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The principal result obtained is the theorem that for every recursively enumerable
degree of unsolvability, there exists a finitely presented group whose conjugacy problem
has that degree. (Parts I, IT, ITI and IV.) In Part V this result is generalised to the theorem
that certain complexes of recursively enumerable degrees of unsolvability may be ob-
tained as the degrees of a complex of problems concerning conjugacy in a finitely presented
group.

It is a pleasure to acknowledge the encouragement and inspiration provided by
Professor William Boone during this work.

Introduction

In 1911, Max Dehn formulated three fundamental decision problems (2} concerning
groups: the word problem, the conjugacy (or transformation) problem and the isomorphism
problem. These may be roughly stated as:(3) (i) Word problem for the group G—does
there exist an effective method to determine of an arbitrary element W of G whether or
not W=1 in @G. (ii) Conjugacy problem for the group G—does there exist an effective
method to determine of two arbitrary elements U and V of G whether or not U is conjugate
to V in @. (iii) Isomorphism problem for the class C' of groups—does there exist an effective
method to determine of two arbitrary members G, and @, of C whether or not G, is iso-

morphic to G,. Dehn’s principal goal was the formulation of algorithms to provide effective

(1) The material in this paper is taken from the author’s Ph. D. thesis submitted to Princeton
University.

(?) A decision problem is a problem of the following type. Let C be a class of entities and P a
property such that every n-tuple (where n is fixed) of elements of C either does or does not enjoy P.
Does there exist an effective procedure to determine of an arbitrary n-tuple (a,, a, ..., @,) whether or
not (a,, a,, ..., a,) enjoys P?

(®) A more careful statement would specify presentation of a group rather than group.
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solutions for these problems. The discovery in the 1930’s of recursively unsolvable decision
problems, however, led mathematicians to investigate, with a view toward proving recur-
sive unsolvability, decision problems for which recursive solutions had previously been
sought.

The first such result regarding Dehn’s problems was obtained in 1954 by Novikov
[18] who proved that there exists a group whose conjugacy problem is recursively unsolv-
able. Shortly thereafter Novikov [19] and Boone [4] each exhibited a finitely presented
group with recursively unsolvable word problem. Finally, it was proved by Adjan [1] and
Rabin [20], independently, that the isomorphism problem for the class of all groups was
recursively unsolvable.

At about the same time as the work of Adjan and Rabin, a new developement occurred
in the theory of recursive unsolvability. A decision problem is called recursively enumerable
(r.e.) if, roughly, it is possible to enumerate in some mechanical fashion either all the
n-tuples for which the problem would be decided in the affirmative or all those for which
it would be decided in the negative. (Almost all significant problems outside foundations
are recursively enumerable.) Two decision problems are said to have the same degree of
unsolvability if a recursive solution of the first provides a recursive solution of the second
and conversely. Friedberg [13] and Mucnik [17] (also independently) proved that there
exist unsolvable recursively enumerable decision problems of distinct degrees of unsolva-
bility. Since Dehn’s decision prolems are recursively enumerable, it was natural to consider
the question of whether or not there existed, for every recursively enumerable degree of
unsolvability, an example of one of Dehn’s problems which was unsolvable of that degree.
The first such result was obtained by Fridman [12] who proved that for every r.e. degree
of unsolvability there exists a finitely presented group whose word problem is of that
degree. This result was also proved by Bokut’ [2], Boone [7] and Clapham [10]. Then Boone
[8] proved that for every r.e. degree of unsolvability, there exists a class of finite presenta-
tions of groups whose isomorphism problem is of that degree. Our principal result rounds
out this investigation. We prove that for every r.e. degree of unsolvability there exists a
finitely presented group whose conjugacy problem is of that degree. An analogous result
was obtained, more or less simultaneously, by Miller [15] for finitely generated, recursively
presented groups.

Given that an r.e. degree can be considered as the degree of the word problem of a
certain group or as the degree of the conjugacy problem of a certain group, it seems reason-
able then to examine the relationship of the word and conjugacy problems for groups in
general. The first result in this area was obtained by Fridman [11]. By proving that there

existed a group with solvable word problem and unsolvable conjugacy problem, Fridman
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showed that the word and conjugacy problems are not always of the same degree. This
has also been proved by Bokut’ [3]. Since the groups we construct all have solvable word
problems we prove a degree analogue of this result of Fridman. More generally one might
ask whether or not any two r.e. degrees can be obtained as the degree of the word and
conjugacy problems of a certain group. This question can be immediately answered in the
negative since the word problem for a group must always be reducible to the conjugacy
problem for the group. But there exist incomparable pairs of degrees. However, if the
question is asked of any two degrees D,, D, such that D, <D, the answer is less immediate.
Miller [16] has given an affirmative answer for finitely generated, recursively presented
groups. At present we can only conjecture that the answer for finitely presented groups is
also in the affirmative.

While the principal goal of the present paper is to obtain every r.e. degree as the degree
of the conjugacy problem of a certain group, the method of proof is such that we are able
to prove a result rather more general than this. Given a group & and an element V of G,
the individual conjugacy problem for ¥ in G is to determine of an arbitrary element U of
@G whether or not U is conjugate to V in @. The generalised theorem then states that given
any recursively enumerable class {D,} of recursively enumerable degrees and any recur-
sively enumerable degree D >each D,, there exists a group & such that the set of degrees
of the individual conjugacy problems for elements of G consists exactly of all finite unions
of the members of {D,} and the overall conjugacy problem for G has a degree D. This
theorem is an analogue of a theorem of Shepherdson [21] concerning individual word
problems and overall word problem for a Thue system. (Moreover, we depend on Shep-
herdson’s theorem to obtain our own theorem.)

Some general remarks

This paper has been written on the assumption that the reader has some familiarity
with the papers [7] and [9], by Boone and Britton respectively. A complete knowledge of
these two papers is not required. The reader should however be familiar with the definitions
and lemmas (but not necessarily their proofs) of § 1 of [9] and also of § 2 of [7]. No knowledge
of Shepherdson’s [21] is assumed.

In the introduction to [7], Boone remarks that throughout his whole argument, the
only tools employed are the Lemmas 3 and 4 proved by Britton in [9]. In a very real
sense, the same is true of our argument. We do indeed develop other lemmas of a general
nature but they are proved by using these two lemmas of Britton. Of these new lemmas,

General Lemmas 3 and 4 (see Part I) are the most important. Indeed General Lemma 3
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may be fairly regarded as a kind of conjugacy analogue of Britton’s Lemma 4. This is
well illustrated by a combinatorial approach to the word and conjugacy problems.

Let E be a basis of E* with stable letters {p,} (see [9] for the definitions of all terms
used here), say E=(S; D), E*=(S, {p,}; D, Fip,,G;=H;p,,K;) and suppose the iso-
morphism condition holds. Let U and V be words of E* containing one or more positive
p,-8ymbols but no negative p,-symbols. Then U=V in E* if there exists a sequence
W,»W,—>...~W, where U is W, and V is W, and W~ W, either by application of a
defining relation or by insertion or deletion of a pair of inverse generators. Britton’s Lemma
4 (essentially) asserts that if such a sequence can be found, then there is a sequence of the
same type in which a p,'-symbol never appears. But there is a very similar combinatorial
approach to conjugacy. Instead of regarding U and V as linear words, consider them as
circular words (i.e. instead of the symbols being strung out in a line, they are wrapped
around a drum). Then U is conjugate to V in E* if there exists a sequence of circular
words Wy—Wy—...~ W, where U is W, V is W,and W,— W,,, either by an application
of a defining relation or by insertion or deletion of an inverse pair of generators, where these
operations can be performed upon any section of the circular word. (In terms of our physi-
cal imagery it is clear that the drum must be expandable.) General Lemma 3 proves that
if such a sequence exists, then there exists a sequence of the same type in which a p;*-
symbol never appears. A conjugacy analogue of Britton’s Lemma 3 is impossible; for let
E =(a, b; @) and E*=(a, b, p; ap=pb). Then a is conjugate to b in E* but not in X.

In analysing the conjugacy problem for a group presentation, with a view toward
obtaining either a recursive or a relatively recursive solution, there are two rather obvious
approaches. One may attempt to show that it is necessary to solve the problem for a limited
subelass of words rather than for all words. Alternatively one may attempt to show that
only a limited subclass of words need be considered as possible conjugating elements. And
of course, one can, as we do, combine these approaches. Roughly, we follow the first method
for a while (Reductions IT and IX) and then revert to the second (Reductions I1T and X).
The main tool for the second approach is General Lemma 3 which shows that only a very
restricted class of words need be considered as possible conjugating elements. Under
certain circumstances, General Lemma 4 can be used to provide a considerable further
restriction (Reductions IV and X).

The plan of the argument is outlined in the diagrams on pp. 147, 151 and 155. We
use the “questionmark’ notation defined in the middle of p. 533 of [6]. The diagrams are
then to be interpreted in the following manner: a decision problem P in the diagram is
reducible to the collection of problems to which it is connected by an outward arrow.
At various times during the argument we shall appear to consult oracles to determine
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whether or not there exist words of a certain type satisfying certain conditions and assume
that an example is supplied along with an affirmative answer. But in fact this seemingly
oracular consultation appears rather as an expositional device and questions of this type
will be recursively solvable and we shall specify a recursive method to compute such a
word if indeed one exists. (Actually this example “proviso” is not a restriction on genuine

oracles—see the third paragraph on p. 53 of [7].)

Statement of results

REsSULT A. Given any recursively enumerable degree of unsolvability D, there is a uni-
form explicit construction which yields a finitely presented group Gy such that

(1) G, has solvable word problem;

(2) Gy has conjugacy problem of degree D.

For a group presentation @, define the individual conjugacy problem for the word V
in @ to be the problem (U, a word of G)(AW)W-1UW =, V. With this definition we can

assert the following generalisation of Result A.

RESULT B. Let {D,} be an r.e. set of r.e. degrees and D an r.e. degree such that D> D,
for every n. Then there exists o recursive construction which yields a finitely presented group
G({D,}, D) such thai

(1) G({D,}, D) has solvable word problem;

(2) for each D,, there is & word V, such that the individual conjugacy problem for V,
has degree D,;

(3) G({D,}, Dy has conjugacy problem of degree D;

(4) the set of degrees of individual conjugacy problems of G({D,}, D) consists of all finite
joins Dy, U D, U ..U D, where D, €{D,} (including degree O as the empty join).

The starting point of our work is a theorem due to Shepherdson [21] which we state
below. We shall, however, modify Shepherdson’s terminology. For any Thue system g,
the individual word problem for the word @, in ¥ is the problem (@, a word of T) 0 =z,
(Shepherdson calls this a special word problem.)

SHEPHERDSON'S RESULT. Let {D,} be an r.e. set of r.e. degrees and D any r.e.

degree such that D> D, for every n. Then there exists a recursive construction which yields
a Thue system T({D,}, D) such that

(1) for every D,, there exists a word @, of T({D,}, D) such that the individual word prob-
lem for ®©, in T({D,}, D) has degree D,;
(2) the word problem for T({D,}, D) has degree D;
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(3) the set of degrees of individual word problems ofZ({D,}, D) consists of all finite joins
D,UD,V..UD,, where D, €{D,} (including degree O as the empty join);

(4) if the defining relations of T({D,}, D) are P,=Q;, i=1, 2, ..., N, then i +j implies
that P, is distinct from P, and Q; is distinct from Q,;

(5) for each i, P, and Q; are at least two symbol occurrences long.

Parts (1)~(3) are explicitly stated in Theorem X of [21] and (4) and (5), which we
require for technical reasons, are readily verified by inspection.

Before stating our main technical theorem, we must give a corollary to Shepherdson’s
theorem. Let T({D,}, D) be presented as (s;, Sy, ..., $u; P;=@y, 1=1, 2, ..., N). Then let
Tu({D,}, D) be the Thue system with presentation

(815 825~ S0 ; P1q = @1, 8,9 =¢85, 1=1,2, .., N, b=1,2, ..., M)

For notational convenience we write the defining relations of 3,({D,}, D) as F,q=¢K,,
i=1,2,.., M +N. Aword of Tu({D,}, D) is called special if it contains exactly one g-symbol.

CoroLLARY. Let {D,} and D be as above. Then

(1) for each D,, there exists a special word Q,q®, such that the problem (!Qq®, a special
word) Qg®=Q,q®, in I.({D,}, D) has degree D,;

(2) the problem (?Aqll, Qq®, special words) AqIl =Qq® in T ({D,}, D) has degree D;

(3) the set of degrees of individual word problems of Tu({D,}, D), where both the fized
word and the variable word are required to be special, consists of all finite joins D, V..U D,
where D, €{D,} (including degree O as the empty join);

(4) if 14, then F, is distinct from F; and K, is distinct from K.

The corollary is most easily shown by observing that AqIl =Qq® in Z({D,}, D) if
and only if ATl =Q® in T({D,}, D). (The necessary argument is easily derived from the
proof of Theorem 10 on p. 260 of [5].) Parts (1)—(3) then follow easily from parts (1)~(3) of
Shepherdson’s result. Part (4) is a consequence of parts (4) and (5) of Shepherdson’s result.

We are now in a position to state the main technical theorem whose proof occupies

most of the remainder of the paper.

TrcHNICAL RESULT. Let T, be the Thue system with presentation (s, S, ..., Sar> 45
F,q=qK,, i=1,2, ..., P) where F,, K, are q-free words such that assertion (4) of the corollary
holds. Let G be the group presentation
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$1> Sas ooy Sa15 @, Ky 8, T, 14
8, = 8 AT 7,8y = SpXT X
riF—iq =qK,r,
tr =at ry=r;t
kx = xk kry=nrk

where i=1,2, ..., P, b=1,2, ..., M and F, is obtained from F'; by replacing each occurrence

of s, by sy (e.g. F,is s, 8, 83 means F, is s71s3's31). Then

(1) G, has solvable word problem;
(2) the conjugacy problem for Gy is Turing equivalent to the word problem for special
words of Ts.

As it stands the Technical Result, taken with the corollary, suffices only to prove
Result A. However, once the proof of the Technical Result is completed, it is easy to indicate
the fuller argument necessary to obtain Result B.

It should be mentioned that if Result A is all that is desired, then a theorem of Boone
[6] may be taken as a starting-point. Boone’s result asserts the existence of a Thue system
whose word problem has arbitrary preassigned degree. However, the Thue system of Boone
does not satisfy the technical conditions (4) and (5) of Shepherdson’s result so that a certain
amount of manipulation and construction must be carried out before a Thue system of
the type T, in the Technical Result can be obtained. This manipulation and construction

is not difficult and there seems to be little point to including it here.

