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1. Introduction and basic concepts

1.1. Introduction. This paper will be concerned with positive linear maps be-
tween C*-algebras. Motivated by the theory of states and other special maps, two
different approaches will be taken. If U and B are O*-algebras the set of all posi-
tive linear maps of U into B which carry the identity operator in U into a fixed
positive operator in B, is a convex set. The main problem dealt with in this paper
will be the study of the extreme points of this convex set. The other approach taken
is that of decomposing the maps into the composition of nicely handled ones. A general
results of this type is due to Stinespring [20]. Adding a strict positivity condition
on the maps he characterized them by being of the form V*oV, where V is a bound-
ed linear map of the underlying Hilbert space into another Hilbert space, and ¢ is
a *.representation. Another result of general nature of importance to us is due to
Kadison. He showed a Schwarz inequality for positive linear maps between C*-alge-
bras [11]. Positive linear maps are also studied in [3], [13], [14], and [15].

This paper is divided into eight chapters. In chapter 2 the maps are studied
in their most general setting—partially ordered vector spaces. The first section con-
tains the necessary formal definitions and the most general techniques. The last part
contains results closely related to what Bonsall calls perfect ideals of partially ordered
vector spaces [2]. From chapter 3 on the spaces are C*-algebras. We first show how
close extremal maps are to being multiplicative (Theorem 3.1), and then see that C*-
homomorphisms are extremal (Theorem 3.5), and when the maps generalizing vector
states are extremal (Theorem 3.9).

In chapter 4 a geometrical condition stronger than extremality is imposed on

the maps. It is shown that for identity preserving maps of an abelian C*-algebra

() This work has been partially supported by the National Science Foundation under Grant
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234 E. STORMER

into a matrix algebra, extremality is equivalent to this geometrical condition (Theo-
rem 4.10). It follows that, in this case, the extremal maps are the ones which are

“approximately” *

-homomorphisms (section 4.3).

In chapter 5 we classify all maps from a C*-algebra U into B (H)—the bounded
operators on the Hilbert space $—such that the composition of vector states of B (£)
and the maps are pure states of A (Theorem 5.6). As a consequence of this we find
all maps of A into a C*-algebra B such that the composition of pure states of B
and the maps are pure states of A (Theorem 5.7). In particular it follows that every
C*-homomorphism of U onto B is “locally” either a *-homomorphism or a *-anti-homo-
morphism (Corollary 5.9).

Chapter 6 is devoted to decomposition theory. Using Stinespring’s result we show
a general decomposition for positive linear maps (Theorem 6.2). As a consequence it
is seen when order-homomorphisms are C*-homomorphisms (Theorem 6.4). Finally, a
Radon-Nikodym theorem is proved (Theorem 6.5). Another aspect of decomposition
theory is studied in chapter 7. Using Kadison’s Schwarz inequality it is shown that,
“locally”, every positive linear map is decomposable in a form similar to the decom-
position in [20] (Theorem 7.4), and is globally “almost” decomposable (Theorem 7.6).

Fipally, in chapter 8 we compute all the extremal identity preserving positive

endomorphisms of the 2 x 2 matrices.

The author wishes to express his deep gratitude to Professor R. V. Kadison for
his kind and helpful advice during the research in this paper, his careful reading of

the manuseript, and his valuable suggestions and simplifications of several proofs.

1.2. Notation and basic concepts. A partially ordered vector space is a vector space
over the reals, ¥V, with a partial ordering given by a set of positive elements, VT,
the so-called “positive cone” of ¥. When a—b is in V* we write a>b. Moreover,
if @ and b are in V* then so are a+b and «b for a a positive real; if —a is also
in V* then a=0. V is a partially ordered vector space with an order unit if there
exists an element e in V such that for every a in V there exists a positive real «
with —oae<a<ae.

By a C*-algebra we shall mean a complex Banach algebra with a unit and with

an operation 4 — A" satisfying
(x4 +B)*=3aA4"+B*, (AB)*=B'A", (4*)'=4 and |4*4] = 4% [|4],

whenever 4 and B are in the algebra and o« is a complex number. A positive ele-

ment in a C™-algebra is one which is self-adjoint (4=A4") and whose spectrum con-
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sists of non negative reals. Then the self-adjoint elements in a C*-algebra form a
partially ordered vector space, with the unit as an order unit. A linear map of one
C*-algebra (resp. partially ordered vector space) into another is said to be positive
if it carries positive elements into positive elements. A C*-homomorphism of a C*-
algebra into another is a positive linear map preserving squares of self-adjoint ele-
ments. A *-representation of a C*-algebra is a homomorphism ¢, whose image lies in
some B(H), satisfying $(4*)=¢(4)*. The Gelfand—Neumark Theorem [4] asserts
that a C*-algebra has a faithful norm preserving *-representation as a C*-algebra of
operators on a Hilbert space. For a complete proof see [7].

If A is a C*-algebra acting on a Hilbert space §, A~ denotes the weak closure
of A If A contains the identity operator on §, A~ is a von Neumann algebra. We
refer the reader to [3] for questions concerning von Neumann algebras. We denote
by M, the nxn complex matrices. If © is a family of operators acting on a Hil-
bert space § and B is a set of vectors in § then [SL] denotes the subspace of
generated by vectors of the form Tz with 7 in © and z in B. Since we identify
each subspace with the orthogonal projection on it [©8] also denotes the projection

on this subspace. If © is a C*-algebra then [S%] is a projection in the commutant

& of .

