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Introduct ion  

Let  E and S" be two normed spaces over the same field K, which may  be either the 

field of real numbers or the field of complex numbers. Denote by  L(E, S') the space of all 

bounded linear transformations of E into S', with the supremum norm. I f  A and B are 

any two elements of L(E, S'), the inequality 

sup inf [Ax+~tBx]< i n f l A + 2 B ] =  inf sup [Ax+2Bx] 
Ixk<l AeK •eK ~leK Iz[~l  

(,) 

is immediate.  

We prove in this paper that ,  provided E and F have dimension at  least two, equality 

in the above relation is at tained for every pair A, B in L(E, S') if and only if both E and S" 

are inner product spaces (if either E or F is one-dimensional, then equality holds trivially). 

The proof of this theorem (Theorem 3.1) is divided into two stages. In  the first stage we 

reduce the case of arbi trary E and F to the case where both E and F are of dimension 

exactly two, and in the second stage we prove the theorem for this ease. 

To simplify statements we shall say tha t  the pair E, S" posesses the minimax property 

if equality holds in (*) for each pair A, B in L(E, S'). Thus, our result is tha t  a pair E, F 

has the minimax property if and only if both E and F are inner product spaces (provided 

both E and F have dimension strictly greater than  one). 

A new concept of considerable importance in this investigation is a subset W(A, B) 
of K 2, assigned to each pair A, B in L(E, S'). I t  can be described as a joint numerical range 

of A and B and is defined by  

W(A, B) = {[<Ax, y>, <Bx, y>]; xeE, yeS", ]x[ [y] ~<1}. 
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This set enables us to formulate conveniently the conditions for equality in (*), but  it 

also seems to be interesting in its own right. I t  turns out that ,  given two fixed operators 

A and B, W(A, B) is convex if and only if equality holds for all pairs of linear combina- 

tions of A and B. I f  E and iv are inner product spaces the convexity of W(A, B) is closely 

related to the classical theorem of Hansdorff and Toeplitz on the convexity of the numerical 

range of one operator. 

The dual space (i.e. the space of all bounded linear functionals) of a given normed 

space E will be denoted by  E ' ,  and the same notation will also serve for the adjoint A'  of 

an operator A. Finally we remark what  has already been apparent,  namely tha t  we are 

going to use the same simple bar notation for the norm in all the spaces involved, as well 

as for the absolute value of scalars. 

The references [1], [2], and [3] are general references on the theory of vector spaces 

and tensor products. In  particular, Proposition 1, p. 28 of [2] summarizes the needed 

background on tensor products. 

The problem treated here is a generalization of one treated by  T. Seidman. He showed 

in [4] tha t  if E and F are one and the same Hilbert  space, B = I ,  and A belongs to a spe- 

cial class of operators (including in particular the normal ones), then equality holds in (*). 

On the other hand, by  way of the concept of a joint numerical range, this paper  makes 

contact with the recent quite extensive literature on numerical ranges in Banach spaces. 

I n  particular, the paper by Zenger [5] contains a result related to our main result. Let  G 

be the group of complex n • n-matrices (elements of L(C n, Cn)) tha t  have one non-zero 

entry in each row and column, all of absolute value one. Zenger shows tha t  if a norm on 

C n is invariant under G, and if moreover for this norm the range of values of any  element 

of L(C ~, C n) is a convex set, then the norm must  be Euclidean, in this case of course a 

multiple of the standard l~ norm. I t  seems reasonable to conjecture tha t  one should be 

able to weaken Zenger's restrictions and still show tha t  the norm must  be Euclidean, using 

the methods from the last section of the present paper. 

1. The joint numerical range  

Let  us begin with a precise formulation of our problem and the corresponding defini- 

tions. Let  M be a one-dimensional a/fine subspace of L(E, F) which does not pass through 

the origin. Consider the obvious inequality 

sup inf [Ax]<. inf sup [Ax l= in f  M [A[. (1) 
Iz[~l A e M  A e M  Iz[~<l 

De/inition 1.1. We shall say that  the triple (E, F, M) has the minimax property if 

equality occurs in (1). I f  P is a two-dimensional linear subspace of L(E, F) we say that  
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(E, F, P) has the minimax property if (E, F, M) has the minimax property for each one- 

dimensional affine subspace M c P ,  with 0 ~M. Finally, we say that  the pair (E, F) has the 

minimax property if (E, F, P) has it for each two-dimensional subspace P c L ( E ,  iv). 

