or all xe  T*| n ker 8*, 
where g~ =ker  ~(DZ). 
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Proo/. The theorem is a consequence of two lemmas. 

LEMMA 2.2. I /70 satisfies the O-estimate and if xEg z+l is an eigenvector o/al(Dt)al(DZ) * 

with eigenvalue ~, then ]t >~2. 

Proo/. Consider the  following diagram: 

1 l . . . .  5 x s  x3  

0 .  S2T, | A z- 1T, | gO ..__, S~T, | A zT, | 0 ~ 

X 6 X7 X 1 

. . . . .  O ,T*|174 O ,T*|174 

1 l X5 X 2 

... O ,A~+lT,| 0 , A I § 1 7 4  o 

1 l 
0 

x~I x, 
~, S2T * | C l -~ 0 

x [ al(DZ) 

~t ' T* | Cl+l ---*0 

l 
a(/~ § 

~ ' C t+2 ' 0  

1 
0 0 

(2.b) 

This diagram is a par t  of (1.2z+2) which has been extended by  adding the cokernels 

of the  final 0 maps. The first two columns are exact  as usual, and the rows are exact  since 

go is involutive. A diagram chase shows tha t  the  last column is exact. The diagram com- 

mutes  because (1.2z+~) commutes  and because the a maps  are induced by  the  e maps. 

Recall t ha t  the  metrics on the  spaces C z were defined so tha t  the  ~ maps are projections 

(i.e., ~ *  is the identity). Recall also tha t  e* from the  bo t tom row to the  middle is an  iso- 

mer ry  because ee*= I on the  bo t tom row. We shall denote all of the  ~ maps  by  a. The 

context  will always make clear which one is meant.  Now we proceed with the  proof. 

Suppose tha t  x e ~  +1 (i.e., xE T * |  z+l and  ~ x = 0 )  and tha t  ~ o s x = 2 x .  Then  by  

exactness of the last column, ~t>0. Le t  x4=a*xl,~. Then ax4=x  and II~,ll*=(l/x)ll~ll ~. 
Furthermore,  x 4 is the  element of least norm in S ~ T* |  C l which maps  onto x. For,  assume 

ax~ = x. Then by  the  exactness of the  column, x~ - x 4 = cry. Thus 

<x'~ - x 4, x4> = <ay, a* x/,~> = <aay, x/,~> = 0 

so I1~s ~ = I 1 ~ -  z ,  II ~ + I1~,11 ~ i> IIz, II ~. 

Thus, x 4 has the  least norm. 

Let  ~1 = ~*~. Then  II ~ II 2 = II ~ll ~ Let  ~ = ~ and ~3 = ~ % .  Since,  = we  proved  in Chapter  

I ,  Corollary 7.2, e*e+ee*( l+l ) /2 ( l+2)=I  on T*|174 ~ we have 

I1~111 ~ = II~ll ~ + (z § 1)/2(z + 2)11~311 ~ 



A G E N E R A L T ~ A T I O N  TO O V E R D E T E R M I N E D  SY~'I~EMS 105 

to  obtain 

Apply  Lemma 1.3 to  the rectangle 

T,|174 ~ , T* |174  ~ 

At+lT, |  ~ , AZ+ST*| ~ 

(l + 2)~*5x s = (l + 1) ~e*x 5 + ( - 1)z+l~x 5. 

Using tha t  He*Sxs]l 8 = [[xs]] 8, t ha t  I[~xsll 8 = Hx5[I ~, t ha t  <e*Ox 5, ~xs> = ( - 1) z+1 I[x2H 8, and tha t  

~e*x5=xT, we can conclude tha t  

(z + 1)8 i[~118 = z(1 + 2)IIxsII 8 + IIz~ll 8. 

Combined with (2.5), this becomes 

z(z + 2)ll~sll 8 + II~II 8 i> ((2(I + 1)(l + 2)I~) - (l + 1) 8) ll~ll ~. (2.6) 

With  (2.3) and (2.2) this gives 

�89 (2(l + 1)(l + 2) - 2 ( l  + 1)8) >~ (I/A)(2(l + 1)( /+  2) - , t ( l  + 1)8). 

I f  2 < 2  we face a contradiction, because then  2(1+1)(1+2)-,~(1+1)8>0, so tha t  �89 

or ~/>2. Thus  we conclude tha t  2~>2. Q.e.d. 

Since xa=-e*g*x=zt*a*x, we have tha t  I]xalls= IIa*zlls=211xll ~. Thus 

I[xll ~= (1 2(z2(z ++ 1) - 2)] IlxllS" r 

B y  commutat iv i ty ,  ~rxs=ax=O, so there is an xsEAl+lT*@g ~ such tha t  ~x~=x 8. 