2. Maps of partially ordered vector spaces

2.1. Definitions and basic results. Let A and B be partially ordered vector spaces.
Let @ be an order unit for 4 and b be a positive element in B. We denote by
D((4,a), (B,b)) the set of positive linear maps of 4 into B which carry o into b.
If it is clear which order unit we consider, we also write (4, B, b) instead of
D((4, a), (B, b)), and if b is an order unit we may also write D(4, B) when no confu-
sion is possible. It is clear that D((4, a), (B, b)) is a convex set.

We say a map ¢ in D((4,a), (B,b)) is strongly positive if ¢ '(z) contains a po-
sitive element for each positive element x in the image of ¢. Following [13], if b is
an order unit for B, we say ¢ is an order-homomorphism if ¢ is strongly positive and
‘the null space of ¢ is linearly generated by positive elements. An injective order-
homomorphism is an order-isomorphism. If N is the null space of ¢ and ¢ is in
D(4,B,b), b an order unit for B, then it is immediate that ¢ is strongly positive
if and only if the canonical linear isomorphism A/N — B is an order-isomorphism.
If R denotes the real numbers with 1 as order unit then a state of 4 is a map in

D(4, R). An extreme point of D(4, R) is called a pure state of A. A map which is
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an extreme point of D((4, a), (B, b)) is said to be extreme. If v and ¢ are positive

linear maps of 4 into B we write 7<¢ if ¢—7 is a positive linear map.

Lruma 2.1. Let A and B be partially ordered vector spaces, a an order unit for
4, and b a positive element in B. Then a map ¢ in D((4, a), (B, b)) is extreme if and
only if whenever v €D((4, a), (B, Ab)) and v<¢ then 1=1214¢.

Proof. Suppose 71€D(4, B, Ab), 7<¢$ and ¢ is extreme. If 1=0 then =0 since
a is an order unit. Similarly A=1 implies t=¢. If 140, 1, then

$=A2"17)+ (1 -2 (A=) (1)

is the convex sum of two maps in D (4, B,b). Since ¢ is extreme A 'v=¢. The

converse is trivial.

Leuma 22. Let A, B, and C be partially ordered vector spaces with order units
a, b, and ¢ respectively. Let d be a positive element in C, and let ¢ be a map in
(4, B).

(i) If ¢ is a surjective order-isomorphism and o is a map in D(B, C, d) then
oo is extreme in DA, C,d) if and only if o is extreme.

(i) If o is a surjective order-isomorphism in D(B,C,c) then o o is extreme in
D(4, C,¢) if and only if ¢ is extreme in D(4, B).

The proof is an immediate consequence of Lemma 2.1.

Lemma 2.3. Let A, B, and C be partially ordered vector spaces. Let a be an order
unit for A, b an order unit for B, and ¢ a positive element in C. Let ¢ be a surjec-
tive order-homomorphism in D(A, B). Let ¢ be a map in DB, C,c). Then g oo is ex-
treme in D(4, C,c) if and only if o is extreme.

Proof. Suppose o is extreme, and let 7 be a map in D(4, C, Ac) such that
7<go¢. Let N be the null space of ¢. Then the null space of 7 contains N
since N is generated by positive elements. ¢ =y oi, where y is the canonical order-
isomorphism A4/N->B and ¢ is the map A—>A/N. Thus t=w o7 with w a linear
map A/N-—>C such that w(@+ N)=2Ac. If x+ N is positive in 4/N then ¢ (x)>0.
Hence there exists a positive element y in A4 such that y+ N=z+ N. Thus 0<7(y)=
wx+N)<pod(y)=podx)=pop(x+N), so O0Sw<poy. Since p is extreme, so
is goyp by Lemma 2.2. Hence w=Agoy. Thus r=woi=Agoypoi=Llgod¢d, and
@ o is extreme. The converse is a straightforward application of Lemma 2.1.
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LeMMA 24. Let A and B be partially ordered vector spaces with order units a
and b respectively. Let ¢ be a map tn D(4, B). Suppose there exists a separating fam-

ily § of pure states of B such that fod is a pure state of A for each f in F. Then
¢ is extreme.

The proof is trivial.

DeriNiTION 2.5. If A and B are partially ordered vector spaces with order units
then a map ¢ in DA, B) is of class 0 if fod is a pure state of A for each pure
state | of B.

It is clear from Lemma 2.4 that if the pure states of B separate points of B

then a map of class 0 is extreme. We omit the trivial proof of the following lemma,

Lemma 26. If A and B are partially ordered vector spaces with order units a and
b respectively and ¢ is a pure state of A then the map x— $(x)b is of class 0 in
D(4, B), and is denoted by ¢. We say ¢ is a pure state in D(A, B).

2.2, Perfect ideals. We recall from [9] that an order ideal of a partially ordered
vector space is a linear subspace I with the property that z is in I whenever
—y<z<y for some y in I. By [2] a perfect ideal of a partially ordered vector space
is an order ideal I such that if z is in I and ¢>0 is given, there exists w, in [

such that
~(eatw)<zr<eat+w,,

where o is the order unit. Bonsall [2] has shown that a state of a partially ordered
vector space is pure if and only if its null space is a maximal perfect ideal. We

shall establish analogous results for surjective maps of class 0.

