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Let p be a fixed odd prime. Let ¢=p™, for some fixed integer m>1. Let { be
a primitive gth root of unity. Let G be the Galois group of the cyclotomic field of
the gth roots of unity over the rational field, . Let R (R) be the group ring of &
over the rational integers (the rational p-adic integers, Z,).

The main idea of the first part of this paper is a generalization of Iwasawa’s
work [3] on the group index of certain additive sub-groups of R (R). The main result
of this part is contained in the Corollary to Proposition 3, namely:

If o(a) €@ be such that o(a)(l)=C% and if B,(x)=nth Bernoulli polynomial,
then let

©.=229"""B,(a/q)o(a)t (0<a<yg, (a,p)=1).
, is an element of the group algebra of @ over the p-adic number field. Let
I;=(c(1)+o(— 1)) RNRw, (n even)
L =((l)—e(—-1))RNRw, (n odd);

then, [R*:I;]=g-[pth partof ( ] Bj)] (neven)
% residue char-
oo nan

[R™:L,]=q-[pth partof ( I B} (nodd).
x residue char-
e mad
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{See the appendix for the definition of B}, the nth generalized Bernoullli number asso-
ciated with the residue character ¥ modg.) There is an analogous but more compli-
cated result for the group ring over the rational integers.

The second part of this paper has two foci of interest. First, an elementary com-
putation shows that p|[R™:I;] if and only if p|[R*:I3]. This suggests the existence
of an ‘isomorphism of R~/I; and R*/I} and more generally of the additive groups
R~ /I, and R*/I;,; (n odd), R*/I} and R™/I;,; (n even). We don’t quite obtain these
isomorphisms. We do obtain the following. If m:R—>R/gR is the canonical coset
mapping, then Theorem 1 says that if p+2, pfn, pJ n+1, then

a(R*)/a(ly) = n(R")/7(l;+1) (n even)
aR7)/al;)2aR) /715 ,1) (n odd).

As Corollary to Theorem 1, we have if p=+2, pJfn, pfn+1, then

pl{g [pthpart ( T1 By)]} if andonly if p]{g- [pth part ( TLB;'”)]} (n 0dd).

% IO
x(-D=-1 x2(-D=1

An analogous result holds for # even.

The other focus of the second part of this paper is related to Iwasawa’s work
in [4]. For each m>1, define g,=p", F,= cyclotomic field of the ¢,th roots of unity,
G, = Galois group of F, over the rational number field. We have for each m: R,,, R,
R;, I (n even), I (n odd). The additive groups form. inverse systems with respect
to the mappings “generated” by the restriction mappings on the Galois groups. If
F=Upns1 F,, then the group ring Z,[G(F/Q)}(}) operates naturally on R,,, R, R, I+
(n even), and I, (n odd). Iwasawa defines a x-isomorphism of Z,[G(F/@Q)]-modules to

be an additive isomorphism such that
v(2°) = (o) v(z)° (x € the module, ¢ € G(F/Q)),
where » is the isomorphism
%: GQ(F/Q) - group of units in the p-adic number field

given by [7=

for any ¢ €@ and ¢ any g,th root of unity.
Iwasawa. [4] introduces various Z,[@(F/Q)]-modules which are of interest in deter-

mining the arithmetic structure of the cyclotomic fields. Two such modules are (X/Z)*

(*) G( / ) shall denote the Galois group of the Galois extension in the parentheses.
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and (X/8)". To study the algebraic structure of (X/Z)* it would suffice to find a.

Z,[G(F/Q)]-module M whose structure is known and for which we have a x-isomor-

phism of M —~(X/83)"; indeed, we would have induced a Z,[G/Q]-isomorphism
M—-(X/Z)*

and we could then recover the structure of (X/Z)*. (See section 2.4 of this paper for

details.) Our choice for M is lim,R;,/,I3 (inverse limit). We define a map

v:lim R} /0~ (%/3)"

which has the property of being an additive isomorphism, but v(x”) = %(c) v(z)°”". While
failing to obtain the x-isomorphism, we do obtain a theorem of interest in itself:
(Theorem 2) If pfn, p/n+1, p+2, then

limR, /X, 2limR;} /It (n odd)
m m
lim R}/ Ji~imR,/,1;,1 (n even)
(all limits being inverse).

This paper is based upon my doctoral dissertation done under the direction of
Professor K. Iwasawa at M.LT. I gratefully acknowledge Professor Iwasawa’s assist-

ance and encouragement in writing the dissertation.

§1
1.1. Let Z and @ denote the ring of rational integers and the rational field,
respectively. Let { be a primitive gth root of unity. As above let G be the Galois.
group of the cyclotomic field of the ¢th roots of unity over the field of rational
numbers. The elements of @ are isomorphic with the group (Z/qZ)* of invertible ele-
ments of the residue class ring Z/qZ under the mapping:

(Z/qZy~@
amod g—o(a) where o(a)({}=0* (a,p)=1.

Let 7 € G correspond to — 1 under this mapping, i.e. 7({)=¢"*. For the rest of the paper-
we -adopt the following notation:
2a= 2 5 2a= 2 3 Za=

5 .
0<a<gq 0<a<q/2 l<a<q/2
(a,p)=1 (a,p)=1 @, p)=1

Let R=Z[@] and S=Q[G]. Iwasawa [3] put R~ ={z € R|(1+ 1) x= 0} which is an ideal
in R. He then defined



52 ROBERT SEGAL

=g 3, a0(a)™

and put J =R N Rw. Iwasawa calculated
[R“ : j_]= 2q Hx (_ 2lq Za ax«l(a)) .

where X ranges in the product over all characters of (Z/¢Z)* such that %(—1)= —1,
or, otherwise stated, over all residue characters mod ¢ such that ¥(—1)= —1.

A key part of the proof is the fact that (1 — 7) gw is regular in the ring R~ which
in turn follows from the fact that >,aX(a)=+0 if and only if ¥(—1)= —1.

