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1. Introduction

In this paper we deduce algebraic decay rates for the total kinetic energy of weak
solutions of nonstationary Navier—Stokes equations in exterior domains QcR", n=3:

%+v-Vu—Av+Vp =0 in (0,0)XQ
V-v=0 in (0,0)xXQ
(NS)
V0=0; v—>0 as [x|> o,
v|t=0 =a.
Here v=(v,...,v,) and p denote, respectively, unknown velocity and pressure, while
a=(ay,...,a,) is a given initial velocity. By exterior domain we mean a connected open

set Q whose complement is the closure of the union of a finite number of bounded
domains with C* boundaries. For problem (NS) the existence of a weak solution in L*
was first established by Hopf [16] for an arbitrary L%initial velocity. The uniqueness
and the regularity of Hopf’s weak solutions are still open questions.

The square of the L?-norm of the fluid velocity v is proportional to the kinetic
energy of the fluid under consideration; so in view of the presence of the viscosity term
Av and the no-slip boundary condition v|;o=0, it is reasonable to expect that the
solution v would decay in L? as t — . However, it is in general not easy to deduce the
expected L? decay property for the Navier—Stokes problem in unbounded domains.
This L? decay problem was first raised by Leray [24] in the case of the Cauchy problem
in R® and then was affirmatively solved by Kato [20] for the Cauchy problem in R?® and
R* by using the fact that Leray’s weak solutions become regular after a finite time.
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In this paper we are interested in the L? decay property of weak solutions of the
exterior problem (NS). Since we want to discuss also the case of space dimensions >4,
in which the regularity after a finite time of weak solutions can no more be expected,
we have to employ another approach different from that of [20]. Our approach adopted
here is based on the Fourier analysis for closed linear operators in Banach spaces and
extends those of Schonbek [33, 34], Kajikiya and Miyakawa [18], Borchers and
Miyakawa [3] and Wiegner [43], all of which were developed in the case of entire
spaces R" and halfspaces R, n=2. This approach does not require the regularity of
weak solutions and, moreover, provides apparently optimal decay rates.

To explain our approach, let us consider the linearized version of (NS), namely,
the Stokes problem in exterior domains:

a’

a—t—-Avo+Vp°=0 in (0, ®)xQ

V-'=0 in (0,0)XQ
(S)

Wye=0; "—0 as [|xjox,

v]o=a.

It is known [4] that the map a—v%(?), =0, defines a bounded analytic semigroup of
class Cy in each L" space, 1<r<o, of solenoidal vector fields. As in our previous work
{31, we want to state our decay results in the form of the comparison of the decay rates
of weak solutions v with those of functions v° corresponding to the same initial data as
v. To do so, we need first analyze decay properties of v%(#) and then find an appropriate
estimate on the nonlinear term v- Vv which ensures that the low-frequency components
of v- Vv can be made as small as we please as t— . To this end we use as our basic tool
the negative of the generator of the above-mentioned semigroup, namely, the Stokes
operator A=A, in L" spaces. Due to the boundedness and analyticity of the correspond-
ing semigroup, the fractional powers of A, are defined in the standard manner as in [21,
22, 26, 42]. Using the recent result of Giga and Sohr [13], which guarantees the
existence of bounded pure imaginary powers of A,, we apply the complex interpolation
theory of Banach spaces to examine the domains of the fractional powers and thereby
establish an embedding theorem of Sobolev type involving the fractional powers. This
embedding theorem, stated in Section 4, enables us to analyze decay properties of
functions v%(f) as well as to find a nice estimate on the nonlinear term v-Vv. These
results on v’ and v- Vv combined with general calculation schemes as developed in [3,
18, 33, 34, 43] eventually yield the desired L? decay results for weak solutions of (NS).
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As shown in Section 5, our estimate on v- Vv automatically gives a definite algebraic
decay rate for its low-frequency components depending only on the space dimension .
This indicates that in general we cannot expect that our weak solutions themselves
would decay more rapidly than the nonlinear term, even when the corresponding
functions v° decay in L? exponentially.

In [25] Maremonti discussed L? decay problem for (NS) in three dimensions.
Applying the energy integral method of Heywood {15], he proved that if a is in L'nL?
for some 1<r<2, then there is a weak solution which decays in L? like the correspond-
ing solution v° of (S). This result does not reflect the presence of the nonlinear term,
because, as will be shown in Section 2, in his case the nonlinear term decays more
rapidly than the function v° and the decay property of his weak solutions is determined
by that of 1°. Our results thus include that of [25] as a special case (see Theorems A and
B in Section 2).

Using the boundedness of the semigroup a—1%(¢) in general L' spaces, we can
show (see Lemma 5.2) that any weak solutions decay in L%norms, n/(n—1)<q<2, if the
corresponding initial data belong to L'nL? for some 1<r<n/(n—1). This improves the
same type of result of Galdi and Maremonti [10, 25] and implies in particular that the
weak solutions treated in our Theorem A in Section 2 decay in LY, r<q¢=<2, with explicit
rates in case r<qg<=2, if in addition r<2n/(n+2); see Theorem C in Section 2.

Our main results are stated in Section 2. Sections 3 and 4 are devoted to the study
of the Stokes operator A,. Since in our case A, has no bounded inverse, the study of
fractional powers requires more careful arguments than in the case of bounded domains
as treated in [12]. We use homogeneous Sobolev spaces to examine the domains of
fractional powers by means of the complex interpolation theory, and prove that the
functions Vu and A?u have equivalent L™-norms provided 1<r<n. The same result is
given in [13] for 1<r<n/2 and 1<r<2. To extend the range of r to 1<r<n, we consider
the stationary Stokes problem with singular data and deduce a coercive estimate on L'
Dirichlet norms, 1<r<n, of solutions. The desired equivalence of Vu and A"y in
appropriate L” spaces is then deduced through an interpolation argument, and this gives
us an embedding theorem of Sobolev type for domains of fractional powers.

The above-mentioned estimate for the stationary Stokes system with singular data
was first deduced by Cattabriga [6] in the case of three-dimensional bounded domains.
We first extend Cattabriga’s result to the case of general space dimensions and then
apply the cut-off argument as developed in [4] in order to decompose our problem to
the cases of entire spaces and bounded domains. This is carried out in Section 3.

The present work was initiated while the second author was visiting the University
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of Paderborn in 1986-87. We wish to thank Professors R. Rautmann and H. Sohr at the
University of Paderborn for a number of stimulating and helpful discussions and
valuable suggestions.

2. Main results

We introduce some notation and definitions. Given a domain Q of R”, we denote by
C;(Q) the set of scalar, as well as vector, C”-functions with compact support in Q.
Co,(Q) is the set of solenoidal vector fields on € with components in Cg (Q). For
simplicity we use the same notation for denoting spaces of scalar and vector functions
unless otherwise specified. L'(Q), 1sr<, is the usual Lebesgue space with norm
IIl,=II-l..q; and for nonnegative integers k, H*'(Q) denotes the L" Sobolev space with
norm |||}, .= lk...e- Hy'(®) is the H*'-closure of C3(R). When Q is unbounded, we
need also the homogeneous Sobolev space H’g"(Q) defined as the completion of C;(S2)
in the norm

V%], = > flo°ull
la=k

where 3*=37"...3,", 3,=8/3x, and |a|=q, +...+a, for any multi-indices a=(ay, ..., a,) of
nonnegative integers. The bracket (-,-) stands for the duality pairing between various
Banach function spaces which extends the standard L’inner product for real-valued
functions. H%"(Q), and H%'(Q), 1<r<w, denote the dual space of H%*"(Q) and
H5T(Q), r'=rl(r—1), respectively.

We now define the notion of weak solution of problem (NS). For an exterior
domain Q of R", n=3, we denote by L(RQ), 1<r<, the L’-closure of Cj (€). Then we
have the Helmholtz decomposition of L'-vector fields:

L'(Q)= L (2)+G(RQ) (direct sum)
L(Q)={u€L(Q); V-u=0, u-v|;q=0}; Q2.1
G'(Q)={VpEL(Q); pEL (D)},

loc

where V- u is understood in the sense of distributions and the normal component u - |y,
of u is well defined in the dual space W™ ""(3Q) of the fractional Sobolev trace space
W' (3Q)=w'""""(3Q). Further we have ([28])

L(Q*=L(Q); G(Q=L(Q*" 2.2)
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where * means the dual space and * the annihilator. The results (2.1) and (2.2) are
proved in [28, 37] for three-dimensional exterior domains, but the proofs given [28]
applies also to higher-dimensional case.

Let a€L%(Q). A function v in L*(0,0; L2(Q)) N L}0,0; Hy?(Q)) is called a weak
solution of problem (NS) if v is continuous from [0,%) to Lf, (€2) in the weak topology,
v(0)=a, and the identity

(o(0), $0)+ f ((Vo, V) + (0 V0, 6)) dr = (u(6), $(5)) + f (0, dr 23

holds for all 0ss<r<w and ¢ €CY([0, *); L2(Q))nCY[0, ©); Hy*(Q)NL(Q)). Here
¢'=3¢/3t and (Vv, V¢ )=L,(3,v,3); the requirement that ¢ be in L*(Q) is necessary
in order for the nonlinear term in (2.3) to be well defined. In the usual definitions of
weak solution the function v is required only to be in L ([0,%); L2(Q))n L% ([0, *);

H}*(Q)). However, since all the weak solutions constructed so far satisfy the energy
inequality:

t
Hv(t)||§+lf [Volz dr <|lall;
0

for all r=0, we adopt our present definition. Since the weak continuity of v necessarily
follows from (2.3), our definition of weak solution agrees with the usual ones (see [23,
27, 30, 35]).