Prorosition 2.7, Let A and B be partially ordered vector spaces with order
units a and b respectively. Let ¢ be a strongly positive surjective map in D(A, B) whose
null space is a perfect ideal. Then ¢ is of class 0.

Proof. If M is a perfect ideal of B then ¢ (M) is a perfect ideal of 4. In
fact, let « be in ¢ (M) and £>0. There exists y in M such that ¢(z)=y. Let
d=¢/3. Then there exists w(=w;) in M such that

—(0b+w)<y<db+w.

Let z(=25) in ¢ (M) be such that ¢(z)=w. Then —P(da+z)< $(x)<$(da+2). Since
¢ is strongly positive there exist f(=f;) and g(=gs) in N—the null space of ¢—such
17 - 632933 Acta mathematica. 110. Imprimé le 6 décembre 1963.
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that x<da+z+f, and ~x<da+z+g. N is perfect. Hence there exist h(=hs) and
k(=ks) in N such that +f<da+h and +g<da+k Thus +f, +g<2da+h+k.
Therefore +x<3da+z+h+k=ca+v, where v,=2z+h+k is in $ }(M)>N. Now let
f be a pure state of B. Then its null space M is a maximal perfect ideal. By the
above the null space of the state fo¢ is ¢ (M), a maximal perfect ideal of A—

maximal because fo¢ is a state. Hence ¢ is of class O.

Remark 2.8. The assumption that ¢ be strongly positive is essential. In Example
8.13 we shall find an example of a bijective map in D(A4,B) which is not of class 0.

Lemma 2.9. Let A and B be partially ordered vector spaces with order units a and
b respectively. Let ¢ be a strongly positive surjective map in D(A, B). Let I be an
order ideal of A containing the null space N of ¢. Then (I) is an order ideal of B.
Moreover, if I is perfect (resp. maximal) then $(I) is perfect (resp. maximal).

Proof. Let ¢(z) be an element in ¢(I). Then z is in I. Suppose —¢(z)<
é(y)<$(x). Then ¢(xr)>0. Hence there exists w>0 in A4 such that ¢(w)=d(z), so
w is in I. Since ¢(x—y)>0 there exists z>0 in A such that ¢(z)=¢(x—y)=
¢(w—y). Similarly there exists z'>0 in A4 such that ¢ (z') = (z+y)=d(w+y), Hence
there exist » and n’ in NI such that w=2+y+7n>0 and z’=w+y+2'>0. Thus
w2y+n, and y> —{w+n'). Hence —(w+n)<y<w—n, where w+n' and w—n are
in I. Thus y€1, and ¢(y) E(I). Since ¢ is surjective and b is not in ¢(I), ¢(I) is
an order ideal. ,

It is straightforward to show that ¢(I) is perfect if I is. Tf I is maximal let
J be a maximal order ideal of B containing ¢(I). J is the null space of a state f of B.
Thus ¢~'(J)>¢ ' (¢(I))>I is the null space of the state fod. Thus ¢ 1(J)=1,
J=¢(I), and ¢(I) is maximal.

ProrosiTiOoN 2.10. Let A and B be partially ordered vector spaces with order
units a and b respectively. Suppose ¢ in D(A, B) is surjective. Then the two condi-
tions below are related as follows: (i) implies (ii); if ¢ is strongly positive then (ii)
tmplies (i). '

(i) There exists a separating family § of pure states of B such that f o ¢ is a pure
state of A for each f in .

(i) The null space of ¢ is the intersection of maximal perfect ideals.

Proof. Since the null space of a pure state of 4 is a maximal perfect ideal it
is trivial that (i) implies (ii). Suppose ¢ is strongly positive and that (ii) is satis-
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fied. Let N be the null space of ¢. N= N yen M, M maximal perfect ideals of 4.
Then N uend (M)={0}. Indeed, M =¢ (¢(M)) for each M in N. Thus

" Nuend )= Ouend™ ()= Ny M=N.

Hence, if z is in N uenp (M) then ¢~ (z)< N, so if y€$ () then x=¢(y)=0. By
Lemma 2.9 ¢ (M) is a maximal perfect ideal of B for each M in RN. Let § be the
family of pure states fy of B with null spaces ¢ (M) respectively for each M in .
Then ¥ is separating, and fy o ¢, having M as null space, is a pure state of 4 for
each fy in .

We apply the last results to prove a general theorem about perfect ideals. We
say a partially ordered vector space A with an order unit is semi simple if the states

of A separate points, i.e. if and only if the intersection of the maximal order ideals
of 4 is {0}.

Lemma 211, Let A be a partially ordered vector space with an order unit. Then
A is semi simple if and only if the pure states of A separate points. Moreover, if I is
an order ideal of A then I is the intersection of the maximal order ideals containing I
if and only if A/I is semi simple.

