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1. Introduction

In recent years much of the progress which has been made in geometric measure
theory has depended on knowledge of the geometric structure of subsets of » dimensional
Euclidean space R” relative to some measure such as the k dimensional Hausdorff measure.
For example, the proof in [8] of the existence of solutions for the least area problem (Pla-
teau’s problem) and the minimal surface problem depends essentially on this structure
theory.

Central to the structure theory is the characterization of rectifiable subsets in terms of
their projection properties. Such results were obtained first by Besicovitch in [1] for one
dimensional Hausdorff measure in the plane, then by Federer in [3] for general measures
in R” Our goal in the present paper is to give global generalizations of these theorems to
measures in a manifold X with a transitive group of diffeomorphisms @.

In order to make the transition from R" to X it is necessary to restate the projection
properties of a subset A4 of R" without reference to projections. We do this by replacing
orthogonal projections of A4 into R* with intersections A N g(P), where g is an isometry
of R"and P is a fixed n — k dimensional plane. For example, the statement ““p(4 ) has Lebesgue
measure zero for almost all orthogonal projections p: R*—~R*’ is equivalent to ““4 N g(P)
is empty for almost all isometries g”’. Thus in studying subsets of X we are led to consider
intersections A N g(B), where g€G and B is a fixed »— k dimensional smooth submanifold
of X. The main general results are in § 5; they include as a special case a new characteriza-
tion of rectifiable subsets of R". The proof of the key lemma 3.7 reduces to a new proof of
the corresponding lemma, [3, 7.3] or [7, 3.3.4] for the case where B is a plane.

(1) Research partially supported by National Science Foundation grant GP-7505.
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In §6 we define a generalized integralgeometric measure with respect to B for the
case where X is a Riemannian manifold of constant curvature with isometry group G.
The integralgeometric formulas of [2] are used to verify that the relationship between this
measure and k dimensional Hausdorff measure is the same as that obtained by Federer

in [3] for the classical integralgeometric measure in R™.

2. Preliminaries

The purpose of this section is to fix basic notation and terminology; more details may

be found in references such as [7] and [9].

2.1. Notation. Throughout this paper X will be an n dimensional separable Riemannian
manifold of class oo. @ will be a separable, m +n dimensional Lie group of transformations
of X which acts transitively on X. Set e=1y, the identity map of X.

One denotes by L, and R, the left and right translations of G by g€ G. Let ¥ be a
left invariant Haar measure on Q.

Let f: G x G->@ be such that f(a, b) =ab-1.

Fix an origin 0€ X and define

7: @—~X by =z(g)=go).
If S=X, let 8'=n-1(S). The isotropy subgroup I={o}’ is a closed, m dimensional Lie
subgroup of (, and hence has the relative topology.

Let B be a proper n —k dimensional submanifold of class 1 of X, 0 <k <n.
Let @ be a non-negative measure on X such that closed sets are ¢ measurable.

2.2. Tangent space. If M is an I dimensional manifold of class 1 and x€ M, then T, (M)
is the  dimensional real vector space of tangent vectors of M at .

2.3. Exterior Algebra. For each finite dimensional vector space V and =0, 1,...,
dim V, A(V) is the associated space of I vectors (contravariant skewsymmetric tensors of
rank ). Furthermore,

dim Vv
AdV)= @ AV)

is the corresponding exterior algebra, with exterior multiplication A .
Each inner product on ¥V, with the corresponding norm | |, induces an inner product
on A(V) with norm also denoted by | |. An orthonormal basis for A4(V) is obtained by

exterior multiplication from an orthonormal basis for V.

2.4. Differential. Suppose M and N are manifolds of class 1 and f: M—~N. If x€M,

y=f(x) and f is differentiable at z, the differential of f at x is a linear transformation
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fo(®@): To(M)~>T,(N);
f«(z) can be extended to a unique algebra homomorphism
Fo(@): Au[To(M)]—>AL[T,(N)].

If M and N are Riemannian manifolds and r =inf {dim M, dim N}, then the Jacobian

of fat zis
Jf(x) = sup {|f.()(@)]: vE€EAT,(M)], |v| =1}.

2.5. Definition. R* is the n dimensional Euclidean space consisting of all sequences

x=(xl, ..., ") of real numbers, with the metric
n
x-y=a'y for z,yeR™
i=1

€1, .-, &, are the standard orthonormal basis vectors of R". If M is a linear subspace of R",
then M* is the orthogonal complement of M.

For z€R" one identifies T,(R") with R™.

a(n) is the volume of the unit ball R*n {x: |z| <1}.

2.6. Definition. H' is the I dimensional Hausdorff measure. If S is a subset of a metric
space Z, then HYS) equals the limit, as —0+, of the infimum of the sums

> 27 x(l) (diamw)!, w€U,

corresponding to all countable coverings U of 8 such that (diam u) <7 for w€U.
It follows that if H%(S) < co, then H(S) is the cardinal number of S.

2.7. Suslin sets. The family of Suslin (analytic) subsets of X contains the Borel subsets
of X and has the following properties [7, § 2.2]:

Each Suslin set is ¢ measurable.

If F is a countable, nonempty family of Suslin sets, then U F and N F are Suslin sets.

If Y is a manifold and f: X+ Y is continuous, then f(S) and f~(7T') are Suslin sets when-

ever § and T are Suslin subsets of X and of Y, respectively.

2.8. Definition. If 4 measures ¥ and A< Y, then y| A is the measure on Y defined
by the formula

plL_AS)=uANnS8) for Sc¥.
If f: Y—Z, then f,(u) is the measure on Z defined by the formula

fo(u)(8) =ulf4(8)] for ScZ.
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2.9. Definition. R< X is k rectifiable if there exists a Lipschitzian function mapping
some bounded subset of R* onto R.

Rc X is countably k rectifiable if R is the union of a countable family of k rectifiable
sets.

Ec X is countably (@, k) rectifiable if there exists a countably k rectifiable set B with
¢(E~ R)=0.

Ec X is (@, k) rectifiable if E is countably (@, k) rectifiable and ¢(E) < oo.

Ec X is purely (g, k) unrectifiable if E contains no k rectifiable set B with @(R)>0.

2.10. Notation. Let Y be a metric space and y €Y. For »>0 we denote
K,,=K!, =Y n{z:dist (z,y) <r}.
Hr>0,s>0and Y<X, then
X(y,r, ¥, 8) = XN {x: dist (2, Y)<sdist (x, y)} N K, ,

If Ac X, then S, , is the set of (g, b) €Q x B’ such that for some 4 >0,
lim sup ¢(4 NX[n(a), r,ab (B), s])r *s* =0;

3>0t" 0<r<é

8 4,2 is the set of (a,b)€G x B’ such that for all >0,

limsup sup (4 N X[x(a), r, ab *(B), s]) r™"s™* = oo;

50T 0<r<é

S,3=Gx B n{(a,b):n(a)€cl[4 Nab~ (B) ~ {n(a)}]}.

3. The local structure of a set

Let O(n) denote the orthogonal group of linear isometries of R*. For each g€0(n)
and ¢=1, ..., » let g, be the ith column of the matrix of g with respect to the standard
basis of R”. For g, ¢’ €O(n) one defines

dist (g, 9) = (2|9~ g: )"
the resulting metric on O(n) is bi-invariant. Set 1g.=1, I={n(n—1) and
8™ 1=R"n {z:|x|=1}.
If §=80(n) and A <R™, denote

8(4)= U{g(4):g€8}.
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3.1. LemMA. If 0<s<1 and x€8", then
Kl,s{x} = KJ:,S/Vi n Snil.