We can now state our main results.

THEOREM A. Let n=3, aELf,(Q) and let v° be the solution of problem (S) with
’(0)=a.

(i) There is a weak solution v of (NS) with the following properties: (a) ||v(t)|,—0
as t—w. (b) If in addition ||V°(0)|,=0(") as t— for some a>0, then llv(@)|l.=0™?)
as t—o, where f=min(a, n/d—e) and ¢ is an arbitrary number such that 0<e<1/4.
(¢) The function v()—v(t) satisfies ||Ju(t)—v°(B)|,=0(t"**'?) as t—. (d) If in addition
||v°(t)||2=0(t_"‘) as t— for some a>0, then |v(t)—v°(D|,=0@™") as t—», where
y=nld—12+a if a<1/2; and 0<y<n/4 is arbitrary in case a=1/2.

(ii) If a weak solution v of (NS) satisfies the energy inequality of the following
form:

13908283 Acta Mathematica 165. Imprimé le 8 novembre 1990



194 BORCHERS AND MIYAKAWA

t
llv()|5+2 f Vol dr<|v(s)|} for s=0,ae. s>0andallt=s (E)

then v possesses all the properties (a)-(d) described in (i).

Part (i) asserts the existence of a weak solution with properties (a)-(d) for any
initial data a€L2(Q), while part (ii) asserts that any weak solutions satisfying the
energy inequality (E) have properties (a)—(d). We note, however, that the existence of a
weak solution satisfying (E) is known only when n=3,4 (see [20, 24, 29]), and,
moreover, it seems impossible to deduce (E) for general weak solutions in case n=5. It
is also proved in [29] that the energy inequality (E) implies property (a). Our part (ii) is
thus an improvement of the decay result established in [29].

Theorem A was first proved by Wiegner [43] for the Cauchy problem, with
B=min(a, (n+2)/4). The same result can be deduced also in the case of halfspaces if we
use various estimates given in [3]. Contrary to these cases, our Theorem A provides
slower decay rate: f=min(a, n/4—¢). As will be shown in Sections 4 and 5, this is
mainly because our embedding theorem for domains of fractional powers holds only for
the exponents 1<r<n.

When a €L'(Q) an, (Q) for some 1<r<2, one can take a=(n/r—n/2)/2 as shown in
Section 4. Hence in this case f=a and we obtain the following, which is due to
Maremonti [25] in case n=3.

THEOREM B. If a EL'(Q) N L2(Q) for some 1<r<2, and n=3, then there is a weak
solution v of (NS) such that |jv(t)|,=O(™") as t—», where y=(nlr—n/2)/2. The same
holds for any weak solutions satisfying energy inequality (E).

Our final result concerns the behavior of L%norms, g<2, of weak solutions. The
following improves the same type of results of Galdi and Maremonti [10, 25].

THEOREM C. If n=3 and a€EL(QNL:(Q) for some 1<r<nl(n—1) with r<
2n/(n+2), then the weak solution given in Theorem A lies in the space L*(0,%; L))
for all r<q<2; and we have ||v(?)||,=o(t™") as t—, with n=(n/r—nlq)/2 provided q<2.

Theorems A and C will be proved in Section 5, after preparing necessary material
in Sections 3 and 4. In what follows we use the summation convention and C denotes
constants which may vary from line to line.
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3. The Stokes operator over an exterior domain

We first define the Stokes operator and discuss its basic properties. let P=P, be the
bounded projection from L'(Q) onto L[(RQ), 1<r<w, associated with the Helmholtz
decomposition (2.1). The operator

Au=Au=—P Au, u€D(A)=L,(Q)nHY(QNH"Q) 3.1

is called the Stokes operator in L] (Q). The equation Au=Pf is equivalent to the
stationary Stokes system:

—-Au+Vp=f, V-u=0 inQ;
(SS)

Uyo=0; u—0 as |x|— .

Since (SS) is elliptic in the sense of Douglis and Nirenberg, elliptic regularity theory as
given in [1] implies that A, is a densely defined closed linear operator in L7 (Q) and, for
each m=1, 2, ..., D(A]") is contained in H*™(Q) with the graph-norm equivalent to
|||l The dual operators of P, and A, are given by

P*=P,, A*=A,, r=rl(r—1) (see [9). (3.2)

It is known [11, 37] that —A, generates an analytic semigroup {e_'A'; =0} of class Cj.
In this paper, however, our subsequent argument is based on the following improve-
ment of the results of [11, 37], which is due to [4] and [13]. In what follows the
complexifications of various function spaces will be written with the same notation as
the original real ones.

THEOREM 3.1. If n=3 and 1<r<o, then for each 0<e<nl2 there is a constant
ce=cle,r,n,Q) so that for all u€L’(Q), tER and all complex numbers A+0 with
largA|l<m—e¢, we have

@ [lA+A)"ull=c, ]AI7"|u],.

(i) [[V2A+A,) ul|,<c,|lu|, provided 1<r<n/2.

(iii) The pure imaginary powers (A+A)", 1>0, are defined as bounded linear
operators on L] (Q) satisfying the estimates

@A+A) ull, < c.eull,.

Parts (i) and (ii) are proved in [4] and part (iii) in [13]. By (i) we can define the
fractional powers A%, a=0, as in [21, 22, 26, 42]. Part (iii) is proved in [13] only for A=0;
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but one can easily verify that the proof of [13] actually asserts our version (iii) stated
above. Part (iii) enables us to study the domains of A? with the aid of the complex
interpolation theory. From (i) we can deduce

ProrosiTion 3.2. (i) The analytic semigroup {e_'A'; =0} is bounded.
(ii) For each a=0 we have the estimate

A%~ Au||, < Ct™|u|l,, uw€L,(Q), t>0. (3.3)
(iti) For each a=0,
|A*A+A)"%u||, < Cl|u||,, uEL,(RQ), A>0. (3.4

(iv) The operators A%, a=0, are all injective.
r

Proof. The boundedness of the semigroup and estimate (3.3) for integers a=0 are
well known; see for instance the argument in [19, p. 491]. Application of the moment
inequalities [22]:

|APu||, < Cl|A%u|f||A7u||) %, Osa<p<y<l, 8=@F-Py-a)

then yields (3.3) for general a=0. Estimate (3.4) follows from Theorem 3.1 (i) and [21,
Proposition 6.3]; see also [26]. Now if A,u=0, then elliptic regularity theory implies that
u€ LYQ) for some g>2. Thus, assuming without loss of generality that the origin is
outside Q, we easily see that

f lu|’}x| "dx = o(logR) as R — .
Qn{x|<R}

Hence the uniqueness theorem of Chang and Finn {7, Theorem 6] implies that #=0.
This shows that all integer powers of A, are injective. If A”**u=0 for some integer
m=0 and 0<a<1, then we obtain by (3.2),

0=(A™"u, A°¢) = (u, A" @) forall @EDAT™.

This shows u € D(A™*"), A™*!'4y=0 and therefore u=0. Thus, all powers A, a=0, are
injective. The proof is complete.

By injectivity of A% the map u—||A%u||, defines a norm on D(A7), so we can
introduce the Banach space
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D¢ = the completion of D(A?) in the norm ||A"~‘||,. (3.5)

Our aim in this and the next sections is to characterize some of these spaces concretely
in terms of the complex interpolation theory with the aid of Theorem 3.1 (iii). To do so,
we begin with the following result of Bogovski [2] which shows existence of a
continuous right-inverse for the divergence operator with zero boundary condition in a
bounded domain.

PROPOSITION 3.3. Let D be an n-dimensional bounded domain, n=2, with locally
Lipschitz boundary. Then there exists a linear operator S: Cy(D)—Cq(D)" such that for
all fECJ (D),

IF hsr,s < ClF by m=0,1,2,..., 1<r<o, (3.6)

with C depending only on m, r and D; and

V-Sf=f forall f€C;(D) with ffdx=0. 3.7
D

Here ||-||,,, is the norm of H™'(D).

From (3.6) it follows that § extends uniquely to a bounded operator from
Hy'(D) to H(’)"“”(D)”. We refer to [5] for a complete proof of Proposition 3.3 which is
roughly described as follows: We first consider the case where each point in D is
connected by a segment in D with a point of a fixed open ball B such that BcD. The
operator § is then expressed as

Sf(x)= f Gx, ) fmdy, G, y)=x—y) J h(y+t(x—y) "' dt,
D 1

in terms of any fixed function 4 € Cy (B) such that [ hdx=1, and the proof is carried out
with the aid of the Calderon-Zygmund theory [40] on singular integrals. The general
case is then treated by reducing the problem to the case stated above by means of a
partition of unity. It is also shown in [5] that the method of proof illustrated above
yields the following, which is important in the next section.