Part I

The notation employed in this Part is almost identical to that used in §2 of [7].
Variations will be specifically noted; also we shall write U s V to mean that U and V
are identical words.

Let S be a set of generators and {4,}, {B,}, i€, sets of words over §.(!) We use 4
and B as variables for formal products Af*Af ... Aj» and Bj: Bj:... Bj» respectively,
where d, = +1, e¢,=+1 and 4,€1, j,€1.

Let A be A A ... Ajm; if there exists k such that 4, —4,,, and d, +d,, =0, then a

primitive a-reduction of A is Afr Afr... A1 Afk+a . Afn A word A is called a-reduced

(1) The situation where we have two such sets of words will occur frequently. Our usual practice
will be to analyse or make definitions with reference to one set and dismiss the other by remarking that
the corresponding analysis or definition is similar (or dual). The reader should always be able to supply
the second analysis or definition himself.
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if no primitive a-reductions are applicable to it. An identical definition is given for words B.
It is clear that beginning from any word A or B one can compute a finite sequence of
primitive a-reductions which terminates in an a-reduced word. Moreover it is well known
that any two such sequences beginning with the same word will terminate in the same
word. We shall write «[4] or «[ B] for this terminal word.

Finally if m =n and, for all k, i, —j, and d, =¢,, we write A ~ B.

We vary the definition of primitive p-reduction which we choose to give as: if W is a
word of E*, then

(@) if Wis W,p,"Cp,W, and (34)[C =4 and A€A(v)] then W,a[B]W,, where
A~ B, is a primitive p-reduction of W with respect to (E*, E) (w.r.t. (E*, E));

(i) if W is W,p,Cp,* W, and (3B)[C=;B and B€ B(v)] then W,a[A]W,, where
A~ B, is a primitive p-reduction of W (w.r.t. (E*, E)).

It is expositionally convenient to adopt this definition. All results proved by Boone in
§ 2 of [7] remain valid for this altered definition. The phrase ‘“with respect to (E*, E)”
is added since we shall at times consider a certain set of letters to be stable for two pairs
of groups. When no ambiguity can arise, it will be omitted.

Let W be a word of E*; (i) if W, is a primitive p-reduction of W w.r.t. (E*, E), then
W, is a primitive p-contraction of W wr.t. (E*, E); (i) if W is Cyp,Wop,'C; and
(34)[0,0,=;4 and A€ A(v)] then «[B]W, where A ~ B is a primitive p-contraction of W
w.r.bt. (B*, E); (iii) if W is Cyp,* Wyp,0,; and (3B)[C,C, =B and B€ B(v)], then o«[A]1W,
where A ~ B is a primitive p-contraction of W w.r.t. (E*, E). If none of the above is appli-
cable to W we say W is p-coniracted w.r.t. (E*, E). Always w.r.t. (E*, E), a p-contraction of
W is any word obtained from W by a sequence of primitive p-contractions. We use p{W}
as a variable for such words. A sequence of successive p-contractions must terminate in a
p-contracted word. If we pick some canonical way of obtaining p-contractions, we can
define a unique word p{W} which is obtained from W by taking p-contractions for as long as
possible. Then p{ W} is p-contracted (cf. the definition of p[ W] in §2 of [7]).

Let U be any word of E*; a cyclic permutation of U is any word V such that there exist
words Wy, W, such that U is W, W, and V is W, W,. The p-projection of U is the word
obtained from U by deleting all symbols of U except p-symbols; we write s,[U] for this.
Two words U, V are p-parallel if x,[U] is 7,[V] and p-circumparallel if 7,[V] is a cyeclic

permutation of 7,[ U]. Finally we write [,(U) for the number of oceurrences of p-symbolsin U.

GENERAL LEMMA 1. Suppose Cond; z(E*, E, p,) holds and let U, V be p-reduced
words of E*. If U=g.V, then U, V are p-parallel.
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Proof. We proceed by induction w.r.t. L(U). Suppose [,(U)=0; now U~V =yl
whence by Britton’s Lemma (i.e. Lemma 4 of [9]) U-1V is either p-free or not p-reduced.
The latter is impossible and so V must be p-free. Let I,(U)>0; again UV =51 and, by
Britton’s Lemma, U-1V is not p-reduced. Since U-! must be p-reduced, we have either

(1) Uis Xp,U', Vis Yp, V' where X, Y are p-free and (34)[ XY =54 and A €A(v)] or
(2) Uis Xp, U, Vis Yp, 'V’ where X, ¥ are p-free and (3 B)[X1Y =, B and B€ B(v)].

Case (I). 1 =5 U9, XYp, V' =5 U'-1BV’ where A~ B. Hence U’ =+ BV’ and the
result follows from the hypothesis of induction applied to U’ and BV".

Case (2). The argument is similar.

GENERAL LEMMA 2. Suppose Cond, z(E*, E, p,) holds and let U, V be words of
E*. Then AWYWAUW =gV if and only if @W)W-1H{U} W =5 p{V}.

Proof. We need consider only a single primitive p-contraction of U. The result follows
by induction since conjugacy is an equivalence relation. If p{U} is a p-reduction of U, then
p{U} =z U and the lemma is immediate. So suppose that U is C,p,Uyp, ¢, where
C,Cy=5;A. Then

1= WAUWY 1= W10 p,p," 0, Cop, Uppy L WV
= W0 p, BUyp, 1C, WV 1

where A ~ B. Since B =«a[B], the lemma follows. The dual case is similar.

GENERAL LEMMA 3. Suppose Cond; z(E*, E, p,) kolds and let U, V be p-contracted
words of E* not both p-free. If @W)W-1UW =g V, then U, V are p-circumparallel and either

(i) there exist words Uy, V,, 4 such that

(a) U, V, are cyclic permutations of U, V respectively;
(b) U,, V, each have p,* as final symbol;
(¢) AU A =5V, or

(il) there exist words Uy, V,, B such that
(a) Uy, V, are cyclic permutations of U, V respectively;
(b) U,, V, each have p, as final symbol;
(¢) B1UyB=pV,.
Conversely if (i) or (ii) holds, then GW)W *UW =g V.

Proof. We proceed in two stages. Firstly we prove (#) there exist U*, V*, X such that
(«) U*, V* are cyclic permutations of U, V respectively; (8) X is p-free; (y) X 1U*X =g« V*.
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Let us assume U is not p-free (there is no loss of generality in doing so). We proceed
by induction w.r.t. L(W). Let [(W)=0; take X to be W, U* to be U and V* to be V.
Let 1,(W)>0; since W-UW = E,,V, WAUWV-1=5l. If W is not p-reduced, then
AW)W =g W, and [(W;) <l (W). Then (#) follows by the induction hypothesis.

So suppose W is p-reduced. Since U, V are p-contracted, it follows that U, V-1 are
p-reduced. Also W-! must be p-reduced. By Britton’s Lemma, a p-reduction is applicable
to W-UW V-1, Three possible cases occur.

(1) Wlis Wilp,Z-1, U is Ypi U, with Y, Z p-free and p,*Z-1Yp’, induces a p-re-
duction.

(2) Uis U,p,°Y, W is Zp; W, with Y, Z p-free and p,* YZp;, induces a p-reduction.

(3) Wis W,p,Z, V-1is Y-1pt Vi! with ¥, Z p-free and p;°ZY-1p%, induces a p-re-

duction.
Case (1). Let ¢ =1; then (34)Z1Y =+ A whence (34)Z =;YA-L. Then

1 =5 Wilp; Z-1Yp, U, Zp, Wy V-1 = Wi BU, Zp, W, V-1
= WilBU, YA-2p, W, V1= Wil BU, Yp, B-1 W, V-1

where A ~ B. Since taking cyclic permutations is an equivalence relation, (#) follows from
the hypothesis of induction since I,(B-1W,)=I,(W)—1. The arguments for e= —1 and
cases (2) and (3) are similar to the above.

Let U*, V*, X be as given by (#). Since U and V are p-contracted, the U* and V*
must be p-reduced. Since X-1U*X =, V* with X p-free it follows that U*, V* are p-parallel.
Thus U, V are p-circumparallel. Let U* be U, 5 Y and V* be V,p;Z where Y, Z are p-free.
By Britton’s Lemma (34)YXZ1=;A or (3B)YXZ'=;B according as ¢= ¥ 1. Take
U, tobe YU, p;, V, to be ZV, p; and the result follows readily.

Let U, V be two words of E*, not p-free. We say V is a right (left) conjugate of U by
W wrt. (E* E, p)if W-LUW =, V and there exists a sequence of p-reductions of W-1UW
terminating in a p-reduced word in which the p-symbols of W in left to right order (of
W-1in right to left order) are the rightmost (leftmost) symbols of the words p; ®Cp} which

induce the successive p-reductions.

GENERAL LEMMA 4. Suppose Cond; z(E*, E, p,) holds. Let U, V be p-coniracted words
of E*, neither p-free, and W a p-reduced word of E* such that WIUW =y, V. Then V is either
a right or a left conjugate of U by W w.r.t. (E*, E, p). If W is not p-free, these cases are mutually
exclusive and there is exactly one primitive p-reduction applicable to W-1UW.
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Proof. We proceed by induction w.r.t. I(W). If L (W) =0 the assertion is vacuous. Let
IL(W)>0.

Case (1). L(U)=1. Let U be Y p], Y, and W be Xp; W, with Y,, ¥,, X p-free. Then
WAUW is Wilp,?X2Y,p), Y, Xp; W,. It follows from General Lemma 3 (GL 3) that
I,(V)=1 and then from GL 1 that W-tUW is not p-reduced. Thus either

(a) v, =v,, n=¢ and (A4)X1Y,=z4 or (AB)X-1Y, =B according as ¢=+1; or
(b) v,=v,andn=—gand (JA)Y,X= A4 or (3B)Y,X = ;B according as e= + 1.

These possibilities are mutually exclusive.

(a) Consider e=1; then Wi'a[B]Y,Xp,W,=pV. Now a[B]Y,Xp, is certainly
p-contracted and so we may apply the inductive hypothesis since I, (W,)=I(W)—1.
Suppose V were a right conjugate of «[B] ¥, Xp, by W;. Then W would not be p-reduced.
So ¥V must be a left conjugate of «[ B] ¥, Xp, by W,. Hence V is a left conjugate of U by W.
Since (a) and (b) are mutually exclusive, ¥V cannot be a right conjugate of U by W. A
similar argument holds when ¢= —1.

The argument for (b) is dual to that for (a).

Case (2). 1(U)>1. Let U be Y, ppUyp® Y, and W be Xp; W, with ¥, ¥, and X
p-free. Again by GL 3 and GL 1, W-UW is not p-reduced. Four possible cases occur;
we shall show that they are mutually exclusive. The cases are

() vy=vy, 6=1,mp=—1, (F4) Y, X =;4;
(b) wy=v3,6=—1,7m,=1, @B)Y, X =;B;
{¢) vy=v;,e=1,m=1 (A4)X1Y,=;4;
(d) v,=vy, e=-1,9,=1, @B)X1Y,=;B.

Suppose (a) occurs; then (b) and (d) are immediately impossible. Suppose (c) occurs; let
Y, X=5A4* and XY, =;A4~. Then Y,¥,=,4*4~ and also v,=vy,=v;, and 7,=—1,
1, =1. This means that U is not p-contracted which is a contradiction. Using similar
arguments we can show (b) and (d) mutually exclusive whence it follows that (a), (b), (¢)
and (d) are mutually exclusive.

Now we prove the assertion of the lemma. We shall examine only case (a) in detail;
the others are similar. In case (a), WUW =g Wi'p, 2 X 1Y, 9% Uya[ B] W, where A~ B.
Writing U* for p;! X1 Y, p7: U,a[ B], we can easily show that the assumption that U* is
not p-contracted contradicts the fact that U is p-contracted. The inductive hypothesis
may therefore be applied to U* and V. Since W is p-reduced, Wi'p,;! must be p-reduced
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so that V must be a right conjugate of U* by W,. Hence V must be a right conjugate of
U by W. Since (a), (c) and (d) are mutually exclusive ¥ cannot be a left conjugate of U.

GENERAL LEMMA 5. Suppose Cond,; z;(E*, E, p,) holds. Let U and V be p-contracted
words of E*, neither p-free, and W a p-reduced word of E*. If V is a left conjugate of U w.r.t.
(E*, E, p) by W, then U is a right conjugate of V w.r.t. (E*, E, p) by W1,

Proof. Since W-1UW =V, U=z WVW-1. By GL 4 U is either a left conjugate or a
right conjugate of ¥V by W-L. If W is p-free, the lemma is trivial. If W is not p-free, then
exactly one p-reduction is applicable to WV W-1. We want to show that it must “‘straddle”
VW-1. Suppose not; then it must straddle WV. Now WVW-1U-1=,,1 whence
p[WVW-1U-'] must be p-free. Since V is a left conjugate of U by W, UW and hence
WU are p-reduced. Thus there is exactly one p-reduction applicable to WV W-1U-1
and it straddles WV. Hence there is exactly one possible sequence of p-reductions from
WVW-tU-1. But since I(VW-1U-1)>[ (W), this sequence will not terminate in a p-free

word. This is the necessary contradiction.

GENERAL LEMMA 6. Suppose Cond;; z(E*, E, p,) holds and let U be U,p, and V be
Vip, Then (ABEBWY)BYUB =5V if and only if QA€EAW) AU p; A= Vilp, L.

Proof. f BYUB=g.V, then B-'U, Ap, =y V,p, where A~ B. Hence p, B1U; A = .
P, V, implying that A~1p,U; 4 =p.p,V,. Taking inverses gives AU; p; 1A=, Vilp;L
The converse is obtained by reversing the above argument.

GENERAL LEMMA 7. Suppose Cond; z(E*, E, p,) holds. Then “(2U, U a word of E*)
To compute p{U?}” reducesto (?X, X aword of E)(3A€A@) X =z A and (?X, X a word of E)
(3B€B(v)) X =;B.

Proof. This follows from the definition of p{W}.