In considering one possible generalization of Iwasawa’s work, we define
w=q¢"3,d%0(a)! wy=qo.
If x is a character on (Z/qZ)* and &£=>,x,6(a) is an element in §, we define

&)= Za z, X(a)-

If we let et =21(1+7), e =%(1—7), then
S=¢"S@e S,

&£*§ is a semi-simple commutative algebra over @ with identity ¢, and its absolutely
irreducible (one-dimensional) representations ¢ are obtained from the characters X of
@ with X(7)=1 in the obvious manner. Hence the determinant of the matrix for &* e,

in a regular representation of &*§ is given by
Hq) <P(8+ wo) = Hz x(wo),

where the product is taken over all ¥ mod g such that %(—1)=1. For X +1, X o) =
>a@*X(a)=qB% where by B} we mean the nth generalized Bernoulli number associated
with the character X. See statement (AS8) in appendix of this paper for proof of this
assertion. In general (An) refers to the nth numbered formula or statement of the
appendix. Also for X1, B30 if and only if x(—1)=1 (by (A6)). Finally if x=1,

— 2 __
1P~V ET7P)  gonee T #(wy)+0 and o,

6 xmod ¢
P 2(-D=1

is regular in ¢*§. Thus it is natural to define R*={z€R|(1—7) =0} and define:

J=RnNRo, I'=R*nRo.

the principal character, then 1{wy)=

We then have:

ProrosiTrion 1. [RT:T%1=q]| I1 ¢ '2.0*x(a)|.
xmod g

x(-D=1
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Proof. Let 4 be the additive group in R generated by q and o(a) —a?, (a,p)=1.
Then 4 has a basis over Z consisting of ¢, 2¢7, o(a) —a?, and o(—a)—a?, 1<a<q/2,
(@, p)=1. Then, we have

J= Ao, qj=Awo, and ¢J*=Aw,Ne*S.
Let B={c"a|a€A, aw€e’S}, BSc"R. Then
J'=Be'w, ¢ =Bc'w,
and [e"R:qT 1=[e"R:e" Re* wol [e" Ret wy: Bet wy).
But &* w, is regular in ¢S, hence
[e*R:qJ*]=[e"R:e"Re* wol [¢" R:B].

e*R is a free Z-module with basis over Z consisting of &' o(a)=}(o(a)+ o(—a)),
(@,p)=1, 0<a<gq/2. Let t{a)=¢" o(a). Thus,

[e*R:e"Re"wol=| I1 2wo)|=] 1 27 Hwo)|=| Il 2.a*x(a)|.
xmod ¢ x mod ¢ xmod ¢

x(~1)=1 2(-1)=1 2(-D=1

Thus, [e"R:qT]= lmeOqu S.atx(a)|[e* R: Bl

x(~-1=1

If €4, then a=sg+#2e7)+ Da{s.(0(a) —a?)+s_,(a(—a)—a®)} for unique choice of
8,8,8,8 ,€Z. Thus e*a€e™R and " a=>,u,7(a) where
Uy =g+ 2o~ 0¥ (s, 5-0)
U, =8,+s_, for l<a<gq/2, (a,p)=1
Thus Sedtu,=qs or > a’u,=0 (q);
hence " AS{Dau,1(a) €™ R| Daa’u,=0 (g)}.

Conversely, suppose for u,€Z, >, u,7(a) € ¢* R satisfies the condition >;a?u,=0 (q)
then letting
a=sq+t2e7) + Dq{s.(a(@) — a®) + s_q(o( — a) — a?)},

where s=q7 ' > a%u,, s.,=u,—s,, and ¢ and s, (1<a<gq/2, (a,p)=1) arbitrary, we
have that v
> ut(a)=¢" a.

Hence &* 4 ={>, u,7(a) € " R| Zsa*u,=0 (g)}. On the other hand, if £ € §, &£=>,,0(a),
r,€Q, then fw€g*S if and only if 2¢7Ew=0. But 2:” w=>,(—q+ 2a*) o(a), where
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from now on R(a)= least positive residue of @ modg¢ and a*= R(a"') for (a,p)=1.
Hence 2¢ &w=0.if and only if for all ¢, 0<c¢<g, (¢, p)=1, we have > z,(— g+ 2a*)=0
(summation taken over all a,b such that ab=c (q), 0 <a, b<q). Combining all of the
above we have if B€&* R, f=2,u,7(a), then BEB if and only if B=¢"a, for 2 € 4
and aw € e"S where
a=28q+t2e7) + X4 {s,(0(a) — a®) + s_, (o( — a) — a®)}
=[sg+t+Za—a*(s,+38-0)0(1) + (—8) o(g— 1) + Sas.0(a) + Zas-a0(—a)

for some s, t,s;, s_,€Z, which is true if and only if >,a’u,=0 (g) and there exist

integers ¢ and s, (l<a<gq/2, (a,p)=1) such that
g (g — 26%) + (20 (2R(ac*) — g) u,) — 2{(2¢* — q) t+ 27 (2R(ac*) — 9) 5} =0

for all ¢, 0<c< g, (¢, p)=1; the latter assertion is true if and only if there exist in-
tegers ¢ and s, (l<a<gq/2, (a,p)=1) such that

(9 20%) (uy +26) + 2.0 (2B(ac*) — ) (4, — 25,) =0
for all ¢, 0<c<yq, (¢, p)=1. But the square-matrix
l2B@c*) gl (0<a,¢<q¢/2, (a,p)=(c,p)=1)

has non-vanishing determinant; indeed the determinant is equal, up to a factor of + a
positive integral power of two, to the value of Maillet’s determinant. Carlitz and
Olson [1] showed for g=p that Maillet’s determinant does not vanish. Their method
generalizes completely to the case g=p™, m=>2. Hence the above system of homoge-
neous equations is solvable if and only if u,=0 (2) for 0 <a< ¢/2, (a, p)= 1. Therefore,
B=2.u,7(a) is in B if and only if
() 2aa’u,=0 (g)
(i) u,=0 (2) for 0<a<gq/2 (a,p)=1.
Therefore, [¢* R:B]=¢2%,
where M =g¢(q)/2 and ¢ is Euler’s totient function. Therefore,
[e*R:qI"]=| II x(w)|q2".
xmod ¢
*-1-1
Hence ¢J* is a Z-module of the same rank as ¢*R, namely M. Therefore [J* :qJ+]=¢".

Also [¢*R:R*]1=2" because R*=2(e"R). Putting all these indices together we con-
clude that
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[R*:T*1=¢| 11 x(w)|.
xmodgq
w-DH=1

1.2. Considerations of such sums as ¢7! 5, a®o(a) ™! and ¢~ 3, a*o(a) ™' as generators
of ideals do not prove fruitful since they lead to difficult to evaluate determinants.
Also it is not clear that ¢ >,a%s(a)™* and &' >, a'a(a)”" are regular in ¢ § and ¢"$
respectively. However, the fact that for a non-principal character X on (Z/¢Z)* with
conductor % =f and the nth Bernoulli polynomial B,(z), we have (v. A7)

2i-1%(a) By (a/f)+0

if and only if X(—1), n even or ¥(—1)= —1, n odd (where it is understood that
Z(a)=0, if (a,f)=1) leads one to consideér elements in § of the form

""" 2a Bu(a/q) o(a)".
This leads to consider the following more general situation:
ProrosiTION 2. Let f(x)=Dloc;x' be a polynomial of degree n such thai:

a) ¢;€EZ for 0<i<n, ¢,=c¢/q, c€Z, ¢c+0
b) flg—x)=(—1)"f(2).
Let ol=w;)=2,f@)o(a) €S
and suppose that et w €&+ § is regular in £*§ if n is even and ¢ w € ¢~ § s regular in
e~ S if n is odd, then
[RT:R*NRwl=¢'27¥| TI X()| for n even
)

[R":R NRwl=q¢'27¥]| I;[ L(w)| for n odd,
Xmoda q

x(—(l))=~1
where q' is defined by ¢, =c¢/q=¢c'/q, (¢, ¢)=1, ¢’ >0, and M =g(g).
Proof. It follows from assumption b) that
w€e*S for n even

w€e § for n odd.