Proof. We can assume z=e,; set K=Ky, If g€O(n) and g(e,)=e,, then gKg-1=K
and gK(e,) =K(e,). Thus, we need only show that

S=Ke, vz NS" ' N{z:al=...=2""2=0},
where S=K(e,) n{z:a'=...=2""2=0}.

But from g(e,) €S we infer that the matrix of g has the form

M 0 0
0 cos 0 sin 0 ¢,
0 —sin 0 cos 0

where M is an orthogonal matrix of order» —2;in fact, we can assume that M is the identity.

Then
2 dist (gle,), e,)? —dist (g, D?,

whence follows our assertion about S.
3.2. LEMMA. Let L and M be k dimenstonal linear subspaces of R™ and fix 0 <s<}. If

McX(0, oo, L, s)U {0},
then
(i) LcX(0, oo, M, 25)U {0},
(i) X(0, o0, M, )= X(0, oo, L, 2s),
(i) McX(0, oo, L*, Vs)U {0}

Proof. Let P and P* be the orthogonal projections of R” on L and on L*, respectively.
Then (kernel P)n M ={0}; let P’'=(P|M)~L. Since P’ is linear, a Lipschitz constant for
P'is

sup {| P'(v)|:v€L n 8" 1};
it is easy to see that this is less than (1 —s2)-1<2. Considering 0 +y €L, we set x =P'(y) and
conclude that
dist (y, M) < |z —y| =dist (¢, L) <2s|y|.
Next suppose z€X(0, oo, M, s) and y€ M is such that |z —y| =dist (x, M). Then

dist (z, L)< |y —x| +dist (y, L) <s|z| +s|y| <2s|z]|.
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Finally, fix 0 =2€ M* and set y =P'[P(x)]. Then
(1—s)|yP < |Pw) 2= |P@)[E< [PHa)| [P)] <|PH@)]|s|y];
consequently, |P'(y)| <s|P*(z)| and we conclude that
| Pa) |2 <s|xfe.
3.3. LEMmMA. Suppose 0€ BcR". If 0<s<1, then
Ky, s{By=X(0, oo, B, s)U {0}.
Proof. For each 0+x€ B and g€ K1,s we infer from 3.1 that
dist (g(z), B) <|g(x) — z| < s|=|.

3.4. LEMMA. Suppose 0€ BCR", There exist r, >0 and 0<s, <1 such that if 0 <s<s,,

then
X(0, r;, B, 8/6)< K1,s(B).

Proof. For each 03w€ Ty(B) define
Jp=To(B)* +Ruw.

Let II be the orthogonal projection of R™ on Ty(B). Choose <1 so that BN Ko 4 is con-
nected and closed relative to Ko, II|BN Ko s is univalent, and (II| BN Ko4)" has
Lipschitz constant 0.975-1.

The remainder of the proof is divided into three parts; from Part 3 we have for 0 <s <s,

X(0, 7y, B, s/6)= U{X(0, ry, Y, 8/6): wETy(B)}< Ky,5(B).
ParT 1. There exist 0<ry<6 and 0 <r, <r,/4 such that the following are true:

(i) For 0+w€eTy(B)
Y,=J,NBNKgs

is the connected image of a curve in J,, and whenever 0 <r<2r,, rS* N Y,, consists of two

points,
(ii) IfO0+y€BNK,,, then the orthogonal projection v of y on T (B) is not zero; define
P, =Ry +[(Ro)* nT,(B)].

(i) If0+y€BNK,,, then
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B n Ky, YJC X(y’ 0 b PII’ 2—4) U {y}’
To(B)< X(0, = P,, 2-4)U {0}.

Proof. We can choose d so that F =(II| BN Ko, s)~! is uniformly differentiable on the
open set U=II{BNKys), hence there exist 0<r,<<§ and 0<r,<ry/4 such that for
Yy€EBN Kq

T,(B)=X(0, o0, To(B), 2-7) U {0}, *)
and for z€U,
BN Ky, 2n< F(K; 2:,)< X(F(z), 00, F(2) +Tp((B), 27) U {F(2)}.

Thus, if y€ BN K, ,,,, then

0€EBNK, ,<X(y, oo, y+T,(B), 2= U {y}, (**)
whence Ry< X(0, oo, T,(B), 2-7)U {0}. ***)

Consider 0 +w€Ty(B). Since I1(J,,)=Rw, y=F|Rwn U is a curve in J,, and
yRwnU)=Y,
is connected. Now fix 0+y€ Y, N Ko 20,
Ry (II(y)]=J, N T(B),
hence J4 + T (B)t=[J, N Ty(B)]"
We therefore infer from (***) that
{0} =Ry n [J4 +T,(B)'] =Ry N Ry [TI(y)}*

and {0} =T,(|y| 8" nRy'[IL(y)],

and the last assertion of (i) follows from this.
Consider 0+y€BN K, ,. From (**) we infer that the orthogonal projection of R”
on T,(B) maps y to » 0. Suppose w=u +ay, where u € (Rv)* N T,(B). Then by (***)

dist (w, T,(B))?= | ooy — aw|? =dist (ary, T,(B))2 <2-7|ay[2 <2-7| w2,
and we use (*) and 3.2 (ii) to conclude that
P,=X(0, o0, T(B), 2-)U {0}<=X(0, o=, T,(B), 274U {0},

whence by 3.2 (i)
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Ty(B)= X(0, oo, P,, 27U {O}.
Similarly, we infer from (**) that since y + P, =P,
B0 K, ,<X(y, o, P, 274U {y},
which completes the proof of (iii).
Part 2. If 0<s<}, 0<r<ry, 0+w€Ty(B) and
{¥o 91} =Y, NrS",
then Yon{z: r—rs<|x| <r+rs}< K, 4,sU Ky, ars
Proof. Choose 0 <a<x/2 and, for each ¢ =0, 1, 0<<0,; <7/2 such that
sin o =4s, cos 0, = | Il(y,)|/r.
One verifies that sin 6;<V5/10. Define
B,—sup {8~ 0},

R=J,0{x:r—rs<|x| <r-+rs},

and
Li=J,0 {z: |z|sin g;<|z—1I(x)| < |z|sin (6;+a)}
=J,N {x: |x|cos B;=|[I(x)| = |x|cos (0;+a)}
=J,0 {z: |I(z)|tan B, < |z —1(z)| < |H(2)|tan (6, +«)}.
Clearly,

L N R) =Rwn {z: (r+rs) cos f;> [z| =(r—rs) cos (0;+x)}.

We can assume |w|=1; set
K =cl (K, 47N Jy)-

We will next show that K'c L’ for each ¢=0, 1. Fix a 2.plane Q< J,, containing y,
and w and fix g such that M =T(B)* +pw intersets K’;

MNK' =Mn{x:|z—&| <o}
with £EK*NQN M and 0>0. Inasmuch as K'N Q<L and |T1(&)| =p, we have
otan f;+o<|&—ow| <g tan (0, +«) 0.

Thus if y€M n K, then the triangle inequality implies that
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‘ o tan B, < |y —ow| < g tan (0, + a),
whence y €L
Finally, suppose there exists € Y, R such that

|z —yo| =drs, |w—y,|>4rs.