Part II. The word problem
Let G be the group presented in the Technical Result.
Let Gy=(sy, ¢, @, 7;; 28, =8, a2, 7,8, =8y ar,2, . Fiq=qK,r))
Gy =(8y, T, 1y; X8, =8, 22, 1,8, =8, 27, X)

Gy = (8, T; 18, =8,22)
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F(z)=(z; @), L.e. the free group on z. Our G, and G, coincide with G§ and Gf of [9].
Our @, and G, are very similar to but not identical with the G, and G, of [9] (with N =0).
In [7], Boone shows that the G, of [9] has a solvable word problem. In solving the word
problem for G, we do little more than paraphrase Boone’s argument.

We adopt the following notation.

Variable Range
P k-free, ¢-free words
F, G H k-free, t-free, g-free words
N k-free, t-free, g-free, r-free words
R products of r,, x, ¢=1,2, ..., P
A products of r,-Fi, t1=1,2,.. P
B products of K;r,, ¢=1,2, ..., P
Q, products of s,2%, e=+1,6=1,2, .., M
J words on x
T, words on 2% ¢= +1

Also we write A4, for r,.F, and B, for K,r; and an arrow “— " for “is reducible to”’. The

above list accords reasonably well with the notation of § 1 of [7].

Lemma 1. F(z) has a solvable word problem.

Proof. F(x) is a free group.

Lemma 2. Cond, (G, F(x), s,) holds.

Proof. Trivial.

LemMa 3. For any N, s|N] is recursively computable.

Proof. The problems (2J)(37,)J =T, in F(x), e = +1 are solvable.

Levma 4. The word problem for G is solvable.

Proof. Given N, compute s[N]. If s[N] is not s-free, it follows from GL 1 that N =1
in Q. If s[N]is s-free, s{N]1=1 in G, if and only if sfN]=1 in F(x). Now use Lemma 1.

LemMa 5. (AN)Y(3Q,)N =¢,0, ts solvable.

Proof. Let N be given and let @F be s-parallel to s[N]. Then we shall show that

(3Q.) N =,Q, if and only if s[N]=,@:. This suffices since s[N] is recursively computable.
If s[N]=¢,@F, then N = Q5.
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Conversely suppose N =.Q,; then s[N]=;«[@.]. But it is easy to see that ofQ,]
must be s-reduced. Hence afQ,] is QF.
LeMMa 6. Cond; (@, Gy, r,) holds.

Proof. {s,x} and {s,x~} are sets of free generators in G,.

LeMMA 7. The word problem for G, is solvable.

Proof. It follows from Lemma 5 that for any F, r[F] is recursively computable. The

word problem for G, is solvable.

Lemma 8. (!F)(3A4)F = A and (*F)(3B) F =g, B are solvable.

Proof. For any 4 or B, a[A] or «[B] is r-reduced w.r.t. (G, G,). If F is given, it then
follows that (34)F = A4 if and only if r[F]=4;A* where A* is r-parallel to r[F]. But

7[F'] is recursively computable and the word problem for G, is solvable.

LemMa 9. Cond; 5(G,, G, q) holds.

Proof. We show{4,} and {B,} are sets of free generators in G;. Let I—[Af;= 1; putting
x=8,=1 we obtain Hrg =1 in F(r) whence it follows that {4,} is a set of free gen-

erators. A similar argument holds for {B}.

LemMma 10. The word problem for G, is solvable.
Proof. For any P, g[P] is recursively computable (by Lemma 8). The word problem for

@, is solvable.

LeMma 11. (*P)(3R)P =, R is solvable.

Proof. Let P be given; compute g[P). If ¢[P] is not g-free, then (IR)P =, R fails. So
suppose that ¢[P] is g-free. It is not hard to verify that Cond,; 5(G5, F(x, r,), s,) holds. More-
over it is easy to see that for any F, s[F] is recursively computable (s-reduction w.r.t.
(G, F(x, 1), s)). Since (IR)P =, R if and only if s[¢[P]] is a word on z and r,, the lemma
follows.

Lemma 12. Cond, (G, G, {t, k}) holds.
Proof. Trivial.

SorLuTIoN 1. The word problem for G, is solvable.

Proof. For any W, tk[ W] is recursively computable. The word problem for G, is solvable.
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Part III. The conjugacy problem

The argument given in this section is very similar to that of Britton in [9]. In particular,

Lemmas 14, 15 and 16 correspond to Lemmas 6, 7 and 8 of Britton.

Lemwma 13. (i) Let S be a positive word on the symbols s, S, ..., 8. Then for e=+1,
(AR)riS =, SR and (AR)2*S =, SR.

(ii) Let S be a negative word on the symbols s, 8, ..., Sy. Then for e=+1, (AR)Sri =¢, RS
and (3R)Sx" =, RS.

Proof. This is proved by induction w.r.t. I(S) using the equations z’s,= s,2,

s, =8, 52, 85t =a%s;! and s;i=aria%s;t, e= 1.

We use capital Greek letters, e.g. A, as variables for positive words on the s-symbols.
Given any A, the word A is obtained from A by replacing each s, by s;* (this is consistent
with the definition of F'; in the presentation of G,).

Levya 14. Let Agll, Qq® be words of T. such that Aqll=Qq® in T, Then
t-11-1g-1A-%AgI is conjugate to t-1®-1q1Q-4Qq®D in G,.

Proof. Let W —Wy—...~>W, where W, is Aqll and W, is Qg¢® be the proof that
AgIl =Qq® in T,. We show firstly, by induction w.r.t. n, that (IR) (3R,)AqIl = ¢, B, QqDR.
If n=1, this is trivial. So suppose that #>1; from the form of the rules of T, it follows
that every W, must have the form A,qIl,. In particular W,_, is A,_,qIl,_, and either
A, is QF; or TI,_, is K, ® according as F,q—>¢K, or ¢K,~ F,q is the final rule applied.
Assume it is the former; then A, ,¢II,_, is QF qll,_, = Qri'qK,r,11,_,. Since Q is a

negative word and II,_, is a positive word, it follows from Lemma 13 that
(3R,)(AR;) An—1 qll, = By QQ(DR:;-

By the inductive assumption we have (IR,)(AR;)AqIl =g, R, A,_,qll,_, B;. Let R, be
R,R, and R be R, R,; then AgIl — R, Qq®R. Tf the final rule is ¢K,~ F';g, a similar argu-
ment applies.

The lemma now follows easily; for

11 -1gtA-1AgIl =, t1R-1D-1g1Q-1 R 1R, QDR = 4, R-4-1D-1¢10-4Qq® R
because the equalities #r; =7t and 2° =2 hold in G,

LeMma 15. If tU1-q'A-4AGIT and t-1®-1¢-1Q-%4Qqd are conjugate in G, then
(3R,)(3R,)(3A4)AB)[Q1R, A4 =;1, DRII'B=,1 and A~ B].

Proof. We wish to apply GL 3 taking ¢-I1-1¢~1A-%AqIl as U and t-10-1g-1Q-4Qq®
as V and {, k} as stable letters. We must show that U and V are tk-contracted. Suppose
9 — 692905 Acta mathematica 122. Imprimé le 21 mars 1969
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U is not tk-contracted; there appear to be two ways in which this could occur. But in
either case we should obtain the conclusion that (3R)AgII =, R. Since Cond,;5(G,, Gs, )
holds, by GL 1 this is impossible. In a similar way, ¥V can be shown to be tk-contracted.

Now we apply GL 3; we must have either

(i) (AR)RUI-g-'A-4AqIIt1R = ., d-1g1Q-1Qqdt-! or

(ii) (IR) R-*AgIIt—T1-1¢—'A-%R = ; Qqdt-1® g2 Q1.

We shall examine (i); (ii) is similar. Since

t-1R = Rt-1, R-I-1g'A-1tAGII R =, @11 A-1t0q0.

By Britton’s Lemma, we have (3R")AqII RO-1¢-1Q-1=, R’. Using ¢ as stable letter w.r..
(G4, G3), we obtain (3B)IIR®' =, B. Upon substitution this produces AgBgQ-1=, R
It follows from the defining relations r, F,q=gK,r, that ¢gBg—' =44 where A ~ B. Hence
AAQ1=_ R’ and by Lemma 3 of [9], this equality holds in G,. Thus Q-1R-1AA =1
and from a previous equation we obtain ®R-1[1-1B=,1. Take R, to be R"-! and R, to
be R-L.

Lemma 16. If (AR,)(3R,)3A)@B)[QRAA=]1, OR,II'B=;]1 and A~ B],
then Agll =5, Qq®.

Proof. We proceed by induction w.r.t. the number of r-symbols in 4. Let 1,(4)=0;
then Q1R,A=,1 and ®R,II-'=,1. Putting r,—=z=1, we obtain QA=1 in F(s,)
and ®I1-'=1 in F(s,). Thus Q=A in F(s,) and ® =II in F(s,). This means Q is A and ®
is I1. Let 1,(4)>0;if A, B are not «-reduced, then ﬁ‘lRIAa[A] =g land ®R,I11a[B] =1
and o[ A]~ «[ B]. The result follows by the inductive hypothesis.

So suppose 4 and B are a.reduced; we can a-reduce R; and R, to obtain
Q-1o[R,JA4=,1 and ®o[R,]II-1B=,,1. We write 4 as 4; A’ and consider the case
when ¢= —1. Now «[R,] and A are r-reduced w.r.t. (G,, G,), but 4 is not r-free so an r-
reduction must apply to Q-1a[ R,]A 4. This means that Q[ R,1A4 is Q-1R*r 2"AF;1r14’
and (3Q_)2"AFil=;Q_,—and we may assume ¢_, is a-reduced. Then A=, Q_F,;
we claim that A and Q_, F, are both s-reduced w.r.t. (G,, F()).

Certainly A is s-reduced; since @_, is a-reduced it is s-reduced, so an s-reduction in
Q_, F, must “straddle” Q_, and F,. But this means that Q_,F,is Q*,5,2715;10 and x1is
a word on z2. This is a contradiction. By GL 1, 2”A and @_, F, must be s-parallel whence
Ais A, F,. Then Q-1a[R,1A,F, F;1r;* A’ = ;1 whence, for some R*, Qo[ R,] R-A, 4" =, 1.
Also ®a[R,|I1-17 K1 B’ =,,1 whence, for some R, ®a[R,|R'TI'K;*B' = 1. By the
inductive hypothesis, AygK Il =, Qq®. But Agll is A, Fiqll =5, A,qK,I1.

RepvuctioNn I. (2AqIl, Qq®)A¢Il =¢,Qq®— (2U, V)@AW)WUW =, V.

Proof. This is immediate by Lemmas 14, 15 and 16.
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Part IV. The degree

§ 1. In Parts II and IIT we have viewed G, as a tower of presentations, viz.

GO
|tk
G,
lq
G3
|,
G4
Is,

F(a),

where each presentation F is a subpresentation of that immediately above it with the
indicated letters as stable letters. Moreover, the isomorphism condition holds for each
pair, so that we actually have a tower of groups. Our line of argument will be to decompose
G, in various ways to obtain different towers of presentations and we shall show that these

actually give towers of groups. Let
H=(s8y, 2, L, k, rj; 28, =8,2%, at=tx, kx =xk, r,8,= spar, &, rit=tr;, rk=kr,)
H, = (5, %, L, k, q; zs, = 5,22, at =, kx = k)
H, = (s, x, t, k; xs, = s, 2%, ot = tx, kx =xk)

Hy = (s, @, q; 28, = 8,27).

Notice that, strictly according to Britton’s definition, g is not a stable letter for H,
with basis H, since H, has no relations involving ¢q. But by regarding H, as H, % [q], the free
product of H, and the infinite cyclic group on ¢, we can regard Lemmas 3 and 4 of [9]
as applicable to (H,, H,, q) with A(v)=B(v)=the group generated by the identity ele-
ment. (1) Similar remarks apply to (H,, Gy, q).

With this in mind we obtain Diagram A which is to be interpreted as follows. If £*
is connected to E by a descending line marked p, then {p,} is a set of stable letters for E*
with basis E. We shall show that Cond;; z(E*, E, p,) holds for all such pairs on the diagram.

We extend our list of notation.

() The two lemmas of Britton are intimately connected with the theory of free products with
amalgamated subgroups. The above is an illustration of this for a very special case.
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Diagram A

Variable Range

U v, w any word

D, E r-free words

X Y, Z q-free words

L, M r-free, g-free words

C, products of s,2°, ¢, &
P, products of s,x, ¢, k, ¢K;
P, products of s,z 1, t, k, F.q
S products of z, r,

S_, products of x%, xr,x

Also let I{ W) =total number of symbols in W (i.e. symbol occurrences in W).

§2 Lemwma 17. (i) Condyp(H,, F(x), {5, t, k}) holds. (ii) Cond, z(H,, H,, q) holds.
(iii) Cond;; z(Gy, H,, ;) holds.

Proof. (i) To prove this we must show that z—x? generates an isomorphism in F(x)
and also that x—x generates an isomorphism in F(z). But these are both trivial.

Notice that we do not verify Britton’s strong isomorphism condition; indeed the strong
isomorphism condition clearly fails.

(ii) We have already remarked how we can assume this.

(iii) Again we verify only the isomorphism condition and not the strong isomorphism
condition. We show that for each 4, the sets {F,q, s,z ¢, k} and {¢K,, 5,2, t, k} are sets
of free generators in H,.

Suppose H)’i"=H.1, where y is s Lt k or F,q (with ¢ fixed).
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Case (a). []y®* is g-free. Then []y%=y,1 since (ii) holds. If []y% is non-empty
it must contain either an s,, a &k or a ¢{. Thus it contains s;°Cs; where (37.)C=1T,
in F(z) or t°C¢ or k°Ck° where (3J)C=J in F(z). In either case, [[y?* cannot be
e-reduced.

Case (b). T]y® is not g-free. Then []p%* must contain as a subword either
F,qyﬁ:”...y;"q"lffl with pé=  yf=g 1 or g 1F! yom,..ye Fiq with F{lyfﬂ'"...y;"p,-=ml .
Write M for y¢=...y¢" in both cases M=g1. If M is empty, then it is immediate
that [Iy® is not a-reduced. If M is non-empty, then, by the argument of (a), M is

not g-reduced whence [[y% is not a-reduced.
The argument for {s,z, ¢, &, ¢K;} is virtually identical.
SorutioN 2. The word problem for H, is solvable.

Proof. L=, 1 if and only if L=, 1 and G, has solvable word problem.

SoLuTION 3. For any L, stk[L] is recursively computable (stk-reduction w.r.t. (H,, F(2))).

Proof. By Lemma 1.1 of [7], we need to be able to solve (2J)3T,)J =T, in F(x)
and (?J) “Is J a word on z”’. But these are both solvable.