Choose z5 to  have minimal norm, so 6"x5=0. F rom Theorem 1.6 we conclude tha t  

I1~118/> (1/z+2)IIx~ll 8 or since ~x5 =~8, 

I1~118 ,< (z+2)11~8118 (2.3) 

~ t  ~ 5 = ~ % ,  and ~ , = ~ .  Then Ilxdl~=ll~ll  8, and ~ ( ~ 1 - ~ , ) = 0 .  Since I = ~ * ~ +  
ee*(/+1)/2( l+2)  on T*|174 ~, if xs=((l+l)/2(l+2))e*(xl-zT), we have ex8= 

~ - ~ , .  Then I1~118 = I I ~ - x ,  llS( z+ 1)/2(l+2).  Since <x,, Xl> =<ztt~xe, z> =0 ,  we have tha t  

IIx,-~:ll  8= IIx, II 8 + I1~11 ~. Thus 

I1~118 = (ll~ll ~ + II~ll ~) (z + 1)/2(l + 2). (2.4) 

Let ~ = ~ x 8 .  Then I1~11 ~ < IIx~ll 8 and ~ = ~  ~ ~ = ~ ( ~ 1 - ~ ) = ~ .  We have already 

proved t h a t  x 4 is the d e m e n t  of least norm in S2T*| ' which maps  into x, so therefore 

11~,118< 11~118-< II~sl[8. Thus, 

(1/2) I1~118 = IIx, ll 8 < (11~118 + I1~118) (z + 1)/2(z + 2), 

or I1~118/> ( (2 ( /+  2) /2( /+  1)) - 1)I1~118. (2.5) 
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Lemma 2.2 shows that  the 0-estimate implies a restriction on the spectrum of 

ax(Dl)al(DZ) *. Lemma 2.3 will show that  this spectrum is essentially the spectrum of (~*(~ 

on T*| fl ker 5" multiplied by 4. 

LEMMA 2.3. Assume that gk+l is involutive. Let A be the spectrum o/al(DZ)al(DZ) * on 

T*| l, and let A '  be the spectrum o/ 8"(~ on T*| Then the map ; ~ 2 / 4  is a one-to-one cor. 

respondence between A O (0, 4) and A' A (0, 1), where (a, b) is the open interval between a and b. 

Proo[. Observe that  4 is the maximum possible eigenvalue of a,(DZ)al(D~) *, since 

al(D l) is a restriction of ~: S2T*| ~ T*| T*| ~ and the eigenvalue of &~* on S*T*| ~ 

is 4. Similarly, 1 is the maximum possible eigenvalue of (~*~ on T*| n ker 8*. 

Now consider the diagram: 

0 0 0 

0 ' g~ ' S~T*| Z ' T* |  z+l ~ "Cz+~-+O 

0 T*| i T , | 1 7 4  z ' ' ' T * |  I~1 ' 0 

0 - - ' A ~ T  * |  l i , A 2 T , |  l ' 0  

which restricts to 

0 0 0 

1 [ l a~(D') gl ' 0 0 , g~ i , S 2 T , |  Z , Z+l 

la l a  1 |  , T * |  ---* 0 ,T*Qg~ i ) T ,  Q T ,  QCz 0 

0 , A ~ T , |  z i ,A2T*|  l , 0  

(27l) 

The diagram is commutative and, since gk+l is involutive, is exact. Also, 1 |  ~) is 

a projection. To see this, recall that  ~: AI+IT*|176 z+l is a projection. Then by consid- 

ering the adjoint of part of diagram (2.11_1) 

T*|  * |  O' T*|  l' '0 

le* la(Dl)* 
7~* A'+IT*| CZ+l, 

! 1 
0 0 
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we see tha t  if x EC TM, then Ilxll =ll~*xll = Ile*~*xll = II~*o~xH = Ila*xll. Thus ~(DZ) * is an  

isometry, so a(D z) is a projection. Therefore 1 |  ~) is a projection. We shall denote bo th  

~I(D l) and l |  z) by  a. 