Proof. The sufficiency of the first statement is obvious. Suppose 4 is semi simple.
If zis in 4 let
ll]| = sup |f()],
re8

where © is the state space of 4, ie. ©=D(4, R). Since 4 is semi simple | || is
a norm. If A* is the space of all bounded linear functionals on A4 in the defined
norm, the w*-topology on A* is the weakest topology on A* for which the elements
in A act as continuous linear functionals on 4*. By Alaoglu’s Theorem [1] & is w*-
compact. Since © is also convex it follows from the Krein-Milman Theorem [17] that
© is the closed convex hull of its extreme points Hence the pure states of 4 se-
parate points. ,

Let I be an order ideal of 4. If I= ) M, where the M’s are maximal order
ideals, then, as was shown in the proof of Proposition 2.10, N M ={O}, where x — &
denotes the canonical map v:4-—>A=A4/I. This map is strongly positive, so by
Lemma 2.9 each M is a maximal order ideal of 4, and 4 is semi simple. Conversely,
suppose A is semi simple. The map v defines a 1—1 correspondence between maxi-

mal order ideals of 4 containing I and maximal order ideals of 4. Since 4 is semi

simple,
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I=v'(0)=v (N {M: M is maximal order ideal of A})
=N {v }(M): M is maximal order ideal of A4}
=N{M:M is maximal order ideal of A containing I}.

The proof is complete.

THEOREM 2.12. Let A be a partially ordered wvector space with an order unit.
Let I be a perfect ideal of A. If I is the intersection of the maximal order ideals of A

containing I, then I is the intersectiom of the maximal perfect ideals containing it.

Proof. By Lemma 2.11 the pure states of A/I separate points. By Proposition
2.7 the canonical map A4 — A/I is of elass 0. Thus by Proposition 2.10 I is the

intersection of maximal perfect ideals.

3. Extremal maps of C*-algebras

If %A and B are C*-algebras we study the extreme points of the set D (2, B, B)
of all positive linear maps of U into B, which carry the identity operator in U into
the positive operator B in B. It is immediate that the results in chapter 2 are
directly applicable. By the Gelfand-Neumark Theorem each C*-algebra has a faithful
*_representation as a (C*-algebra of operators acting on a Hilbert space. In view of
Lemma 2.2, then, it is thus no restriction to state and prove theorems about ex-
tremal maps in D (U, B, B) in the case when A and B are C*-algebras of operators
on Hilbert spaces.

In general we cannot, a priori, tell whether there are “many” extreme points
in D, B, B). However, if B is a von Neumann algebra then the extreme points
generate D (A, B, B). In fact, let ¢ be the point—open topology on the space of
linear transformations of U into B, where B is taken in the weak topology. By [14]

DA, B, B) is t-compact, and hence is the t-closed convex hull of its extreme points.

3.1. Properties of extremal maps. The multiplicative properties of extremal maps

are characterized in

TurorREM 3.1. Let A and B be C*-algebras, N acting on the Hilbert space 9.
Let A’ be an operator in the commutant U of U, and let (¥, 4’) be the C*-algebra gen-
erated by A, A’, and A'*. Suppose ¢ is extreme in D(U, B) and that ¢ has an ex-
tension ¢ to D(, A'), B) with $(A’) in the center of B. Then H(A" A)=¢(4") ¢ (4)
for all A in .
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Proof. Let € denote the center of B. We may assume A’ is self-adjoint, for if
A'=8+iT with § and T self-adjoint, then S and T are in (¥, A’), and $(S) and (T')

are in € since g{:— (4") is. I the theorem is established for self-adjoint operators then

(A’ A)=¢((S+iT)A)=(SA)+id(TA)=d(S)$(A) +id(T)$(A)=H(A’)$(4).

If A’ is self-adjoint, then, multiplying A’ by a scalar, we may assume | 4’| <}.
Then ||$(4')|<34. By spectral theory 3 I—A’ and }I—$(A’) are positive invertible
operators in ' and € respectively, and there exists k>0 such that kI <} I—¢(4’).
Define the map p of U into B by

Pp(A)=¢(AGI-A)GI-$A))

Then clearly p € D(U,B). With B>0 in U, then

kp(B)<(31—$(4)p(B)=$(B(}1—4")<$(B).

Thus kyp<¢. Since ¢ is extreme, p=d¢. Thus

G- (A)(A)=(AFI-A")=}$(4)—¢(44"),
and Tﬁ(A')qS(A):q;(A'A) for all A in . The proof is complete.

Employing techniques similar to those used to prove Theorem 3.1 we show the
following improvement over Lemma 2.1.

ProrosiTioN 3.2. Let A and B be C*-algebras, and let ¢ be a map in D (U, B).
Let v be a positive linear map of W into B such that v (I) is in the center of B and
t<¢. If ¢ is extreme then v=17(I) .

Proof. Multiplying © by a scalar we may assume ||7(I)[| <1. Hence, by spectral
theory, (I—v(I)) is a positive invertible operator in the center of B, and there exists
k>0 such that k(I—7(I))"'<I. Thus, if 4 is a positive operator in U then

o<k(I—-7(I)™? (Pp(A)—7(A)<(p(4)—T(4)) < b(4),
and EI—rI) p—1) €D, B, k).
Since ¢ is extreme (I—7(I))™'(p—7)=¢, and T=1(I)¢.

CorOLLARY 3.3. Let A and B be C*-algebras. Let B be a positive operator in
the center of B. If ¢ is extreme in D (A, B) then the map A — B (A) is exireme in
D, B, B).
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Proof. Denote the map by Bé. If 7 is a map in D(W, B, 1 B) and v< B¢, then
< ||B|| ¢, so by Proposition 3.2 t=1(I)$¢=1B4¢.
R. V. Kadison pointed out the following result to us.

ProPosSITION 3.4. Let B be an abelian von Neumann algebra and A a C*-alge-
bra acting on a Hilbert space §. Let ¢ be extreme in D(U,B). Then there exists an

eatreme extension ¢ of ¢ to D(B(H), B).