Soruriow 4. ((L)(3C,)L=4,C, is solvable.

Proof. (3C,)L=4,C, if and only if sth[L] =y, CF where C; is stk-parallel to stk[L]. The

result follows since stk[L] is recursively computable and H, has a solvable word problem.
SorLurioN 5. For any D, ¢[D] is recursively computable (q-reduction w.ri. (H,, Hy)).

Proof. We need to solve (L)L =g, 1; but this is solvable.

SoLurioN 6. (!D)(3AP, ) D=4 P, ¢=+1 is solvable.

Proof. The argument for ¢=1 is dual to that for e= —1. Now (3P_, ;) D=y P_, ;if
and only if (3P_; ;)g[D}=pP_, ;. So it suffices to consider D g-reduced w.r.t. (H,, H,).

We proceed by induction w.r.t. [ (D). Let I,(D)=0; then D=, P_, ;if and only if
D=y ofP_, ;]. Since «[P_, ] is g-reduced, it must be ¢g-free. Thus (I3P_, ) D=4 P_, ;if
and only if (3C_;)D=,C_,. The result follows by Lemma 3 of [9] and Solution 4. Let
1,(D)>0; write D as D'q"L where L is g-free. The argument for = —1 is dual to the argu-
ment for =1. So suppose 7 =1; by the inductive hypothesis and Solution 4, we can deter-
mine whether or not (i) (3 C_;)L=,C_, and (ii) @P_, ) D'F;1=,P_, , both hold. We
claim that AP_; ) D=y P_; , if and only if (i) and (ii) hold.
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Suppose D=y P_, ;; then D=y «f[P_, ;). Now «fP_, ;] must be g-reduced w.r.t.
(H,, H,) whence by GL 1, «[P_, ,]is P*, F.qC_,. But then L=, C_, and D' =, P*, ,F..

The converse argument is trivial.

THEOREM 1. Let U and V be any two words of Gy. Then QWYWLUW =,V if and only
if QW)W {UYW =, 7F{V} where r-contraction ts w.r.t. (G, Hy).

Proof. This follows from GL 2 and Lemma 17.
Lemwma 18. (i) Cond; 5(H, Gy, {t, k}) holds. (ii) Cond; 5(Gy, H, q) kolds.

Proof. (i) This is trivial. (ii) It is easy to see that {4,} and {B,} are sets of free genera-

tors.

Lemma 19. Cond;, z(H, H,, r,) holds.

Proof. The argument of part (iii) (a) of Lemma 17 shows that {s,2°, ¢, k} is a set of

free generators.

THEOREM 2. Let g-contraction be w.r.t. (Gy, H) and r-contraction w.rt. (Gy, H,) and
let U and V be any two words of G,. Then

(i) @W)W-LUW =,V if and only if @W)W-G{UIW =,3{V};

(i) of U is r-contracted, then G{U} is r-contracted.

Proof. (i) This follows from GL 2 and Lemma, 18. (ii) It suffices to consider the case in
which g{U} is a primitive g-contraction of U; the general argument is completed by induc-
tion. Four possible subcases occur. These are

(1) Uis U g1 XqU, with X = A4, §{U} is U,a[ B]U,;
(2) the dual of (1);

(3) Uis X,qU,q1X, with X, X, =44, g{U} is a[ B]U,;
(4) the dual of (3).

We shall give the argument required for (1); the others are similar. So suppose g{U}
is not r-contracted. We must consider the possible ways in which this could occur. It is
clear that the appropriate r;° Dr{ does not lie wholly within U, or within U, nor can it
begin in U, and terminate in U,. Moreover, a[B] is r-reduced w.r.t. (Gy, H,). The first
possibility remaining is that U, is Ujri*D and «[B] is (K,r;)* B’ where D is r-free and
DK;=y P, ;or D=y P_, , according as ¢ =+ 1. We shall examine the case when ¢=1 in
detail.

Now «[4] must be », F; A’ where A’'~ B’. Since X must be r-reduced w.r.t. (G, H,),
it follows that X is r-reduced w.r.t. (H, H,). The latter is also true of «[A4] and since
X =yo[d], it follows that X is Lr,X' where L is r-free. Furthermore we obtain
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(3C)L=p,C,. Thus Dg-'L =, P, ,K;'q"1C, which is impossible. A similar contradiction
is obtained when = —1.

The second possibility is that o[ B]is B'(K,r,)"* and U, is Dr{ U; where D is r-free and
D=y P, ;or Ki' D=y P, ; acccording as ¢ =+ 1. This case is dealt with in the same way
as the first. Finally it is possible that U, is U{r;°D,, a[ B} is r-free and U, is D,7§ U, with
Dya[B)Dy=p P, ;. But if o[ B] is r-free, then «[B] is 1. Hence «[A] is 1 whence X =, 1.
Then: Dyq1XqDy =y, Di D, =4 P, ; which is impossible.

SovuTtioNn 7. (!X)(3A)X =54 and (*X)3B)X =4 B are recursively solvable.

Proof. Defining r-reduction w.r.t. (H, H,) we can recursively compute 7[X]. Let A*
be r-parallel to »{ X]. We claim that (34) X =44 if and only if 7[X]=zA*. To prove this it
suffices to remark that if X =44, then afA] is 4*. Since Cond,, z(G,, H, ¢) holds, H has a

solvable word problem and the result follows.

THEOREM 3. Let tk-, q- and r-contraction be defined w.r.t. (Gy, Gy), (G, H) and (Gy, Hy)
respectively. Also let U and V be any two words of Gy. Then (i) @WYWUW =,V if and
only if @W)W-k{U}YW = ¢, tk{V}; (ii) if U is q- and r-contracted, then tk{U} is also ¢- and

r-contracted.

Proof. (i) This follows from GL 2 and Lemmas 11 and 12. (ii) The argument required
is similar to that given for part (ii) of Theorem 2.

Call a word U normal if U is tk-, ¢- and r-contracted.

REepucrioN II. (AU, VY@AW)YWLUW =, V—(2U, Vnormal) W) W-1UW =, V.
Proof. This follows from GL 7, Theorems 1, 2 and 3, and Lemma 11, Solution 6 and

Solution 7.

Call a word U g-regular if U is normal and has ¢! as its final symbol.

Repucrion IIL. (U, V normal) AWYWIUW =, V— (2U,V g-regular) (34)
AWUA=,V and (1Y, Z normal) AW)WLYW =, Z.

Proof. Let O, and O, be the two oracles which solve the latter problems. Given U and
V normal, by GL 3, if they are not ¢-circumparallel then they are not conjugate. So we
need only consider pairs U, ¥V which are ¢-circumparallel. If U and V are ¢-free then we
apply immediately to O, which will provide the appropriate answer.

Now we need consider only those pairs U, V which are not g-free. Let {(U,, V,)} be
a listing of all possible pairs such that U, and V, are g-regular cyclic permutations of U
and V respectively. Also let {(U,, V;)} be a listing of all possible pairs Uy and ¥, such that
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U, and V, are cyclic permutations of U and V respectively which terminate in ¢. Each
listing is certainly finite. We can use 0, on each pair (U, ¥,) to determine whether or not
(34)AU, A=, V, But it follows from GL 6 that we can also use O, to determine for
each pair (U, V) whether or not (3B)B-1U,B=g,V, (for if Uyq is normal then U;¢~!
is also normal). By GL 3, a negative answer to all of these problems means that U and V
are not conjugate. But also a positive answer to any single one means that U and V are
conjugate.

§ 3. Define Conj(U, ¥V, W, E*, E, p) to mean that V is a right conjugate of U w.r.t.
(E*, E, p) by W. Call a word U standard if it is g-regular and not r-free.

RepuctioNn IV. (WU, V q-regular)(3A)AUA=;V— (2U, V standard) (34)
Conj (U, V,A, G, H,,r) and (D, E g-reqular)y(3A)ADA= E

Proof. Tt follows from GL 3 that if U and V are conjugate, then either both are r-free
or both contain r-symbols. If both are r-free we apply to the oracle for the second problem
listed above. If U and V both contain r-symbols, the sufficiency of the oracle for the first
problem follows from GL 4, GL 5 and the fact that if 4 is x-reduced, then A is r-reduced
w.r.t. (Gy, H,y).

In this section we concentrate on the problem (!D, E g-reqular)(34)A*DA =g E.
Let D have the form L,q"L,q" ... L,,q°~; we call L, L,, ..., L, the g-factors of D. We say
D is factor reduced if each L, is stk-reduced w.r.t. (H,, F(x)). Also we say

(1) L,is of type aif g, ;= —1, g,=1;
(2) L, is of type Bif g, _;=1,¢,=—1;
3y L,isof typey if g, ;=—1,¢,=—1;
(4) L, is of type d if ¢,_;=1, ¢, =1

(where we consider ¢, to be g,_;).

Lemma 20. (2D, E g-regular)(34)A2DA=;, E—(?D, E q-regular, factor reduced)
(3A)ADA=_E.

Proof. Computation of stk[L] is a recursive process.
For the remainder of this section we shall always assume that D and K are factor

reduced.

Lemma 21. Let D and E be g-reduced w.ri. (Gy, H) and suppose that D is
Li¢"L,q>...L,q" and that B is M,q"Myq™... M, q"™. If D=4 E, then m=mn, e,=1,
and L,=g M, u=1,2, ..., m.



RECURSIVELY ENUMERABLE DEGREES AND THE CONJUGACY PROBLEM 137

Proof. D and E must in fact be ¢-reduced w.r.t. (H,, H,). The result follows by an

obvious inductive argument using ¢ as stable letter w.r.t. (H,, H,).

Lemma 22. Let D and E be g-reqular and q-parallel with q-factors Ly, Ly, ..., L, and
M, M, .., M, respectively. If A 'DA=, E and A~ B, then
() AL, A=yM, or (f) BL,B=yM,
or (y) A\ L,B=y M, or (8) BL,A=yM,
according as L, and M, are both of type a, B,y or 8.

Proof. We proceed by induction w.r.t. [, (4). If [(4) =0, then D= F whence D=4 E.
The result is immediate by Lemma 21. So suppose [(4)>0; if A is not a-reduced then we
can replace 4 by «[4] and the result is immediate from the inductive hypothesis. Assume
then that A4 is e-reduced and write 4 as AfA’. We give a detailed argument only for the
case when ¢=1.

Now A™'DA is A 'F;*;'Dr,F;A'=¢, E and hence (3 Py,;)D=p, Py since E is
r-free. Since ofP;,] must be g-reduced, «[P:,] is g-parallel to D. Thus ofPy ;] is
OPgK)"... (gK )" 1CP K g0V, But it follows immediately that C{*? is 1 and

hence by Lemma 21 we have
() Ly=gCF or (f) L,=gK,C{"K;!
or () L,= 5, CKi' or (8) L,=yK,C{
as is appropriate. The primitive r-reduction F{471DA] is
ATFCHYE g (Figrm 0N g ' F A
Then 7[A'DA]=4 A" "'D, A" where we write D, for
F 10N (Fq)... (F g 10 q .

We want to show that D, is g-regular. Certainly D, is r-contracted since it is
rfree. If D, is not g-contracted, then either (x) for some u, (34)F;'CYF,=xA or
() for some u, AB)CY=yB. In case («), since F;*C®QF, is r-free, A=z1. Thus
C* =y whence C% is 1 (C{¥ is part of a[P; ,]). This gives L,=y,1 which is impossible

Case (f) will yield the same contradication.
Suppose that D, is not tk-contracted w.r.t. (G,, G,). It is easy to see that the appro-
priate subword ¢-¢Cts or k—¢Cks must lie within a ¢-factor. But the occurrence of such a

subword within a g-factor implies, after a short argument, that the g¢-factor is not stk-
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reduced w.r.t. (H,, F(z)). But C{* and hence C% (for all %) are a-reduced whence it
follows that C, F;1C) and C“F, are all stk-reduced. This is contradictory.

We can thus apply the inductive hypothesis to D, and E giving

(@) ATFCHF,A' =g M, or (f) B'CYB =y M,
or (y) A 'FCUB =4 M, or (0) B OMF, A =z M,.
The lemma now follows easily.

For any word L, let m(L) be the number of occurrences of positive s-symbols in L
and n(L) be the number of occurrences of negative s-symbols in L. Then the s-signature
of L is o(L)=m(L) —n(L). For example, if L is s,z 's;, then m(L)=2 and n(L)=1 whence
o(L)=1.

Lemma 23. Let C, be a-reduced with s-signature ¢. Then (i) if 2 "Cox™ =4, C, then
m=2%n; (ii) if £7"C_. 2™ =y, C., then m=2"n+£(2°*' —2).

Proof. By induction on I (C.).

LeMMma 24. (i) Let C, be stk-parallel to the positive word V' on the s-symbols. Then
C,=pn,W2'® 0 where ¢=UW). (ii) Let C, be stk-parallel to ¥'~1 where ¥ is a positive word on
the s-symbols. Then C, =y x==@-VY-1 where c=U(T).

Proof. By induction on e.

Lemma 25. Let L and M be stk-reduced. Then (i) if A is a-reduced and A-'LB=,zM
where A~ B, then 1 (A)Y<2; (ii) if A is o-reduced and B-'LA=yM where A~ B, then
l(4)<2.

Proof. (i) We shall show that if 4 is a-reduced and 1,(4) =3, then 7[A-1LB] cannot be
r-free (r-reduction w.r.t. (H, H,)). The result follows from this. For if 4 is «-reduced and
A'LB=yM, then r[A-1LB] must be r-free.

We consider all 8 possible values for A with 1(4)=3 and A «-reduced. These are

(1) rFr,F, Fi'ry', j+k; (2) nF Fi'r ' nFyi+j, j*k;

(3) nF Fy ' Fi'ri, i%j;  (4) Fri'n,F Fi'nti+j, i+k

(6) Fi'r 'R By, j+k; (8) Fiiry'r,FynFy, i%j;

(1) 7, Fir,FincFy; (8) Fi'r'Fy 'ry ' Fi'rc.

Cases (1), (2), (3) and (4). Tt suffices to show that if 4, is ,F;F;1r1, i+j, then

r[Ag1LB,], where Ay~ B, is not r-free. Suppose it is; we shall follow through the computa-
tion of r[A¢g1LB,] and obtain a contradiction.
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Stage I. For the first primitive r-reduction to occur, it is necessary that (3C{")LK,
=, C{". Upon performing this first stage, we obtain the word r,F,F; 'a[C™]r K.