_ :_ t+ l  such tha t  aa*x=2x.  Thus a&r*x = Let  2EAN (0, 4). Then there is a non-zero , ~ y l  

~a(r*x=~x.  Then a(a*2~x-(Sa*x)=O since aa* is the  ident i ty  on T * |  t+l. Therefore 

a*25x-&r*x = ii*(a*2Ox - (~a*x), or since i 'a* = 0, 

Aa* ~x - S a * x  = -i i*Sa*x.  (2.8) 

Now we claim tha t  i *~*x  is an  eigenvector of 5"(~. Since i*i is the ident i ty  on AaT* |  C t, 

~*~i*Sa*x = 5*i*i~i*~r*x = 5*i*Sii*Oo'*x. 
By (2.8), this becomes 

-5*i*(~(2a*(~x- ~a*x) = -25"i*(~o'*(5x = -2i*5*&r*Ox. 

Since on T*|  T * |  l, the ident i ty  map is 5*5 + �88 this becomes 

- 2 i * ( I  - �88 a*~x = (2/4) i*55*,r*~x = (2/4) i*~r*~*~z = (2/4) i*~*x. 

Therefore i*~(r*x is an eigenvector of 5"(~ with an eigenvalue 2/4. We must  prove tha t  i*Sq*x 

is not  zero. Suppose tha t  i*Sa*x =0.  Then a*aSa*x =Oa*x. But  we know also tha t  (r*a5a*x = 

a*(~a(r*x=2(r*Sx. Therefore ~a*x=2a*(Sx. This, with commutat ion,  implies t ha t  2 ~ * x =  

25a*5*5x=255*a*Sx=(iS*5(r*x. But  5 " 5 = 4 1  on S2T* |  ~ so 2&r*x=4(~a*x. We assumed 

tha t  x 40 ,  so 5a*x ~0 .  Therefore 2 =4 .  This contradicts  the assumption t h a t  2CA f) (0, 4). 

Thus i*(~a*x =4=0, and 2 / 4 ~ A ' N  (0, 1). A nearly identical d iagram chase will show tha t  if x 

is a non-zero eigenvector for ~'5 in T*| with an eigenvalue 2 /4~A ~ N (0 1), then aS*ix 

is a non-zero eigenvector of (ra* with an eigenvalue 2. 

Now we re turn to the proof of Theorem 2.1. We mus t  prove tha t  if ~ satisfies the 5- 

estimate, then 
115 ll  >lll ll for an  eT*|  ker5*. 

By L e m m a  2.2, we know tha t  2 is a lower bound for the eigenvalues ofa~(D~)a~(Dt) *. I f  there 

were a non-zero eigenvalue of ~*~ less than  �89 then by  L e m m a  2.3 there would be a non-zero 

eigenvalue of ai(D!)a~(Dt) * less than  2. Thus the min imum positive eigenvalue of 5*5 

is bounded below by  �89 But  since the sequence 

O~g~-+ T* | A ~ T * |  ~ 

is exact, we know also tha t  zero cannot  be an eigenvalue for 5*5 on T*| ker 5*. There- 

fore 
II~xll~> �89 ~ for all x ~  T * |  N ker 5*. Q.e.d. 
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We conclude this section by deriving an equivalent form of the 0-estimate which 

will be used in Chapter I I I  to prove the Kohn-Nirenberg estimate. 

THSOR~.~ 2.4. I / ~ )  eatis/ies the O-estimate, then /or each l>~l, 

/or all v 6gtl, where 
<S(1 | (1 | >~ 0 

S: T*@ T*| ~-I -~ T*| T * |  z-1 

is the switching operator, the linear map generated by S(dx*|174174174 

Proo/. By Lemma 2.2, if ~) satisfies the ~-estimate then 

II~,<~-*)*~11 ~- ~> 211~11 ~ for an ~eg~.  

Now consider again the exact commutative diagram (2.7z-1): 

0 
! 

0 , ~12-1' 

0 ' T*| -1 

0 ' A~T*| 0 z-1 

0 0 

i ~ a,(D '-x) J 
' S~T*| z-1 .... ' g~ ' 0 

i T , | 1 7 4  I| JO ' T*|  z - "  0 

i ,A2T*| ... ' 0  

L 
0 

We claim tha t  S= ~ ~(~*-~*~ since, by the calculations of the eigenvalues of the 

formal Laplacian, 
O*O(~* |174 = �89 |174 -- $2| | ) 

and 

SO 

Then <S(l@a(DZ-1))*v, (l| = <(�88174 

= ~ I le<l  | a(DZ-~)) * vii e - l i e ( 1  | o'(DZ-1)) *'l l  *- 

Since �88 (~*~=I on T*|174 z-l, 

l[~*(1 | a(D'-*))  * ~11 ~ § IlO(l @ o'(D'-l))  * ~11 ~ = I1(1 | g(D'-~))  * vii'. 