Proof. By [15, Lemma 3] each map in D (%, B) has an extension to D (B (), B).
Let € be the set of extensions of ¢. Then € is a closed convex subset of D (B (9), B).
Since B is a von Neumann algebra, D (B (), B) is compact. Let ¢ be an extreme
point of €. It is straightforward to show that ¢ is extreme in D(B (D), B).

3.2. Special exiremal maps. An important class of maps in D (U, B) are the C*-
homomorphisms—maps ¢ such that ¢ (4% = $(4)® whenever 4 is a self-adjoint operator.
The argument of the following theorem is taken from [9, Lemma 3.2].

THEEOREM 3.5. Let A and B be C*-algebras and ¢ a C*-homomorphism in D (A, B).
Then ¢ is extreme.

Proof. We show that if ¢ is not extreme then ¢ is not a C*-homomorphism.
By [11, Theorem 1] 7(4%>7(4)* for A self-adjoint, whenever 7 € D(U, B). Suppose
¢=1%(o+y) with o and o in D, B), and suppose p+y. Let 4 be a self-adjoint
operator in U such that g(4)=+y(4). Then

$(4)*=1e(4) +p(A) =1 (A’ +y(4)) — 1 (e (4) —p(4))’
<}’ +p(A))<i(eA4") +yp(4?)=¢(4Y).

The proof is complete.
Combining Theorem 3.1 and Theorem 3.5 we obtain the following result, an-
nounced in [8].

COROLLARY 3.6. Let U and B be abelian C*-algebras. Then the exireme points
in DA, B) are the *-homomorphisms in DU, B).

Remark 3.7. If % and B are C*-algebras and ¢ is a positive linear map of A
into B then the set I (resp. L) of 4 in A for which ¢(4*A4)=0 (resp. $(44%)=0),
is a left (resp. right) ideal in Y—the left (resp. right) kernel of ¢. In fact, ¥ (resp. 8)
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is the intersection of the left (resp. right) kernels of the positive linear functionals
fo¢ as f runs through a separating family of states of B.

I A and B are C*-algebras acting on Hilbert spaces & and § respectively and
B is a positive operator in B then the maps in D(, B, B) which are analogous to
vector states are the ones of the form 4 —>V*AV, where V is a bounded linear map
of § into &.

TrrorEM 3.8. Let U be a C*-algebra acting on the Hilbert space K. Let §) be a
Hilbert space and V a bounded linear map of § into &. Suppose there exist a projec-
tion B in U and an operator S in A~ such that VV*=SE'. Then the map A—V*AV
is extreme in DU, BD),V* V).

Proof. Let V*-V denote the map A->V*AV. Then V*-V is the composition
of the homomorphism 4 —+ AE' of A onto AE’' and the map AE' -—>V*AE' V=V*AV.
By Lemma 2.3 V*-V is extreme if and only if the map AE —V*AE'V is extreme
in DAL, B(D),V*V). We may thus assume E' =1 and VV*=S€A". Suppose the
theorem is proved in the case when 9 is a von Neumann algebra. We show it is
then true with ¥ a C*-algebra. Let €D B(H), AV* V) satisfy p<V*-V. If o,
is a vector state on B(H) then w, o y<wy,, s0 w, oy is weakly continuous [3, p. 50].
Note that the map V*-V is weakly continuous. By [13. Remark 2.2.3.]  has a
(unique) positive linear extension mapping y~ of A~ into B(PH), which is weakly
continuous on the unit sphere in U™, and 0<yp < V*:-V on A". By assumption the
theorem holds for V*-V on ™. Hence " =AV* -V on A". Thus p=9p |A=2V*-V
on U, and the theorem is proved for % a C*-algebra.

We assume U is a von Neumann algebra acting on &. If S is a positive operator
in U such that 0 is an isolated point of {0} U ¢(S), where ¢(8) denotes the spectrum
of 8, then §-8 is extreme in DU, B(K), §%). In fact, let p € DA, B(R), 18 satisfy
p<S8-8. Let P be the range projection of §. Then P€YU. With 0<A<I in U

0<yp(4)<ypI)=182<1| 8| P,
so that y(4)=Py(4)P. Thus y=PyP. Moreover,
O0<y(I—-P)<8(I—P)S=0.

Thus I—P is in the left 'and right kernels of y (Remark 3.7). Thus y(4)=y(PAP)
for all 4 in U, and y restricts to a map g, in D(PUAP, PB(R) P, AS8?%. If we show
Yp,=A8-8 on PUAP, then for 4 in ¥,

p(A) = p(PAP) = y,(PAP)= 1 8485,
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and S-S is extreme. We may thus assume P=1I and § invertible. With 4>0 in
A, p(4)<848, so S 'yp(4)8 <4, and S 'y(I)S'=1I. The identity map of U
into B(K) is extreme in DY, B(K), I) by Theorem 3.5. Thus S 'y(4)S =14 for
all 4 in %, and py=A48-S as asserted.

Let 8 be any positive operator in A. Let y be a map as above. For n a po-
sitive integer let E, be the spectral projection of 8 corresponding to the set

{A€a(8):4>1/n}".