Since Y, is connected and pS™-1N Y, consists of two points for 0 <g <2r;, there must exist
%€ Y, N R and y, such that |x,—y,;| =4rs. Then x,€L* and

3.9rs < | IL(=,) — TI(y,) | <(r-+7s) cos B, —(r —rs) cos (0, + ) =0,.
If 0, < a, then it is easy to verify that §,<2rs, which is a contradiction. On the other hand,

if 8,> «, then
8;<2rs(4 sin 0,41) <3.8rs,

which completes the proof.
ParT 3. There extsts 0<s, <} such that if 0w €T(B), then for 0 <s<s,,

X(O} 715 Yw: 8/4)CK1.3V§( Yw)'

Proof. For 0 <s<1 let #(s) =sin 0, where s =2 sin 0/2. Recalling that

we choose 0 < s; <} so that for 0<s<s,,
s<$i(s).
Fix 0<s<s, and 0 <r <7y, and set
Yoy} =Y, nrS8" %
Consider xy€J,N {2 dist (z, P,)) <rs[4}.
From Part 1 (ii) and (iii) and 3.2 (iii) we infer that x,=ay,+v, vE€Ty(B), and
|o]2=dist (g, P,)?+dist (v, P})?<(rs/4)*+274|v?,

whence dist (2g, Ry;) < |2 —ay;| = |v| <rs/3.

Suppose |y| =r and |y —y;| =rs for =0, 1. From Part 2 and Part 1 (iii) we infer that

Y,N{x: r—rs<|x] <r+rs}c Y,N (K, 4rsU Ky, 4r5)
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<J, N [{z: dist (z, P,,) <rs/4} U {a: dist (z, P,,) <rs[4}]

<R [{z: dist (z, Ry,) <rs/3} U {z: dist (x, Ry,) <rs/3}].

Consequently, if dist (y, Y,,) <rs, then for some ¢

dist (y, Y,) >dist (y, Ry,) —rs/3=ri(s) —rs/3 >rs/[3;
therefore, X(0, oo, Y, §/3)Nr8" 1< (K, s U K, 45) NrS™ 1,
Finally, we use 3.1 to conclude that

X(0, 7y, Yo, s/3)=o U [X(0, o0, Y,,s/3) nrS"*"]

<r<r,

< U [Krwa(Y, NrS" )< Kiya(¥y).

0<r<r,

3.5. LEMMA. Suppose 0€ BCR". There exists r,>0 such that if 0+y€BN K, ,,, then

I,=0(n)n {g: g(y) € B}

is a closed | —k dimensional submanifold of class 1 of O(n). Further, there exist positive numbers

83, Oy, C, such that if 0=y€ BN K, ,, and 0 <s <s, then

Cys" *<H'"™I,NK,,)<Cys'*
whenever g€ I,,.

Proof. Choose ry and r, as in 3.4 Part 1. By Part 1 (ii) we then have y¢T,(B)! for

y€B,=BnK,,,~ {0}, whence
dim [T,(B)nNT,(|y|S* ]=n—-k-1,
and it follows that the map
Fy: O(n) x By—>R*, Folg, y) =9(y),
has rank 7 at each point of O(n) x B,. Further, the map
F: O(n) x By~0(n) xR*, F(g,y)=(9, 9(y)),
imbeds O(n) x B, as a proper submanifold @ of O(n) x R". Defining
p: O(n) xR"~>R", p(g, )=z,

q: O(n) XR"—’O('IL), 9(9: x) =g,

™
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we observe that p(®)=K, , ~ {0} and, since poF = F,, whenever 0<|z| <r,
D, =pHa}nd

is an ! —% dimensional submanifold of @ which is properly imbedded by ¢ in O{x). One
verifies that if y€ B, then
qD,) =1,

1, is closed because B,U {0} is closed relative to K, ,,.
The remainder of the proof is divided into three parts. If n —k>1, the estimate for
H'"™I,n K, ) follows from Parts 1 and 3; in case n —k =1 one uses Part 1 and 3.4 Part 1 (i).
Let TI: R*—Ty(B) be the orthogonal projection and set S,=T,(B)N 81

PART 1. There exist 0 <s; <1 and positive numbers c, ¢,, ¢; <1 such that for Y€ B,, g€ I,
0<s<sgy,

6 H™ ¥ [(|y|~1B) N Kowinup,esaN 8*~] < cH K1, N K, )

Scos’H" ¥ [(|y| 2 B) N Koy jup,sN 8™ 7],
where A=%(n—1)(n—2).

Proof. Whenever 02 €R" define
7z O(m)~ 8", 7m,(9) = g(z/|x]).
Then for y€B,, 7, '[n,(1,)] = I, and
m(L,) = (ly| 7 B)n 8",

Fix x. From the existence of a cross-section for 7, in a neighborhood of 7,(1) we infer the

existence of 0 <<s; <1 and ¢;>0, ¢;>0 such that if 0 <s<s,, then
HYn;' {2}N K1 5] 2 ¢;8* for 2€KpayasN 8!
and HYrY{2}N Ky ] <cgs? for z€m(Ku,)-

Moreover, since 7, =7,° R, for g €0(n), since L, preserves the fibers of 7., and since L, and

R, are isometries of O(n),. we conclude that whenever 0 +x€R",
Hn;' (23N K, ]2 ¢;8* for 2€KquqasN 8!

and Hn;"2}N K, ] <cys* for z€m (K, ).
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Let us consider «a€H =A,_,_[Ti(@; {7 (1)})*], |«| =1. Since the metric on O(n) is

bi-invariant,

Hn {B: |B] =1} ={(ad 9).(1)(«): g(x) ==},

and we conclude from this that ¢=|n,,(1)(x)| >0 and is independent of choice of «. As

before we infer that
‘ﬂz#(g) (a) | =0

for g€O(n) and €A, [T, (7 {mA)})*], |} =1.
Finally, consider y € B, and 0<s<s,. We have J(x,|I,) =c, hence application of the
coarea formula [7, 3.2.12] or [5, 3.1] yields

cHMI, N K,,)= f H; (e} 0 K, JAH" "z,

zxy(.’g)
The desired inequalities now follow from 3.1 and our estimates for the integrand.

PART 2. Suppose n—k>1. Fix 0<r<r, set
p=T[(r'B)nS8" ],
and define 0:8>8, ox)=x/|z|
The following are true:

i) B is a compact n —k—1 dimensional submanifold of To(B) of class 1.
(ii) o is one-to-ome onto S,

(i) 2"*lzJp>2 kD,

(iv) There exists 0<s,<s, such that for yE€(r1B)N 8™ 1,

Kootin,sp1s N Sg<go T[K, ;N (r-1B)N 8" '] Kpomtany, 25 N Sp-

Proof. That (i) is true follows from (*) and the fact that 2 is a Lipschitz constant for
(IT| By)-*. Moreover, the three starred formulas in the proof of 3.4 Part 1 together with
3.2 {ii) imply that for y€ B,

B,URyUT,(B)=X(0, o, Ty(B), ) U {0}. )
One uses this to verify that

B<TyB) n{z:} <|z|<1}.
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Suppose p(x,) =g(x,), |2,| <|x.|. Let A: [0, 1]->Ty(B) parametrize the line segment
from z, to z,, and

y = (IT|r1By)-1oA: [0, 1] ~Ty(B)* +Ra,.

Application of the mean value theorem to |y |? yields the existence of 0 <f,<1 such that
(%) ¥'(to) =0. We have by (**)

Vl(to) E X(O: oo, Rxl: %):
whence by 3.2 (iii)
(t) €X(0, oo, To(B)*, 3),

which contradiets (**). Thus g is one-to-one.

Suppose y € B,. One verifies with the help of (**) that
Ry +T,(BN |y| 8" )= X(0, oo, Ty(B), })-
Furthermore, if 2€X(0, oo, To(B), 1), then [II(x)| >%|x|, and therefore
o, = (I|[Ry+T,(B n |y|$" )~

has Lipschitz constant 2.