PrOPOSITION 3.4. The operator S restricted to {f€ Cy(D); §pfdx=0} extends
uniquely to a bounded operator from H (D) to L'(D)".

We now prove an estimate on solutions of the stationary Stokes system (SS) with
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singular data which extends a result of Cattabriga [6] obtained in the case of bounded
three-dimensional domains. In what follows the norm of the space H ™ (Q), m>0,
I<r<, is denoted by [-|_,, ,=|*|_,. ,.0-

THEOREM 3.5. (i) Let n=3, 1<r<n, u€D(A,), pEL(Q) and f=—Au+Vp. Then the
estimate

[Vull, +lpll, < Clf1-, 3.3

holds with C independent of u and p.
(i) If n=2, pEL(Q) and 1<r<, then Vp € H “(Q) and we have

lIpll, < ClVpl_,, (3.9)

with C independent of p.
(iii) If n=2 and q is a distribution on Q such that Vq€ H""(Q) for some 1<r<,
then Vq=Vp for some p in L'(Q).

THEOREM 3.6. If n=3 and 1<r<n, then we have the estimate

Vull, < Csup |{Vu, Vv)| for u€D(A), | (3.10)

where the supremum is taken over all v€ C§ (Q) with ||Vy||. = 1.

Remark. When Q is bounded and n=3, estimate (3.8) is due to Cattabriga [6] and is
valid for 1<r<o. As shown below, this result of {6] is true in all dimensions n=2.
Kozono and Sohr [45] have also proved (3.8) and (3.10) for n’'<r<n. Although the
arguments in [45] are almost the same as ours, we give here the detailed proofs since
our results cover a broader range 1<r<n. In what follows fI}):;(Q) denotes the
H""-closure of Cy ,(Q).

Proof of Theorem 3.6. We deduce Theorem 3.6 from Theorem 3.5. For u in D(A,)
we regard g=—Au as an element in Hj 7, (Q)*, the norm of which we denote by ||-|[*. By
the Hahn-Banach theorem one finds an fEH™""(Q) with f=g on Hjy,(Q) and
[£1_1.,=llgll*. By a theorem of De Rham [32, Theorem 17'], f—g=Vp for some distribu-
tion p on Q; and by Theorem 3.5 (iii) we may assume that p € L'(Q2). Applying (3.8) to
f=g+Vp=—Au+Vp we find in particular that
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[Vull, < Clf1-,, = Cligl*.
By definition of the norm ||-||*, this proves (3.10).

It remains now to prove Theorem 3.5. The proof will be carried out in several
steps. We begin with the case of entire spaces R", n=2.

ProrosITION 3.7. Let n=2 and 1<r<oo,
(i) If pEL"(R™), then Vp € H “(R") and the estimate

P, oo <CIPL, o

holds with C independent of p.

(i) If q is a distribution on R" with Vg€ H™"(R") for some r, then there is a
(unique) function p € L'(R") with Vq=Vp.

(i) If u EH},: (R"), pEL'(R") and f=—Au+Vp, then the estimate

IVull, gt PN, g S CIFI_, | oo G.11)
holds with C independent of u and p.

Proof. (i) Since the reverse inequality is obvious, we may assume that p is in
Cy(R"). By an elementary calculation,

px)= CJ =) (Vp) (») dy =K, * (9,p).
Pe—y]

For ¢ € Cj(R") we have
[{p, )= [(K;*(©@;p), $)| = {(8;p, K*¢)|.
Thus, if K;*¢ is in H(l) "(R"), the Calderon-Zygmund theory [40] on singular integrals
yields
K©@p, Ki* ) <[Vpl_| | llVK*@ll, (< CIVP[_, | pll@ll, gn

and the proof of (i) is complete. We thus need only show that K,*¢$ € Hy"(R"). Let
EECF(R) be such that 0s¢<l1; {=1 if |x|<1; {=0 if |x|>2; and set {n(x)=C(x/N).
Obviously {y K, * ¢ € C5(R"). We write

VA=EV K*@ll,, o <NA—-L) VK * @I, ot IVEN K;* D, v =Iy+Ty-
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Since VK;*¢ € L”(R" by the Calderon-Zygmund theory, Iy—0 as N—«. To handle Jy
we fix M>0 so that supp ¢ is contained in the ball of radius M centered at the origin. By
an elementary calculation,

Jy) <CN™" J dx( f lx=y|""" [p(»)| dy)
N<px|<2N ly|l<M

<CN~"(N—My'4- J' dx( f |¢(y)|dy>
N<p|<2N <M

<SCN"-" 50 as N—ox,

since r'>1. This proves that K;* ¢ € AR,

(ii) Let P=P, be the projection associated with the Helmholtz decomposition of
L'(R"). Since Pu=u—Vp, where p solves Ap=V-u in R",

(Pu),= 0 +RRYu, j=1,....n,

in terms of the Riesz transforms [40] R=(R;, ..., R,) and Kronecker’s symbol ;. Thus
we can directly decompose H™""(R")=R(P)+N(P), because the Riesz transforms are
bounded linear operators in H“'(R?). We write Vg=u+VpER(P)+N(P) with
p=—(—A)""2R-g for some g=(g) € H™"'(R". As in the proof of (i), one can show the
boundedness of the Riesz potential (—A)™"2 from L"(R") to Hy"(R"); so by duality, it is
bounded from H “(R") to L(R"). Hence p€L'(R"). Since A(g—p)=V-u=0,
A(V(g—p))=0. Since V(g—p)EH ""(R")<H "'(R", elliptic regularity theory implies
V(g—p) € H""(R" and so V(g—p)=0.
(iii) We first show that if p is a scalar function in FI(I,”(R”), then

VP, zn < ClAPI_ (3.12)

1,r,R"

with C independent of p. By the Hahn-Banach theorem we can take g=(g;) from L'(R")
so that —Ap=V-g and |Ap|—l,r, R"=”g“r, o We approximate g in L'-norm by smooth and
compactly supported g,, and set p,,=(—A)"!V-g,, where (=A)"! means the convolu-
tion with the standard fundamental solution of —A. Then Vp,=R(Rg,) converges in
L-norm to some fE€L(R"; and by the Helmholtz decomposition, f=Vg for some
g€L; (R"). But then, as m—x,

-Ap,=V-g,—»—Ap=-V-f=-Aq

in the distribution topology, so A(g—p)=0 and therefore A(V(g—p))=0. Since
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V(g—p) EL'(R", Vg=Vp. Estimate (3.12) follows from Vp=Vg=R(R-g) and L’-bound-
edness of the Riesz transforms.

We can now prove (3.11). From the equation —Au=PFf, the boundedness of P in
H™'"(R") and estimate (3.12) it follows that

(Vell, n < CIPFI_, , pe<CIfL, o (3.13)
Hence from (i) and the equation Vp=f+Au we obtain

”pH,‘,RnS C|Vp‘_1,,,R"s C(|f‘_1,,,R'l+lAu‘_],r,R")

<CUSL, , wtlVull, Q) <CIFI, | o

Combining this with (3.13) yields estimate (3.11). The proof is complete.

We next consider the case of bounded domains and extend the result of Cattabriga
[6] to all dimensions =2.

ProPoSITION 3.8. Let D be a bounded domain with smooth boundary in R", n=2,
and let 1<r<oo,

() If pEL (D), then Vp EH™""(D) and

-y
D

with C independent of p, where §;, means integration over D with respect to the
normalized Lebesgue measure and ||-||_, , p is the norm of H™""(D).
(i) If q is a distribution on D with Vq € H ""(D), then Vq=Vp for some p EL'(D).
(iii) If u€ é:;(D) and p € L'(D), then f=—Au+Vp € H "'(D) and

P_)(P
D

with C independent of u and p, where H(’,j;(D) is the H""-closure of Co (D).

= C”Vp”—l,r,D
r,D

HVMII,,D+ SC||f”—1,r,1) (3.14)

r,D

Proof. (i) Proposition 3.3 implies that the divergence operator
V-:Hy"(D)— L"(D)
has the closed range

R(V)= {fEL"(D);ffdx= 0}.
D
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Hence (i) is obtained by duality and the closed range theorem [44].
(ii) Consider the gradient operator

V:L(D)— H (D).
By the proof of (i) the range R(V) is closed and
R(V)=N(V)t= {uEH},"'(D);V-u =0}".

It suffices therefore to show that (Vq, u)=0 for all u€ N(V-). Take u; from Cy(D) so
that u/—u in H""(D) and so V-4~V -u=0 in L"(D). By Proposition 3.3 the functions
v=u;—S(V-u) are in Cy (D) and satisfy
”u“l’jHl,r',DS H“_”jl|1,r',D+l|S(V'”j)||1,r',D

= H”_uj||1,r',D+C”V'“j”r',D

—0 as j—o .
Since (Vq,v;)=—(q, V-v;)=0, we obtain as j>x

Vg, u)|= |<V‘1» M—Uj>| = “an—l,r,D”u—ijI,r’,D_)0’

This proves (ii).
(iii) Let A=A, be the Stokes operator in L](D). By Giga [12],

D(AY)=Hy"(D)nL(D),
which equals H(l);t’,(D) in view of the proof of (ii}, and we have the estimate
C\\Vull, p <I|Aull, p < CIIVull, . uED(A;?). (3.15)

Assume first that u € D(A,) and p € H""(D). Then Au=P,f, where Pp is the projection
associated with the Helmholtz decomposition of L'(D). Since {A*v;v€Cy (D)} is
dense in L"(D), (3.15) yields

IVull, p< CIlA"ul, , = C sup{|[(A}u, A;?v)| /|42 0]l ps vE CF (D)}
< Csup{[(Ppf, v)|/||IVVll, ps vE Cg ,(D)}.
Since (Ppf,v)=(f,v) for vE€ Cj (D), the last terms is estimated as

< Csup{[(f, w>|/va”r’,D; weC; (D)} = C”f“—l,r,D'
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This, together with part (i), yields (3.14) in case u € D(A,) and p € H""(D). The general
case is then treated through approximation. The proof is complete.