As n—>oo (E,) converges to P—the range projection of S—strongly. Note that 0 is
an isolated point of {0} U o(E,S). Since A is a von Neumann algebra E, €U and
E,8>0. By the last paragraph E,S-E,S is extreme in DA, B(R), £, 8%, and
E.,yE,<E,S'E,S. Thus E,yE,=AE,S-E,S. I U, is the unit ball in A the map
(4, B)— AB is a strongly continuous map of 2, x A into A [3.p.32]. Thus the map
(B, A)— BAB is a strongly continuous map of %, x U, into U,. Since E, — P strongly
E,AE,— PAP strongly. Hence, with 4 in ¥,

9(4)=Py(4)P=strong limit (E,y(4)E,)
=strong limit (A E,SASE,)=1 PSASP=1848.

Thus y=A48-S, and S8 is extreme in DA, B(K), 8*) when S$>0 in A.
In the general case V is a bounded linear map of § into & and VV* €. Let
pEDU, B(H), AV*V) satisfy p<V*-V. Then VypV*<VV*-VV*, and

VpV* €D, B(R), A(VV*P).

By the last paragraph VeV*=AVV*-VV*. Again, with P the range projection of
V*, py=PyP, and the set V*(f) is dense in P. With z and y in & and A€,

0=(V (p(4) = AV*AV)V* 2, 9)= ( (A)— AV*AV) V* 2, V*y),

so by continuity, ((¢(4)—AV*AV)w,2)=0 for all w, z in § and all 4 in A. Thus
p=AV*-V, and V*-V is extreme. The proof is complete.

Note that if A is a C*-algebra acting on the Hilbert space & and containing
the identity operator on &, and if x is a unit vector in &, then w, is pure on U if
and only if []=[U«][A x]. We generalize this as follows.

TaEoREM 3.9. Let § and & be Hilbert spaces and V be an isometry of § into K.
Let A be a C*-algebra acting on & and containing the identity operator on &. Suppose
V*UA' V< (V*UAV)’. Then the following three conditions are equivalent.
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(i) (resp. (ii)) The map A —V*AV is extreme in DU, B (H)) (resp. DA, (V*AV)"))
and V*A'V < (V*AVY. '
(i) vV = AVOIA VO]

Proof. Clearly (i) implies (ii). Assume (ii). The operator P=VV* is a projec-
tion in B(R). By assumption V*A'V is contained in the center of the von Neumann
algebra (V*AV)’. Let E=[AV(H)]. Then E€Y and P<E. Assume for the mo-
ment that E=1. Then vectors of the form y=AVz, with 4 in ¥ and z in 9, gen-

erate a dense linear manifold in &, and if 4’ €W’ then
PA'y=PA'"AVz=VV*A'PAVx=PA’ Py,

using Theorem 3.1. Thus P4’'=PA’'P= A'P for all self-adjoint 4’ in A’. Thus PeA".
Thus P=[A'P]. In the general case V*-V is the composition of the maps 4 - AE—
V*AEV (=V*AV). By Lemma 2.3 the second map is extreme in D(UE, (V*AV)").
By the above and [3. Proposition 1.p.18]

P=[(UE) P]=[EW EP)=E[W P)=[AP) (A P].
Now suppose P=[AP}[A'P]. Since [AP]€A’ and [WPIeA ' =A", V* -V is ex-
treme in DU, B(H)) by Theorem 3.8. Let 4 €Y and A4’€A’. Then
(V*A'V)Y(V*AV)=V*A'PAV=V*A'[W P [AP)AV = V*[A P]A’A[AP]V
=V*AA'V=V*[UAPIAA' W PIV=V*AV*VA'V,
so that V*U' V< (V*AVY. (i) holds, and the proof is complete.
3.3. Classes of extremal maps. We distinguish the extreme points in D (¥, B(H))

into classes, one class for each ordinal number less than or equal to the dimension of .

DeriNiTION 3.10. Let § be a family of projections in B(P), where $ is a Hil-
bert space. Then § is a separating family of dimension a« if
(i) dim Q=a for each Q in F.
(i) for each projection P in B(H) such that dim P>« and each vector x in P
there exists Q in & such that x€Q and Q< P.
(iii) 4f a=dim § then for each x €S there exists Q€ F such that x € Q.

ProrosiTroN 3.11. Let A be a C*-algebra and § a Hilbert space. Let ¢ be a
map in DU BD). Let F be a separating family of projections of dimension a in
B(D) suck that the map Q¢ Q is exireme in DY, Q B(H) Q) for each Q in F. Then

¢ is extreme. If ¢ is extreme in DU, B(Y)) then there exists a minimal ordinal num-
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ber a such that there exists a separating family of dimension o in B (D) such that the
map QPQ is ewtreme in DU, QB(DH)Q) for each Q in it. We say ¢ is extreme of
class o.

Proof. Let v be a map in DU, B(H), AI) such that 7<$. Then for each @ in
S QTR=1Q¢Q, since QpQ is extreme. If S is a self-adjoint operator in A then
T=(x—A¢)(S) is self-adjoint in B(H) and QT Q=0 for each Q in F. If z€H then
there exists @ in § such that z€¢@. Thus (Tz,z)=(TQx, Q)= (QTQx,x)=0, and
T=0. Thus 7=1¢, and ¢ is extreme. If P is a projection in B(PH) of dimension
greater than o then, similarly, P P is extreme in D (XA, PB(H)P). Suppose ¢ is an
extremal map in D (Y, B(H)). The family consisting of the identity operator alone is a
separating family of dimension equal to dim §, and the map I$I=¢ is extreme in
DA, B(H)). By the above there exists a minimal ordinal number « and a separating
family § of projections of dimension « in B(P) such that the map Q¢ @ is extreme
in DA, QB(H)Q) for all @ in F.