LEM~X 1.2. I / M  is a one-dimensional a/fins subspace o] Z(E, $') not passing through 

the origin, then 

sup in~ [Axi=sup sup inf Re(Ax, y )=  sup i , f  IA'y] 
]x[~<l A E M  [z[~<l [y[~<I A G M  [yl~<l A ' ~ M "  

where M' denotes the image in L(F', E') o/ the set M under the transposition mapping. 

Proo/. By means of the two relations below 

inf IAxl = sup { inf Re (Ax, y}; ye F', lYl <~ 1} 
A e M  A ~ M  

inf ]A'y I =Sup { inf Re (x, A'y}; xe E, Ix[ <~ 1}. 
A ' e M "  A ' e M "  

Proof of the second relation (the proof of the first is similar): If 

{A' y; A' aM'} = (Yo +~Yl; ~ e g }  

and [Y0] is the class of Y0 in E'/(span Yl), then 

inf I A' Y l = I [y0]l = sup {Re (~, y.>; x e E, (x, YI> = 0, I Xl ~ 1} 
A'GM" 

< sup { ~  Re (x, y0 + ~Yl>; x e E, Ix I < 1} ~< i ~  I A' Y l- 
~1 A"  e M "  

For if N :  {x e E; (x, Yl} = 0}, then span Yl =N~ the annihilator of N in E', and the quotient 

space E'/N ~ is isomorphic to N' by the natural homomorphism (cf. [1], ch. IV, w 5, proposi- 

tion 10). 

Lv.MMA 1.3. The triple (E, P, M) has the minimax property i/ and only i/ the triple 
(F', E', M') has it. 

Proo]. An immediate consequence of Lemma 1.2. 

Our main tool in this investigation is the fact that  the tensor product E | P '  

equipped with the norm 
g(t) = inf {~ [x,[I Y, [; t = 5 x, | y,} 

may be isometrically imbedded as a w*-dense subspace in L(E, F)'. The unit bah of the 

normed space (E| g) is the closed convex hull of the set 

v={~| lul <1} 
of simple tensors of norm at most one. 
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Definition 1.4. Let  P be a two-dimensional subspaee of L(E, F). We denote by  W(P) 

the set of those elements of P' which admit  a representation of the form 

A ~ ( A x ,  y), A E P  

with xeE,  yeF' ,  and Ix I lYl <1.  I f  {Ao, A1} is a basis f o r P  and if we use the dual basis 

for P' an affinely equivalent image of W(P) in K s is obtained: 

{E(A0 z, Y), (AlX, Y)]; lyl < 1} 

which we denote by  W(A0, A1). The set W(P) will be called the numerical range of P,  the 

set W(A0, A1) the joint numerical range of A 0 and A 1. 

THV, O~V.M 1.5. Let P be a two-dimensional subspace o] L( E, F). Then (E, P, P)  has the 

minimax property i] and only i] the closure o/W(P) is convex. 

Proo]. The set of all one-dimensional affine subspaces M of P which do not pass through 

zero is in one-to-one correspondence with the set of all non-zero vectors t EP' by means of 

M -- {A eP;  (A, t)  = 1}. 

Denote by C(W(P)) the closed convex hull in P' of the set W(P) and note tha t  both  W(P) 

and C(W(P)) have the property tha t  they contain with each point z also all points of the 

form )~z, [A[ ~< 1. Keeping this in mind, it is easy to see tha t  the theorem will be proved if 

we prove the following two relations 

sup  inf lax[ = sup {[AI; Ate W(P)} (2) 
]X[<I A eM 

inf sup [Ax[=sup{[A]; Ate C(W(P))}. (3) 
A~M [x[<l 

To prove (2) we use Lemma 1.2. I f  follows tha t  

sup in/ IAxl= sup in/ Re(Ax, y~=suP(i~i;AteW(P)}. 
Ix[~l A e M  x |  AeP , (A , t )=I  

The equation (3) is an immediate consequence of the fact tha t  C(W(P)) is the unit ball of P'. 

The proof is complete. 