We give the proof of the proposition for n even, although a completely analogous
proof holds for n odd. Let ,4 be the additive group in R generated by ¢’, and ¢(a) —a",
(@, p)=1. A basis for 4 over Z is ¢, 267, o{a) —a®, and o(—a)—a", 1 <a<q/2, (a,p)=1.
Clearly Aw< R* N Rw. Conversely, if £= Y, z,6(a) € R (x, € Z), then £éw € R implies that
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(22%.0(a)) (C.a"(@)) =0 modg'R (because ¢'|g and w=cg'>,a"c(a)' modR)
which in turn implies that >, z,a"=0 (¢') for any b, (b, p)=1. This implies, in par-
ticular, for b=1 that >, z,a"=0 (¢'). Thus >, ,a"=q'v, for some v € Z. Thus fw=
Dax.(0(a) —a®) —vg'lw or fw € Aw. Thus,
R* N Rw= Aw.
Let B=¢"A4,BS &' R; further put wy=gw. Then
R*"NRo=Bw, ¢(R"NRw)=Bw,.

By assumption o is regular in &* S, hence

[+ R:g(R* 0 Rw)}=[¢* R:¢" Rul ¢ Roy:Baol=*| T1 (@)| (=" R:B].
To calculate [¢* R:B] we consider the epimorphism o
6:R>e"R
0(5)=c*& for £€R.
The kernel of 6 is R~. Moreover A2 R-, for R~ is generated over Z by (s(a) —a") —
(6(—a) —a") € A. Hence
[R:A1=[0(R):0(A4)]=[*R:e"A]=[¢"R:Bl.

But [R:A4]=¢', since 1, 2¢7, o(a) —a", a(—a)—a" for all a, 1<a<gq/2, (a,p)=1 con-
stitute a basis for R over Z. Hence we have that:

[e*R:g(R" N Rw)]=¢" | Il x(w)|.
HEHA
Thus ¢(R* N Rw) is a Z-module of rank M. Thus [R* N Rw:q(R™ N Rw)]=¢"; also
[e*R:R*]=2". Hence [R*:R*' N Rw]=¢'27¥| [] Xw)|, qed.
304
For n>1, the nth Bernoulli polynomial B, (x) can be written as:

n-1
B, (x)=2a"+ Z (av.n/bv.n) 2,
v=0

where @, ,,0,,€Z (v=0,...,n—1),b,,>1, and (a,.4,b,,)=1. Let ¢, = the least common

multiple of b, ,, v=0,...,n— 1. Let ¢, be defined by «,/q=c,/qn, (2, qs) =1 and g, >0.

COROLLARY. With the notation as above, let h,(x)= a,q¢" *B,(x/q) and w,=
2ahn(a) a(a)™; then



GENERALIZED BERNOULLI NUMBERS AND CYCLOTOMIC FIELDS 57

[R*:R"NRw,]=¢,27¥ Ixml;;q ()| = gnle, /2% (1 —p™ 1) Lmllq By|  for n even;

x(—-D=1 2(-1)=1
[R:R NRw,)=¢:.27%| T] Xws)|=gu(x./2| [1 Byl for n odd,

x mod ¢ zZmod ¢

H-1=-1 H-D=-1

where M = ¢(q).

Prosf. We notice that k,(x) has integral coefficients except for the leading coeffi-
cient, which is a,/q. In order to apply the previous proposition we must verify that
h,(g—2z)=(—1)"h,(x) and that e, is regular in ¢*S for » even and regular in £ §

for n odd. As for the first assertion:

by (g — %)= 0 q" " B, ((g— ) /g) = otnq" " B, (1 ~§)
=(__1)n“nqn—l-8n(x/q) by (A2)

= (= 1)"h, ().
As for the latter assertion, it suffices to calculate X(w,) and show that ¥(w,)=+0 if
and only if » even, X(—1)=1 or n odd, X(—1)= —1, for X a character modg. Let
f = conductor of %, f|g. We first consider non-principal %, so f>1. If (a, p)+1, we agree
to let X(a)=0. Then X(w)==0 if and only if

q"“0<b2<qx(b) B, (b/9)+0.
But

I
q"“‘oZ X(®) B,(b/9)=¢""" 2 %(b) > B.(a/q)
<b<g b=1 0<a<yg

a=b()

f @nN-1
=g 20) 2 Bu((b+kf/g) (by Ad)

@/fN-1 n

I
= qn—lbglx(b) kZ Z Chu.r (b/Q)an—r(kf/Q)

=0 r=0

TS ) S (b/q)" —— g
=¢" 2 20) goo,,,,@n,,—r_l[(q/n P2 Bn_f(k/f)] (by A3)

f n

! n
=13 10) 3 Cur O/1) B r(0) (by AD)

I
= "1 3 1) B (/) 0



58 ROBERT SEGAL

if and only if n even, ¥(—1)=1 or » odd, X¥(—1)= —1 (by A7). It remains to treat
the case X=1:
1(w,) =+ 0 if and only if q’“‘l0 bz B,(b/q)+0.
<b<gq

. p)=1

But

n_lﬂ—l _l(qln)—l
=¢"7" 3 B.0+6/) =" 2 Bu(pi/q) (by A3)

_ n_l(alp)—l _ n_‘l(alp)—l g
=B,(0-9)—¢ tZo B, (pt/q)=B,(0)—¢ Eo B, t/;

tgim-1

=B,.<0>—q"-l(p/q)"‘l{(q/p)"—l > B (Mt/ﬁ)} (by A3)
=B,(0)—¢"  (p/9)" " B,(0-¢/p)
=B,(0)—p" ' B,(0)=(1—p" 1) B,(0)*0

if n is even, because then B,(0)= * B,,+0. We may now apply Proposition 2 to
ho(x)=a,q" 1B, (x/q). It remains only to observe that:

for x=+1, X(w,)=a,B}
for =1, Yw,) =0, (1—p"7") B,(0)=a,(1—p" ") Bi.
(The fact that B,(0)= B} is adduced as follows:
B,(0)=B,(1)  (for B,(x)=(—1)"B,(1—z) and B,(0)=0 for n odd)
=B3(0)  (by (A5)
= Bh=DB} (from definitions in the appendix)}.)