4. Geometrical conditions

We impose a geometrical condition on the maps in D (¥, B) and show that this
condition is closely related to, however, is not in general equivalent to, extremality

(see Example 8.13).
4.1. Definition and basic properties.

DEFINITION 4.1. Let B be a C*-algebra acting on a Hilbert space . If A is
an operator in B, r(A) denotes the range projection of A and n(A) the null space of A.
If A is a C*-algebra and €D (N, B, B), B a positive operator in B, we denote by r(¢p)
the map of W into B~ given by A—>r(¢d(A)). If T is another map in D (U, B, B) we
say r(r)<r(@) if r(x(A)<r($(4)) for each positive operator A in . ¢ is said to
have minimal range if whenever v is in DU, B, B) and r(r)<r(P) then T=4.

It is immediate that a map ¢ of minimal range in D (%, B, B) is extreme. In
fact, if T€DW,B,AB), 21+0, and 7<¢, then 17D, B, B) and r(A '7)<r(¢),

so A'r=¢, and ¢ is extreme.

Remark 4.2. T A and B are as above, € the convex bull of the maps in
DY, B) having minimal range, then ¢ in D(A, B) has minimal range if and only if
¢ is in € and if 7€C with r(z)<7(¢) then r(r)=r(¢). The necessity is obvious.
Conversely, if {4,},c; are positive operators in B then
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n (2 Az)=A n(4,),

ael ael

S0 s (EI Aa)=I—AIn(A¢)=VI (I—n(Aa))=VIr(A“).

Let ¢=2714¢; be a convex sum of extreme maps in § satisfying the conditions
above. Then for A positive in ¥,

Pl (A) = (5 A (A) =T r(dy(4)),
i=1 i=1

since 4;+0. Therefore r(¢)<r($) for i=1,...,n, so by assumption r(¢)=r(¢), and
¢i=¢. Thus ¢ has minimal range.

Lemma 4.3. Let A and B be C*-algebras, B acting on the Hilbert space H. Then
every pure state in D (U, B) has minimal range.

Proof. Let ¢ be a pure state in D (U, B). Let I be its left kernel. By {12]
the null space of ¢ is J+JF*. If €D, B) and r(r)<r($) then the left kernel of
7 contains that of ¢, and hence the null space of 7 contains that of ¢. Thus 7 is
a state and equals ¢.

Prorosirion 4.4. Let A be a C*.algebra and § a Hilbert space. Let ¢ be a
map i DU, B(D)). Suppose PP has minimal range in T, PB(D)P) for each
projection P in a separating family & of dimension «. Then ¢ has minimal range. In
particular, if ¢ is of class 1 then ¢ has minimal range.

Proof. Let P be a projection in {§. If 4 and B are positive operators in B (£)
and 7(4)<r(B) then n(4)>n(B), so n(PAP)>n(PBP), and r(PAP)<r(PBP). Thus,
if €D B(Y)) and r(z)<r(¢) then r(PTP)<r(P¢P), and PrP=P¢P for each
P in . Thus v=¢. Suppose ¢ is of class 1. If z is a unit vector in § then
[¢] $[*] (=[x]w. o) has minimal range in D(Y, [z]B(H)[x]) by Lemma 4.3. Thus ¢
has minimal range.

THEOREM 4.5. Let U and B be C*-algebras, B acting on the Hilbert space H.
Let ¢ be a map in DU, B), and suppose there exists a subset S of W consisting of
positive operators of norm less than or equal to 1 satisfying the following conditions:

(i) There exists k>0 such that ¢(SY¥ =k (S) for all 8 in .
({ily If A is positive in A and £>0 is given, then there exist A, ..., A, in S and

positive real numbers a,, ...,a, such that |[>ia,4,— 4| <e.
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Then if T€DU,B) and r(z)<r(P) then kr<¢. In particular, if ¢ is extreme
then ¢ has minimal range.

Proof. If A is positive in A we have to show kr(4)<¢(A4). Assume first that
A€S. Consider the von Neumann algebras acting on § generated by v(4) and I,
and ¢(4) and I, respectively. Let 6>0 be given and let 27 ,a,F; and 2.1 ;G
be approximations to 7(4) and ¢(4), respectively, with

S F=rA), 3 6-r@),
a;+0 in o(v(4)), b;+0 in og(¢(4)), and such that
I3, 0 Fa— () <5 and |3 5,6,— $(A)] <.

Since ¢(A)?>kp(A) it follows by spectral theory that b,>k. In fact, if b+0 is in
o($(A)) then b*>kb, so b>k, since ¢(A4) goes into the identity function in C (o ($(4)))
by the canonical isomorphism. Moreover, || 4[| <1, so 0<a,<1. Thus
$(4)—kr(d)= (¢(A)—§b; Gy + (.?. b6~ k2. a,F)+k(2a; Fs—1(A))
> -0+ (kG -k F)—kd
7 S

I

—(L+k)d+k(r ($(4))—r(x(4))
=—(1+k)6.
Since § is arbitrary, ¢(4)—kr(4)>0. Now let A be any positive operator in .