Considering now the assertion (iii) we see that the upper bound for Jp follows
from the fact that 2 is a Lipschitz constant for g. Fix y€(»-1B)N 8" and choose
v€T,[(r1B)N 8*"1], |v| =1. Then

1=[vAy| =|onlIl(v) AlI(y)]] <4[II() ATI(y)],

and we conclude that for x =II(y) and w=II(v)/| II(v)],

lox(@)(w)] > {.

Thus g.(x) is one-to-one and, since § is compact, p is a diffeomorphism of # onto Sy; this
completes the proof of (ii). It follows that |jo5'|| <4, hence 4 is a Lipschitz constant for
0! with respect to the Riemannian metric on ;. This implies that

Jo@) > |lo7 fo@)]]| -+ D>z ek D,
Finally, we observe that for 0 <s<1,
K. 2Np<II[K, N (r'B)NS" Y<K, ,Np
and (K, 0 B) S Ky o6

S
Furthermore, oK s NP2 Ky sn= Ko NSy
14 — 692906 Acta mathematicn. 122, Imprimé lo 16 Juin 1969.
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where =2 sin s/8. Thus (iv) will hold if we choose 0 <s,<s, so that for 0 <s<s,,
2 sin 8/8 = 8/8.
PART 3. Suppose n —k>1. There exists 0<s8;<s, such that if y€ By and 0 <s <s,, then
a(n —k—1)24 5= Rgn=k 1 < Frk-11(|y | -1B) N Kyppyy, s N 8™ 1] < an —k —1) 240 8gn k-1,

Proof. Let |y|=r. We infer from Part 2 that whenever S is a Borel subset of

(r1B)n 8™,
H""“[eon<8)]=f JodH" ™!
IS

and

2—3(n—k—1)Hn—k—1(S) < 2—2(n—k—l)Hn—k—1[n(S)] < Hn»k—l[eon(s)] < 2n—k—1Hn—k—1(S)'

If z€S, and 0<s<1, set
0,(8) = a(n —k—1)" s~ *k=Dgr-k-L(g n K, ).

Observing that 0,(s) is independent of z and

lim 0,(s)=1

50+
we choose 0 < s;<s,/2 so that if 0 <s< 2s,, then
$<0,(s)<2.
Finally, Part 2 (iv) allows us to conclude that for 0 <s <sg,,
278 k=D k-1 (- 1BYN SN K,y pr ] < ot{n—k —1)27 ¥gn k"1
and k-1 -k-1( 1By 8P 1IN K, ] 3 afn —k — 1) 28-4—ogn=k=1,

3.6. LEMMA. If p measures O(n), p(T)=0and T is H' measurable, then for H' almost all
g€T, limsups.o+ p(K, ;) s~ equals either 0 or co.

Proof. The ratios
Hl(Kn.s)/[a(l)sl]

corresponding to g€0(n) and s>0 are independent of g and approach 1 as s—~0+. Con-
sequently, our assertion follows from application of [7, 2.9.17] with ¢ =H".

3.7. LEMMA. Suppose 0€ B X =R". Let A be a Suslin subset of R". Then H' almost
every g€0(n) satisfies one of the following conditions:
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(i) For some 6>0,

lim sup ¢[4 N K, (B) N Ko, ~{0}]r *s7%=0.

50T 0<r<é

(ii) For all §>0,

limsup sup ¢[4 N K, (B) N Ko, ~{0}]r s %= oco.

50t 0<r<s

(iii) O€cl[4 ng(B)~{0}].

Proof. We readopt the notation introduced in the first paragraph of the proof of 3.5.
We can assume A< K, ., ~ {0}. Let ¢’ be the measure on @ such that for S ®

#'(8) = f " HH®, 0 8) dg,
4

where “{*” means “upper integral”. For each positive integer » we consider the measure
, over O(n) defined by the formula ’

»(T)= sup ‘P,[P_I(KOJ) N q—l(T) n o] rk.

O<r<l1fy
Letting P,=0(n) n{g:lim p,(K, ) s ' =0},
s—>07
Q,=0(n) n{y: hmsup (K, ) s =0},

s—>0t

=g[p™(4n Ko1) N D),
we note that R, is H' measurable and

w[0(n)~ R,]=0,
and infer from 3.6 that
H'[O(n)~ (P, U ,U R,)]=0.

Observing that y, > y,.1, P,<P,i1, @, 5,1, we also let

[~

P=UP, Q= anR ﬂR

and verify that
N(P,UQUR)SPUQUE,
hence H'[O(n)~(PUQU R)]=

Next consider H'*|_@,, 0<|z|<r;, and 0<s<s,/2. Choosing g,€O(n) such that
Y =¢o (x) € B, one verifies that
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2(®.) = gole(®,)] = go( 1, )-
Since the metric on O(n) is bi-invariant, this implies that for (b, z) €D,
H" @, N gK, ;)] = H ™I, N Kyag,, ).
With the help of 3.5 we conclude that if g €O0(n), then
H"™MD, N g K, )] < Ca26)'7
furthermore, plg YK, )N D] =K, (B)~ {0},

hence if x€ K, ,(B), then
01(8/2)’—,‘ < Hl—k[q)z n q—l(Kg.s)]-

We now have for r>0

*

@'[p"(Kos) Ng YK, ) N D)= H7HO, n g (K, )] doz,

ANKg (BInKo,y
hence

Cy(s2Y " plAN K, ,o(B)N K, ;) < ¢'[p~ 1Ko, ) NgHK,, )N D]
< 02(28)1_k‘77[‘4 NK, (B)n K,

therefore, g€ P if and only if g satisfies condition (i) and g € @ if and only if g satisfies condi-
tion (ii). We complete the proof by observing that g € R if and only if for each »,

ANg(B)N K,y +9D.

3.8. LEmMaA. Let Y be a Riemannian manifold and F: X~ Y a diffeomorphism.

For some 6>0,
lim sup ¢[4 N X(x,r, B,s)]r *s % =0

s>0F 0<r<é

tf and only if for some 6> 0,
lim sup F.(¢)[F(4)n X(F(z),r, F(B),s)]r *s*=0.

50T 0<r<é

For all >0,

k_— 0o

limsup sup ¢[4 N X(z, 7, B, s)]r *s~

s0F 0<r<d
if and only if for all § >0,
limsup sup F () [F(4) N X(F(z), r, F(B), 8)]r s = co.

s>0t 0<r<é
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Proof. Fix x€X and choose 9>0 so that F|K,,
constant M > 1. Then for 0<s<1 and 0<r<p/2,

and (F|K,,) ' have Lipschitz

e

X[F(x), rM~2, F(B), sM~4]< F(X[z, rM-1, B, sM—2))< X[F(z), r, F(B), s].

3.9. THEOREM. Assume that G is a group of isometries of X with m=3in(n—1). If Aisa
Suslin subset of X and (a, b)€G x B', then for H™ almost every g€ I there exists 1€ {1,2,3}

such that
(a’5 bg) GSA, i

Proof. We can assume that a =b=e. Let
exp: Ky »—~ X,

where K, ,<=T,(X), be the normal coordinates of X at o defined with respect to the Rie-

mannian connection of X (see [9]). Recalling that exp (K, o) =K, , we set
B,—exp(BNK,,), A,=exp(ANK,,),

Po =expy ' (pL_K, o).
From 3.8 and the identity

goexp =expog,(o) forg€l
we infer that it suffices to show that for H™ almost all g € I one of the following holds with
h=g4(0):
(i) For some 6> 0,

lim sup @o[44 N X(0, 7, A(B,), $)] r ks =0.

501 0<r<d
(ii) For all 6>0,

limsup sup @o[d, N X(0, r, B(By), 8)]r *s7* = oo.