We noted in Section II.2 that  (l| is an isometry, so II(xo~(D'-'))*vlp= Ilvll'. 
~rom this we see that  
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(S(l| (l| >10 

if and only ff �89 [[e~*(l| []v]] 2, 

where vEg~ is considered to lie in T* |  z on the second line of the diagram. 

By commutat iv i ty  of the diagram, 6*(l| =al(DZ-1)*0*v. Now O*: T* | C~-~g~ 

is simply projection onto g~, so since vega, we have v=0*v. Thus 

(S(l| (l| >10 

if and only if [[al(DZ-1)*v[[ ~/> 2][v[[ 2, 

which was established at  the begi~nlng of the proof. Q.e.d. 

3. The S-estlmate on g~+l 

We have defined the 0-estimate for ~ on the sequence 

O -+ g~ ~ T* | g~ ~ A 2 T* | C~ 

This was convenient for obtaining the estimates on the sequences 

O~g~ ~ T* | ~ A2T* |  z 

which we shall use in the next  chapter, but  it has the fault  tha t  it requires tha t  we construct 

the Spencer sequence in order to see whether ~ satisfies the 0-estimate. In  this section we 

shall prove tha t  the 0-estimate is equivalent to an estimate on 

0 -~ g~+~ -~ T* | g~+l -* AS T* | gk 

so tha t  whether ~O satisfies the 0-estimate or not can be verified without constructing the 

Spencer sequence. 

THEOREM 3.1. The ]ollowing estimates are equivalent: 

(i) [[Ox[[~>~c(k + l)~[[x[I ~ ]or all xeT*| N ker0*, 

and 

(ii) IIS~ll~cll~ll ~ lor all xET*|176 *. 

In  particular, an operator ~) of order k satisfies the O-estimate if and only i] 

[10xl[~>~(k+ 1)~[M[ ~ /or all x e  T*| t) ker t~*. 

Proo/. Recall tha t  gk may  be regarded as a subspace of Rk = C ~ Since a(D~ T*|  C ~ C 1 
~0 T *  r~ is s  natural  projection onto C I = T*|176 we see  tha t  g ~  1. Then .~u= 

gO fl S~T. Qgk. 
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Now consider the following diagram which is an analogue of (1.2~+~): 

0 

1 o 
0 ' S2T*| ~ "'" 

1 le 
O---*T |247 ~-~T*|174 ~--~"" 

le le 
J~ O 0---~ gk+~--~--~T*| A2T*| , . . .  

t l 
0 0 

o O Since gl = gk+l, we can collapse this diagram to obtain 

0 0 

\ t / 0 - ~  gk+2 , go ___, 0 
\o r 

0---* T*|247 I |  T*| " - - ' 0  

A~T * | g~ 

A diagram chase shows tha t  the dashed arrows m a y  be added to make the diagram 

commutat ive and exact. Observe tha t  the e-sequence has become the usual 0-sequence and 

tha t  by  Lemma 1.1, ( I |174  is ( k + l ) * I .  

I f  xET*| ker 0*, then O=O*(1@O)*(I| Since/* is injective, 

e*(1 G0) x = 0, so 1 @ 0: T* | ~ ker 0*-~ T*| ~ fl ker e*. Dimension considerations show 

tha t  this must  be an isomorphism. 

Now we show that  (ii) implies (i). I f  x G T* @g~+l N ker 0*, then (1 | E T*g ~ N ker e* 

and II(l| Then by (ii), II0xll~=lle(l|174 ~, so II~xll~>~ 
~(k+ 1)3 iixl[,. The demonstration of the converse is similar. Q.e.d. 

Remark 3.2. As we have observed,  gO ___ gk+l, but  O acts on them differently since g~+x 

is considered to be contained in Sk+IT*| and go is considered to be contained in T* |  ~ 

I t  is for this reason tha t  the O's differ by  the constant ( k + l ) .  

4.  Example s  

Example 4.1. The gradient operator d. Define d: C-~ T*, where C is the one dimensional 

complex trivial bundle over X, by  d / = ~  ~//Sx~dx ~. Then ~(d): T*| T* is the identity. 

Therefore gl = 0  and the 0-estimate holds vacuously. The Spencer sequence in this case is 

the de Rham sequence. 
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Example 4.2. Covariant derivatives. A first order linear operator V: E_-,.T*| is a 

eovariant derivative if a(V): T*| E o T*| E is the identity. Again gl =0  so the 0-estimate 

holds vacuously. 