Thus, [R*:R* N Row,)=gnlaa/2" 1 —p" )| 11 By (neven)
AED4
[R™:R™ N Rw,1=qnle,/2)"| l:[ B (n odd).
b1

1.3. Let @, be the p-adic number field and Z, be the subring of p-adic integers

(p+2). Put
B’=Zp[a]’ §= Qp[G]

St=¢"S, 8§ =¢&8
R*=RnSt=¢'R; R =RnNS =& R.
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If ueQ, and u=(r/s)p", (r,p)=(s,p)=1, r,s,v€Z, then define:
(w)p=1p".
Analogous-to the classical results used for the group ring over the. rational num-
bers, we recall the following facts:
1) Let £€8, &=>,x,0(a), 2, €Q, Define
2(E)=2 %, 2(a)

for any residue character modg. Then & is regular in § if and only if [] x(£)=+0.
2 mod g
Similarly, if £€8"(87) then & is regular in 8*(87) if and only if

IT x2(&)=*0, (mll, X(E)=+0).

% mod ¢ X Mot
x(-D=1 x(-D=-1

2) If £€R is regular in 8, then [R: ER]=( ] x(&)),. Similarly if £ €R" is regular
g mod ¢
in S*, then [R*:ZR*]=( [] x(&), and if £€R™ is regular in S, then [R™:{R7]=
xmod ¢

x(-1=1
IT x(&),. We now state a proposition analogous to Proposition 2.
p P g

xmod ¢
2(-D=-1

Let f(z)=>7oc;@' be a polynomial of degree n such that

) ¢,€Z, for 0<i<n and ¢,=c¢/q, c€Z,, ¢c*+0
2y flg—=)=(-1)"f(z).
Let w,= 2 f(a) o(a)™".

a
Let ¢’ be defined by c¢,=c/q=c"/q’, (¢',¢')=1, and ¢’ >0. Let A be the additive group
generated over Z, by ¢’ and o(a)—a". Let B=¢*A for n even, B=¢ A for n odd.

ProrosiTioN 3. With the above definitions and hypotheses, suppose now that w,

s regular in 8% for n even, w, is regular in S8~ for n odd. Then

() [R*:R*0Rad=q'( IT w), for n even

2(-D=1

[R™:R- ﬂwa]=q'(xmgq X(wy)), for n odd.

x(-D=-1
(i) R* NRow,=Bow, for n even
R~ N Ro,=Bo, for n odd.

Proof. Proof proceeds exactly as in Proposition 2, but the formula simplifies since
Rt=¢*R (for p=+2).
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For each n>1, let
w,= 24" B,(a/q) o(a) " €8.

(Note the omission of the constant «,.) Let I; =R* N Rw, (r even); I, =R~ nRw,
(n odd). Let A, be the additive group generated over Z, in R by ¢ and ¢(a)—a".
Let B,=¢*A, for n even; B,=¢ A, for n odd.

CoroLLARY. With the above definitions

(i) [R*:If]= q(an[d qB;)p (n even)

2-D=1

R :L1=q( II B, (nodd)

(i) I;=B,w, (n even)

I,=B,w, (n odd).

Proof. For any n=>1,

{n/2)
B,(x)=a"—Lnz" '+ > (—1)*"1C, 2, Byx"
u=1

and 0" B, (w/q)= ¢} (a" — fnga" "+ [:ﬁzi( —1)*"'Cp 2 B,3" ).
By the von Staudt—Clausen theorem, B, has square-free denominator; hence because
Pp+2, we have that all the coefficients of ¢" ' B,(x/q), except the leading coefficient,
are p-adic integers. The leading coefficient is 1/¢ and so in all cases ¢'=g¢. In the
proof of the corollary to Proposition 2 we saw that ¢" ' B, ((¢— z)/q) = (— 1)"¢" B, (x/q).
Also just as we derived in the proof of the same corollary, we have: for ¥+1,
Xw,)=By+0 if and only if %(—1)=1, n even or X2(—1)= —1, n odd; for ¥=1,
Hw,)=(1—p""") Bi+0 for n even. As previously noted, w,€S* if n is even and
w, €8™ if » is odd. Hence we have that w, is regular in 8 for » even and w, is
regular in 8~ for n odd. All the hypotheses of Proposition 3 are fulfilled. It only
remains to remark that (1—p"~'),=1 if n>2.

We recall that R*=¢"R and R™=¢ R have bases over Z, consisting of o(a)+
o6(—a), 0<a<g/2, (a,p)=1 and o(a)—o(—a), 0<a<gq/2, (a,p)=1, respectively. It

is a simple calculation to show that
B,=¢e*A,= {3 u,(a(a) + o(— a))|u, € Z,, > a*u,=0 (q)} = even
a a

B,=e A,={> u,(0(a) —o(—a))|u, € Z,, > a"u,=0 (q)} n odd.



GENERALIZED BERNOULLI NUMBERS AND CYCLOTOMIC FIELDS 61

Let By ={>"u,(0(a) + o(—a))|w, € Z,, > a"u,=0 (¢%)} n even

and Br={>"u,(0(a)—o(—a)|u, €Z,, > a"u,=0 (¢*)} = odd.
a a
Clearly B is an additive subgroup of B,.

LeMMa 1. I:=B,0,=R'qw,+Brw, for n even
I,=B,0,=Rquw,+Biw, for n odd.

Proof. We do proof for n even, and proof for n odd is entirely analogous.

We have from corollary to Proposition 3 that Ii =B,w,. It is also clear from

the definition of I} =R*NRw, that R'qw,<I'; also B;<B, implies that B} w,S<

B,w,=1I;. Thus R*qw,+ B;w,<1I; =B,w,. Consider the following diagram

I; = Bn Wy

Because B, and B; are additive subgroups of R* and w, is regular in 8%, therefore
(B, :Brw,]=[B,:Bz]=¢.
Going to the bottom part of the diagram, we obtain
B; w, N R¥qw, =B, qw,.

Indeed, if £€B;w, N R*qw,, then &=yw,=qzw, where y €B% and z € R*. Because w,
is regular in S* we obtain gz=gy. Using the basis of R*, we see that z=y/q€B,.
Hence £€B,qw,. Conversely, B,qw,<B}w, N RYqw,.

[Remark. If one tries to prove this lemma for group rings over the rational num-
bers and integers, an obstacle to the proof is encountered on the latter inclusion; for
B,S¢"R, and R*"¢ "R in the case where R=Z[G].]

‘Finally, [R*qw,:B,qw,]=[R":B,] because w, is regular in S*. A simple calcula-
tion gives [R™:B,]=g¢.
Applying the well-known isomorphism theorem to the diagram we obtain:

Rtqw,+Brw,: Biw,]=g¢.
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But we proved [B,w,:Bw,]=gq. Therefore
[B,w,:R*qw, + Bl w,]=1

or I} =B,w,=R'qw,+ B} w,.
§2
2.1. Define an additive homomorphism
f:R—=R
by flol@)=alo(a), O0<a<gq, (a,p)=1

flo(@'))=a ola), for (a’,p)=1, a'=a (§),0<a<q.

f extends by linearity to a Z,-homomorphism of R into R such that f(gR)< ¢R. Hence
f induces an additive homormorphism:

f:R/gR—R/qR.

f is also a multiplicative homomorphism. It is clearly injective; and since f(as(a))=o(a)
mod gR we have that f is surjective, and hence an automorphism. (Remark: f itself is not
multiplicative.)