Stage II. A second pair of r-symbols must be eliminated. Hence (3 C%) F,F;*o«[0%)]
= 5, C% whence it follows that F; ' a[C%] =4, F; 1 «[C%]. Now both words in this last equa-
tion are stk-reduced and hence are stk-parallel. Since F; and F; are distinct, we must

obtain either
(a) ¥a[CUl =5, o[ CH] or (b) «[CH] =4 T a[CH]

where ¥ is a non-empty, positive word on the s-symbols.

We examine (a) in detail. It is clear that «[C®] must have the form 0% a[C?}] where
C*, is stk-parallel to ¥'. Hence W =,,C*; but by Lemma 24 0%, =, W22 where
¢=l(¥). This implies that =2V =, 1 whence z~®-V =1 in F(z). Since ¢=0, this is a
contradiction. The argument for (b) is almost identical. We have thus disposed of (1), (2),
{3) and (4).

Cases (5) and (6). These are dealt with by applying the argument dual to that given
above to show that if By is r; ' K; 1 K,r,, then #[4g'LB,], where Ay~ B,, cannot be r-free.

Case (7). We follow through the computation of r[A-1LB] in the same manner as above.
Stage I. (3C°)LK,;=5,C{" yielding as primitive r-reduction
FilrdtF v Wt o[ C9)] K,r;Kyry.
Stage II. (A0P)F a[CY]1 K, =g, OP yielding as r-reduction Fy'r F; ' o[CZ) Ky 7.
Stage 111. (3CP)YF o[C®] Ky, =5, O must hold. From this we obtain
Fi' o[O%]= 5, o[ CP 1K .

These last are both stk-reduced and hence are stk-parallel. Thus F; '«[C®] must have
the form F;'C”,C*, where C*, is stk-parallel to K;'. Hence by Lemma 24

Fito[C®]= g F;10 2 1K;?, where d=UK,).

But also from Stage III we see that a[0]K;' must be C7C;Kj' where Ci~C’,
and Cf is stk parallel to F;'. This gives a[CP)K;' = 4 F; '2¥-10] K5 where c=I(F)).
Then z ® Y0 2% 1=, C; whence 29—1=2°(2°—1)+(2°"'—2) where o=0(0y).
Since ¢=+0 and d=0, ¢(C;)=0 and thus o(a[C%])= —d and o(a[CP])=c. A similar
analysis from Stage II gives o(a[CY])= —a and o(«[CP])=b where a=IK;) and
b=UZF,) and a+0, b+0. But this implies that b= —d which is impossible.

Case (8). The argument required is the dual of that for case (7).

(ii) The proof is dual to that for (i).
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TEEOREM 4. Let D and E be g-reqular and suppose A 1DA =, E with A a-reduced. If
D contains a g-factor of type y or type d, then l(A)<2.

Proof. This is immediate from Lemmas 22 and 25 since D and ¥ must be g-parallel.

Let D be g-regular; call D g-alternating if D has no g-factors of type y or type 4.

LEMMA 26. Let L and M be stk-reduced and suppose o(L) 0. Then (i) if A is a-reduced
and AXLA =y M, then 1,(A)<2; (ii) of B is a-reduced and B-'LB=M, then ,(B)<2.

Proof. (i) We show, much as in Lemma 25, that if 4 is a-reduced and /,(4)=3, then
r[A-1LA] cannot be r-free.

Cases (1), (2), (3) and (4) (see Lemma 25). We show that if 4, is r,F,F; s,
then r[Ag'LA,) cannot be r-free. We follow the computation of r[4q'LA,].

Stage I. (3CP)L =y, 0P yielding as r-reduction the word r,F,F; 'o[CY1 F, F; v

Stage II. (ACH)F,Fi'o[CY)F F; =y, C% which implies that F;'o[CH1F,=p,
F;i'a[0%]F,. Both these last are stk-reduced words and so they must be stk-parallel.
Hence either (a) Wa[OD]Y =, «[CA] or (b) a[CY]= g, Va[CZH]Y ' where ¥ is non-
empty (i=+j implies that F; is distinct from F,;). We examine (a) in detail.

Now o«f[C%] must have the form C*,&[CN]C*;' with C* = ¥z ® P where
c¢=UW). Then a[CH]= g2~ ® Pa[CN]«* ! whence 2°— 1 = 2°(2°— 1) where ¢ = o(«[C}]).
Hence o(a[C%])=0. Since L is stk-parallel to af[C{’], we have o¢(L)=0 which is im-
possible. Case (b) is similar.

Cases (6) and (7). We show that if A4, is riF,er,, then r{A4;'LA4,] cannot be

r-free. We proceed as before.
Stage I, (3C0") L=yg,C{.

Stage 1I. (ACP)F;'a[CY)F,;= 5, C?. Hence o[CP] is OT«[CP1CF " with O =g,
Fi'2>', where ¢=I(F,)+0. This gives 2** o[0P]a"® V=,q[CY]. Using part (i)
of Lemma 23, we again obtain ¢(L)=0 which is contradictory.

Cases (5) and (8). The argument required is a slight variation of those already used.

THEOREM 5. Let D and E be q-regular, g-alternating and suppose A—1DA =, E where
A is a-reduced. If D or E has a g-factor whose s-signature is non-zero, then 1{A4) <2.

Proof. D and E must be g-parallel; the result follows from Lemmas 22 and 26.

Let L be any r-free, g-free word and let z,[L] be the s-projection of L. Then there is a
sequence 8}, S,, ..., S, of words on the s-symbols such that (i) S, is 1, (i) §;,, is ;S',-s:‘;i and
(iii) 8, is 7 [L].



RECURSIVELY ENUMERABLE DEGREES AND THE CONJUGACY PROBLEM 141

Let 0,=0(8,); call (oy, 0y, ..., 0,,) the s-distribution of L. Let v(L)= — minyci<, {0;}
and call »(L) the s-index of L.

Lremma 27, Let L be stk-reduced with s-signature ¢ and s-index v. Then x=PLa? %= L,

Proof. By induction on l(L).

LemMa 28. Let C, be stk-reduced with s-signature o=0 and s-index v. Then
2?0 2% =g C,.

Proof. From Lemma 27.

LemMMA 29. Let L be stk-reduced and have s-index v. If x—"La™= g L, then 2’ |n.
Proof. By induction on 7 (L).

LeMMa 30. Let C, be sth-reduced with s-index v and s-signature 6 =0. If x™"C, 2™ =5 C,,
then 2°|m.

Proof. From Lemma 29.
LevMmA 31. For any C,, 22C_,x?=p,C,.

Proof. We remark that (i) 2"z %=y #" and 2% 2= k" (ii) 2%, @ 2=p,
2

-1,-1

s =g s, (iil) 2%s; e =g, 0% s, = g2 s,

The proof is by an obvious induction.

LemMa 32. Let L and M be stk-reduced and suppose o{L) =0 and v(L)>0. Then (i) if A
is a-reduced and ALA = M, then 1,(A)<2; (ii) ¢f B is a-reduced and B-LB=4M, then
L(B)<2.

Proof. (i) We proceed much as in Lemma 26,

Cases (1), (2), (3), and (4). The argument is identical down to the equation
a[CH] =g, 2”@ Ve[CY]2*~ ! of case (a). From this we conclude that 27[2°—1 where
v=v(a[CY]). Hence »(oa[CY])=0. But L=y a[C¥] whence »(L)=0.

In case (b) we obtain »(a[C%])=0. Now ofC%] is stk-parallel to Wa[CZ]¥ !
and so »(«[CH]=0 whence v(L)=0. In both cases (a) and (b) we thus obtain con-
tradictions.

Cases (6) and (7). Arguing as in Lemma 26, we obtain the equation
a2 1a[CP] 2V = 4 o[ CY].

Hence, by Lemma 31, a2 +1q[C{P]z~@+V = o[C{"]. From this we get 2'|2°+ 1 where
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y=(a[C{]). But this means that y=0 whence it follows that »(L)=0 which is con-
tradictory.

Cases (5) and (8). The argument required is similar to that for cases (6) and (7).

(if) This is proved dually to (i).

THEOREM 6. Let D and E be q-regular and q-alternating and suppose A'DA =, E
with A a-reduced. If either D or E has a g-factor with s-signature ¢ =0 and s-index v>0,
then 1(A)<2.

Proof. This is immediate from Lemmas 22 and 32.

Levma 33. If L is sth-reduced with o(L)=0 and v(L)=0, then (3C,)L=y C, if and
only if AC_)L=pxC_,.

Proof. L=y, C, if and only if L =g «[C,). Now ofC,] must be stk-parallel to L whence
o(efC1]) =0 and »(«[C,])=0. Hence 22«[C_,]a 2=, a[C,] and x*a«[C_;]a~2=p, afC_,]. The
lemma now follows.

In the case when o(L)=0 and »(L)=0 the two conditions (3C,)L=,C; and (3C_,)
L=, C_, are thus equivalent. We therefore write (3C,)L =g, C, for these and interpret ¢

as 1 or —1 as we wish.

LeMmma 34, Let L and M be stk-reduced and suppose (1) o(L)=0; (2) »(L) =0
() ~[3C,)L=gC,].

(i) If A is a-reduced and A—LA =z M, then 1,(A) <3.

(ii) If B is a-reduced and BLB=yM, then 1 (B)<3.

Proof. (i) Once again we examine the computation of r{A-1LA]. We claim that 4
must be F;lr'A’; for suppose not. Then (3C,)L=4,C, which contradicts (3). Thus 4 is
Filri'A’ whence (3C_))F,LF;'=,,C_, and A'«[C,]A'=yM. If we can prove that
o{o[C;])=0 and »(«[C,])>0, then the lemma follows from Lemma 32. Since L =g,
Filo[C_]1F,, it is clear that o(«[C,]) =0. Suppose that »(«[C;])=0; then z~1¢[C_,]x =4,
«[C_;] whence z~®V[C_,]a% 1=, «[C_,] where ¢c=I(F)). If C*, is stk-parallel to F;*,
then it follows that C*,«[C_,]1C*;' =y, L which contradicts (3).

(ii) This is dual to (i).

THEOREM 7. Let D and E be q-regular and q-alternating and suppose that A DA =, E
where A is a-reduced. If either D or E has a g-factor L such that o(L)=0, »(L)=0 and
~[3C)L=y,C,], then 1(A)<3.

Proof. This is immediate from Lemmas 22 and 34.
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Call a word D symmetric if D is g-regular and g-alternating and every g-factor L, of D
satisfies the conditions (1) L, is stk-reduced, (2) o(L,) =0, (3) »(L,) =0 and (4) (3C,) L, =, C..
If D is symmetric with n g-factors,(!) a representation of D is an (n+2)-tuple (A, II, X))

where X, is an r-free, g-free word such that

(i) if w is odd (i.e. L, is of type «), then L,=;A-1X A and A-2X A is stk-reduced;
(i) if » is even (i.e. L, is of type B), then L, =, I1X -t and 11X ,II-? is sth-reduced;
(iii) for every u, »(X,)=0.

A representation (A, Il, X,) of a symmetric word D is called maximal if for every
other representation (Q, @, Y,) there exist words ® and ¥ (depending on (Q, @, ¥,))
such that A is ®Q and IT is OY.

Lremwma 35. If (A, I1, X,) is a representation of a symmetric word D, then for every u
o(X,)=0and (3 Os)Xu :Heoe'

Proof. Tt is obvious that ¢(X,) =0 for all u. Suppose that « is odd; then A-1X, A=, L,
whence (3C,)A-1X, A=, C.. Since a[C,] and A-1X,A must be stk-parallel, «[C,] =p,
A-1ge-0CE x-=*-DA where c¢=I(A). Hence X,—p 22~ VCFz52-D, Clearly o(CF)=0
and »(C¥) =0 whence x*Ctx—= =y OF. Thus X,=5,Cr.

A similar argument applies when u is even.

Let L be any word of H,. If L is Waes, L', then Ws,a2 L’ is a primitive y-reduction of L.
Also if L is L'sy12s¥-1, then L'z?s, V'~ is a primitive u-reduction of L. We adopt the usual
collection of definitions derived from that of a primitive reduction. In particular u[L]
is the word obtained from L by computing u-reductions for as long as possible (say always
operating on a positive s-symbol in preference to a negative s-symbol). Then we can effec-
tively ccmpute u[L]. Intuitively u[L] is obtained by pushing to the left end as many posi-
tive s-symbols as possible and to the right end as many negative s-symbols as possible.

Leuma 36. If L is stk-reduced, then g[L] is stk-reduced and L= g, a[L].

Proof. By an obvious induction.

Lxy1rma 37. Let D be symmetric. Then there is a recursive procedure to compute a mazximal

representation of D.

Proof. Let D have g-factors L,, L, ..., L,. Compute u[L,], u[L,), ..., u[L,]. According
as  is odd or even, write y[L,]as A;; Y, A, orII,_, ¥,TI;* where Y, does not begin with

a positive s-symbol nor end with a negative s-symbol. (Thus Az, or IT,_, is the longest

(*) Since D is g-alternating, » must in fact be even.
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initial subword of u[L,] which consists entirely of positive s-symbols.) Call (A, IT) a repre-

sentative pair if for each u, there exist words Q, and @, such that
)y A,is QA and I1, is [1D,;
(i) »(Qz11 Y, Q,)=0if u is odd and »(®,_, ¥, ®;1) =0 if u is even.

Since D is symmetric, taking A to be 1 and II to be 1, we see that there exist repre-
sentative pairs. The collection {(A,, Il,)} is finite and so we can recursively determine a
representative pair (A, IT) such that if (A’, II') is any other representative pair, then
UA) +UIT) > IA") + (IT).

Let (A, II) be this maximal representative pair. Let X, be Q3! ¥ ,Q, if  is odd and
be ®,_, Y, @, if u is even, where Q, and ®,, are the words satisfying (i) and (ii) determined
by (A, II). We claim that (A, I1, X,) is a maximal representation of D. By Lemma 36 it is
certainly a representation.

Let (Q, ®,Z,) be any other representation. If u is odd, then A1X,A=,Q-1Z,Q
and if u is even, then I1X,I1-1=, ®Z,®-. For each odd %, A-1X,A and Q-1Z,Q must be
stk-parallel. Therefore either (a) A is ®Q for some © or (b) Q is @A for some ©®. We want
to show that if (b) holds, then ® is 1. Suppose not; then X, —, ©-1Z,0 for every odd u.
Hence, for each odd u, X, and ©-1Z,0 are stk-parallel, i.e. Q;1, ¥, Q, and @-1Z, O are stk-
parallel. From the definition of Y, it is clear that (®A, II) is a representative pair. This
contradicts the maximality of (A, II). We thus conclude that A is ®€) for some . In a

similar way we see that II is @Y for some V.