501 0<r<s

(iii) 0€cl[dq N A(By) ~{0}].

Using the differentiability of the adjoint representation of I we infer that the repre-
sentation of I in the orthogonal group 0 of T,(X) which corresponds g,.(0) with g is a dif-
ferentiable isomorphism of I onto an open subgroup of 0. Thus, proving our assertion is
equivalent to showing that for H™ almost all h€ Q0 one of the conditions (i), (ii), (iii) is
satisfied. But this follows from 3.3, 3.4 and 3.7.
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3.10. THEOREM. Assume that X has a linear connection which is invariant under the
action of G, that I acts transitively on the space y,_, of n—k dimensional linear subspaces of
T,(X), and that B is a totally geodesic submanifold of X. If A is a Suslin subset of X and
(a, b)EG x B, then for H™ almost every g€ I there exists 1€{1, 2, 3} such that

(a7 bg)ESA i
Proof. We can assume that a=b=e. Let
exp: Ky .~ X,

where Ky ,<=T,(X), be the normal coordinates of X at o (see [9]). Set U =exp (K, ),
Al):exp_l(A n U)’ ‘Po=eXP;l(‘PL U), 10=T0(B).

Inasmuch as each g€ leaves the connection invariant, we have
exp [4(0) (Ag) N Ko 0] =g(B)N U.

We use this together with 3.8 to infer that it suffices to show that for H™ almost all g€ 1
one of the following holds with =g, (0)(4,):

(i) For some §>0,

hm Sup ¢0[A0 N X(09 7, }*) 8)] r_ks_k = O.

50t 0<r<é

(i) For all §>0,
limsup sup @,{4, N X(0, 7, 4, 8)] 7 *sF = oo,

s>0t 0<r<é
(ili) O€cl[4, N A~ {0}].

Using the differentiability of the adjoint representation of I we infer that the repre-
sentation of I in the group of nonsingular endomorphisms of T,(X) which corresponds g,(o0)
with g is of class co. Thus the map of I onto y,_, which carries g onto g4(0)(4,) is a fibre
map. We conclude that proving our assertion is equivalent to showing that for almost all
A€y, one of the conditions (i), (ii), (iii) is satisfied. But this follows from application of
3.9 with X =R" and B=4,, or from [7, 3.3.4).

3.11. Remark. If B is an n —k dimensional linear subspace of R”, then the proofs of
3.4 and 3.5 can be greatly simplified.
We first show that if 0 <s <1, then

K1,4(B) =X(0, oo, B, 7) U {0},
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7 =s[}(1—s8)]t.
In fact, if 2 sin 0/2=8/V§, then 7=ginf, and from 3.1 we infer that if z€ BN 8", then

Ky ;(Rz) ~ {0} = U {y:dist (y, Rz) < 77} n r8" 1= X(0, oo, Rz, 7).
r>0

Furthermore, if II: R*— B is the orthogonal projection, then for y € X(0, oo, B, 7), we have

y€X(0, oo, R[Ti(y)], 7),
hence
X(0, =, B, ) = U{X(0, =, R, 7): z€ BN 8"} = Ky ,(B) ~ {0}.

Next we consider the estimate in 3.5. Fix 0 +y€ B; we can assume |y| =1. Further,
if g€0(n) and g(y) € B, then I ,,=1,97' and thus we need only consider I, from now on.
Cover I, by open subsets U, ..., U, of O(n) on each of which is defined a coordinate map

f1: U, >R
such that f; and f;* have the Lipschitz constant M, and such that
f(,NU)cRIN{z:al=... =a" =0} =P.

Let o be the Lebesgue number of the covering Uy, ..., U, and consider g€, 0<s<g.
Choosing Uz K, ; we set 2= f3(g) and verify that

ol — k) M2~ sl — M IHIKPA K, ) < H-YI,N K, ,)
S MVFHYHPNO K, o 0) = ol — k) M200 g F,

4. Purely (¢, k) unrectifiable sets

Assign a left invariant Riemannian metric to @. Let ¢,: N,—G be a cross-section such
that o,(0)=e. For a€G let N,=aNlN, and o,= L,00,0a . Define y,: N, x I->G by the for-
mula 7,(z, ) =0,(z)g.

Assume ¢ to be Borel regular.

4.1. Lemyma. If A< X and 6> 0, then the function mapping (a, b) onto

limsup sup @(4 N X[7(a), r, ab~}(B), s]) r *s7*

3->01 0<r<é

is a Borel function on G'xG.

The proof is analogous to that of [7, 3.3.4].
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4.2. LEMMA. If A is a Suslin subset of X, then S, 3 is a Suslin subset of G x G.
Proof. For each positive integer ¢ the set S, of (a,, by, @, b) €EG x B’ x A’ x B’ such that
f(ag, by) = fla, b) and 0<dist [n(a,), n(a)] <i~*

is a Suslin set. Consequently,

Sa3= iDI {(ao» by) : (@, by, @, b) €8;}

is a Suslin set.

4.3. LEMMA. Assume that @ is finite. There exists a Borel regular measure ¢’ on G
such that:

(i) If a€Q, then @'|_Ng=y..[pl_ N,xH™.
() If ¢ and H*| A have the same null sets and H*(A)<co, then ¢’ and H**™|_ A’

have the same null sets.

Proof. Let G be the principal fibre bundle with bundle space @, base space X and
structure group I. Orient I and denote by I the unit positively oriented m-vectorfield on I.

We can clearly assume ¢ to have compact support. Keeping [2, 3.8] in mind we define
L; as in [2, 3.3] and set
' = | L@l

where ¢ is regarded as a 0-current. From [2, 3.3 and 3.1] we infer that for a €@,

—

LG((p)I_N; = Xot (PN X I)=X0 (0, I) Xp o (p_N,x H™).

Further, y,.(0, B is the restriction to N, of the left invariant m-vectorfield on G which
agrees with TonlI ; consequently,
|10 (0, D| =1,
which implies (7).
Suppose ¢ and H*| A4 have the same null sets, H¥(4) < co. Then Fubini’s theorem
implies that ¢ x H™ and H*|_A4 x H™ have the same null sets. Furthermore, we infer from
[7, 2.10.27 and 2.10.45] or [4, 3.2 and 4.1] that H*| A4 x H™ and H**™__A x I have the

same null sets, hence conclude from (i) that (ii) is true.

4.4. LEmMa. Suppose 4 is a purely (p, k) unrectifiable Suslin subset of X such that
p(d) <oo and p(W)=0 whenever W< A and H*(W)=0. If Y is a separable Riemannian
manifold of class 1 and dimension §, then A x Y is a purely (p x H', k+7) unrectifiable subset
of Xx7Y.
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Proof. Let B be a k+7 rectifiable Suslin subset of 4 x Y. We infer from Fubini’s
theorem that we can conclude that ¢ x H'(R)=0 if we can show that ¢(S)=0 where

S=ANn{x: H/[RN {z} x Y]>0}.

But from [7, 3.2.21] or [6] it follows that S is countably (H¥, k) rectifiable, hence (p, k)
rectifiable by our hypothesis.

4.5. LEMMA. Let y be a measure on R™" x R"* such that closed subsets of R™" x R"~*
are p measurable, and F: R™ " x R**<R™"" be the projection. If W is a purely (u, m+n)

unrectifiable subset of R™ " xR** and for each wE W there exists 6 >0 such that

lim sup w[W N X(w, r, F-Y{F(w)}, s)]r " "s" " =0,
520+ O<r<d

then u(W)=0.
This is [7, 3.3.8].