Let w:R—>R/gR be canonical coset mapping.

LemMa 2. If p+2,pfn, and p)n+1, then
[(@(B7 @,)) = 7(B71@n+1)

except in case q=p=3 and n=1.

Proof. Recall that
W, = 249" 'Bala/q) ola)™,

(n/2}

where B.(@)=a"—}na" '+ > (—=1)*10, 5, B,a" %"
u=1

Hence, w0, =g 1>, (@"— } qna"") ola)”! mod ¢R.

By a simple calculation:
Bl o, ={g"" Zc[Za %a(2 Blea )" — qu(ca™)* "] a(e); € Z,, 3qa"u,=0 (¢°)} mod gR.

(The above characterization of B} w, is valid whether # is even or odd. Recall that R(a)
is the least positive residue of @ mod ¢.)
Let x €B% w,, then



GENERALIZED BERNOULLI NUMBERS AND CYCLOTOMIC FIELDS 63
He)=q""3c[Zaus(2R(c a)" ¢  ~ gnc " a" )] o(c) mod gR,
where u,€Z,, > ,a"u,=0 mod ¢*Z,. We wish to show that 7(f(x)) € (Br+1®n+1)-
For 0<a<gq/2, (a,p)=1, let v =nua/(n+ 1)a, then v,€ Z, (because p | n-+ 1) and
20" 10,=0(¢%. Let B=q 1> [Dav(2R(c a)""' — g(n+ 1) (¢ 'a)*)] o(c). Then BER and
7(B) En(Br 11 0n+1). 7(f(x))=m(B) if and only if f(a)=p mod gR which is if and only if
¢ ' 2. (2au2R(c M a) ¢ o(0) =g 2, (Za “a2R( ta)**1 a-‘l) o(¢) mod gR
which is true if and only if
Sem+Duc ' R(c tay =S, nu, Rc 'a)* 'a™! mod ¢* *
forc, 0<c<yq, (¢c,p)=1.
But B¢ ta)*—(c'a)"=qt(c'a) and R(c la)— (¢ la)=gs(c 'a)
for some s(c 'a) and t(c"'a) € Z. Multiplying both equations together, we have
R(cla)"* ' — (¢ 'a)"R(c 'a)— (¢ a) R(c"'a)*+ (¢ 'a)**'=0 mod ¢*
or R(c la)" e '=c"a" R(c @)+ ¢ IR(c )" — ¢ **P g™ mod ¢°.
Substituting this result in the congruence (*), we have f(x) =8 mod ¢R if and only if
Satgc 'R ray =Y nu [R(c a) e "a" —¢ " Pa"] mod ¢*
for ¢, 0<c< g, (¢, p)= 1. But by hypothesis > u,a®=0 (¢%), hence f(«x)=p mod ¢R if and
only if
Su,(cIR(c™ta)" — nR(c ta)e " a"")=0 mod ¢* *
for ¢, 0<c<gq, (¢, p)=1. But R(c 'a)=(c"'a)+ gt(c"'a), t(c 'a) € Z; therefore
R(c'a)"= (¢ 'a)" +ng- (¢ 'a)" ! - t(c 'a) mod ¢
Hence ¢ IR(ca)"=c" P a" + nge "a" *t(c'a) mod ¢*
—nR(c 'a)c "a" = —nc” " Pat—nc "a" qt(c'a) mod g%

Substituting these congruences in (**) we have f(«) = mod gR if and only if: >, u,(1—n)
a*c**P=0 mod ¢® for all ¢, 0<c<gq, (c,p)=1. But >,a"u,=0 (¢°). Thus f(x)=8
mod gR and hence f(n(B} 0,)) S (B 11 wns1).

Conversely, let 71(8) € w(B} 11 ws+1), then



64 ROBERT SEGAL
B=q""2c[2ava(2R(c @) —g(n+ 1) (c"*@)")] o(c) mod ¢R,
where v,€Z, and > a"*'v, =0 (¢°). Let u,= (n+ 1/n)av,; then u,€Z, (for p | n) and
2a0"u, =0 (¢%).
Let a=q""2c[Dau (2 R(c ™ a)" — gnR(c ™ a)" )] o(c)

then ¢ €R and 7(x) € m(B} w,). Then, we prove, just as in the first part of the proof, that

f(2)=p mod gR. Thus
f(7e(B ©,)) = 7t(B 41 0n+1))-

TaeorEM 1. Let f:R/qR—~R/qR be the automorphism previously defined. Let 7u:R—
R/qR be the canonical coset mapping. Suppose p=2, p [n and p[n+ 1, then | induces the
following isomorphisms:

aRY) /2@ =a(R7)/al)  (n even)
a(R7)/nX;) = n(RT) /75 +1) (n odd)
Proof. We do the proof first for n even. We first note that
fm(B*)) = n(R")

for f(ola)+o(—a))=a *(c(a)— o(—a)) mod gR; and thus f(a '(o(a)+ a(—a)))=0c(a)—
o(—a) mod gR. Sinee o(a)+ o{—a) and o(a)— o(—a) generate R* and R~ respectively,
we have f((R*))=n(R™). Secondly, because f and 7 are multiplicative it follows that

F(R* go,)) = #(R" gerp 1)
since clearly (n(qw,))= 7{gwn+1).
Hence fr@) =Bk w,+ R" qe,)) (Lemma, 1)
= f(7(B} 0,) + (R qo,)) = [ (2(B7 0,) + f (7R q0,))

= n(B:-l-l ®n+1)+ (R gown 1) (Lemma 2)

= (Bh10n+1+ B qon 1) = a7 41).
Thus f induces an isomorphism :
a®*)/aly) =m(R") /2l 1)

In case » is odd, everything is analogous, except for the case n=1 and ¢=p=3 where

Lemma 1 ig inapplicable. In case g=p=3, Corollary to Proposition 3 shows that
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[RT:I3]=[R™:I{]=1, so R*=If and R" =1y
and the isomorphism still holds.
CoROLLARY. If p=+2, pfn, and p | n+1, then

(1) p|[R:1;] if and only if p|[R* :17.4] (n odd)
(1) p|[R*:I;] if and only. if p|[R™:1,41] (n even).
Otherwise stated,

2 »ld ml;la By), if and only if pIQ(xml;ImB’?H)” (n odd)

X Mo
2-D=-1 x(~D=1

@) ple( TI Bp), ifand onlyif plg( T1 Bi™), (n even).
x modg xmod ¢

*-D=1 H-D=~1

Proof. Reformulations (2) and (2') follow from (1) and (1') by Corollary to Proposi-

tion 3. We prove only (1), since (1') is proved completely analogously. Define a homo-
morphism:
6:R /I, >R /(I +qR")

Ox+1)=z+ T, +qR7) (x€R7)
0 induces an isomorphism

0:(®/I,)/q®" /L) >R /(I; + qR7)
Define a homomorphism
p:R7/(I; + qR7)>a(R7) /(1)

by e+ I, +qR7))=n(x)+=l,) (xER™).
y is an isomorphism. Hence,
yol:(R™/I;)/qR™/1;) ~n(R™) /n(L;)
is an isomorphism. Analogously,
(R*/L541)/qR* /I5 ) 2 n(RY) /n(I).
From the isomorphism of Theorem 1, just derived; we have the following isomorphism:
R/1;)/a® /1) = (R /I,0)/qR* /I7.).