Lrmma 38. Let D be a symmetric word with maximal representation (A, 11, X,),
u=1,2,...,n and let Py, be C{PqK,CPK; ¢ ...qK,C{"K; ¢ . Also let D, be F;'C%
F.q0% q ' Fi'...F,qC™M g . If Py, is a-reduced and D=y P, ,, then F;y'r;*Dr,F,=¢ D,
and D, is symmetric. Moreover, there exists a word TI, such 11 is K;II, and (AF,

I1,, X,) s a maximal representation of D,.

Proof. Tt is clear that F;'r;Dr,F,=; D,. Part of the proof of Lemma 22 shows
exactly that D, must be g-regular. Obviously D, is g-alternating.

Let M, be F;1CF, or Y according as u is odd or even. We must verify that for
each u, (1) M, is stk-reduced, (2) ¢(M,)=0, (3) v(M,)=0 and (4) 3C)M,=4,C.. Let u
be odd; each ¢ is a-reduced and if L, is the corresponding g-factor of D, then L, =, oM,
From this (1), (2) and (3) are readily verified and (4) also follows easily since z-1C™x =5,
0% whence Fjlz—-D0Wx2-1F, —, M, where ¢c=I(F;). If u is even, then (1), (2) and

(4) are immediate. To prove (3) it suffices to prove that there exists I, such that Il is K II,.
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For we know that for each w, [1X,[1-1=, L, ~, K,C{’K;* and »(X,)=0. Now I1.X,II-!
and K;0f K;! must be stk-parallel. We must show that it is impossible that K, is IIII,
with II, distinct from 1. Therefore suppose this occurs; then for each %, X, =g, [T, C{II5.
By Lemma 35, (3CT)X, =y Ct. Hence, if c=U(I1,), X, =y, I1,22-10{*z~®-D[I;! whence
it follows that »(C{”) =0.

Let Y, be X, if u is odd and Of if » is even. Then (A, K,, ¥,) is a representation of D.
This contradicts the maximality of (A, I, X,). Hence I1 must be K,I1, whence »(C})=0.

In the process we have also proved our second assertion. It remains to verify that
(AF, I1,, X,) is a maximal representation. It is easy to show that for every u, o(C{”)=0
and »(C'*) =0 whence 0%} =, C{”. Using this last fact, it may be readily be shown that
(AF, 1I,, X,) is a representation. Suppose that (Q, ®, Y,) is a maximal representation.
Then Q is OAF; and @ is I1,'¥". We want to show that © is 1 and ¥ is 1. Assume that @
is distinet from 1; if u is odd, then Q-1Y,Q =, F/*A-1X,AF, whence A-10-1Y ,0A =,
A-1X A, Let Z, be Y, if u is odd and X, if u is even. Then (OA, II, Z,) is a representa-
tion of .D. This is impossible. In a similar way we can prove that ¥ is 1.

Let A be given; we can associate with A4, in a natural way, a séquence of operations

of ¥,. The association is defined as follows:

(1) if 4 is 1, the corresponding sequence is empty;

(2) if 4 is r,F,A’, the corresponding sequence consists of ¢K,— F,q followed by the
sequenc: defined by 4’;

(3) if A is F;'ri1A4’, the corresponding sequence consists of F,q—¢K; followed by
the sequence defined by A4'.

A word 4 is called proof-inducing if there exist words AgIl and Qqg® of T, such that
AgIl can be transformed into Qg® by the sequence of operations defined by 4. In such
circumstances we shall say that 4 specifies a proof that Agll =g, Qq®.

TrEOREM 8. Let D and E be g-parallel and symmetric words with maximal representa-
ttons (A, I1, X)) and (Q, @, Y,) respectively. If A is o-reduced, then A~1DA =, E if and
only if £ specifies a proof that Aqll =g, Qq® and, for each u, X, =y, Y.

Proof. Suppose that A-1DA = E; we proceed by induction w.r.t. [(4). If [(4)=0,
then D ==, F whence it follows that (Q, @, Y,) is a representation for D and (A, I, X))
is a representation for E. This implies that A is Q, IT is ® and that X, =, Y.

Let [,(4) >0 and suppose that 4 is v, F;A’. Then (3P, ) D=y, P, ;. If Dis LyqL,q7* ...
qL,q71, then ofP, ;] must be O ¢K,CPK;*q ... qK,0{ K;q~1. This means that the
10 — 692905 Acta mathematica 122. Imprimé lo 21 mars 1969
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hypotheses of Lemma 38 are satisfied by D and af P}, ;]. With D, as in Lemma 38, we have
Fi2y;1Dr,F,~ D, and A'-1D, A’ = E. Since D, has maximal representation (AF, II,,
X,), by the inductive hypothesis A’ specifies a proof that AF ¢Il, =5, Qq¢® and, for each
w, X,=p Y, But Aqll is AgK,II, whence it follows that A specifies a proof that
AgIT =4, Qq®.

If A is Filri14’, the argument required is dual to the above (and employs the lemma,
which we have left unstated, dual to Lemma 38).

Conversely suppose that A specifies a proof that Agll =¢,Qq¢® and that X, =,, Y,
for all u. Again we proceed by induction w.r.t. [(4). If 1(4) =0, then A is Q and Il is @
whence it follows that D=, E.

Let 1,(A)>0 and suppose that A is 7, F;A’. Then Aqll is AgK,Il, and is transformed to
AFqll,. Moreover A’ specifies a proof that AF,qll,=g,Q¢®. For each oddw,
3C0)A1X, A=, 0, with ¢(C,)=0 and »(C,)=0, whence F;ilr;1A-1X Ar,F,=. F 1A~
X,AF, For each even u, ¢(X,)=0 and »(X,)=0 and (3C,)X,=4C.. Hence (3C?)
I, X, 071 =, CF with ¢(CF)=0 and »(C?)=0 and this implies that r; 2K; * 1 X, [1-K,r,
=, X, 117 Let L, be Fi'A1X AF, if w is odd and be I1, X, I if u is even. If D, is
LigL; gt ...qL,q!, then D, is easily seen to be symmetric with maximal representa-
tion (AF,, I1,, X,). By the hypothesis of induction, A'2D, A’ =, E. Since F;'r;1Dr,F,
¢, Dy, the theorem follows.

The argument for the case in which A4 is F;71r;1 A’ is dual to the above.

REpUvcTioN V. (2D, E g-regular) (3 A) A DA = ;, E— (1Aqll, Qq®)AqIl =5, Qq®.

Proof. Let D and E be given. If they are not g-parallel then they are not conjugate by
a word 4. So suppose they are g-parallel; by Lemma 20 we may assume that they are
factor-reduced. Also it is clear that we need only consider whether or not there exists
an a-reduced A which conjugates D into E.

The content of Theorems 4-7 is that if either D or E is not symmetric, then there is
an effectively computable upper bound (namely 3) on the number of r-symbols occurring
in any a-reduced 4 which conjugates D into E. Now (!LY3C,)L =4, C, is recursively solv-
able (see Solution 4) and hence there is a recursive prodedure to determine whether or
not D and E are symmetric. It therefore follows that if D or E is not symmetric, then
(*D, E g-regular)(34)A-*DA = E is reducible to the word problem for G, and is thus
solvable.

Now suppose that D and E are symmetric. By Lemma 37, we can recursively compute
maximal representations (A,II, X,) and (Q,®,Y,) for D and E. By Theorem 8,
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(34)A DA = E if and only if Aqll =5, Qq¢® and, for each u, X, =y, Y,. Since H, has a
solvable word problem, this completes the logical reduction.
(?AqT], Qg®) Aql T = 7, Q9@

v
(D, E g-regular) (34)41DA = o B

(?U, V standard) (34) Conj (U, V, 4, Gy, Hy, r)
IV

IV *¥
(?U, V g-regular) (34)A" DA =¢,V /

(?Y, Z normal) AWYW YW =, Z

U, V normal) AWYWIUW =
II

U, V) (3W)W W=

* Continued on Diagram C
** Continued on Diagram D

Diagram B

§ 4. In this section we provide a recursive solution of (?U, V standard)(3.4)Conj (U, V,
A, Gy, H,, r). For brevity we shall write Conj(U, V, 4, r) rather than Conj(U, V, A4,
Gy, Hy, 7).

Let U be a standard word. If U is U,r;'D and (3P, ;)[D=yP, Ki'q? and
P, ;Kilg ! is a-reduced], then the first z-reduction of U is Filrj1U,P_, ,q7. If U is
U,r;D and 3P_, )[D=yP_, gt and P_, ,¢"F; ! is a-reduced], then the first z-reduc-
tion of U is v, F,U, P, ;K;1q . If neither of the above is applicable, then the first z-reduc-
tion of U is to be U. We shall write z,[ U] for the first z-reduction of U. The n-th z-reduction,
2,[U], is 2[2,_;[U]]). Also let z,[U] be U.(%)

Lenvwma 39. Let U be any standard word. Then (i) for every n, (3 A) Conj (U, 2,[U), 4, r);
(ii) ¢f (312)(A4)Conj(z,[U, V, 4, r), then (AA4)Conj(U, V, A, r).

Proof. Both assertions follow, by an inductive argument, from the definition of 2,[U].

(1) The purpose of the definition of 2,[U] is to break down the conjugation of U into ¥V into
stages. If Conj (U, V, 4,r) holds and 4 is A A{:.. Af * then z;[U] is the word obtained from U by

conjugating by Af!Aj? Af" Also we shall say that z, [U] is obtained trivially from U if 2, [U]is U.
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LEMMA 40. Let U be a standard word. For each n, z,[U] is standard and q-parallel to U.

Proof. It suffices to verify the lemma when n=1. We must show firstly that z,[U]
is r-contracted, g-contracted and tk-contracted. Supposing the contrary leads routinely
to a contradiction. By definition z,[U] terminates in g~ and thus is standard. The g-paral-

lelism follows from the fact that P, ;K;1¢~! or P_, ,q~1F;, as is appropriate, is a-reduced.

LEMMA 41. Let U and V be standard words. Then (3 A4) Conj (U, V, A, r) if and only
if An)(QA)[n<l,(A4), 2,[U] is r-parallel to V and Conj (z,[U], V, 4, r)).

Proof. Suppose that Conj (U, V, 4,r) holds; let m=1(4). Let R, be x[z,[U]],
j=0,1, ..., m. From the definitions of z-reduction and Conj, it is clear that if R, is
Rjr, then R, is r{ R;. If m <l,(U), take n=m. If m>1,(U), the collection of words { E,},
§=0,1, ...,1{U)—1, consists of all possible cyclic permutations of #,[V]. This proves one
half of the double implication.

The converse is immediate from Lemma 39.

RevvctioNn VI. (U, V standard)(34) Conj (U, V, A, r)~—(*U, V standard,
r-parallel) (3A) Conj (U, V, A, 1) and (*D)@AP, ) D=yP, ;.

Proof. By Lemma 41, it suffices to show that the problem of computing z,[U] is
reducible to (2D)(3P, ;) D=y, P. ;. In one case we must decide for a given g-reduced D
of form D'q~! whether or not D=, P, ;Ki'q~! with P; ;K{'¢q™! a-reduced. It is easy to
see that this occurs if and only if (3P, ;) D=4, Py ;. In a similar way, U,r; D will produce
2[U] non-trivially if and only if (3P_,, JDF1=,P_, .

LEmMA 42. Let W, and W, be two non-empty words. If Wy W, coincides with W, W,,
then there exists a word W such that W, is Wi and W, is W§* for some natural numbers

my and ni,.
Proof. This lemma is proved by Lyndon and Schutzenberger in [14].

LEMMA 43. Let W, and W, be two non-empty words. If, for some natural number m,
(W, W)™ coincides with (W, W,)™, then there exists a word W and natural numbers m; and
my such that W, is Wg't and W, is WG

Proof. It (W, W,)™ coincides with (W,W,)™, then W, W, coincides with W, W, and
therefore Lemma 42 is applicable.

Let U be any word and let R be the r-projection of U. A word R, is called an r-divisor
of U if there exists a positive integer m such that R’ coincides with R. Clearly for any word
U, there is a uniqﬁe r-divisor of U which is minimal in length. We shall call this unique

r-divisor the minimal r-divisor of U and write Ry for it.
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Liavmma 44. Let U and V be standard, r-parallel words with (common) minimal r-divisor
Ry. If Conj (U, V, A, r) holds and 1(A)<I(Ry), then 1,(4)=0.

Proof. Let m,(A) be R7'. Then there must exist R, such that R, is R, R,. Suppose that
I(R,)#D; then r[A-*UA] must have r-projection R, B3 ™' R, where R7 is n,(U). Since V
and r[A-1UA] are r-parallel, (R, R,)" is (R, R,)™. By Lemma 43, the minimality of R is

contradicted.

LumMa 45. Let U and V be standard, r-parallel words with minimal r-divisor By and
let Ay have r-projection Ry, If Conj (U, V, A, r) holds, then there extists a. natural number
m such that A 1s AY.

Proof. We proceed by induction w.r.t. l(4). If 1,(4) =0, take m =0. If I (A4) >0, then
it follows from Lemma 44 that [{4)>(R,). We may thus write 4 as A*4’ where [ (4*)=
[(Ry) and clearly m,[4*] is Ry'. Also if n*=1,(A4*), then Conj (z,[U], V, 4’, r) must hold.
We may therefore apply the inductive hypothesis to z,,[U] and V to obtain that 4’ is
A% Then A is AT*L

Lrmma 46. Let U be standard with minimal r-divisor By and r-projection Ry, s=1,
and let z,[U] be r-parallel to U. If Ay has r-projection Ry and there exists m=>s such that
Conj (U, 2,[U), AT, 1), then there exists an r-free, q-regular word D such that 2,[U] is AG®

Proof. If n,=1,(U), then Conj (U, 2, [U], Ay, r) must hold. It is clear from the de-
finitions of z-reduction and Conj that z,,[U] has the form 43° D,, where D, is r-free. (D, is
obtained by r-reducing, in a particular way, UAY,.) If ny=n, +1,(4y), then 2, [ U] must have
the form Ay° D, where D, is obtained by r-reducing 43° D, Ay (plus perhaps some can-
cellation of inverse pairs of generating symbols). The lemma clearly follows by an induec-
tive argument once we note that since every z,[U] is standard, the appropriate D will be g-

regular.