4.6. LeMMA. If A is a purely (@, k) unrectifiable Suslin subset of X such that ¢4} < oo
and @(W)=0 whenever W< A and H*(W)=0, then

@ XH™ " M4 x B'N8, ) =0.
Proof. Since B is separable, it is sufficient to show that
@ xH" " 8, ;04" xB' NN,)=0. *
Let By=0,(BNN,). We shall show that
@' xH" S, ;N A" x By) =0.

Inasmuch as ¢’ x H"* and (R, x R,).(¢’ x H* ¥) have the same null sets for A€ H, it will

follow that
@ xH" (8, 1N A" x Byk) =0,

and 4.1, Fubini’s theorem and [7, 2.10.45] or [4, 4.1] will imply (*).
If g€f(G < B,), then it is clear that
F,=GxBynf*{g}

is a proper n—k dimensional submanifold of G x B, which is mapped diffeomorphically
by mop onto g(BN N,), where p: G x G—G is the projection p(a, b)=a. Let € be the set of
€4’ x B, such that for some 4 >0, the limit, as s—0%, of the numbers
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supdcp' x H" ¥[A’ x ByN Xgxp (L, 7, Frp, 8)]r ™ ™™™

O<r<

is zero. (Xg«p, indicates use of the metric in G x By.)

The remainder of the proof is divided into two parts.
Part 1. A’ xByN 84,:1<C.

Proof. Fix (ay, by) €A’ x ByN 8 4,1; set gy =aybg *. Choose coordinates y for X in a neigh-
borhood N< N, of z(b,) having compact closure in N, so that y[n(b,)]=0 and

(NN B) =p(N)NP,

where f is the linear subspace of R" spanned by ¢, ..., €,. Choose coordinatesy, for I in a

neighborhood M, of e having compact closure so that yy(e) =0. Then
O: M xB,nN' -R*xR" xf,
where M =g[y(N x M;)] and
D = (p xyo)ogs oL, xyom,
is a coordinate system at (a,, b,) wWith
D(ay, by) = (0,0,0)=0;
setting a={(w,0, w):wep}
we have QM xByNN'NFp)=®Mx By,nN') N .

Defining 4o =y[go (4) N N] and py=v.lgos (p)|_N], we infer from 3.8 that for some
6>0,
lim sup @4, N X(0,r, 8, 8)]r *s*=0.

30T 0<r<d

Further, by 4.3
@(¢" x H ¥ M x By N') = @o xou{ H™_ M) X (por),(H" *|_B,N N'),
hence we infer from application of 3.8 to @ that (a,, by) €C if

lim sup @, x H™ x H" *[ 4y x R™ x B0 X(0, 7, &, 8)]r ™ "s™™"" **)

s>0% 0<r<é

is equal to zero.

Let P: R" x R™ x B—>R" be the projection. Fix 0<s<}. Using the orthonormal basis
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{27%e, 0,¢): i =k+1,...,23U {27 ¥e, 0, —e): i =k+1,..,2}U {(e;, 0,0): i =1, ..., k}
of R*x {0} xf, we verify that

X(o, C><’,<JC,S)=R"><R”'><ﬁﬂ{(u,v,'w):i(u-ei)2

i=1

n

<A-HE S (weel+ @ =D+ w1 3 [w—w)- B}

i=k+1 i=k+1

For each w,€p define E,, on g by the formula

B (w)=s*|w’ = | wy—w]*.
Observing that
sup B, = B,,[(1 —2s%) w,] = s¥(1 —25%)71 | w, |2,
we conclude that

P[X(0, o0, &, $)]1=R" N {uy+ wy:w, € B, uo € f*, wEP, vER™,
| ? < (1= 8) 7% | [° + (s — 1)|v|2+ B, ()]}
CR”ﬂ{u u e;)? < 2831 — 2s%) " Hul?} = X(0, o, 8, 2s).
Next we fix » >0 and verify that

X(0, 7, &, s) cR*xR™ x B n {(u, v, w) ‘iu “e;) +1 Z [u w) - e+ |v|F < (rs)®}

SR xR"x B N {(u, v, w): }|u—wl*+ v < (rs)?},
whence for u€R" we have

X(O, r, o, 8) n P’l{u} [ {u} X (Rm n Ko.rs) X (ﬂ n Ku.2rs)-
Finally, we apply Fubini’s theorem to conclude that (**) is not greater than

lim sup 2"a(m)a(n —k)poldoN X(0, 7, B, 2)]r ¥(2s) ™ = 0.

550+ 0<r<4
ParT 2. ¢’ x H"¥(C)=0.
Proof. Let U be an open subset of G x B, in which there are coordinates
i U=Rmn  Rr*
such that for each g€f(U) there exists wER™™ with
2F,0 U) = (U) 0 FA{F(w)},

where F: R"*" x R**—R™"" is the projection.
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By 4.3 and 4.4, C is a purely (¢’ x H* ¥, m +n) unrectifiable subset of G x By, hence
application of 3.8 to y and 4.5 to u=yx.(¢’ x H" *|_U) enables us to conclude that

o' xH"¥CnU)=0.
4.7. LeMmMaA. If A is a Suslin subset of X and p(A) < oo, then
WA’ BN 8,,9)] =0.

Proof. Since B is separable and

R, X R,(S,.5) =8,,, forhe€l,
it is sufficient to show that

WHA" x ByN 8,,0)] =0,
where By, =g, (BNN,).

Defining F,=G x ByN f-1{g} as in 4.6, we also denote by D the set of €A’ x B, such
that for all 6 >0,

limsup ¢’ x H* *[A’ x By {&: dist (&, Fpp)) <t} N K¢ s]¢7™ " = o0,
t—>0+

The remainder of the proof is divided into two steps.
Part 1. A"’ xByN 8, < D.

Proof. Fix (ay, by) €A’ x ByN S, ,. Proceeding as in the first two paragraphs of the
proof of 4.6 Part 1 we conclude that for all 6 >0,

k

limsup sup @ [4,0 X(0, 7, B, 8)]r *s™* =oo.

s»0+ O<r<é
Further, we see as in 3.8 that (a,, by) € D if for all §>0,

limsup @y x H® x H* ™[4y x R" x BN {z: dist (z, &) <t} N Ko 5]t " *
t—>0-+

is equal to infinity.

Let P: R*xR™xB—>R" be the projection. Fix 0<s<1 and r>0. Suppose u€R",
dist (u, B) = |u—w|, w€P. Then

dist [(, 0, w), a] = |u—w|,
hence
X(0, r, B, s)c RN {x: dist (x, B) <rs} = P[R" x R™ x B {z: dist (2, &) <rs}].

Furthermore, if #€X(0, r, 8, s/2) and dist [z, (u, 0, w)]<rs/2, then dist (2, «) <rs. Thus,

we can use Fubini’s theorem to conclude that (*) is not less than
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limsup 2" ~"a(m -+ n— k) go[do N X(0, 7, B, 5/2)] (rs/2)™* = oo.

.9)=>(0,0)

Parrt 2. W[f(D)]=0.

Proof. Let U be an open subset of Gx B, such that there are coordinates
2 U=R™" xR" % and g, f(U)>R"*" with

xeof ' U=TFoy,
where F: R™*" x R*"*—~R"*" is the projection. Also choose U so that
@' x H"™HA' % ByN U)<oo.