Proof of Theorem 3.5. (i) Take y € Cj(R") with y=1 in a neighborhood of the
complement of Q, and let u€ D(A,), p € L'(D), 1<r<. Choosing open balls B, and B so
that

Qn(suppy) =B, B, cB,
we decompose u as follows:
U=ui+u,;
u=ypu—SVy-u)€ED(A, 5.0), u,=1-y)u+S(Vy-u) €EDA, L),

where § is the operator given in Proposition 3.3 with D a neighborhood of supp Vi such
that D is compact in BN Q. Since S(Vy-u)€ Hg’ (D) if u€D(A,), we always understand
that S(Vw-u)GHg”(R") by setting S(Vy-u)=0 outside D. A, pnq and Ar’ - denote the
Stokes operator on BNQ and R”, respectively. Now let f=—Au+Vp; by direct calcula-
tion we have

1= —Au+V(yp) = wf+pVy—2Vy - Vu—uAy+AS(Vy - u). (3.16)

fe])

< (U o+ 199 WAL

J[ ¥p ) NcRY)
D

<C{0fly, A+ Vi syl TS T,
J( yp >
D

where ||-||_, , is the norm of H™""(Q). We estimate the right-hand side as follows: Since
supp Vy<BNQ and since ¢ €C;(Q) vanishes on 9Q, it follows from the Poincaré
inequality that

Applying (3.14) with D=BnQ yields

Vel Hpl, < 1t

HASVy-Wl-y, o+ PV -y o+

+Hpku—],r+
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Kvfs o) =K foyd) | <|fly IVl
<C|fl-, AVl +gll. p) < Clf |- AVl

where D=BN <, and C depends on y. Hence we have
[pfl_,<C|fl., (A<r<o).
Next, Proposition 3.3 yields
VSV, < ClIVy-ull, SCllul, sppry (1 <r< ).
On the other hand, the Poincaré inequality yields

(VY- Vi, )| = (Vu, (V) §)| = [, (Vo) p+Vy V)|
= C”u”r,suppr(”¢”r',D+”V¢“r’) = C||u”r,suppV1p”V¢”r’;

l(qu’ ¢ >| = Cll””i, suppr”¢”r‘,D = C”u”r,suppvwllv¢”r"

We thus have

va ) Vul—l,r = C”Il” |qu,—1,r = C”u”r,suppvw (1 <r< 00)

foe])

= C<|f|—l,r+“u”r, suppV¢+“pvw“—l,r+

r, supp Vy ;

From (3.17)—(3.20) we obtain

||Vu1u,+||wpn,sc(|m||_1,,,0+

foel)

Consider now the function fo=—Au,+V({(1—y)p) on R". By (3.11) we have

”Vl’l2“r+“(1—u))p“rs C|f2l——l,r,R”'

(3.18)

(3.19)

(3.20)

3.21)

(3.22)

We first discuss the case where n’'<r<w. Taking ¥,€ C*(Q) such that y,=1 in a
neighborhood of supp(1—w) and y,=0 in a neighborhood of 3Q, we find that, for

PECIRY,

(f0) = S0, 0) = (fi,0)—(f1,¥20).

(3.23)

Next, choose y, € Cy(B) such that y,;=1 in a neighborhood of B,. Since f; vanishes

outside B, we see that ( fi, v,@)=(f1, ¥, ¥,9). So (3.23) gives
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(fos @) =L 0,0)—{fr, 0, 1 0). (3.24)

Applying Sobolev’s inequality yields, with 1/(r'Y*=1/r'—1/n,

[V @), < I, o
<C|vel,

[6VY,ll, g) < CUVRI,, ot lIBl]ye o)
. R
IV v, Dl p < CAVOIL, Wt lldVE 9o, o)

< C(IVYll,, grtligll, e g < ClIVOI,, gne

Thus (3.24) implies that

£y, e SCAS L ANAN - p)- (3.25)

)( ¥p ) (3.26)
D

for n’<r<o, with C independent of u and p. To discuss the opposite case 1<r<n’, we
need the following lemma.

Combining (3.21), (3.22) and (3.25) gives

||Vu||,+up||,<c(|f|-1,,+nu||,,suppw+||pvwll-1,,+

LEMMA 3.9. If r=n, the space FI},’ "(2) contains all the smooth functions which are
constant for large |x| and vanish in a neighborhood of 3Q.

Admitting this lemma for a moment, we continue the proof of Theorem 3.5. Let
I<rsn'. Since (f2,¢0)=(Vup,V¢p)—((1~y)p,V-¢), we may replace ¢ € Cy(R") by
n=¢+c, where ¢ is a constant vector. We fix ¢ so that

J ndx=0. (3.27)
Bl

Using the functions 3, and v, introduced above, we then obtain

(for0) = (Som) =L am) (i, 01 ¥27)- (3.28)

)

1

Using the Poincare inequality:

limll, 5 < C<||V¢f|,r,s+
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and (3.27), we see that

”V(Vh ’7)“r' = C(”V¢”r"Rﬂ+‘lnvszHf’Rﬂ)
<C([Vell, gatllmlly )< ClIVPIL, gns
V@ vl p< C(”V‘p”,v,Rn"'l’?v(w#’z)”w,b)

<C(IVoll, gutlnll,5) < ClIVl,. e

Since y,7€ A" (Q) by Lemma 3.9 (3.28) implies (3.25) and we obtain (3.26) for
I<rsn'.

Now fix 1<r<nr and suppose the estimate (3.8) is false; then there are sequences u;
and p; with ||Vu||,+|lp|l.=1 and |f]_, ,—0, where f;=—Au;+Vp,, We may assume that
u—u weakly in Hé"(Q) and p,—p weakly in L'(Q). Then, since u;—u weakly in
L™(Q), 1/r*=1/r—1/n, we obtain for ¢ € D(A,) ND(A,.),

(£ 0) = (Vup Vo) = (uj, Ay §) = (u, Ay ) =0.

Since (r*¥)'<r’, D(A,) ND(A) is dense in D(A ) with respect to the graph-norm; so
(u,A(,*),¢)=0 for all ¢ €D(A,.,) and therefore u€D(A,:),A,»u=0. Hence u=0. But
then, f,—»—Au+Vp=Vp=0 in the distribution topology, and we get p=0 because
pEL(Q) and Q is an exterior domain. We have thus proved that u,—0 weakly in L™ (Q)
and p;—0 weakly in L'(Q). In particular, 1,—0 weakly in H}'(Q); and since L cL” on
supp Vi, it follows that u; is bounded in H"’ in a neighborhood of suppVy. The
Rellich-Kondrachov compactness theorem [8] now implies that

u;—0 in L'(suppVy) and p;Vy—0 in H Q).

Since, clearly, f5vp,—0 by the definition of weak convergence, we deduce

J( ¥p;
D

and by (3.26), ||Vu/|,+||p|,—0: a contradiction. This proves (3.8). ,
(ii) Fix 1<r<w and suppose there is a sequence p; such that |jpj,=1 and

—0

If;'|—1,r+||u“r, suppr+||pj Vw“—l,r+

IVp|_,,—0 as j—. We may assume that p,—p weakly in L'(Q). For any bounded
domain D<=Q the restriction map induces a bounded linear operator from H Q) to
H™'"(D); so Proposition 3.8 ensures the existence of constants ¢;=c{D) with p;—c,—0
in L'(D). Then, ¢;=(c;—p)) +p,~p weakly in L’(D) and so p=constant=0. We thus find
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that p,—0 in L'(D) for any bounded D=Q. Now let y be the function exploited in the
proof of (i). By Proposition 3.7 and the argument used in estimating f> in the proof of (i),
we obtain

”(1"1/)) (pj_pk)”r,R" = ClV{(l "1/)) (pj_pk)}l_l,r,R’l
sC(W(Pj"l’lc)l—l,r"'”V{V}(Pj_'Pj)”—l,r,li’n!z)
= C(IV(Pj“Pk)|—1,r+”Pj‘Pk||r,BnQ)"> 0.

Hence p;—0 in L'(Q2): a contradiction. This proves (ii).
(iii) We regard (1—1)q as a distribution on R". Since g€ L'(BN<2) by Proposition
3.8, we see as in the proof of (ii),

VA= D, , g < C(Valy, Hlall, goa) <+

Hence Proposition 3.7 (ii) ensures the existence of a function p € L'(R") such that
Vp=V((1—y)q) in R", Thus,

Vg=V({(1-y)9)+V(yq) = V(p+yq) inQ

and the function p+yq € L'(Q) is the desired one. The proof is complete.