LEMMA 47. Let V be standard and let A be such that r[AV] is the q-free word E. Then
B is q-reqular.

Preof. Tt is easy to verify that AV is g-contracted and tk-contracted. The process of
computng primitive r-reductions does not disturb ¢- and tk-contractedness (see part (ii)
of Theorem 2). Hence X is ¢- and tk-contracted. Moreover, in the computation of »[AV]

the final g-symbol of V clearly remains undisturbed and thus % is g-regular.

LevwmA 48. Let A, D and E be such that A~*D and A™*E are standard. If there exists
m >0 such that Conj (A™°D, A°E, A™, r) holds, then A 1is r-contracted.
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Proof. If s>1, A must be r-contracted since 47°D is r-reduced. So let s=1; since 4
must be r-reduced A4 will not be r-contracted only if A is of form r, F,A’F;*r;* or
Firi*A'r,F,. Suppose the former occurs; since Conj (4-1D, A-1E, A™ r) holds with
m>0, (3P, ) D =4 P, ;. But this implies that A-1D is not r-contracted which is a contra-

diction. A similar argument holds for the second case.

RebpvuctIioN VII (i). (U, V standard, r-parallel) (34) Conj (U, V, A, r)—> (!D, E,
A, s; D, E q-regular, A r-contracted, s >1)(3m>0) Conj (A™°D, A°E, A™, r) and (*D)(AP, )
D =H1PE.1'

Proof. Let ny=1,(U); compute z,[U}, k=1, 2, ..., ny,—1 (we proved in Reduction VI
that the problem of doing this is reducible to (!D)(3P, ;) D=y, P, ;). By the solvability
of the word problem we can determine whether or not there exists & in this range such that
V =¢.z{U]. If this is so, then certainly (34) Conj (U, V, 4, r) holds. If this is not the case,
then Conj (U, V, 4, r) holds only if 1,(4) >n,.

Suppose then that no k in the above range is such that V =,z [U]. Compute z,,_,[U];
if z,, [U] is obtained trivially from z,,,[U], then it is clear that there does not exist a
word A such that Conj (U, V, 4, r) holds. So assume that 2,,[U] has been obtained non-
trivially from z,,_,[U]. In these circumstances, z,[U] must be r-parallel to U. If R,and
A, are defined as in Lemma 45, then z,[U] must have the form A43°D where D is ¢-
regular. By Lemma 39, it suffices to determine whether or not there exists 4 such that
Conj (Ay° D, V, A, r) holds.

Since V and A4y° D are r-parallel, if (34) Conj (43°D, V, A4, r) holds, then there exist
natural numbers m and » and a word D, such that 4 is A, V =,2,[U] and z,[U] has the
form Ay’ D, with D, r-free. Compute r{A%V]; if it is not r-free then (3. 4) Conj (43° D, V, 4,r)
fails. Thus we may assume that r[4%] is the r-free word E. By Lemma 47, F is ¢-regular.
To solve our problem it now suffices to determine of the words D, E and A, whether or not
there exists m >0 such that Conj (A5° D, A5° E, A%, r) holds. Since (3m >0) Conj (43° D,
AG°E, A%, r) if and only if (3m>0) Conj (A7’ D, A E, AG,r) or Ay D=, AL E, the
logical reduction is almost complete. It remains only to show that 4, is in fact r-contracted.
Since A,* E =, V and V is standard, it follows that 4 ;° F is standard. Now apply Lemma 48.

REpvUucTIOoN VII (ii).
(*D, E, A, s; D, E q-regular, A r-contracted, s=1)(3m >0) Conj (A™*D, A~ B, A™, r}—
(*D, E, A; D, E g-regular, A r-coniracted)(Am)A—"DA" =, E.

Proof. The reduction is a consequence of the fact that (3m >0) Conj (A7°D, A°E,
A", r)if and only if (3m>0)A-"DA™ =, E. This equivalence is easily verified.
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(?D,E, A; D, E q-regular, A r-contracted) (I3m >0)A""DA = E
VII
(?U, V standard, r-parallel) (34) Conj (U, V, 4,Gy, Hy, )
VI
(?U, V standard) (3A4) Conj (U, V, A, Gy, H,, 1)

Diagram C

Limma 49. Let A be proof-inducing. Then there exist words ©, ¥, A and B such that
(i) 4 specifies a proof that OgV =¢,AqE; (ii) if 4 specifies a proof that Agll =g, Qq®, then
there exist words A* and T1* such that A is A*Q, I is WIT*, Q is A*A and © is EII*. Moreover,

there is a recursive procedure to compute ©, V', A and E from A.(%)

Proof. We proceed by induction w.r.t. 1(4). If [,(4) =0, take O, ¥, A and Z to be 1.
Suppose that 1,(4)>0 and let 4 be A,A’. Then the first operation is ¢K;— F,q. Since 4
is proof-inducing, A’ must be proof-inducing. Let ©@', ¥, A’ and E’ be determined, accord-
ing to the inductive hypothesis, from A’'. Now either {{F,) <{®’) or I(F;))>1(®'). In the
former case we claim that there exists @~ such that @ is @~ F,. Since 4 is proof-inducing,
there exist words Agll and Qq® such that A4 specifies a proof that Agll =g,Q¢®. Then
there exists I, such that I1 is K,II; and 4’ specifies a proof that AF ¢Il, =5, Qq¢P. By
the inductive hypothesis, there exists a word A’* such that AF, is A"*®’. The existence of
®~ follows from this. Part (i) is then proved by taking ® to be @, ¥ to be K,¥", A to be
A’ and E to be E’. To prove part (ii), we take A* to be A’* and II* to be II"”* where A"
and II"* correspond to 4’ according to the inductive hypothesis.

In the case when I(F;)>(®), it is easy to verify that there exists @~ such that F,
is @0, To prove (i), we take © to be 1, ¥ to be K,¥”’, A to be ®-A’ and = to be E'.
To prove (ii), we take A* to be A™ and II* to be II'*. The whole computation is clearly
recursive.

If 4is A7*A’, the argument is similar.
SoruTIioN 8. “(%4) Is A proof-inducing’’ is recursively solvable.

Proof. This is proved by an inductive argument similar to the proof of Lemma 49.

Leuma 50. Let Ayglly =<, A, g1, =<, ... =5,A,q11,, where each proof that A;qll;~¢,
Ay 9Tl is specified by a common fixed word A. Let ©, ¥, A and Z be determined by
A as per Lemma 49. Then

(*) 'The essential content of the lemma is that common to every proof specified by 4, there is a
central core within which the operation rules are applied.
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() i UA)<UO), then m <U(A,);
(i) if UB)<UE), then m <UTL,);
(i) if U(A)=UO) and UE)=I(¥), then Ay, Ay, ..., A,, coincide and Iy, Ty, ..., I1,, coincide;
(iv) if YA)>UO), then m <UA,);
(v) if UZ)>UY), then m<YIL,).

Proof. (i) It suffices to show that, for every g, (A,) >1(A,,,). By Lemma 49, there exists
A such that A, is Af® and A, is A]A. This implies that ¥(A;)>¥A,,,). (i) This is similar
to (i). (iii) By Lemma 49, there exist A} and A%, such that A,,; is AfA and also A%, 0.
Since I(A) =U©), A} coincides with A%,,. Also by Lemma 49, A, is A]® whence it follows
that A; and A,,; must coincide. A similar argument shows that II; and II,,, coincide.

(iv) It is easy to prove that, for every §, A,) <Il(A,,,). This suffices. (v) This is similar to (iv).
SorvutioN 9. (!D, E, A; D, E q-regular, A r-contracted)(Am>0)A-"DA™=; E is

recursively solvable.

Proof. By Theorems 4-7, if either D or E is not symmetric, then A-"DA™ = K
implies that [ (4™)<3 (for any m, A™ is certainly a-reduced). This case therefore reduces
to the word problem for G,.

So suppose that D and E are symmetric with maximal representations (A, 1, X,)
and (Q, @, Y,). To be conjugate by A™, D and E must be g-parallel and in this case,
A™DA™= E if and only if A™ specifies a proof that Agll =5,Qq¢® and, for each u,
X,=gY,. (Theorem 8 is applicable since A™ is x-reduced.) It suffices then to determine
whether or not there exists m such that 4™ specifies a proof that Agll =g, Qq®.

Firstly we determine whether or not A is proof-inducing (by Solution 8, this can be
done). If 4 is not proof-inducing, then neither is A™, for any m >0. So suppose that 4 is
proof-inducing; compute (recursively) ®, ¥, A and = from A as per Lemma 49. If
A""‘DA"‘=G°E, then the situation of Lemma 50 occurs with Agll as Ayll, and Qg® as
A g, If either (i), (ii), (iv) or (v) holds, then there is an effectively computable upper
bound for m and we can fall back on the solution to the word problem. In case (iii), D and
E are conjugate by A™ if and only if D=, E.

§ 5. To complete the analysis we shall show that (?Y,Z normal) @W)W1YW =,Z
is recursively solvable. Call two words Y and Z divorced if (3X ¢-free) X-1Y X = Z fails.

Repucrion VIII. (Y, Z normal) AW)WYW =, Z— (1Y, Z normal, divorced)
@WYWAYW =¢,Z and (Y, Z2)AX)X 'YX =,Z.(Y)
Proof. Immediate since X-1YX = Z if and only if X1YX =,Z.

(1) It is expositionally convenient to consider this problem rather than (?Y,Z normal) (3 X)
XYX = Z.
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We examine the problem (%Y, Z)(3X)X-1Y X =,Z first. Our approach is similar to
that taken in §2. Define H,=(z,t, k, r; tx=at, kx=ak, tr,=rit, kr,=r;k) and H;=
(x, t, k; 'z =at, ke=xak).

Lemma 51. (i) Cond,z(H;, F(x), {t, k}) holds. (i) Cond; z(H,, Hy, r) holds. (iii)
Cond;;z H, H,, s,) holds.

Proof. The various isomorphism conditions are easily verified.

THEOREM 9. Let s-coniraction be w.r.t. (H, H,). Then (3X) XY X =4Z if and only if
AX)X-5{Y} X =y53{Z}.

Proof. By GL 2 and Lemma 51.

TaeorEM 10. Let s-contraction be w.rit. (H, H,) and r-contraction w.r.t. (H, H,). Then
(i) AX)X 'YX =4Z if and only if AX)XF{Y} X =,7{Z}; (ii) if Y is s-contracted, then
#H{ Y} is s-contracted.

Proof. (i} By GL 2 and Lemma 18. (ii} This is proved by a routine argument similar
to that given for part (ii) of Theorem 2.

Tra:z0REM 11. Let s-contraction be w.rt. (H, H,), r-contraction w.rt. (H, Hy) and tk-
contraction w.rt. (H, Gy). Then (1) X)X 1Y X =4xZ if and only f (EIX)X—lt—k—{Y}X=H
E{Z}; (ii) of Y 1is s-contracted and r-contracted, then E{ Y} is s-contracted and r-contracted.

Proof. (i) By GL 2 and Lemma 18. (ii) Again a routine argument similar to that
given for part (ii) of Theorem 2 is required.

Call a word Y hypernormal if it is s-contracted w.r.t. (H, H,), r-contracted w.r.t.
(H, H,) and tk-contracted w.r.t. (H, Gy). :

ReEvuverioNIX. (1Y, Z)AX)X 'YX =,Z— (?Y, Z hypernormal) AX) XY X =, Z.

Procf. It is not hard to see that there is a recursive procedure for computing
th{r{s{Y}}} and tk{r{s{Z}}}. The reduction follows from Theorems 9-11.

Call a word Y r-regular it Y is hypernormal and has #;' as its final symbol. Call ¥

orthodox if Y is r-regular and is not stk-free (i.e. Y is either not s-free or not ¢-free or not
k-free). ‘

Lemma 52. Cond; z(H, F(x,r,), {5y, t, k}) holds.

Proof. 1t is easy to verify that {z}, {r;}, {«?} and {zr,z} are sets of free generators in

F(z, r;). (Once again we do not verify the strong isomorphism condition.)

REpvorion X. (!Y,Z hypernormal)(AX) XY X =,Z—(1Y,Z orthodox)(3C,)
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Conj (Y, Z, C,, H, F(z, r)), stk) and (1R, R’ r-regular)(3C,)C1* RC, =z R’ and (1L, M hyper-
normal)(AX) XLX =, M.

Proof. By GL 3 and GL 7, we can reduce to the problems (Y, Z r-regular)(3C,)
Ci' YC, =4Z and (?L, M hypernormal)(3 X) X-1LX =, M. Since if C, is a-reduced, then
C, is stk-reduced, the complete reduction follows from GL 4 and GL 5.

Let Y be an orthodox word; we define 5-reduction in a manner analogous to the
definition of z-reduction. If ¥ is ¥'t"*Rr;’%, then 5, [Y]is ¢t °Y'Rr; . If Y is Y’k °Rr;?,
then #,[Y] is k*Y'Rri®. If Y is Y's;'Rri! and (AT,)[R=T; in F(x,7,) and T, ' is
a-reduced], then #,[Y] is « 15 Y'T_,o™';*. If Yis Y's,Rry and 37T-,)[R=T_,2}
in F(x,r;) and T_,2 % '2"! is a-reduced], then 5, [Y] is s,zY'T,r;'. If Y does not
satisfy any of the above conditions, define 7,[Y] to be Y. Define %,[Y] to be
N[9n-1[Y]] and 7[Y] to be Y.

We abbreviate Conj (Y, Z, C,, H, F(x, r}), stk) to Conj (Y, Z, C,, stk).

REpUcTIiON XI. (¥, Z orthodox) (3C,) Conj (Y, Z, C,, stk)— (1Y, Z orthodoz,
stk-parallel)(3C,) Conj (Y, Z, C,, stk).

Proof. The argument required exactly parallels that given for Reduction VI. In
particular, analogues of Lemmas 3941 are needed, plus the fact that computing %,[ Y]

is a recursive process.

RepvcrioN XIL (1Y, Z orthodox, stk-parallel) (3C,) Conj (Y, Z, C,, stk)— (R, K,
Cy; B, R’ r-regular)(Am)Ci™ ROT =L R'.

Proof. The argument required parallels that given for Reduction VIL. Analogues of

Lemmas 4447 are needed, plus the fact that computing 7,[ Y] is a recursive process.