2. Reduction theorems 

Having transformed the minimax property of the pair (E, F) into a s tatement  con- 

cerning convexity of a set in K~- -a  property which involves only two points of the numerical 

range at  a t ime it is to be expected tha t  the minimax proper~y of the pair (E, F) may  
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be reduced to the behavior of two-dimensional subspaces and quotient spaces of E and F.  

This is indeed the case as the following two propositions show. 

PROPOSITIO~ 2.1. /Let E and F be two normed spaces. Suppose we are given normed 

spaces E o and F o and mappings QEL(E, E0) , V eL(Fo, F) such that Q' and V are isometrics. 

Then the mapping which assigns to each X EL(Eo, Fo) the operator VXQeL(E, F ) i s  an 

isometry o] L(E0, F0) into L(E, F). Moreover, if the pair (E, F) has the minimax property 

then the pair (E0, Fo) has the minimax property as well. 

Proo/. I t  is obvious from the definition of the supremum norm of an operator that  if 

the left factor in a product of operators is an isometry, then it  can be cancelled without 

changing the norm. Hence 

I VXQI = I X Q I  = I Q ' X ' l  = [ x ' l  = I x I ,  

proving the isometry statement. Let  M be an affine subspace of L(E o, Fo), of dimension 

one, and let M 1 be the image of M in L(E, F) by the mapping X-+ VXQ. Using the minimax 

property of (E,/v),  and Lemma 1.2, we get 

sup inf IX=l=sup in~ IA'yl=sup inf IQ'A'yi 
IXI<~I A e M  lYJ<I A'eM" 

:supin  IAQxl:sup inf IWQxl: IV QI:i IAI. 
V A Q e M t  

Since M is arbitrary, this finishes the proof of Proposition 2.1. 

PROPOSITIO~ 2.2. Let E, F be two normed spaces. Suppose we are given normed spaces 

E o and 1~ o and mappings HEL(Eo, E), SEL(F, Fo) which are both contractions. Then the 

mapping R which assigns to every X E L( E, F) the operator SXH E L( E o, Fo) is a contraction 

(o/L(E, F) into L(Eo, Fo) ) and moreover 

W(R(A), R(B)) c W(A, B) 

/or each pair A, BEL(E, F). 

Proo/. The contractiveness of R follows from the submultiplicativity of the norm. 

The second statement is also obvious, since 

W(R(A), R(B)) = {[(SAHx, y~, (SBHx, y)]; x e E  o, yeF~, Ix I lY[ <1} 

= {[(A(Hx), S'y), (B(Hx), S'y)]; HxeE,  S'yeF' ,  Ix] lYl <1} 

and g and S' are contractions, so that  ]Hx ] IS'y] < 1 follows from Ix J ]y] ~< 1. 
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3. The turin theorem 

THEOREM 3.1. Let E and F be two normed spaces o/dimension strictly greater than one 

over the same field K (which may be either the field of real numbers or the field o/complex 

numbers). Then the laair (E, F) has the minimax laroperty if and only i/both E and F are 

inner product spaces. 

Proof. Suppose that  E and F are inner product spaces and that  A, B is a pair in 

L(E, F). Let  [~1, ~h] and [$2,~2] be two points in W(A, B), i.e. there are points xtEE, 

y, eF', i = l ,  2, such that I ,1 ly, I <1 and 

~t =(Axt,  Y~, ~t =(Bxf,  y~  for i=1 ,  2. 

Let  E 0 be the subspace of E spanned by x 1 and x2, and HEL(E o, E) the injection mapping; 

also let F 0 be the quotient space 

F/(span (Yl, Y2)) ~ 

with SeL(F,  Fo) the canonical mapping. If  R is the mapping defined in Proposition 2.2, 

then obviously the two points [~1,~1] and [~2, 72] also belong to W(R(A), R(B)). I t  follows 

from (2.2) tha t  if we can prove that  W(R(A), R(B)) is convex then the whole segment with 

endpoints [~1, ~1] and [~, ~22] must belong to W(A, B). Since E 0 and F 0 are inner product 

spaces of dimension at most two, it follows by Theorem 1.5 that  in order to prove that  

the pair (E, F) has the minimax property it  suffices to consider the case when both E and F 

have dimension exactly two over K - - t h e  one-dimensional cases are trivial anyway. 