Proof of Lemma 3.9. Take { € Cy(R") such that {=1 for |x|<1 and {=0 for |x|=2,
and let Sp(x)=&(x/N). For any u satisfying the assumption, we easily see that if r>n,

IVu—ug)|, = C||VEpl, < CN 1" 50 as N-—

and this proves the result for 7>n. In case r=n,||V(ul,)||, is bounded, so the resuit
follows from Mazur’s theorem [44] if we take suitable convex combinations of the
functions ufy. The proof is complete.

Remarks. The condition r<n in Theorems 3.5 and 3.6 is optimal. Indeed, when
r=n, it is known [5] that the smooth functions which are bounded near the infinity and
vanish on 3Q belong to ﬁ(‘, (Q); consequently, the functions u=c— Wg—Vy composed
of a constant vector ¢, a double layer potential Wg, and a single layer potential Vy
belong to I?(l,”(Q) and solve problem (SS) with f=0 and u—c as |x|—>x, together with
some p, provided

(12+W)p=c-Vy on Q.
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This last equation can be solved by the standard method presented for instance in [23].
Thus (3.8) and (3.10) are not valid for r=n.

Estimate of the form (3.10) was first deduced by Simader {36} in the case of the
Dirichlet problem for the Laplacian in a bounded domain. Recently, Kozono and Sohr
[45] have also proved (3.10) for n'<r<n. If n’<r<n, then n’<r'<n; so (3.8) and (3.10)
are valid also for r’, and this means that problem (SS) with f€ H Q) is always
uniquely solvable in I?(l) "(Q) provided that n'<r<n. For other types of estimates on
(SS) we refer the reader to [39] and [45].

Estimate (3.8) is deduced from (3.10) via (3.9). Indeed, if u€D(A,), p EL'(Q) and
Jf=—Au+Vp, then for all ¢ € Cj (Q)

[(Vu, V) = (£, o) | <|f]1 Vel
so (3.10) gives
IVull, <C|fl_,, (A<r<n). (3.29)
From (3.9) and the equation Vp=f+Au it follows that if 1<r<n,

HpHrS (:‘Vle,rs C(|f|—1,r+|Au|—],r)
(3.30)
SC(floy, HVall)=CIfly -

From (3.29) and (3.30) we obtain (3.8).
Estimate (3.10) is essential in establishing in Section 4 an embedding result for
domains of fractional powers of the Stokes operator.

4. Fractional powers of the Stokes operator and interpolation spaces

In this section we examine the domains of fractional powers of the Stokes operator and
establish an embedding result of Sobolev type with the aid of the complex interpolation
theory of Banach spaces. This is done by Giga [12] in the case where Q is bounded and
therefore the Stokes operator possesses the bounded inverse in each L (Q), 1<r<«. In
our case, however, the Stokes operator is not boundedly invertible and so we have to
deal with our problem more carefully. The fractional powers of the Stokes operator in
an exterior domain are studied also in the recent paper [13] of Giga and Sohr. We shall
improve their interpolation result by applying Theorem 3.6. This improvement enables
us to deduce in the next section apparently optimal decay rates for the L-norms of
weak solutions of problem (NS).
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First we define the homogeneous Sobolev space FI{; "(R"), 1<r<, of fractional
order s=0 to be the completion of CJ(R") in the norm

[IVull, g = IIF~ &I Ful], g 4.1)

r,R"

where F is the Fourier transformation and |£|* the multiplication operator in the phase
space. When s=0 is an integer, it follows from the Calderon-Zygmund theory [40] that
H5'(R™ agrees with the one defined in Section 2. Since the multiplication by
|| %, 0<s<n, corresponds to the convolution by the Riesz potentials, it follows from
Sobolev’s lemma [31, 40] that

el n S CIVMll, g wE€EHF' R if 1g=1/r—s/n>0. 4.2)

LR

We next recall a Sobolev type inequality which is valid for functions on exterior
domains. For an exterior domain Q in R", n=3, we denote by Cfﬁ)(Q), m=0,1,2,..., the
set of all restrictions to Q of functions in Cy'(R"). The following result is due to [4], [10]
and [29].

LEMMA 4.1. There is a constant C depending only on n=3,1<r<n, and Q such
that, with 1/r*=1/r—1/n,

llull« < C|[Vul|,, for all u€ Cigy(Q). 4.3)

Obviously, estimate (4.3) can be extended to a more general class of functions by
taking completion.

We further recall a few basic notions in the complex interpolation theory of
Banach spaces. Given an interpolation couple {X,,X;} of complex Banach spaces,
F(X,, X)) denotes the space of all functions f(z) defined to be continuous from the
closed strip {0<Rez=<1} of the complex plane into X,+X;, analytic in the interior
{0<Rez<1}, and such that the maps: t—f(j+it), j=0, 1, are bounded and continuous
from R to X;. Here i is the imaginary unit and X,+X, is the Banach space
{y=x¢tx1;x,€X},j=0,1} with norm

“y”X0+Xl = inf{||x0||X0+||x1||X]; y=Xo+tx)
By the three-lines theorem F=F(X,, X;) is a Banach space in the norm

|flp= max{sup £ @llg,, sup |Lf (1+iD)ly,}-

14-908283 Acta Mathematica 165. Imprimé le 8 novembre 1990



210 BORCHERS AND MIYAKAWA

By [X,, X1]g, 0<<@<1, we denote the complex interpolation space beteen X, and X; with
norm

|u|, = inf{| f|z; FEF(X,, X)), F(O)=u}, 0<6<1,

For basic facts in complex interpolation theory, we refer to [31] or [41]. If s<n/r, (4.2)
shows that both L'(R") and ﬁf)’ "(R") are continuously embedded into L'(R")+L%R"),
1/g=1/r—s/n, so {L’(R"),I?;”(R")} is an interpolation couple (see [41]). Likewise, by
letting A—0 in Theorem 3.1 (ii) and applying (4.3), we see that {L(’,(Q),Di} is also an
interpolation couple provided 2<n/r.

THEOREM 4.2. If 1<r<c and 0<6<1, then with equivalent norms,

[L'RY), HY'RY],= HY'(RY) for 0<s<nlr; (4.4)
[LAQ),D}],=D! for 2<nlr. 4.5)

Proof. (i) We may assume 0<8<1 and 0<s<n/r, since otherwise the result is
trivial. Let A=(—A)"?>=F~'|£’F. Applying Michlin’s multiplier theorem [41], we see
that, as bounded operators in L'(R"),

MA+A)' <M forall 1>0, (4.6)
A*A+A) % <M, (O<a<l) forall A>0, 4.7
lA+A) | <M, e (¢>0) forall tER and 1>0. 4.8)

Let wE€D(A) and consider the function f(z)=e“? (A1+A)"¢? w, 1> 0, which is con-
tinuous for 0<Rez=<1 and analytic for 0<Rez<1, with values in L'(R"). Since
FGNEL RN, f(1+it) ED(A)c Hy'(R™) and f(6)=w, we obtain by (4.6)-(4.8),

|wlp < max{ sup || AiD)]| . sup |AfA+iD)||_ g}
t ’ t ’

< Cmax{A+A)° w]| .., IAG+A) ' G+A wl, b}

nr
R

< CllA+A)Y wl|, g

Since the constant C is independent of 1>0, letting A—0 yields

lwly < ClIA°wl|, g 4.9
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To show the converse, let g(z) denote an arbitrary function expressed as a finite linear
combination of functions of the form exp(dz>+yz) b with 6>0,y €ER and b € D(A). Since
(A+A) g(2),A>0, is continuous in 0<Rez=1 and analytic in 0<Re z<1, with values in
L'(R"), we obtain

A%, R,,SC”(A+A)0w|| o SC inf maxsup |[A+A) g(+in)]],
! t

2(0)=w j=0,1

by the three-lines theorem. Letting A—0 and using (4.8) gives

IA%w]), R,,\C mf maxsupHA’g(J+1t)||

=w j=0

rR"

Since D(A) is dense in both of L'(R") and Hf)’ "(R"), it follows from the argument in {41,
Section 1.9] that

[A%w]|, o< Cluw]s- (4.10)

By (4.9) and (4.10) we obtain (4.4).

(ii) To show (4.5) we have only to replace (4.6)-(4.8) by the estimates given in
Theorem 3.1 and Proposition 3.2. The proof of (4.4) then applies with no change. The
proof is complete.

The Riesz transforms R=(R;, ...,R,), R=F'(§/|g) F, are bounded operators in
Hg’ '(R"), so the projection P associated with the Helmholtz decomposition of L'(R")
defines the bounded projection from H{; "(R") onto the subspace ﬁf; "(R") of solenoidal
vector fields. Since P extends to a bounded projection on L’(R")+I:I(§' "(R"), Theorem 4.2
and a standard argument in the interpolation theory [41, Section 1.2.4] together yield

[L/RY), HS'(RD],= HE'R"), 0<d<1, Oss<nlr. 4.11)

ProPOSITION 4.3. (i) Hy [(Q)={vE Ay (Q); V-v=0} for 1<r<o.
(i) [L(Q), D], = Hy Q) if 1<r<n/2.