LEMMA 53. Let R and R’ be o-reduced words where R 18 2™ x’“’...x”‘i’ﬁ; and R’
is ame a™...a™r and let C.., have s-signature o. If C,RO_.,=yR, then m=2"my +

-
(27— 1) (ep-1+ &), k=1,2,...,p (writing &,= & ).

Proof. The lemma is proved by a straightforward induction on l(C_.).

SovurioN 10. (!R, R',C,; R,R' r-regular) (Am)Ci"RCT =yzR’ is recursively
solvable.

Proof. We need only consider B and R’ when they are a-reduced and r-parallel.
Let B be a™riiz™...a™r.' and R’ be a™riiz™...z"r.!. If O, has s-signature o, then
CO7' has s-signature mo. If 040, then C;"RC! =R’ only if, for each k, n,=2""m; +
(2™° — 1) (ex_1 + &). There is at most one possible integral value of m which satisfies

these equations and thus we may fall back on the solution to the word problem for H.
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If ¢=0, then Ci™"RCy=4zR' only if, for each k, n,=my, ie. only if R=4zR’
Again we may fall back on the word problem.

We have now dealt completely with the problem (? Y, Z orthodox) (3 C,) Conj (Y,
Z, 0, stk). The next one to be examined is (R, R’ r-regular) (1C,)Ci'RC,=y R’

SorLurioN 11. (R, R’ r-regular)(3C,)Ci* RC, =g R’ is recursively solvable.

Proof. If R and R’ are not r-parallel, then they are not conjugate by a C,. So let
R and R’ be as in Lemma 53 with &,= —1. If (30,)C;* RC, = R’, then (30)[n, =m2° +
(2°—1)(gy_y +&;) for all k]. It is easily seen that at most one such ¢ exists and we can
certainly determine whether or not ¢ is an integer. If no such integral ¢ exists, then
(30,)C;* RO, =4 R’ fails.

Suppose such an integral ¢ exists; let O, be (s,2)°. It is easy to show that C7* RC, =, R'.

(R, R',Cy; R, R’ r-regular) (3m) CT"RC} = 4R’
XII
(?Y, Z orthodog, stk-parallel) (3C,) Conj (Y, Z, Cy, H, F (, r,), stk)

(?L, M tk-regular) (3R R'LR= M

XI

(?m, m) AX)X 19X = o™ XIII

XIIT

(?L, M s-regular) (3S,) S{'L8; =y M
(?Y, Z orthodox) (3C,) Conj (Y, Z, C,, H, F (x, ), stk)
X111

(2L, M hypernormal) (AX) X \LX =M

X .
(?R, R’ r-regular) (3C,) C;*RC, =y R’
D¢
X
(2Y, Z hypernormal) 3X) X 1YX =42

IX
(Y, 2)3X) X 'YX =47

VIII (?Y, Z normal, divorced) AW) W YW =, Z

VIII
(Y, Z normal) AWYW YW = Z

Diagram D
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Call a word L tk-regular if L is hypernormal and L terminates in ¢! or k-1. Call a word

L s-regular if L is hypernormal and L terminates in s, .

RepvcerioN XIIL. (2L, M hypernormal) (3 X) X 1LX =y M— ('L, M tk-regular)(3 R)
RLR =, M and (L, M s-regular)(38,)Si LS, =z M and (¥m, n)(AX) X 2"X = 2™

Proof. Cond,5(H, Gy, {t, k}) and Cond; z(H, H,, 8,) hold. The reduction follows from
GL 3 and GL 7.

Let I be a word on k, £ and «; if I contains d positive z-symbols and b nega-
tive z-symbols, call p=d—b the z-signature of I. If L is I,s3, I,...1, y83:1, and @
is the z-signature of I, the (r+ 1)-tuple (gy,01:...,0,) is the z-deployment of L.

LevMMA 54. Let L and M be sth-reduced, stk-parallel words with x-deployments (4,
Ay s ) and (0g, 01, - 0;) and (common) s-distribution (o, 0y, ..., 6;). If ™" La™ =y M,
then n=2"%m+ Z;C=0 27% (lk— Qk)'

Proof. By induction w.r.t. I (L).

LemMMA 55. Let L and M be as in Lemma 54 with 0, +0. If x " La™ =z M, then m=
(1 =277 3% 0 27 (A~ 0x)

Proof. Immediate from Lemma 54.

SoruTiowN 12. (L, M stk-reduced) (Elm)x‘""Lx"‘= uM 1is recursively solvable.

Proof. We need only consider L and M if they are stk-parallel. If o(L) =0, then by
Lemma 55 there is at most one possible value for m and this value may be recursively
computed. The problem is thus reducible to the word problem.

Suppose o(L)=0; let L have s-index ». By Lemma 28, (3m)x "La™=y,M only if
@m)[|m| <2’ and 2 "La™ =y M]. Again we can fall back on the word problem.

LeMMa 56. Let L and M be stk-reduced, stk-parallel words such that (3m)x™"Lx™ =, M
fails and let CT and C*, be stk-parallel to L. Then (3R)RLR=yzM if and only if either

(1) @e)@d)[z°La’ =, CF and 2 *Ma?=,C%,] or
2) (3¢)(@d)[xLa =4 O*, and z~*Ma"=,C%].

Proof. Suppose that R-1ILR=,M; we may assume that R is o-reduced and hence
rreduced w.r.t. (H, H,). Clearly R cannot be r-free. Hence neither R—1LR nor EMR-!
are r-reduced. There are four possible ways in which this could occur. These are (1) and (2)

above along with
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(8) @c)(@d)[x°La’=xCT and x™Ma?=,0F] and
(4) @c)@d)[z~°La® =5 C*, and z Mai=,C*,].

But (3) and (4) both imply that 2% °La®~% =, M which is impossible.
Conversely suppose that (1) occurs; then a%;lx °Lafr,x ¢=,M. If (2) occurs, then

raLatri i =, M.

Sovurion 13. (i) (L, M tk-regular)(3R)RILR=yM s recursively solvable;

(il) (*L, M s-regular)(38,)S; LS, =M is recursively solvable.

Proof. (i) This is an easy consequence of Solution 12 and Lemma 56. (ii) Since 8, has
the same range as R this also follows from Solution 12 and Lemma 56.

Our penultimate problem is (?m, n)(3X) X 1x"X = z™.

LemMa 57. If XX =ga™ and X is r-reduced, then either X is r-free or m=n=0.

Proof. Suppose that m+n and that X is not r-free. Then (3L)(3C,)L2"L =,C..
Then stk[L™'a"L] =, «[C.] whence it follows that «[C.] is 1. Thus L~2z"L = 1 and hence
n=0. In a similar way we can prove that m =0 which is impossible. The lemma follows

from this.
SorurIioN 14. (!m, n)( A X) X 2" X =42™ is recursively solvable.

Proof. By Lemma 57, it clearly suffices to solve the problem (?m, n) (3L) L 1a"L = g, 2™
But it is easy to show that (3L)L—'a"L =4 2™ if and only if (36)m =27n.

Finally we provide a recursive solution to the problem (?Y, Z normal, divorced)(3W)
WY W =, Z.

Lemma 58. Let Y and Z be normal and suppose that Y and Z are not both tk-free. If
@AWYWLYW =, Z, then there exist circular variants Yq and Z, of Y and Z respectively

which are not divorced.

Proof. By GL 3 and Lemma 12.

REeEpvcrion XIV. (!Y, Z normal, divorced) AW) WAYW =, Z—(*F, G normal,
divorced) AW)WLFW = ., G.

Proof. Let Y and Z be normal and divorced. Suppose that Y and Z are not both tk-free.
If @QW)WYW =.,Z, then, by Lemma 58, ¥ and Z have circular variants which are not
divorced. But this means that ¥ and Z are not divorced.

LeMMA 59. Let F and G be normal and divorced. Then (3W)W-1FW =4, G if and only if
either (a) (AF,)(3G,)(3A)(AB)[Fo ' AFy=¢, F and G3* BGy =, and A and B are r-circum-
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parallel to F). or (b) AF)3G)34)AB)Fe'BF )=, F and G5 AGy=;,G and A and B

are r-circumparallel to F1.

Proof. Let W-FW = G; since F and @ are tk-free, it follows that we may suppose
that W is tk-free. Also we may suppose that W is g-reduced. Since by assumption W is not
g-free, we can write W as H,q¢**W'q*H, (as H,q¢H, if W has only one g-symbol).

It is clear that W-1FW and WGW-! are not g-reduced. Four possible cases occur;
these are as follows.

(1) &,=1=¢,, Then (34*)H,' FH,=,A* and (AB*)H,GH;'= , B* and we may take
A* and B* to be a-reduced. (Notice that it is not necessarily the case that 4*~ B*.) Write
A* as A~1A44" where A’ is maximal. Similarly write B* as B'-'BB’. Then A and B are
r-contracted.

Now H;i'FH,=.A4* and H,GH;'=;B* whence A'Hj'FH,A''=;A and
B'H,GH3;' B'-1=, B. This implies that 4 is r-circumparallel to F and B is r-circum-
parallel to G. Since F and G must be r-circumparallel, the lemma follows by taking F, to
be A’Hi' and G, to be B'H,.

(2) & = —1 =g,. This gives rise to (b) in the same way as (1) gives rise to (a).

(3) =1, g, = —1. We want to show that this is impossible. By Britton’s Lemma, we
obtain (A4*)H{'FH, =, A* and (34" )H,GH;"'=; A". By an analysis similar to that of
(1), we obtain Fg'AF =4 F with A r-circumparallel to F and Go'4'Gy=.,G with A’
r-circumparallel to G. Then 4 and 4’ must be r-circumparallel whence (34") A" 14 A" = A".
Hence G'=;,Go' A'Gy=¢,Go' A" F, F Fy* A"G, which means that ¥ and Z are not divorced.

(4) &= —1, ¢,=1. In the same way as (3), this is impossible.

Conversely suppose that (a) holds. Since 4 and B are r-circumparallel to F, there
exist words 4’ and A4* such that A* is r-parallel to B, i.e. A*~ B, and 4'144"' =, A*.
Then it follows that (G5 q—1A’-1F,) F(F;'4'¢G,) =¢,G- In a similar way if (b) holds, we

can show that ¥ and G are conjugate.

SoruTion 15. (YF, G normal, divorced) AW)YW-1FW =G is recursively solvable.

Proof. It follows from Lemma 59 that the given problem is reducible to the problem
(*F,GYAH)H'FH =;06. We have proved that (1Y, Z)(3X)X-1YX =,Z is recursively
solvable. Since (3 X)X-1FX =,G if and only if (3H)H'FH =, G, the result is immediate.

Part V. Result B

Proof of Result B. Let T, satisfy the assertions of the corollary to Shepherdson’s
result. Let G({D,}, D) be G,
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(1) Let Q,q®, be such that (2Qqd)Qqd =3,Q,q®, has degree D,. Let V, be
Q;'t7Q,q®,10, q. Let U be given; firstly compute th{g{r{U}}} and call this U*.
If U and V, are to be conjugate, then U* must be r-free and contain exactly two ¢g-symbols
which are of opposing sign (by GL 3 and Theorems 1-3 since V,, is normal). So suppose that
U* is r-free and contains a single ¢ and a single ¢~'. Then U* has a unique cyclic permuta-
tion U~ of form L,qL,q~'. Again using GL 3, U* and V, are conjugate if and only if either

(i) @A)AU- A=V, or

(i) (3B)BLyq'L,qB—=¢, ®,tD; ¢ 20,110, q.

But it follows from Lemma 22 and its unstated dual that (i) is in fact equivalent to (ii).

There is a recursive procedure to determine whether or not U~ is symmetric. If U~ is
not symmetric, then by Theorems 4-7 and the solution to the word problem there is a
recursive procedure to determine whether or not (i) holds. So suppose U~ iz symmetric.
Let it have maximal representation (Q, ®, X,, X,); this is recursively computable. By
Theorem 8§, (i) holds if and only if Qg® =4,Q,9®, and X, =4t and X, =}t (V, is sym-
metric with maximal representation ({2,, ®,, ¢ t)). Hence the individual conjugacy
problem for V, in G, is reducible to the problem (?2Qq®)Qq® =¢,Q,qD,. The converse
reduction follows from Lemmas 14, 15 and 16 which prove that Qq®=5,Q, ¢®, if and
only if t-10-1g-1Q 4Qq¢d and t1P;'¢1Q,%Q,¢®, are conjugate. The latter holds if
and only if Q-%#QqdPt-'®-1¢-1 and Q,'Q,q®,t'®; ¢! are conjugate.

(2) Our whole argument in Parts I-IV shows that the word problem for special words
of T, is Turing equivalent to the conjugacy problem for G,.

(3) Let V be any word of G; compute tk{g{r{V}}} and call this V"*. There is a recursive
procedure to determine whether or not V* has an r-free symmetric cyclic permutation. If no
such cyclic permutation exists, then the individual conjugacy problem for V in &, is solvable.
(If V* is g-free, see § 5 of Part IV; if 7* is r-free but not ¢-free see Theorems 4-7; if V*
is neither r-free or g-free see § 4 of Part IV.) So suppose that V* has a cyclic permutation
V- which is r-free and symmetric. Let ¥V~ have maximal representation (Q, ®, Y).
Then the individual conjugacy problem for V in @, is Turing equivalent to the
problem (?AqIT)AgIl =z, Qq®. To show this we argue as follows.

Let U be given; if tk{g{r{U}}} cannot be cyelically permuted into a symmetric word
which is g-parallel to V-, then there is a recursive procedure to determine whether or not
U and V are conjugate. Otherwise let U,, U,, ..., U, be the collection of all symmetric
cyclic permutations of th{q{r{U}}}. Then U and V are conjugate if and only if
(3k)(3A)AU, A =, V-. This last problem is reducible to (?AqIl) AgIl =, Qq®.

Conversely let Agll be given; let U be an r-free word which is symmetric with maxi-
mal representation (A, II, ¥,). Then Agll=g,Q¢® if and only if (34)AUA=;V".
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To complete the reduction we must prove that AW)WUW =, V" implies that
(34)A7 U4 =, V~. By GL 3, there exist symmetric cyclic permutations U, and V, of
U and V- respectively and a word A4 such that A-1U 4 =, V,. Now Uy and ¥V, must have
maximal representations (A, 11, ¥,,;,...,Y,, ¥y, ..., Y)and (Q, D, Y, y, ..., Y, Y,, ..., Y)).
From Lemma 22, it follows that A~ 1UA =, V~.
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