Exampled.3. The Cauchy-Riemann operator. If X is a complex manifold, then T*= 

H Q H  where H (resp. H) is the space of holomorphic (resp. anti-holomorphie) cotangent 

vectors. In terms of local coordinates {zt}, H is generated by {dz,} and H by {dO~}. Define 

3: C_oT* by  

Then a(O): T*| is the identity o n / 7  and is zero on H. If we choose any metric on 

T* such that  H •  we have that  gl=H, T*|174174 g2=S2H, and 

ker 0* = {x]xE T*| and xlg2} =A2H@I~| 

We must prove that  if xEA2H|174 then H0x[[2 =(0*Ox, x)>~�89 Since ASH and 

H |  are invariant under 0*O, we may treat  the two cases separately. I f  xEA2H, then 

O*Ox=x, so [[IOx[I ~= IlxH 2. If x+FI| then we may write x :  a~dz'|163 j. Then O*O is the 

orthoprojection of �89 a~,(dz~|163174 onto H |  so (O*Ox, x~ =�89 lag+IX = �89 
Therefore the O-estimate holds. 

Example 4.4. The operator ~ .  Define ~: C o T *  by D/=ZD//~zidzi. Then q(3): 

T*| is the identity on H and is zero on H. If i v'q denotes the space of exterior 

vectors of type (p, q), then 3 and ~ extend to give an operator 

~ :  iP,  q o i  p+I' q+l, 

and the symbol of a~: A~176 la is given by the composition 

S2T,| -,<5) T. |  -o) , A1.1. 

We claim that  ~ satisfies the 0-estimate. 

By Theorem 3.1, the 0-estimate holds for ~ if and only if 

IlOxll > (a/2)llxll for an   T*Og n ker O* 
in the sequence 

0 o gd-" T*| ~174 �9 

However, by the proof of Theorem 1.4, it suffices to prove that  

II0x[I ~ ~>211x[l ~ for all xET*|  

in the sequence 

(4.1) 

(4.2) 
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o e , A ~ T ,  | o 0 ' ga " T * |  |  (4.3) 

since (4.1) is the 0-sequence obtained from (4.3) by prolongation. 

If  we let S ~'q be the symmetric tensors of type (is, q), we have that  g2=kera(aD): 

S~T * -~A 1.1 is $2.~ S ~ since a(OD)(dz~) =a(~D)(d~j 2) --0, and a(~D)(dz~od~s) =dz~ A d5 r Hence 

ga= T*| SaT*=Sa.~ ~ Then the sequence (4.3) becomes the orthogonal sum of 

�9 8~.o 6 H |  o , , A ~ . ~ 1 7 4  

, 8~  o , A |  o , A ~ 1 7 4  

0 ~ , H |  ~ ~ , A " ' |  

0 :e ,~ |  e , A " ' |  

(4.4) 

Thus to verify tha t  the estimate (4.2) holds on (4.3), it suffices to prove that  it  holds for 

each sequence in (4.4). The first two are trivial 0-sequences, and Theorem 1.7.1, which states 

the eigenvalues of the formal Laplacian, applies to give 

11~11~--411~ll ~ for an x6ker0*.  

The third and fourth sequences are similar, so we consider only the third. Let  x=~| ~26 

H |  ~ where ~ and $ are unit vectors. Then I[~IP=I and 6x=2~A$|  and IIOxll~= 
411~A ~l l '=411�89174174 Thus IIO~,ll,=211~ll ~. One can extend this argument to 

prove that  for all xEH| 2, IIO~ll==211~ll ~. Therefore, for all four sequences in (4.4}, 

the estimate (4.2) holds. Therefore, the operator aD satisfies the 0-estimate. 

HI.  The  D . N e u m a n n  problem 
0. Introduction 

We shall use the estimates of Theorem II.2.4 to prove that  the Kohn-Nirenberg 

estimate holds, and therefore that  the D-Neumann problem is solvable. The rest of the 

proof of the exactness of the Spencer sequence follows quite easily. 

Recall tha t  the Kohn-Nirenberg estimate states tha t  there exists a constant such that  

~176 ~ < 4"11(~ b* ull ~ + nllD'ul] ~ + nllull ~} 

holds if u is in the domain of (DZ-1)*; that  is, if uEF(~ ,  C:) and n(D:-Xv, u) =a(v,  (Dt-X)*u) 

for all v E F (s C z- 1). The only obstacle to proving this is that  the intega'al of a certain bilin- 

ear form may be negative. The estimate of Theorem II.2.4, 

(S(1 | (1 | >70 

for all v E g~, however, is sufficient to guarantee that  this will not happen. 
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In  Section 1 we discuss the D-Neumann problem. In  Section 2, we state the theo- 

rem which says tha t  the Kohn-Nirenberg estimate and Sweeney's estimate hold on cer- 

tain domains for elliptic operators which satisfy the h-estimate, and we prove the theorem 

in the special case of constant coefficients. Finally, in Section 3 we prove the main pro- 

position, Theorem III.3.1,  which asserts tha t  the Spencer sequence is exact. 