(iif) [A5 ), Ay @)],=H5 (),
where 1<r<n, j=0,1, 0<6<1, and 1/r=(1-60)/ry+06/r,.

Proof. (i) For simplicity we write X =H}): (L) and Y the right-hand side of (i). Since
X is closed in Y, it suffices to show that X is dense in Y. Let f€ H Q) v =rl(r-1),
and suppose f=0 on X. By [32, Theorem 17'], f=Vq for some distribution ¢ on Q. By
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Theorem 3.5 (iii), we may assume that g€ L"(Q). Now, given v€ Y, take a sequence
;€ Cy(Q) such that ||V(v;—v)||,—0. Since V-v;—V-v=0 in L"-norm, we obtain

(fv) =1lim(f, v;) =1im(Vq, v;) = —lim(g, V-v;) =0.
oo

jow jo

Hence f=0 on Y and the result follows from the Hahn-Banach theorem.
(i) Let D=R"\Q and let E and E, denote, respectively, the extension operators:

E:Ci(@)— C*(R"); E,: Cy(D)— C*(R")

with the following properties.

(E1) supp E, u (u € CA(D)) is contained in a fixed open ball BoD.

(E2) E, extends uniquely to bounded operator: H*'(D)—H*"(R"), for all 1<r<eo
and 5s=0,1,2.

(E3) The operator E satisfies the estimate

IVEull, oo < CIVeull,+ [, anp)s #ECHE), s=0,1,2. 4.12)

These operators can be constructed in the standard manner via local maps since 9Q is
smooth by assumption. If 1<r<n/2, it follows from Lemma 4.1 and Hélder’s inequality
applied to the last term of (4.12) that

IVEul|, o <CIVull,, u€CH(Q), 1<r<ni2, s=0,1,2. 4.13)

Hence, if B°"(Q), s=0, 1,2, denotes the |IV*-||,-completion of Cfo)(Q), then (4.13) asserts
that E is bounded from H*"(Q) to H3"(R") for 1<r<n/2,5=0,1,2. Now, letting A—0 in
Theorem 3.1 (ii) gives the estimate ||V2u||,<C||A4||,, 1<r<n/2; so by Lemma 4.1, asser-
tion (i) and the obvious estimate ||Aul|,<C||V?u||,, we find that if 1<r<n/2,

D!=L2Q)nHy “QnH*"(Q), lg,=1r—jin, j=1,2. (4.14)

Hence by (4.13), E: D}—>Hf; "(R") is bounded when 1<r<n/2. It thus follows from (4.4)
and (4.5) that E: D> H}"(R") is bounded, and we get

V|, <||VEu]|, pns CllAYy|, 1<r<n/2, 4.15)

which shows the continuous embedding: D —H}'(Q) in view of assertion (i).
To prove the converse, we define the function Zu, u € Cf,f AR", by

Zu=yqu—yonpE,ypu+S(V-yonpE,ypu), u€Cy (R, (4.16)
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where yx means restriction to X and § is the operator given in Proposition 3.3 with
respect to the bounded domain QnNB. We regard the last two terms on the right-hand
side as defined on Q by setting = 0 outside B. Since

V-YansEyvpu=—-V-(u=yqnpE,ypu) in QnNB,
since by the definition of E,,
BV (u—yqp By ypW|sq=0 for j=0,1,

where v is the unit outward normal to 8Q, and therefore since

f V'?’mBEb?’D”dX=f V'(VQnBE,,VDu—u)dx=—f v-udx
QnB QnB

oB
=— f V:udx=0 (v=the unit outward normal to dB)
B
Proposition 3.3 shows that V- Zu=0in Q, S(V-yq.sE,¥p u)EH(z,”(Q nB), and

VSV ygnp E,ypwl, < CUIVE, v, ull, sV vans Ep Yo Ul anp)
< C(IV2ull, p+|IVull, p+lull, o)

<C(IVull, ot IVedl, ot llul

r,R" q;,R" qz,R")

<clIV%l,

& (Wgy=Ur=jin, j=1,2).

Furthermore, by Proposition 3.4,

ISV -vans E, vp W, = ”S(V'VQnBEb Yp “)”r,éng < C||V-yanupEs¥p u”—l,r,QnB
<C|E,yp ”“r,B < Cjul]

rR™

Since the term yq .z E, ypu in (4.16) is similarly estimated, we see by (4.14) that the
operator Z is bounded from ﬁf, (R™) to D! and from L'(R") to L](€), respectively.
Hence (4.5) and (4.11) together imply that Z is bounded from HY"(R") to D!?. Since
D’cH}(Q) and since ZEy=I on Hy'(Q), where E, means the zero-extension of
functions defined on Q, we obtain for u € Hj7(Q)

|A"%u||, = ||A?ZEy ull, < C|[VEyu|, o= C||Va],- .17

r,R"

By (4.15) and (4.17) the proof of (ii) is complete.
(iii) By definition and Lemma 4.1, Z is bounded from H%'(R") to Hy (Q) provided
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1<r<n. Hence ZP is bounded from A} "(R") to Hy’(Q) if 1<r<n. Here we shall use

[A; R, Hy"®RD],= Hy "R, 0<6<1,

4.18)
where 1< r<n, j=0,1 and 1/r=(1-0)/ry+0/r,,
postponing its proof until the end of this paragraph. We thus have
ZP: H)"(R") — [Hy (Q), Hy ()], is bounded.
Since ZPE,u=u for u € Hy(Q), it follows that
luly = |ZPE, uly < C||VEyu]|, o= C||Vul|,. 4.19)

A

Conversely, interpolating between the operators V: (1)::;'(9)—>L'f(9), j=0,1, we see that
v: [Ay %Q), Ay ()],~L () is bounded; hence

|Vu)|, < Cul,. (4.20)

By (4.19) and (4.20) the proof of (iii) is complete.

It remains to prove (4.18). By Sobolev’s inequality we see that if 1<r<n, then
V:fI(l,”(R”)—>L'(R") is bounded, injective, and the range R(V) is closed. We show that
R(V)=R(I-P)=N(P,). Since R(V)cR(I-P,), we need only show that R(V) is dense
in RJ—-P,). By the Helmholtz decomposition and the property P¥=P., r'=
rl(r—1), 1<r<w, we easily see that RU—P,)*=R(I—P,). Thus, if Vg € R(I—P,) vanishes
on R(V), then Ag=0, and so A(Vg)=0. Hence Vg=0 and we get R(V)=R(I—P,) by the
Hahn-Banach theorem. Now we apply the complex interpolation to see that

V: (A, "R"), By "®RM)],— [RU-P,),RU-P,)],

is a bounded bijection. Hence we have only to show that

[RU-P,),RU~P,)),=RU-P), 1r=1-0)ry+0lr,. 4.21)

But, since P is a bounded projection on each L'(R"), 1<r<, (4.21) follows from [41,
Section 1.2.4, Theorem]. The proof is complete.

We are now ready to prove the following, which is our key result in this section.
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THEOREM 4.4. (i) If 1<r<om, then the estimate
42|, < C||Vull,, u€EDA,),

holds with C independent of u.
(ii) If 1<r<n, then we have

Vadl, < CJlA "

., wEDA,),

with C independent of u.
(iii) If 1<r<n, then D}*=H}’(Q).

Proof. By (4.15) and (4.17) both (i) and (ii) are valid for 1<r<n/2. Also, in case .
r=2, both (i) and (ii) are obvious, since A, is the self-adjoint operator associated with
the bilinear form (Vu, Vv) on L(Q)n H}4(Q). Now let r;=2 and 1<ry<n/2 with ro<r;.
By the above and estimate (3.4) with a=1/2 the operator V(1+A)~"? extends uniquely to
bounded operators from L¥(Q) to L%S), j=0, 1, with operator-norms independent of
2>0. By interpolation, it thus follows that the same operator is bounded from L () to
L'(Q) for all ry=r=<r; with operator-norm independent of A>>0. This proves (ii) for
1<r<2. Now let 2<r<w; since R(A"?) is dense in L (Q), it follows from (ii) with
r=r'<2 that, for u€D(4,),

14" ull, = sup [(4,% u, A0} /|40l = sup [(Var, Vo)l /|40l

<||Vul|, sup([[Vull, / lA"?v]],) < C||Vull,.

We thus conclude that (i) holds for 1<r<n/2 and 2<r< . Choosing r;=2 and 1<ry<n/2
with 7<r;, and then interpolating between the operators A" fléjg(Q)—aLg(Q), j=0,1,
we see by Proposition 4.3 (iii) that (i) holds also for rosr=<r;=2. The proof of (i) is
complete. To finish the proof of (ii) we take an arbitrary 1<r<n and apply (3.10), as
well as assertion (i) above with r=r', obtaining

IVull, < C sup [{Vu, V)| /[[Vo]l, = Csup [(A;7 u, 4,70} /[|Vel],

< Cl|A"u], sup(lA"oll,/ Vo) < € 4" 2ull,

for u € D(A,). This proves (ii). (iil) is easily obtained from (i), (ii), Proposition 4.3 (i), and
the fact that D(A,) is dense in D(A!?).
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Theorem 4.4 enables us to deduce an embedding theorem of Sobolev type for
domains of fractional powers.