Letting 4, =y(4’ x Byn U) and p=y.(p’'x H* *|_U), we denote by D, the set of
(z, y) €4, such that for all 6>0,

]imsgp plA; N F Y (K ) O Koy s]8 ™ "= oo
-0
We see as in 3.8 that y(D N U)=D,, hence ¥{f{(DNn U)] =0 if H™*"[F(D,)]=0.
Let » be the measure on R™*” such that
»(8)=pl4, n FY(8)]
for SCR™*", It is clear that closed subsets of R™*" are v measurable. Hence the standard

theorem on differentiation with respect to Lebesgue measure assures us that

limsup ——7:’(TK,LIL < oo
ot H" (K, y)

for H™*™ almost all zER™*". On the other hand, if € F(D,), then

limsup »(K, ;)¢ " "= oo,
t->07F
and we conclude that

H™"[F(Dy)]=0.
4.8. TaEOREM. Suppose one of the following two conditions is salisfied:

(i) G is the group of isometries of X, dim G =3in(n+1).
(i) X has a linear connection which is invariant under the action of G, I acts transitively
on the space of n—k dimensional linear subspaces of T,(X), and B 1s totally geodesic.

Let A be a purely (¢, k) unrectifiable Suslin subset of X such that ¢p(A) <o and p(W)=0
whenever W< A and H¥(W)=0. Then
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@' x H"" % (A'x B'N84,)=0,
@' x H"* " “[A"xB' ~ (842U 848)]=0,
YHA4' x B' N 84,2)]=0.

Proof. The first assertion is the conclusion of 4.6.
From 3.9 or 3.10 we infer that if (a, b))€A’ x B’, then

H™[{a} xbI~(8,,,U8,,2U8,,3)]=0.

Assured by 4.1 and 4.2 that S, ;, S, 5, S, 3 are Suslin sets, we conclude from application
of the coarea formula [7, 3.2.12] or [5, 3.1] to | B’ that

H™ " *{a} x B'~(8,,,U 84,5V 8,435 =0.
Thus by Fubini’s theorem
Q' xH™" MA'x B'~ (841U 84,2U8,4,5)] =0,

and this implies the second assertion.
The third assertion is the conclusion of 4.7.

5. The structure theorems

For this section we shall assume that either condition (i) or condition (ii) of 4.8 is

satisfied. Let @ have a left invariant metric.

5.1. THEOREM. If Ec X with H¥E)<co, then there exists a countably k rectifiable
Borel subset R of X such that E ~ R is purely (H*, k) unrectifiable and

(E~ R)Ng(B) =0
for ¥ almost all g€Q. Furthermore, if H*(EN R)>0 and E is H* measurable, then
H=Gn{g: En RNg(B) +0}
18 ¥ measurable and V' (H)>0.

Proof. Since H* is Borel regular, we can assume E to be a Borel set. Proceeding as in
[7, 3.2.14] we obtain a countably k rectifiable Borel subset R of X such that A=E~ R is
purely (H*, k) unrectifiable. R is constructed by maximizing the finite measure H*| E

on the class of countably % rectifiable Borel subsets of X.
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Suppose S is a Suslin subset of A’ x B’ such that

(HE|_AY x H™"4(8) = 0.

Using 4.3 and Fubini’s theorem we infer that
H*™ x H™ ™ k(8) =0,
hence conclude from [4, 4.1] or [7, 2.10.45] that
H>™™(8) = 0.

Applying this to 4.8 and using 4.1 and 4.2 we have

H>™ ™4’ x B'N8,,) =0,

H2™ "4’ x B’ ~ (845U 8,.5)]=0.

Consequently, since (a, b) €8, ; implies (ak, bh)€S, , for hE€I, we can apply the Eilenberg
inequality [4, 3.2] or [7, 2.10.27] to conclude that

YA xB'N8,.1)]=0,
WA’ x B' ~[84,2U 84,11 =0,

WHA'x B' NS, 4)]=0.
Therefore, if we show that
WA x B' 08, 5)] =0,

it will follow that W[f(4’ x B’)]=0, which is equivalent to ANg(B)=@ for ¥ almost
all g€G.

Fix g,€G and let X: UG x @ be a cross-section for f in a neighborhood U of g,. Let

o: V-G be a cross-section for z in a neighborhood V of o such that ¢(0) =e. Define the
diffeomorphism
1 UxVxI-Wclx@

by the formula y(g, z, h) =2(g) (o(x) k, o(x) k). Let I, be a compact neighborhood of e in I;
set ¢=H™(l,). Choose compact neighborhoods Uy< U of g, and Vo< V of 0 and let M be a

Lipschitz constant for
x| Wo)™, Wo=x(Ugx VgxIy).

Choose U,, V,, I, so that also H*'" xH™ " ¥A'x B'nN Wy)<oo. Suppose (a,b)=
xlab™Y, x, hy)€W,. Then if
®la, b) = {{ah, bh):hET},
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it follows that D(a, b)N Wy = y({ab—1} x {z} x hg'1,)
and H™®(a, b)n Wol = M-"c.

We use the Eilenberg inequality, 4.3 and [7, 2.10.45] to obtain ¢, such that
*
f H™A'xB' N Wy f g} dH™ "g < coH**™ x H™" " (A4’ x B' N W) < oo.

Consider (a, b))€A’ x B'N S, 4N (interior W,); set g=ab~1. There is an infinite subset S of
A’ x B'N f-{g}n W, such that wop|S is one-to-one, where p: G x G— G is the projection on
the first factor. Thus ®(w) N D(z) =D for w, z€8, w2z, and HMA' x B'N W,N f~1{g}) = oo;
therefore, H™"[f(4’ x B'N 8, ,) N interior U,] =0.

Regarding verification of the last assertion of our theorem we infer from [7, 3.2.29]
that we can assume R to be a proper k dimensional submanifold of X of class 1. We use the
Fubini theorem, 4.3 and the Eilenberg inequality to infer that

H>™C)>0, C=(ENRY xB.

Application of the coarea formula [5, 3.1] or [7, 3.2.11] yields
fJ(fIR'xB’)dHZ'”+"= fH"‘[C’ nfYg}1dH™*"g.
(o]

Set H={g: H"[ONf{{g}]>0}. C is H*™*" measurable, hence H is H™*" measurable and
it is sufficient to show that J(f| R’ x B’)(z) +0 for some z€C.
We can assume that (e, ¢) €C and

To(R) +To(B) = To(X).

Choose orthonormal vectors u,, ..., U+, in T(R') and orthonormal vectors v, ..., v,
in TyB’) such that vy, ..., v, 4, Uyq, --r Upem 18 an orthonormal basis of T.(B’) and
Ups1s +-s Ui 18 an orthonormal basis of T,(I). Using [2, 4.1] one proceeds as in the proof
of [2, 4.2] to verify that

k+m n—k
J(f| R x B')(e, ) =2"2|[ A u] AL A 0] >0.
i= =

5.2. Definition. If € X, the k dimensional upper density of ¢ at z is

®*k(¢P: x) = hmggp “(k)_lr—k(p(Kz. -
r—>
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5.3. THEOREM. Suppose W< X, p(W)<oco, ¢(S)=0 whenever S< W and H¥(S)=0,
and
O*(@_W,x)>0 for ¢ almost all z€EW.

Then there exists a countably (¢, k) rectifiable and ¢ measurable set  such that W ~ @ is purely

(@, k) unrectifiable and
(W~@Q)Ng(B) =92

for Y almost all g€G. Furthermore, if (W NQ)>0 and W is a Borel set, then there exists a
W measurable subset H of G such that V{(H)>0 and

Wn@ng(B)+D
whenever g€H.

Proof. For each 2=1, 2, ... consider the set
E,=Wn{x: @%@l W, z)>1/i}.