1. The D-Neumann problem (see Sweeney [8]) 

For notational convenience we shall consider the graded bundle C =  | and 

we shall write D for the graded operator which is D l on F(~,  C t) and D* for the graded 

operator defined by (D*)~=(DZ-1) *, where (Dr - I )  * is the formal adjoint of D t-1. Then D 

is graded with degree 1 while D* is graded with degree - 1 .  Since D* is not defined on C o 

it is convenient to consider C ' =  O C~(l >11). 

Let ~ be a compact manifold-with-boundary contained in X. Define the Neumann 

space N=| to be the graded space of all sections u E F ( ~ ,  C') satisfying the 

boundary conditions 

n(Dv, u> =n(v ,  D'u> for all vEF(~ ,  C) (1.1) 

n<Dv, Du> =n(v, D*Du> for all vEF(~ ,  C'). (1.2) 

Thus u E N if and only if both u and Du are in the domain of D*. Define the harmonic 

space H =  | to be the kernel in N of DD*+D*D. Since n((DD*+D*D)u, u)= 

~]]D*ul[2+nlIDu]]~ for ueN,  we have 

I t  = (uEN: Du=D*u=O}. 

De/inition 1.1. We say that  the D-Neumann problem is solvable for O on ~ if H is 

closed in L2(f~, C'), and if there exists a bounded graded operator of degree zero 

N: L2(~ , C')~L~(f2, C') mapping F(~,  C') into N such that  

(i) N H = H N = 0 ,  where H: L2(~ , C')-+H is the orthogonal projection; 

(ii) each uEF(f~, C') can be written 

u = DD*Nu + D*DNu + Hu, (1.3) 

where the terms are mutually orthogonal by  (1.1) and (1.2); and 

(iii) DN=ND. 

One reason for wanting to solve the D-Neumann problem is tha t  the decomposition 

(1.3) gives a cochain homotopy 1-H=D(D*N)+(D*N)D, which says tha t  if D u = 0 ,  

then u is cohomologous to Hu. Therefore the cohomology of the sequence 

8 - -  712904 Acta mathematica 126. I m p r i m 6  le 8 J a n v i e r  1971 
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rr c ~ D. ,  rr c')  D' �9 ... rr  v-) ,0 

is isomorphic to H =  | 

If we complete N abstractly to a graded Hilbert space B with the Dirichlet inner 

product Q(u, v) =a<Du, Dr> +a<D*u, D'v> +n<u, v>, we may show tha tB  may be consid- 

ered a subset of L2(~, C'). Let  L he the Friedrichs extension to B of DD*+D*D. Then 

we have 

T H ~ . O R ~  1.2. Assume that l) is elliptic and that the inclusion B->L2(~, C') is compact. 

Then we have: 

(i) uEF(~, C') whenever L u e F ( ~ ,  C'): 

(ii) H is finite dimensional, and the range o / L  on I ' (~,  C') is closed; and 

(iii) the D-Neumann problem is solvable/or ~ on E~. 

Proo/. (See Sweeney [8].) 

Remark. That  (i) is true is a result of Kohn and Nirenberg [3, Theorem 3]. Our assump- 

tion that  O is elliptic comes in via Quillen's theorem, Theorem 1.5.1, which implies that  

DD* + D*D is then elliptic. The Kohn-Nirenberg theorem requires tha t  the boundary be 

non-characteristic for DD* + D*D. 

To show that  the inclusion B-+L2(~, C') is compact, it is sufficient to prove the Kohn-  

Nirenberg estimate [3], which we shall do in the next  section. 

2. Integration by parts 

Let  r be a smooth function on X such that  

(i) r(x) =0 if and only if x f i ~  

(ii) r(x)<<.0 for xEg2 

(iii) I drl = l  on 

Then ,dr is the volume element on a~. From Stokes' theorem we get for all smooth func- 

tions ] and one-forms ~, 

a<d], a> =a</, d*~> + ~ or>. 