Moreover, by  making some more trivial transformations we may assume that  A and 

B are operators from the same two-dimensional inner product space into itself, and that  

the minimum of IA +2B[ as / ranges over K is attained for 4=0 .  The sup norm of the 

operator T =A +2B is given by the formula 

[ T [  2 = (tr T ' T + ( ( t r  T ' T ) 2 - 4 [ d e t  T[Z)�89 (4) 

This formula defines a real valued function on K, which can also be considered as the upper 

envelope of a family of positive quadratic functions 

~ T - ~  [ T~I~--IA~+~Bxl  ~ (5) 

as x ranges over Ix] ~< 1 (d. (,)). If, for ~ =0, i.e. for T = A  the expression under the square 

root sign in (4) differs from zero, then the function 2-~ [A +~B[ 2 is actually smooth at 

2 =0, hence its infimum must, by compactness, be the same as the infimum of one of the 

individual functions in the family (5). But  tha t  means that  equality holds in (,). 
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I f  the square root expression in (4) vanishes for ~ = 0, then the upper envelope of the 

family (5) may  have a comer at  ~ = 0  and one has to proceed differently. But  in tha t  case 

the operator A must  be an isometry and there is no loss of generality to assume A = I .  

We must  then prove tha t  there is a vector x of length one such tha t  

1 <. Ix+,~Bxl z = 1 + 2 R e ~  <Bx, x ) +  I~I~IB~I ~ for all ~t, 

i.e. such tha t  <Bx, x)  =0 .  Suppose this were not so; then 0 would be an exterior point of the 

ordinary numerical range of B, which is a compact, convex set. Multiplying B by  some 

number  of modulus one, if necessary, we may  assume tha t  for some e > 0 

Re<Bx, x)  ~>e whenever Ixl = 1. 

But  then, if p is a positive valued parameter  

II-PBl <l-2 p+lsl p 
which yields a contradiction for small p. This proves the sufficiency of the condition of 

Theorem 3.1. 

Suppose now tha t  the pair (E, E) has the minimax property. In  order to prove tha t  

both E and F are inner product spaces it suffices according to the classical theorem of 

Jordan and v. Neumann to show tha t  every two-dimensional quotient space E 0 of E 

and every two-dimensional subspace _F 0 of F are inner product spaces. I f  E and F are 

given, denote by  Q the canonical quotient mapping of E onto E o (then Q' is an isometry, 

cf. [1], loc. cir.), and by  F the canonical embedding of E 0 into F. By  Proposition 2.1 the 

pair (E0, $'0) has the minimax property as well. Hence it suffices to prove the necessity 

par t  of Theorem 3.1 for the special case tha t  both E and F are of dimension two over K. 

Let  H be a two-dimensional inner product space, with inner product denoted by 

(z, u) for arbi trary elements z, u in H. Let  {x, y} be an orthonormal basis for H and fix 

arbi trary bases in E and F so tha t  it makes sense to talk about determinants of operators. 

Construct operators 
T e L ( E , H ) ,  ReL(H,  .F) 

such tha t  
IT] = I R I  = 1 ,  

I det T] = max  {]det A I; A eL(E,  H), I A I = 1}, (6) 
Idet R] = max {[det A I; A eL(H, F), IAI = I}. 

The operators T and R are unique in the following sense. 

LI~MMA 3.2. I /  T and R are arbitrary solutions o/ (6), then the set o] all solutions are 

given by the expressions 

{UT;  U: H ~ H  is an isometry}, and {RV;  U: H ~ H  is an isometry}. 



60 EDGAR ASPLUND AND VLASTIMIL PT~K 

Proo[. We prove the statement about (UT) ,  the other is proved quite simflarily or 

by duality. I t  is obvious that  U T  satisfies (6) if U is an isometry. Suppose T 1 satisfies (6), 

and put  U = T 1T -1. Factor U = P V  where P is positive definite and V is an isometry. By 

hypothesis, det P = 1, i.e. P has two positive eigenvahies, the product of which is one. If 