Using [3, 3.1] we see that co >ip(W)>H*(E,), hence we can apply 5.1 to E, to obtain the
countably & rectifiable Borel set R,. Letting

F= W~¢L—11E" Q=F U‘UIR,,
we conclude that p(F)=0,

W~QC[—J1 (EiNRi)s
and each E;~ R, is purely (p, k) unrectifiable. We complete the proof by observing that if
(W NQ)>0and W is a Borel set, then each E, is a Borel set and H*(E,n R,) >0 for some .

6. Integralgeometric measure

For this section we shall assume that ¢ is the group of isometries of X with dim ' =
n(n+1).

G is unimodular. Let ¥ be the Haar measure on @ having H" as its & image; ¥ is
independent of choice of x.

Define f(n, k)= (7]:) - a(n) (k) a{n k).

In 6.3 and 6.4 we shall be concerned with a set £ of closed »—k dimensional
submanifolds of X such that G acts transitively on & and such that if E€ £, then
G N {g: g(E)=E)} is transitive on E. Also assume that £ has a @ invariant Haar measure.
The members of £ are necessarily of class oo,

15 — 692906 Acia mathematica. 122, Tmprimé le 17 Juin 1969,
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If X is connected, then X is isometric to either an Euclidean space, a sphere, a real
projective space or a simply connected hyperbolic space; see [9, p. 308). For each of these
spaces £ can be taken to be the set of closed, totally geodesic submanifolds of X of dimen-
sion n —k.

In [2, § 7] it is shown that there is a Haar measure on £ such that if R is an (H*, k)
rectifiable subset of X, then

H*(R)= f(n, k) J HYR N E)dOE.

If £ is the space of n —k dimensional planes in R”, then
D = 2,(D, x H"),
where @, is the Haar measure on O(n) such that ®,[0O(n)]=1 and

A O(n) xRF > £
is defined by the formula

Mg, w) =g(R"N {z: 2! =}, i=1, ..., k}).

6.1. THEOREM. Assume H" *(B)<oo. There exists a Borel reqular measure Jyp, the
integralgeometric measure corresponding to B, such that if A is a Borel subset of X, then

Jp(4) = B(n, k)‘IH"""(B)“f H[ANg(B))d¥y.
G

Furthermore, Jg(W)=0 whenever H*(W)=0.

Proof. By using local cross-sections for z we can find a countably n—Fk rectifiable
Borel subset B* of G such that n|B* is one-to-one onto B. Then for g€G and A< X,

H[ANg(B)] = H(4' x B*0 f*{g}).

We apply [7, 2.10.10] to f in order to infer the existence of a Borel regular measure y on
G x @ such that for every Borel set S G x @G,

w(S) = f HOSN 1 {g}) d¥y.

The definition of p is analogous to that of H' in 2.6; given a countable covering U of §

and #€U, one replaces

27 'x(l) (diameter u)! with W[f(w)].
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Thus define for each Borel set A< X,

Js(A) = B(n, k"L H" *(B)~'p(4’ x B*),
and for each W< X,
Je(W) =inf {Jz(4): W< A, A a Borel set}.

Suppose H¥(W)=0; we can assume W to be a Borel set. From Fubini’s theorem and
4.3 we infer that H**™(W') =0, whence H™*™(W' x B*)=0 by Fubini’s theorem and [4, 4.2).

Consequently, WL/ % B =0
X =Y,

and we conclude from the definition of y that ¢(W’ x B*)=0.
6.2. THEOREM. Suppose H" ¥(B)<oo, A< X and H*(A)<oo,

(i) If 4 is purely (H", k) unrectifiable, then Jz(A)=0.
(i) H¥(A)= Jg(A), with equality if and only if A is (H*, k) rectifiable.

Proof. Let Ag> A be a Borel set such that H*(4y) = H¥(A) and Jz(4,) = Ts(4). Apply-
ing 5.1 and 6.1 we obtain a countably % rectifiable Borel subset R of A4, such that Ay~ R
is purely (H*, k) unrectifiable and Jz(4y~ R)=0. Thus if 4 is purely (H*, k) unrectifiable,
we conclude from 6.1 that

Js(4) < Tg(Ag~ R) + TJpg(AN R) =0.
For the general case we have by [2, 5.15]
Js(4) = Ip(R) + Ip(dy~ R) = H(R) < HY4);

in particular, if Jp(A4)=H"(A), then A4 is (H*, k) rectifiable. On the other hand, if 4 is
(H*, k) rectifiable, then we infer from [7, 3.2.29] that we can assume A, to be (H¥, k)
rectifiable, hence conclude using [2, 5.15] and 6.1 that Jz(4)=H*(A4).

6.3. THEOREM. There exists a Borel regular measure J., the integralgeometric measure
corresponding to €, such that if A is a Borel subset of X, then

Je(A)=B(n, k)* f H%A n E)dDE.
&

If o€ Y € &, then there is an open neighborhood f of 0 in Y such that

je=yﬂ
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Proof. Proceeding as in [2, § 7] we define
K=6n{g:g(Y)=7Y},
dim K =% —k+A. Choose a left invariant metric on G so that H™(I)=1 and
7a(@)|Ta(@),  74(2)| TAK)

are orthogonal projections whenever a €@, 2z€ K. Letting gK €G/K correspond to g(Y)=
(g K), we identify £ with G/K.

@ is the Haar measure on £ such that for each Borel subset S of G,
f H" "8 n E)dDE = H K n I)¥(S).

Assign a Riemannian metric to £ and let P: G—G/K = £ be the projection. By Weil’s
condition [10, 9] or {7, 2.7.11] K is unimodular, hence there is a differentiable function
¢ on & such that (JP-1)=goP. Inasmuch as ¥ =H™"", application of the coarea formula
(5, 3.1] or [7, 3.2.11] to P enables us to conclude that ® = H*(K n I)pH™* %,

Let « be an open neighborhood of the identity in K such that « has compact closure,
al=0a, and a=n"Ynr(«)]N K. Define for Ac X

Je(4) = Jp(4), p=mn(a).

Considering a fixed Borel set A< X, we shall complete the proof by showing that
1) (B4 n By aoB - [mo4 n g ats. ¢

First suppose the right integral to be finite. Let 4 and { denote the characteristic functions
of § and of A, respectively, Application of the coarea formula to P yields

oo >H K N ) j HLA 0 g(B)] d‘I’g=f f HOLA n g(B))dH"*+*g dOF.
GIEJF

Consider FE€G/K, gp€F, and suppose A N gg(B) is infinite. Then A N gx(f) has a cluster

point y €gz(Y). Since
Kn{g: yegrg(B)}

is open in K, we conclude that
HO[ANg(B)) <oo

for each g€F, for ® almost all FEG/K. Fixing such an F and gz€F we observe that
W —=g3'(4)N Y is countable and use the coarea formula to compute
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fﬂ"[A ﬂg(ﬂ)]dH”"‘“g=f 2(Cogg) (ozt)dH™ ¥
F EW

- 3 togste) | mos @)tz

TeW

= 2 fogs(a) H"**X(a) = H[A N a(F)|H" () HYK n 1),

which implies (*).

Sis

and

(11
[2).
[3].
[4]
(5).
[6].
[7].
[8].
[9].

[10].

Finally, suppose H™**(8) >0, where
§=G 0 {g:HUA N g(f)] = oo},

H™ ™ measurable, hence
O{E: H(AN E) =} = Q[P(8)] >0,
thus both integrals in (*) are infinite.

6.4. THEOREM. Assume A< X with H*(A)<oo.

iy If A is purely (H*, k) unrectifiable, then J(4)=0.
(ii) H*¥A)>J(A), with equality if and only if A is (H*, k) rectifiable.

Proof. Choose f so that J.=J; and apply 6.2.
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