This result extends to sections of bundles and first order operators D: E - + F  to give 

a< De, 1> =a<e, D'l> + ~ /> 

for all eeF(~2, E) a n d / e F ( ~ ,  F). Consequently, the condition that  ueF(~, C z) be in the 

domain of D* is equivalent to adr(D)*u =--0 on ~ .  
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THEOREM 2.1. I[ ~ is a su//iciently small ball in terms o/some local coordinates, and 

i[ ~ is an elliptic operator which satisfies the &estimate, then 

(i) ~ ~ ~ c{"llD*~ll ~ + nllDull ~ +"llull} 

and  

(ii) "llull~ < c{"llD*~ll~ + ~ 

/or all u E F ( ~,  C') in the doraain o~ D* ; i.e.,/or all u such that a a~( D )*u =- 0 on 0~. l n particular, 

i / p  is a point in X with a neighborhood N, there is a compact mani/old.with-boundary 

such that p E ~ c N  and (i) and  (ii) ho/d on fL Here "11 II, is the ~obolev s . ~ o r m  o~ n .  

Pro@ This theorem is p roved  b y  Sweeney [10]. Since our  eoncern is the  func t ion  

served b y  the  &es t imate ,  we shall  prove  only  (i) under  some res t r ic t ive  condit ions;  t he  

role of the  &es t ima te  in the  more  general  case is the  same. W e  assume t h a t  in some lo- 

cal coordinates  ~ has  cons tan t  coefficients, b u t  we do no t  need to  assume t h a t  f2 is smal l  

or  t h a t / 9  is ell iptic.  I n  the  general  case, e l l ip t ic i ty  is used to  bound  the  der iva t ives  of t he  

coefficients of D*. 

Clearly we can assume t h a t  u is concen t ra ted  in P(f~, C ~) for 1 >~ 1, so t h a t  Du = DZu 

and  D*u=(DZ-1)*u. W e  assume t h a t  in t e rms  of our  local coordinates ,  

DZ-l= ~ Asaj + Ao, 
t=1  

where 8~=O/Oxj, and  D l =~ B jOj+B o, 

where all  the  coefficients are  cons tant .  Then  

(DZ-1) * = - ~. A~ Oj+ A*. 

B y  Theorem II .2 .4 ,  the  &es t ima te  implies  t h a t  

(S( l |  (1 | >~ 0 

for al l  vE f l  = ke r  ~(DZ). Therefore  we have  t h a t  ~. (A~vt, A~[vj) >10 for  all  v 1 . . . .  , v n in 

C z sa t i s fy ing ~ Biv~ = O. Hence  we o b t a i n  the  e s t ima te  

- E < M v .  A~vj> < clIVB, v, II ~ 

for all  v 1 . . . . .  v~ in C t. B u t  c lear ly  

~ Y B,o, ull ~ < 2 {al lDMI'  + nllBo~ll'}, 
8* -- 712904 Acta mathematica 126 
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and nllSo~ll ~ ~ ~ h I M , ,  

so - y n<a~ o,,,, ArO,,~> ~ ~ {nllD'~ll' + n l M ' } .  (2.~) 

I f  u satisfies the boundary condition aa,(D~-l) * u~O on 0~,  then u is in the domain 

Since 

by  (2.1) we obtain 

- ~ ~ (O,r)Mu> < c("IIDMI' § + nll~lll. (2.2) 

The left-hand side of (2.2) is 

- 2 ~ ((o, r) A%), M u) + Y~ u, A~ u). 

The first term is zero, since by  the boundary condition on u, we have 

ad,(D'-l)*u = ~ (O,r) M u = r(x) K(x) 

on a neighborhood of 0f~ in ~ where K(x) is differentiable. Differentiation yields 

Y 0j((0,r) A%)  = Y (Ojr) K(x) + Y~ r(x) (o,g) 

which is ~ (Ojr) K(x) on a~,  where r = 0. Therefore, 

~. on(oj ((0, r) A ~ u), A~ u) = ~ on( (O~ r) K(x), A~ u) = Y. On( K(x), (Oj r) A~ u) -- 0 

since ~ (Ojr) A~u-~O on 0~. 

I f  we let Lu = ~ ((O~Ojr) A 'u ,  A~u) be the Levi form for the problem, we have tha t  

fon~ + nlID'~II' + nll~l12). ~ {"11(/)'-1)* ~11 ~ 

I f  the Levi form is positive definite, then L~176 a n d  w e  obtain the K o ~ -  

Nirenberg estimate 

~ < ~{"ll(z~-~)*ll' + nlID'~II' +"11~11~}. 

To determine under what conditions the Levi form is positive definite, consider the 

Hessian of ~ ,  a bilinear form on T* | given by  H(u, v) = ~ ((O~Ojr) ut, vj) 

of the adjoint of ~A~0~, since this operator has the same symbol as D 1-1. Therefore, 

ally A*0MI ~= - ~.n(A,A't ~,O,u, u) = - YO(O,A~ O,u, AT u ) 

= "~n(A~O,u, A';O,u) - Y~162 (0,r) A' /u) .  