It is clear from Corollary to Proposition 3 that R™/I; and R*/I7,, are additive p-groups.
Therefore, p|[R™:I,] if and only if R™/I, #+¢(R~/I,) which is if and only if R*/I7 1+
q(R*/I},,) which is if and only if p|[R* :I}.,].

5— 682903 Acta mathematica. 121. Imprimé le 18 septembre 1968.
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2.2. Until now we have considered ¢=p™ to be defined for some fixed integer
m,m>1. We now consider m to vary and let ¢,,= p™, m=>1, p+2. Let {, be a primitive
¢,th root of unity. Let F,= Q({,), and let G,, = Galois group of F,, over Q. Let o(a), € G,
(a, p)=1, be the automorphism of F,, over ¢ such that a{a),, ({,)= {m.

Let Sn =@,[G,), R,=Z,[G,],
en =toMn—o(— D), &n=3(01)n+0(—1),)
R, =c.R,, Ri=¢R,

m®n = qz_l Z B, (a/qm) U(a);l
0<a<q,

(@, p)=1

wla =Ro N R, o, (nodd), .l;=R; NRy, 0, (neven).

Let mBn= { Z U (0(8) — 0( — @) l %, € Zy, Z a"u,=0 (Qm)} (n odd),
0<a<gq,,/2 0<a<q,,/2
(a, p)=1 (a, p)=1

mBn = { Z ua(a(a)m +o(—a)y, I %, € Zp, Z a” uaEO (qm)} (n even)
0<a<q,,/2 0<a<g,/2
(a, p)=1 (@ p=1
then mI; = mBn ' mWn (n Odd), mI; = mBn * mWn (n even)- {Sm}mzl, {Rm}mzl: {B’;n}m>l’ {Rr-;}rrt?l,
{nlz}ms1 (for fixed odd n), {nlf }ms1 (for fixed even n), form inverse systems with re-

spect to homomorphisms to be defined presently.

Define bem1:8m41—> 8, (m=>1)
by tM. m+1 (0< Zfl xa o'(a/)rn+l) = < Za xao'(a)m (xa € Qp)
SE<lpniy S0<dmi1

(It will be understood that all summations are over integers prime to .) ¢y, m+1 i8 clearly
additive (m>1). It is also multiplicative. Clearly, ;. m+1(Bh11) =Rt me1(Bms1) = Ra.

We now take a fixed even n. Let 7(a), = o(a),, + o(¢, — @), then

m+an={ Z uar(a‘)m+1|uaezp, Z a,"uaEO (Qm+1)}-
<A<y 41/2 0<a<q, 1/2
@, =1

We will show ¢, pmi1{m+1B2) S ,B,. Indeed,

b, m+ 1 ( > uaT(a)mﬂ) =t m+1( > U T(A) gy 41+ > '“’aT(a')mﬂ)
0<a<q,,41/2 0<a<@py1/2 < A<Ayp41/2
a=b(a,,) a=b(q,,)
0<b<aq,,/2 U /2<0 <0y
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= z ( 2 ua) T(b)p + Z ( Z '”’a) T(0)m

0<b<q,,/2 0<a<q,, /2 0l2<b <, 0<a<,,1/2
a=b(q,) a=b(a,,)
= > ( > ua) 7(b)m + > ( > ua’) (0)
0<b<q,/2 0<a<q,, /2 0<b<gy/2 0<a'<q,y1/2
a=b(ay) a'=-b(a,)

(fOI‘ 7( - b)m = T(b)m)

= Z ( Z U + Z ua') T(b)m
0 b<q,,/2 0<a<qm+1/2 0sa'<am+1/2
a=b(q,,) a’'=-b(gy,)

To show that £, ;us1(Zo<a<ay, 2 % T(@)m+1) € uBy, We must show that

(2wt 3 uy)=0 (gn)
0<b<q,/2 0<a<qm+1/2 0<a'<qm+1/2
a=b(q,,) a’=-b(q,,)

By hypothesis o<a<q,,, 20" %4=0 (gn+1). Hence Doco<q, 20" %=0 (gn). Thus

= n n
0= > au+ O au,
0<a<qpi1/2 0<a<a,,11/2
a=b(a,,) a=b(q,,)

0<b<qy,/2 2u/2<b<aq,,

i n [y AV )

- b( z ua)+ Z (qm b) ( Z ua)
0<b<q,/2 0<a<g, /2 0<b<g,, /2 0<a<quy1/2

a=b(q,,) a=-b(¢,,)

= b Ut 2 ) modg,
0<b<q,,/2  0<a<quy1/2 05a’'<g,,11/2
a=b(a,,) a’'=-b(q,,

(because n is even, so (g,—b)*=b" mod ¢,), which implies what we wanted to prove;

hence, ¢, ;11 (m+1B2) € mBa. A quite similar argument is valid for = odd.
Secondly,

tm. m+1 (m+1wn) = tm. m+1 (!13.1110 Z Bn (a'/qm+1) G(a’);n%i-l)
+1

<a<q,

=gmsi 2 (2 By(d/gn+1) ol@)n’

0<a<q, 0<b<g,y)
bEa(qm)

. r_1 a+qut B
=qia 2, (tzo Bn( q )) a(a);!

qm+1

[

a

-1 ¢
=gnii p " (p"“ 2 Bn( + 2—0)) o{a),' (by A3)
t=0

Im+1
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= q;;zﬁl Z Bn (a'/qm) G(a’);:l = mWn

0<a<q,

that is, £, 1 (m+108) = m@n.

Because £,, ,,+, is multiplicative, we have that

b m+1 (m+lltt) =l mt1 (m+1Bn) b, m1 (me102) S mBn ‘mOn = mI:t-

for n even. Similarly for n odd.
If we compose the maps ¢, ,.; we thus obtain by suitable restriction the maps of

our inverse system.

2.3. Let z,,:R,,~ R, /¢, R, be the canonical coset map (m > 1). Sincet,, p+1(@n+1 Bm+1) S

¢wRn, we have that ¢, .., induces a map by i1 Tne1(Rpe1) > 7a(Ry) given by:
tnmir( 2 %0@ni)= D %,6(a), mod ¢,Ry (2.€7Z,).
0<a<dy, 0<a<qu,iy

By abuse of notation, we denote the homomorphisms of our inverse systems {7, (R,)}n>
BY tpmer Clearly {mn(Rn)}, {ma(RE)}, {mn (L)} (0 even), {n(aln)} (v 0dd) (m>1)
form inverse systems with respect to these homomorphisms. We therefore also have that
the finite p-groups R;, /.15, Ry/mly, 7tn(RE)/Fn(nlt)s n(Ri)/%n(x1z) (m>1) all form
inverse systems of groups with respect to the homomorphisms #,, ,.; (for the finiteness of
these groups v. Corollary to Proposition 3 and the proof of Corollary to Theorem 1).
‘What is more, if we endow our finite groups with the discrete topology then our groups
are compact and our homomorphisms £, .., are continuous.