P is the identity then we have already proved that  U is an isometry, and T 1 = UT; so we 

may assume that  the opposite holds or, in other words, tha t  neither eigenvahie of P equals 

one. Let  Ta in L(E ,  H)  be defined by 

T~ = P+ VT,  

where P�89 is the unique positive definite operator whose square is P. I t  follows immediately 

that  I det T~ I = I det T I, and since T~ Tg. = T'  V' T 1 that  I T21 ~< 1. We will show that  

] T2 ] < 1, and this is a contradiction, because if r a = ] T~ I-1 T2 ' then [det Ta] > [det T I, 

and IT3[ --1. Assume then, that  [T:~ I =1 for some x in E with I~1 =1. Consequently 

1 = (P�89 VTx ,  P�89 VTx)  = (VTx ,  T 1 X) 

and th.s, because IVTxl, [Till  by hypothesis, 

V T x  = T1 x = P V T x  

which is to say that  P has an eigenvector V T x  corresponding to the eigenvalue 1. This 

contradiction completes the proof of Lemma 3.2, and we win now go on to complete the 

proof of Theorem 3.1. 

The space E ( F ) i s  itself a Hilbert space if and only if IT-I [ =I(]R-11 =1). We will 

prove the necessity part  of Theorem 3.1 by constructing, in ease E and F are not  both 

Hilbert spaces, operators A and B in L(E ,  F)  such that  strict inequality holds in (*). 

We may also, without loss of generality, put  on the extra condition [ T-l[  ~< [ R- l  I, because 

the other case, [ R-11 ~< I T- l ] ,  can be proved either quite similarly or else by invoking 

duality, cf. Lemma 1.3. Moreover, we use the freedoms given by the isometries in Lemma 

3.2 to arrange so that  the basis vector x in H becomes maximal for T -1 and minimal for R. 

We thus assume 

1 ~IT-11 <JR-11; 1< [R-l[ (7) 

] T - l x I = I T - 1 1 ;  I R x l - l = ] R - 1  I. 

Now we define the two elements C and D of L(H,  H) by 

Cz = [/~-1[ (z, x)x-~-IT-l[ -1 (z, y )y  

Dz = (z, x) y 

for all z in H. Pu t  A = R C T  and B = R D T .  Note that  CD = t T -1 I-~D and tha t  therefore 
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det (C + 2D)= det C det (I + )t iT-11 D) = IR-11/I T-xl 

for all A E K. We claim that  

IT-11-1 < m i n l A + 2 B  I ( = I A + ~ B I  for some ~ e K ) .  
~eK 

Suppose not, i.e. that  [A +AoBI < IT-11-1. Then IR(C+]toD)I ~< 1 so that  by the de- 

fining property of R 

[detRdet  (C+~0D) i< ide tR  I, i.e. ]R-Ii/IT-I]<I. 
Hence by (7) we have already contradiction unless ] T-~ l = l R-11, and in this remaining 

case C +~t0D would have to be an isometry (by Lemma 3.2), which is absurd for any value 

of ~t o (take z=x). 
I t  remains now to show that  

max min ]Au + ASu[ < ]T-~I -~. (9) 
[u [< l  ),eK 

The minimum in (9) can be computed using Lemma 1.2. For u in E, v in iv' we have 

min Re [[ R- ~] (Tu, x) <v, Rx) + [ T- 1[-1 (Tu, y) <v, By) + ~(Tu, x) <v, Ry)] 
). 

Re [R -1] (Tu, x) <v, Rx) if <v, Ry) = O, 

- - / R e  IT -11-1 (Tu, y) <v, By) if (Tu, x) = O, 
! 

[0 otherwise. 

Since IT I= I R ] :  1, and IRx[= I R -1 [-', (9) follows from Lemma 1.2 provided we show that  

[(Tu, x)[ < IT-11-1 for all u in E with lul ~< 1. (10) 

To see this, let w be an element of E', with ]w [ = 1, such that  <T-ix, w) = [ T- ix  [ = [ T-l] .  

Then 
(x, T"~w) = [ T-~ I = I T'-ll, 

and this implies that  T' - lw= [T-~]x, i.e. w =  [T-~[T'x. We have thus proved that  

IT'll  = I T-11-~, which is equivalent to (10). 
Together (8) and (9) show that  unless both E and iv are Hilbert spaces, one can 

construct operators A and B in L(E, F) such that  strict inequality holds in (*). This 

completes the proof of Theorem 3.1. 
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