Y "lla';o,,,ll' < ~ {"11(/)'-1) * ~11' + "ll~ll ' / ,  
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where u = ~  u~dx ~ and v = ~  v~dx ~. In terms of the Hessian, the Levi form is given by 

Lu = H(a(Dl)*u, a(DI)*u). 

I t  is well known that  the Hessian of a strictly convex domain fl is positive definite on 

T * ( ~ ) ,  the cotangent bundle of the boundary of ft. Since (~ar(DZ)*u=O, we have that  

a(DZ)*u lies in T * ( ~ ) ,  and therefore that  

Lu = H(a(D')*u, a(D')*u) >~clla(D')*uH". 

Finally since a(D'): T*| '+x is surjeetive, the adjoint is injective, so L u ~ > c l u l l  ~ 

is strictly convex. Therefore the Kohn-Nirenberg estimate holds on strictly convex 

domains for constant coefficient operators satisfying the O-estimate. Q.e.d. 

In general, with variable coefficients, the Levi convexity condition is more compli- 

cated, as in the example of the Cauchy-Riemann operator where the required convexity 

is strong pseudo-convexity. Sweeney's proof of the above theorem, however, shows that  in 

any coordinate system a sufficiently small sphere satisfies the necessary convexity con- 

ditions. 

3. The exactness of the Spencer sequence 

TH~.OR~M 3.1. I] ~): E_~__F is a ]ormaUy integrable elliptic di//erential operator which 

satis/ies the ~-estimate, then: 

(i) The Spencer sequence 

0 :' 0 , C O D~ __{21 D'  C n  
�9 ~ w 

is exact, and is a line resolution of the sheaf 0 o/ germs o] solutions o] the homogeneous 

equation Ou = O. Consequently the cohomology o/ 

0 , r<z,  c 0) o . ,  r<x, c 1) o , ,  . . .  ~ - ' ,  r<x, c . )  . 0  

is isomorphic to the cohomology o[ the mani/old X with coe[/icients in O. 

(ii) There exists an operator ~)': F->G such that the sequence 

0 , 0  ,E_ v v" ' E  ,G_ 
is exact. 

Proo]. Since ~ satisfies the 0-estimate, we know that  g~+l is involutive. Since ~) is 

formally integrable, we can define the Spencer sequence and the operators D l, and we know 

that  C z is a bundle for l>~0. 
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To prove (i) suppose t h a t [  is a germ of a section _C z such that  D~=O. Then there exists 

a local section ] on a neighborhood N such that  D z/=0. Let ~ =  N be the convex neigh- 

borhood described in Theorem 2.1. The Dirichlet norm is compact on ~ ,  and by  Theorem 

1.2, the D-Neumann problem can be solved on ~ .  Therefore, an isomorphism from the 

cohomology of 

F ( ~ , G  ~ D O , F ( ~ , G  1) D' " . . .  m - ~ , r ( ~ , G  ") , 0  (3.1) 

to H = ~ H z (1 > 1) is given by the homotopy operator 1 - H = D*ND 4- DD*N, which shows 

tha t  each u E F(~,  C l) satisfying D lu = 0  is cohomologous to Hu, and the harmonic space 

is finite dimensional. But  by the estimate 

n[[u[I ~ ~< c {a[[(D~-I)* ull~ 4- ~l[DZu[l~} 

for all u E F ( ~ ,  G l) in the domain of (DZ-1) *, it follows tha t  the harmonic space is zero, for 

if (DZ-1)*u =DZu =0,  then nllul[ t = 0  so u ~ 0 . ]  Therefore (3.1)is exact, and there exists a 

section g E F(~,  C z-l) such tha t  D ~-lg = ] on ~ .  I f  g is the corresponding germ, D z-l~ =~, so 

the Spencer sequence is exact. 

The sheaves _C l are all fine sheaves, since they are sheaves of germs of differentiable 

sections of a vector bundle. That  the cohomology of 

0 ' F (X ,  G 0) D" F(X, G 1) D '  . . .  I~-I,F(X, G n) ~0 

is the cohomology of X with coefficients in 0 follows from standard sheaf theoretical argu- 

ments. 

Par t  (ii) follows from several diagram chases which prove tha t  there exists an oper- 

ator D': F(~,  F ) ~ F ( ~ ,  G) such that  the cohomology of 

F ( ~ , E )  " , F ( ~ , F )  ~" , P ( ~ , G )  

is isomorphic to H I. See Sweeney [8]. Q.e.d. 
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