As in Section 2.1, we define for m > 1, the automorphism f,,:R,,/¢,.R,, > R,,/¢.R, by
f(o'(a)m + gnBam) = a”? (@) + ¢mBin

and then extend by linearity to the whole ring.
Clearly, £, ,+19fn+1=fm®%mm+1. On the other hand (v. Theorem 1), we have proved
that if p+2, p/n, p/n+1 then f, induces isomorphisms:

fm : nm(B’;t)/ﬂm(mI;) gﬂm(R;)/nm(m a+1)  (n odd)
fm . nm(Rg)/nm(mlrt) gﬂm(“’rz)//nm(ml;ﬁ-l) (n even)

{for all m>1). Because f, and t,, ,,, commute, we have that {f,}n>1 is a map of the in-

verse system

{nm(R;l)/nm(mI;)}m>1 into {nm(R;)/ﬂm(mI:+1)}m>l (n Odd)
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and {nm(R;z)/nm (mI;)}m>1 .into {nm(R;l)/ﬂm(mI;+ 1)}m>1 (n even).

Hence when we pass to the inverse limit we have that the isomorphism is preserved and
therefore if p fn, pfn+1, p+2

lim 57, (R)/m (el ) 2l 70(Rss) /70 (md41)  (inverse limit) (n odd) *)
lim 77, (Ri) /70 (ml) 21 70,(Ri) /7um(lis1)  (inverse limit) (n even). *)

On the other hand, we have from the proof of Corollary to Theorem 1 that

B/l )/ @B/ nln) = A (B7) /Al ) (e 0dd)
R/ nl)/ @B/ wln) = 7n(R7) /7n(lz)  (m €ven).

Furthermore, the isomorphisms involved commute with £, .., hence when we pass to the

limit we have
lim (R/ol5)/an(B/ ki) 2 im 7,(R) /7o) (m 0dd)
lim (R;/07)/@n(R5/ ) =1im 70,(R)/n(nln)  (n even)
m m

Combining these results with (*) we have that, if p [ n, p fn+ 1, p+2 then

lim (Ro/ ) /an(Rin /) 2 1im (R /o 0510) /(R /i) (e 0dd)

Because all the factor groups involved are compact, the operations of passing to the in-

verse limit and constructing factor groups commute. Hence if we can show
lim ¢(Rn/nlz) =0 (n 0dd)
li’Inn In(RE:/15)=0 (n even),
then we will have proved that if p fn, pfn+1, p=+2
linrln R, /I, ~ liﬂx‘n R;/.lii1  (inverse limit) (n odd)

lim R}/ X} ~lim R, /1,1 (inverse limit) (n even).
m m

We show that lim,, ¢,,(R;/.I,)=0 (n odd) (proof same for n even). Indeed, if
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(um)m>1 € h;n Qm(B‘;l/mI;),

then for any m > 1, and for any r >m,

um= tm,m+1 v tr—l.r(%‘vr) = Qrtm,m+1 e tr—l,r(vr) (um € Qm(R;:/mI;)’ Yy € B'T_/TI;)
Suppose order (R,./,.I,)=gq,, (recall R;/,I; is a p-group). Let r >max (m, r,), then

Up= Qrtm,m+1 R tr—l, r(”r) = qr-1q (Qrotm.m+1 A tr—l,r('”r)) = qT‘To : 0 = 0'

Thus (%,)ms1= (0)ms>1 or lim,, ¢,(R;/.l,)=0. Hence we have proved:

TarorEM 2. Ifp/n, p/n+1 and p+2, then
lim R, /I, ~lim R}/, X}, (inverse limit) (n odd)
m m

lim R}/, I} ~lim R,/ X,+1 (inverse limit) (n even).
m m

2.4. Recall that g, =p™ p+2, {, is a primitive ¢,th root of unity, F,= @({,), and
Q.= GQ(F,./Q). Now let F= U 51 F,.. Then F/Q is an abelian extension. Let G =G(F/Q).
Further, let ®,,= Q,(C,,) (m>1); let U be the multiplicative group of all p-adic units in .
There exists an isomorphism »:G— U such that £*=*? for any ¢ € G and { any ¢,th root
of unity (m>1) in F. Let 1€ @G be such that %(z)= — 1. (There is no need to worry about
confusing this 7 with previously defined 7 in Section 1.1 or o{—1),.)

Let et =1(1+7), e =4 (1—7); then ¢*, e €Z,[G]. If M is a Z,[G]-module, we de-
fine submodules of M by M*=¢"M, M~ =& M (our notation is slightly different from
Twasawa [4]). If T is a commutative ring and H is any group, let T[H] be the group ring
of H over T. If there is a homomorphism G H, we also make T[H] into a G-module by
defining 6(S e 1 4,0) (@, €T, 0 €G) to be D,y @50 where s denotes the image of o under
G—H. Hence R, and §,, are both G-modules by means of the natural homomorphism
GG, hence also Z,[G]-modules.

It M, and M, are Z,[G}-modules and if & : 3, - M, is such that

(i) hz+y)=hz)+hy) (v,yeM,)
(i) A@=")=2x(o) h(z)” (0€EQ)

then % will be called a x-homomorphism. The definition of a x-isomorphism of two Z,[G]-

modules is clear.
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Iwasawa introduces (v. [4]) two Z,[@]-modules (among others) X and 3 which are
defined as inverse limits of certain subgroups X,, and 3,, respectively of the additive group
of ®,, m>1; 3 is a sub-module of X. He also introduces two Z,[G]-modules ¥ and B
which are defined as inverse limits of certain submodules %, and B,, respectively of the
Z,[G]-modules 8,,, m>1. In detail, let R, denote the sub-module of all Ssas0 (0EG,
a;€Z,) in R, such that >,a,=0, and let

=B, + R, B,=R, &,
e 1 _qm—p _
where fm—qu(a S )o‘(a),,,, 0<a<gq,, (a,p)=1
a

It is then shown that there exists a Z,[G]-isomorphism of
2[m_)xm’ %m+8m; Q[m/%m_)f,,,/,?)m (m>1)