COROLLARY 4.5. Let n=3, 1<r<n, 0<s<n/r and 1/q=1/r—s/n. Then the estimate
llull, < Cl|A*ul|,, uED(AS?) (4.22)

holds with C independent of u.

Remark. Estimate (4.22) holds for 1<r<= in the case of entire and halfspaces
provided only that n=2 and 1/g=1/r—s/n>0. For the entire spaces, this is easily seen
from the well-known estimates on Riesz potentials [40]. For the case of halfspaces, we
refer the reader to [3].

Proof of Corollary 4.5. First observe that D?cL™(Q), 1/r*—1/r—1/n, by Theorem
4.4 and the Sobolev inequality, and therefore {L’(Q), D'} is an interpolation couple.
The proof of Theorem 4.2 then applies to yield

[LA(Q),D*,=D" (0<6<1) if 1<r<n. (4.23)

From (4.23) and the Riesz-Thorin theorem it follows that D?’cL(Q) with continuous
injection if 1<r<n and 1/g=1/r—0/n. Now let s=k+8, where k is a nonnegative integer
and 0<6<1, and take m so large that D(A:")cD(A;/Z), 1/g=1/r—s/n, which is possible by
the regularity theory for problem (SS) [1]. If we set

l/go=1/r—6/n and 1/g;=1l/ge—j/n, j=0,1,...,k,

then, by assumption on r and s, we have g=g; and 1<g;<n for j=0,...,k—1. It thus
follows that

lull, <ClIAu||, <...< C||Ak’2u||q0 < C||A"u||,

Di-1

for u€D(A™). The case of general u € D(A®?) is treated through approximation. The
proof is complete.

Corollary 4.5 is now applied to deduce the so-called L°-L? estimates for the
semigroup {e™"4;=0}.
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COROLLARY 4.6. (i) If 1<g<r<o, then the estimate
lle™"ull, < Cr=™="2|lu||,, u€LARQ) 4.24)

holds with C independent of u and t>0.
(i) ||e""ul|,—0 as t—>= for all u€ L'(Q) and 1<r<c.
(iil) If 1<g<sr<n, then

Ve~ "ul|, < Ct~2~“Wa=m2||y| . u€ LYKQ) (4.25)
with C independent of u and t>0.

Proof. (i) Assume first that 1<gq<n and take 0<s<n/q with 1/re=1/g—s/n<l/r.
Since g<r<r,, Holder’s inequality and the boundedness of the semigroup yield
lle™ull, < Clle™"ull} lle™ully™ < Clle™ ulls lully™,
with a=1/g—1/n/(1/g—1/ry) = (nlg—nir)ls.
By Corollary 4.5 and (3.2) we conclude that

lle™ull, < Cl| A%~ ullg llully™* < Ct™*ull,,

which shows (4.24) for 1<q<n. We next consider the case n<g<r<«. Take 1<ry<n;
then the foregoing result and the boundedness of the semigroup together show that if
we set T=e ™" for fixed >0,

T:L(Q)— L(Q) is bounded with bound <M; and

T: L'(Q)— LI(Q) is bounded with bound < Ct™™"™""?,

Interpolating between these two cases gives the boundness of T from LY(Q) to L ()
with bound <Ct ™4~"%"2_The proof is complete.

(i) If uECf,f AQ), then u € LYQ) for any 1<g<r; so the result follows from (1).
Since Cy () is dense in L(LQ), the result follows in general case from the boundedness
of the semigroup.

(iii) Since 1<r<n, Theorem 4.4 and estimate (3.2) together yield

Ve—tAu <C A1/2e—tAu =C A1/2e—tA/2e—lA/2u sct—l/l e-—tA/Zu .
r r r r

Applying (4.24) to the last term gives (4.25). The proof is complete.
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Remarks. Iwashita [17] has recently proved (4.25) for 1<r<n. In the case of
halfspaces, (4.24) holds also for g=1 (resp. r=) under an appropriate assumption on r
(resp. q); see [3].

Proposition 4.3 (i) was first proved by Heywood [14] for r=2. Our proof of
Proposition 3.8 (ii) indicates also that, for a bounded domain D,

Hy (D)= {u€Hy"(D); V-u=0}, 1<r<o.

This result was also proved by Heywood [14] for r=2.

5. Proof of main results

We are now in a position to prove our main results, namely, Theorems A and C in
Section 2. We begin by establishing the following, which is our key lemma in this
section. Let

A2=f AdE,
0

be the spectral decomposition of the nonnegative self-adjoint operator A,.

LemMMA 5.1. Let 0<e<1/4 and 60+9=1+2¢ with 620, 0=0. Then there is a constant
C=C(g, 0,0, n, Q) such that

IE, P V) vll, < CA™ A0l , || AP0l (.1
for all 2>0,u € D(A%?) and v€ D(AS?).

Proof. Let q=n/(142¢), 1/r=1/2—6/n and 1/s=1/2—p/n so that 1/g+1/r+1/s=1.
Since V-u=0, an integration by parts and Holder’s inequality together yield

||E; P(u- V) vll, = sup |[(u- VE,; @, v)| < |lull, lv]l, sup |VE, ],
9 ¥

where the supremum is taken over all ¢ in the unit ball of LXQ). Since 2<g<n,
Theorem 4.4 and the fact that E, ¢ ED(A;")CD(A:) together imply that

IVE, ¢ll,< CIIA"E, 4|,
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Since 1/g=1/2—o0/n with 0=n/2—2¢—1, Corollary 4.5 gives

A
IA"E, ol < CllAE, gl = € f W |E, E, gl < CI
0

Combining this with ||u||,<C||A*?4||, and |jv||,<C||A°?v||, yields (5.1).
Remark. On entire and halfspaces estimate (5.1) takes the form
E, P(u- V) vl < CA™ 25 lu, |Jofl,. G.2)

The proof is given in [3, 18]. The parameter A will be identified with /' in deducing L?-
decay rates; thus our estimate (5.1) yields the rate #~"* caused by the presence of the
nonlinear term, while (5.2) gives ~®*?"* in the case of entire and halfspaces.

5.1. Proof of Theorem A. We give a detailed proof of assertion (ii) and then
describe an outline of the proof of (i), since the proof of (i) is almost the same as, and in
some sense easier than, that of (ii). Let v be a weak solution of (NS) with v(0)=a,
satisfying the energy inequality:

t
||v(t)[|§+2] IVolidr<|ju(s)|f for s=0, ae. s>0; andall t=s (E)

and let A=A(¢) be any smooth positive function of r>0. From the estimate

o ®

2d||E, vlf; >f zd||E,vlfs = A([ol-|IE, v]]2)
A

Vol = lA"lfz = f

0

and from (E) it follows that

Hv(t)||§+f /1(t)||v(r)||§dt$l|v(s)”§+[ A@) ||E, iy v@)|f3 dt. 5.3

The last integral in (5.3) is well defined in the sense of Lebesgue, since the function
f@, D=||E; v(z)|}, is monotone in 4 for each fixed 7 and measurable in 7 for each fixed A.
To estimate the term ||E;,, u(7)||, we go back to the definition of weak solution. In (2.3)
we set ¢p(v)=e"“"V4E, g, ¢ € LX(Q), which is legitimate since E; ¢ € L"(Q), and obtain

(E,v(), ) = (E;e”"D4(s), @) —J (v-Vu(r), e " V4E, @) dr

t
= (E, e” " 94y(s), <p)+f (v,v-VE, e " Pg) dr
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for t=s5=0. The last term is estimated as in the proof of Lemma 5.1 and we obtain for
0<e<1/4,

H
1B, v(®)ll, <||E; ™2 4u(s)||,+ CA™~* J |AY=#20][; dt

t
= ”EA e_(t_s)AU(S)HZ'i'Cl"M_SJ‘ ||AI/ZU||;+2£||U||;_25 dt
5

< ”e—(t_S)AU(S)H:'*‘C}»"M_s<f‘vang dr>(1+2e)/z<J’zangé{)(l—ze)/z'

Here we set s=0 and use the estimate [ ||Vv||2 dr < ||a||3/2 which follows from (E), to get
4 (1-2e)12
||Elv<t>||zs||e-'Aanz+ca"“-€< | ||v||§dr) . 5.4
0

Substituting (5.4) with A=A(¢) into (5.3) yields the following inequality for y(t)=||v(t)||§:

y(—g(t, s)+f A y()dt<y(s) a.e.in s€(0,1), 5.5)

t T 1-2¢
with g(t,s)=2 f [l(r)l|e“"al|§+C/l"/z“'z‘(t) ( f uuugda) ]dt.
5 N 0

We now want to apply Gronwall’s lemma to (5.5) with respect to s. Consider the
function A(s)=[*A(x) y(z) dt, which is a.e. differentiable in (0,7) with A’ €L>(, f) for
small 6>0. From (5.5) we have

h'(7) = —A(@) y(1) < A [A(@D) +y()—g(t, )] (5.6)

Now let H=0 be a function solving H’'(t)=A(r) H(z). Multiplying (5.6) by H and then
integrating over [s, ¢] yields