Since the isomorphism commutes with the homomorphisms of the associated inverse systems,
we have that the isomorphism induces a Z,[G]-isomorphism of A/B—~>%/3 ([4], Theorem
2). Furthermore, the algebra 8,, has an involution x— o* such that ¢* = ¢~ for any o € G,,.
If we denote by UA* the inverse limit of A}, m > 1, then the maps A, > WAs,, m >1 define
a Z,-isomorphism (not a G-isomorphism) U —A* such that (se)* =0 'a* (¢ € G, a €A). The
inverse limit of By, m> 1, gives a Z,[G]-submodule B* of A*; the above isomorphism in-
duces similar isomorphisms B —B* and A/B —A*/B* (again not G-isomorphisms).
Iwasawa further introduces two more Z [G]-modules X and Z. They are defined as
the inverse limit of certain subgroups X, and Z,, respectively of the multiplicative group
of non-zero elements in ®,, m>1; Z is a submodule of X. He then defines a x-isomor-

phism
h:X—>X

such that (Z)= 3, and hence % induces a x-isomorphism
hX/Z->%X/3.
Putting all the isomorphisms together we have the following diagram:

Z,[@)-isomorphism

A* B -+ A/B > X/3

h a x-isomorphism
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Because (ef)*=¢*, and h(2%)=x(1)h(2)"= —h(z)’, we have the following diagram of

isomorphisms:

Z,[G-isomorphism
(A*/B*)y ———> (U[B)” > (X[3)”

k  a x-isomorphism

(X/z)*

Iwasawa (Prop. 1 and Prop. 2, [4]) gives the algebraic structure of A/B and hence
the algebraic structure of X/8. However, since h:X/Z—~%/8 is only a x-isomorphism,
knowing the structure of X/8 does not provide us with such knowledge of X/Z. As as-
serted in the introduction, in order to study (X/Z)* in particular, it would suffice to find
a Z,[G]-module M whose structure is known and for which we have a x:isomorphism of
M~ (%/8)" or (U/B); indeed, we would have induced a Z,[G-isomorphism M (X /Z)*
and we could then recover the structure of (X/Z)*. Our ultimate goal had been to find
such an M. Our M was supposed to have been lim R;,/,I5. We do obtain an isomor-
phism of lim R,/ 15 —(X/3)", but it is not a x-isomorphism as we will presently see.

It follows immediately from the definitions of %, and B,, that ([4], p. 76):

WU /B =R, /(R NR,LE,).

Because &, =0, +3qnt: > o(a),, we have
O<a<g,
@p-1

Il = uBy 0, SRy AR, &, (v, Corollary to Prop. 3.)
Thus we have an epimorphism of finite groups:
Rp/uli >Ry /(B N R, E).

The order of R,/ Ii =¢,( [I B}), (v.Corollary to Prop. 3.)
x mod g,
2-D=-1

The order of
R, /R, N R, &, =order AL /B~ (by isomorphism)
=order U, /B, (again by isomorphism)
= exact power of p dividing the first factor
k., of the class number of F,, (v. [4], Prop. 4)
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=q.( Il By, (v. [8), p. 171 and proof of Corollary

x mod p,,

H-D=—1 to Proposition 3 of this paper.)
Thus, R./nJi 2R,/ R 0R,E,) (m=1).
And hence, for each m > 1, we have a Z,[G]-isomorphism
U /B B/l 5

furthermore, this isomorphism commutes with the homomorphisms of the associated in-
verse systems. Therefore,

lim A7~ /By =lim R, /)i (Z,[G)-isomorphism).
But (A*/B*)~ =lim A, /B}, thus we have that
lim R,/ Xy =~ (A*/B*)~ (Z,[G]-isomorphism).

Recall from Theorem 2 that since p )1, p /2 we have an isomorphism of lim Ry, /I3 —
lim R,/ I;. Call this isomorphism u. A little consideration of how % was constructed
shows that » is a x-isomorphism. We thus have the following diagram:

lim Ry/03 % lim Ry /I - (A*/8*)” > A/B)” > (X/8)"
Zh
(X/2)"

If we compose the maps from lim R}/, 13 - (X/8)", calling this composition », we have

v(x°) = (o) v(x)° " (where x€lim R:/.I5, 6€@). Thus we failed to obtain a x-isomor-
phism.

Appendix

Define the sequence of Bernoulli numbers B,, by: By=1, and for n =1, by the gen-
erating function,

(I=e )y t=p7"+4— i(-— 1) B, *""1/(2n)!

The Bernoulli numbers are rational, and, for example, B, =1/6, B,=1/30, B,=1/42, etc.
Define the sequence of Bernoulli polynomials, B,(z), n>0, by
te

i o0
t_1 = ngo Bn(x) ,"ﬁ'

[
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Then B,(x)=2a"—}na" '+ >MA(—1)*"1C, 2, B,2" *. Notice that B,(x) has rational
coefficients. B,(x), n >0, satisfy the following relations. (Davis, [2], p. 183):

(A1) B,(2)=[z+ B(0)]* where by B(0)" we understand B,(0)

(A2) B,(1=2z)=(—1)"B,()

(A3) B(kz)—k" S B, (x ¥ 7’;)
r=0

(A4) B,(z+h)= Zo O Borl®) 1.

r
Leopoldt ([5], p. 131) defines a different sequence of Bernoulli numbers Bj, by:

tet
et—1

o0
= > Brt*/n!
n=0

and the nth Bernoulli polynomial by:
B} ()= (B*+x)* (n>0) where by B*" we understand Bj.

The Bj(x) can also be defined with the aid of a generating function:

= B* (x) t"/n!
&—1 Z n( )t/ .
N()te that:

(A5) B*(x)=B,(x+1).

For a residue character X with conductor f, Leopoldt defines the nth generalized

Bernoulli number associated with the character ¥, By, by:

! teut =]
2 Xw) 7—= 2 Byt*/n!
p=1 ef—1 T

where X(u)=0 if (u,f)>1. Of course, for x=1 (principal character), Bf = Bj;. Leopoldt
then shows that for x+1, n>1:
(A6) B,’H=0 if and only if either ¥(—1)=1, n even or

%2(—1)=—1, n odd.

Furthermore, if X+1, By=0. He éxpresses B} in terms of Bj and B,(x). Indeed,
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r
S #(u) (fB*+p—f)* (where B*"=B3})
-1 ! /
=7 3 ) (B*+ /=1y

=fr é X(u) B (/}é— ) (by definition of B (x))
p=1
f
=" 2 4) Bulu/f) - (by ASB).
Hence for x+1,

7
(A7) 713 x(u) B,(u/f)+0 if and only if either 2(—1)=1, = even or
pu=1
X(—1)= —1, n odd.

Leopoldt further proves that for X a character with conduector f:

kf

1
> JC(‘JL)“":m{(B;fIr k" =By} (n>0),

a=1

where X(a)=0 if (a,q)+1 and (B,)" is symbolic and means B}. In particular for X a
character mod ¢, 2(—1)=1, x=+1:

@8) 3 xa)a* = §{(B,+ 9P~ B} = gBi+0

(for by (A7), B,=B,=0; x+1 implies By=0; and BZ+0, also by (A7)).
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