(H()—H(s)) y(?) < H(s) h(s)+ f H'(7) g(t, v) dr,

since h(f)=0. Applying (5.5) to the right-hand side above and integrating by parts, we
obtain, since g(¢, £)=0,

H() y(t) = H(s) y(s)— f H(r)g[t,7)dr. 6.7

Now choose A(t)=mt~!, m>0, so that H(r)=1" and H'(r)=m1™". Since (5.7) holds for



NAVIER—-STOKES EQUATIONS 221

a.e. s20 and since y(s) is bounded, taking m sufficiently large we can pass to the limit
5—0 in (5.7) to obtain

t

oIl < Ct""f

! s 1-2¢
ms™ Y||e*alf3ds + Ct""f s’”_”/z‘”z‘(J' vt dt) ds. (5.8
0 0 0

Since ||v(7)||<||al}, as seen from energy inequality (E), the last term of (5.8) is <Ct'~"?;
hence assertion (a) follows from the convergence |le *al|,—0 (t—). To prove (b),
suppose that |le™*4a||,<Cs™* and ||v(s)|lZsCs_ﬂ % then (5.8) implies }|v(t)||2SCt—’31 with
Bi=min(a, n/4—1/2+py(1—2¢)) so far as By<1/2. This shows (b) for 0<a<n/4—1/2 and
Bo=0. If a=n/4—1/2, then the foregoing observation allows us to start with By=1/4—¢
and, by definition of 8;, we obtain (b) for a<n/4—1/4. When a=n/4—1/4, we can take
Bo=1/2—¢, and thereby arrive at the conclusion in all cases.

We next prove assertion (c). Let w()=v()—v%(¢) with v°(?)=e “a. Since v°(?)
satisfies (E) with equality sign, direct calculation gives

hot0f+2 [ Pl de = IO+ 020000, %0)
+2j (IVv|3+||Vo°|3—2( Vo, Vo°)) dt (5.9)
s||v(s)||§+||v°(s)||§—2(v(t),v°(t))—4f (Vu, Vi) dr

for a.e. s>0 and all r=s. We insert ¢(r)=v"z) into (2.3) and get for 0<s<t,

(v(®), v°(t))+2f (Vv, Vv°) dt+j (v-Vu,1°) dr = (u(s), V°(s))

since (v)'=—Av". Using this to eliminate the last integral in (5.9) we have

t t
||w(t)||§+2f ||Vw||§dt$||w(s)||§+2j {v-Vu, V") dr (5.10)

5

for a.e. s>0 and all t=s. The integrand of the last term is estimated as
[{v-Vu, v°) | ={w-Vv°, w)+(°- Vo°, w)|

<CllA™ o (IA ], 4wl +| A, 1472w,

where 0<e<1/4 and 8+p=a+p=142¢; recall the proof of (5.1). We set 8=p=1/2+¢,
a=2¢, B=1 and apply the moment inequality to get
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|(v- Vo, 0°) | < ClA™ v, ((lA 2wl ]l +]|AW ], 1A wl]) 510
1 nld—e =2 nia—e € '
<7 IVl +CllA™ w7 wlf+ Cla™ I AVl

Since A, is nonnegative and self-adjoint, [|A"v°(?)|,<Cr ™" and ||A"°(@)||,<Cr7||v°(z/2)},
for y=0; hence from (5.10) and (5.11) we find that

t t
@I+ f [Vl de < us|E+C f [+l + 7wl de

(5.12)
with y=(n/2—2¢)/(1-2¢) = n24+0, &=e(n—2)I(1-2¢),

for a.e. s>0 and all r=s. The remaining argument is nearly the same as in the proof of
(). We estimate ||Vw||,=||A"?w)||, from below, using the spectral measure Ej; use (2.3)
as in the proof of (a) to obtain

' (1-202
1E, w(®) ||, < Cl."m_e(f [EH dT) ;
0

and finally take A(r)=mt ! with large m. This process leads us to

t 5 1-2¢
oot <crn | [sm-w|w||§+s'"-"’2||v°n§+s'"""’z-‘+28< I llvll%dr) ]ds
0

0

¢ ' t 1-2¢ (5.13)
< Ctl”"/z[t_l_éf ||lwll3 ds + t_‘f V3 ds + <t'lf ||v||§ds) :|
0 0 0

Since [lw(s)|l,<|[v(s)||,+|[v%s)|l,—0 as s— by assertion (a), this proves (c). Assertion
(d) is easily deduced from (b) and (5.13). This completes the proof of (ii).

To prove (i), we use the approximate solutions v, k=1, 2, ..., obtained by solving
the integral equations:

t

vt)y=ea,—| e IAPU, v, V) v (s) ds, (AP)
k k k k
0

where J = +k"1A2)"1'["/4], a,=J,a, and [b] is the integral part of the real number b.
Existence and uniqueness of a regular solution v, of (AP) defined for all =0 and
convergence of (a subsequence of ) v, are discussed in [3] and [29] along the idea of [38].
Since vy satisfies (E) with equality sign and since ||J,/|<1 as bounded operators in
L2(Q), one can repeat all of the foregoing arguments to get the desired results for each
function v;. But, as readily seen from the foregoing arguments, all the estimates needed
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in the proof of (i) are uniform in approximation parameter k, and so we obtain the
existence of a function v € L*(0, »; L2(Q)) N LX0, «; H)?(Q)) with desired decay prop-
erties by passing to the limit k—; see [3, 18] for the details. This function v satisfies
the identity:

IGICION w)+f (Vu,Vw) hdt + J (v-Vv,w) hdr = f {v,w) h'dr+h(s) {v,(s), w)

(2.39)

for all w€ Hy*(Q)NLI(Q), t=5=0, and h€ C'([s, #];R). This is verified as in [29, pp.
464-466]. Although in [29] only the case n=3, 4 is discussed, the argument given there
applies to all dimensions n=3 due to the requirement w € L"(Q). That (2.3’) implies (2.3)

is proved in [27, p. 638]; so the function v is the desired weak solution of (NS). The
proof is complete.

5.2. Proof of Theorem C. We begin with the proof of the following

LeEmMaA 5.2, If I<rsn'<sg<2, n'=n/(n—1), n=3, and aELg(Q)ﬂL’(Q), then all
weak solutions v of (NS) with v(0)=a belong to L, ([0, ©); L'(Q))NL(0, ©; LUQ)).
Further we get lim,_,, [[v()||,=0 provided q<2.(")

Proof. We insert ¢(r)=e~""p, 9 € Cy (Q), for (2.3) and obtain

(D), @) = {(v(s), e “p) -j {v-Vu(r), e g dr (5.14)

for all £=5=0. By the Holder and Sobolev inequalities we have
[(v- Vv, e "M@} < Cligll, [lo]lor - 101l
<Cligll, vl §ollsmin-2 101l (5.19
<Clgll, lofl™" IVell;*""

(5.15) and (5.14) with s=0 yield
t
uv<r>||,sc[uan,+ f nvu;-""’Han;*""’dr]. (5.16)
0

This shows that v is in L, ([0, ); L'(RQ)) and in particular, on taking r=n’, in
L¥(0, »; L"(Q)). Hence v € L=(0, ; LYQ)) for n’<q<2. Then (5.14) and (5.15) together
imply

(!) The same result was obtained also by Professor H. Sohr (private communication).
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@Il < C [!Ie""‘“v(S)II,.'+ f IIVvllidr]
for all =520, and therefore |jv(?)||,,—0 as t— by Corollary 4.6 (ii). This implies for
n'sq<2,
)|, < o (p)||(Va~v2rcin' =112 ||v(t)”(21/n'—1/q)/(1/n’—1/2) —0 as f-»>o.
The proof is complete.
We now prove Theorem C. By Theorem B,
v, <C+6)? with B=(nlr—n/2)/2>1/2,

and so [g ||v|/3ds is finite. Hence (5.16) yields

||v<t>llrs0[||a||,+ f ||v||;'"’"||vU||;+"f"d,]
0

*® 1/2—nl2r ®© ) 1/2+nl2r
sc[||a||,+ ( f ||v||%dr) ( f ||Vv||2dr) ]
0 0

and therefore vE€L™(0, «; L'(Q)). (5.14) and (5.15) then imply, for t=s=0,

@ 1/2—n/2r ® 1/2+n/2r
||v<t>||,<c[ue-"-s“v<s>||,+( | ||Vv||§dr) ( | Han%dr) ~ ]

and we conclude that ||u(s)||,—0 as t—» by Corollary 4.6 (ii). Thus we obtain for
r<g<l,

lv@ll, < loO|*= [lu(ls = o™, a=/r-1g)(1/r-1/2)
and af=(n/r—n/q)/2. This completes the proof of Theorem C.

Remarks. Lemma 5.2 asserts in particular that if an initial velocity is in
L(Q) an, (Q) for some 1<r<n’, then all the corresponding weak solutions also belong
to L'(Q) for a.e. r>0. The converse to this statement is an open question.

As for the behavior of L2-norms of general weak solutions, the following is known:
Given any a ELf, (Q), every weak solution v with v(0)=a satisfies

t+1
lim f |lv|2ds = 0. (5.17)
t—x t .
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See [27] for the proof. Our proof of Lemma 5.2 is in fact a simple modification of the
proof of (5.17) given in [27].
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