Let £>0 be given. Then there exist 4,,...,4, in © and ¢;>0, i=1, ..., n, such that
| 2f1cd;—Alj<e, and kt(4;)<$(4;) by the preceding. Thus

‘}S(A)_kT(A):‘ﬁ(A—}i:ciAi)+‘Zci(¢(‘4i)_k1(‘4i))'_kT(A_izciAi)
=z —e—ke=—(1+k)e.
Since ¢ is arbitrary, ¢(4)=kv(4), and ¢=>kz. The proof is complete.

COROLLARY 4.6. Let U be a wvon Neumann algebra and B a C*-algebra acting
on the Hilbert space §. If ¢ €D (U, B) and there exists k>0 such that ¢(E)}?=>kP(E)
for each projection E in U, then if v is in DU, B) and r(r)<r(P), then kr<d. In
particular, if ¢ is a C*-homomorphism then ¢ has minimal range.

Proof. Let © be the subset of ¥ consisting of all projections in A. Then &
satisfies the conditions of Theorem 4.5. If ¢ is a C*-homomorphism then ¢ is extreme
by Theorem 3.5, and ¢(E)>=¢(E), so ¢ has minimal range.
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Example 4.7. Let Z be the integers and u the Lebesgue measure, u(n)=1 for
all n€Z. As in [15] let N, be the “discrete algebra”, i.e. the maximal abelian von
Neumann algebra consisting of operators 7T, with g an essentially bounded u-mea-
surable function on Z, where T',(h)=gh for each h in L,(Z, u). In the terminology
of [15] let D be the unique diagonal process relative to A, [15, Theorem 1]. If A,
acts on  then D has minimal range in DB (H), ;). In fact, let 7 be a map in
D(B (D), Ay) such that r(z)<7(D). Then in particular r(z|Ay) <r(D|Wy). Since DA,
is the identity map 7|%;=D|¥,; by Corollary 4.6. Since D is the unique positive
extension of the identity map of A, to B(H), =, and D has minimal range.

Using Proposition 3.4 we could similarly prove the weaker result that 9 is extreme.

4.2. Maps from abelian O*-algebras.

DEeriniTioN 4.8. Let X be a compact Hausdorff space. Let ¢ be a positive linear
map of O(X) into a C*-algebra. Let Y be a closed subset of X. We say ¢ liveson Y
if $(f)=0 for each function f in C(X) such that support fN Y =d.

LeEmMMA 4.9. Let A be a C*-algebra and €=C(X) the center of A. Let B be a
matriz algebra. If ¢ is extreme in D (U, B) then ¢|C lives on a finite subset of X.

Proof. Let N be the null space of ¢. By Theorem 3.1 NN is an ideal in €,
which generates a closed two-sided ideal J in ¥, and J<N. Let g be the canonical
homomorphism % —A/J. Then ¢=¢ og, where ¢'|o(€) is an injective positive linear
map of the abelian C*-algebra o(€) into B. Say ¢(€)=C(Y). To prove the lemma
it suffices to show that Y consists of a finite number of points. B is a matrix al-
gebra, hence a subset of some M,. We show Card Y <n® In fact, let r< Card Y
and let x,,...,2, be r distinet points in Y. Imbed C"=Cx, ... ® Cz, into C(Y) as
follows: for each z; let f; be a positive function in C(Y) such that

fily) =0, (1<i,5<r).
Map Cxz,; @ ... ® Cz, into C(Y) by
T a4~ afi.
15 91

Then 7 is linear and injective. Thus ¢’ o7 is a linear imbedding of C" into C™. But

this is impossible unless r<n’. Thus Card ¥ <7 The proof is complete.

Turorem 4.10. Let A be an abelian C*-algebra and B a matriz algebra. Then
every extremal map in DA, B) has minimal range.
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Proof. Let ¢ be extreme in D(U,B) and let N be the null space of ¢. Then
N is an ideal in U (by Theorem 3.1). Let T € DA, B) and r(z)<r($). Then N is
contained in the null space of 7. Let p be the canonical homomorphism A -—>A/N.
Then ¢=¢ op and 7=17"0p with ¢’ extreme in D(A/N,B) by Lemma 2.3, and
r(7')<r(¢’). A/N =C(X), with X a finite set by Lemma 4.9. Thus there exist or-
thogonal minimal projections E,, ..., E, which generate A/N. Since B is a matrix al-
gebra there exists k>0 such that ¢'(E\)? >k (E,), (1<i<r). By Theorem 4.5 v'=¢',

s0 7=¢, and ¢ has minimal range.

CorOLLARY 4.11. Let A be an abelian C*-algebra and © a Hilbert space. Let
€D, B(D)). Suppose ¢ is extreme of class n, with n an integer. Then ¢ has mini-
mal range.

This is immediate from Theorem 4.10 and Proposition 4.4.

Remark 4.12. We outline a proof of Theorem 4.10 which does not make use of
Theorem 4.5. Let ¢ be extreme in D(U,B). By [20]1¢=TV* oV, where V is an iso-
metry of §—the (finite dimensional) Hilbert space on which B acts—into a Hilbert
space ®, and p is a *-representation of U on & By Lemma 4.9 we may assume
o(A)=C(X) with X a finite set. As in the proof of Theorem 4.10 we have to show
that the map A — V*AV has minimal range in D(o(A),B) The map B— VBV* is
an isomorphism of B into B(R). We may thus assume ¢ is the map 4 - PAP of
A(=0(A)) into B=B(R), where P=VV* is a finite dimensional projection. Let
T€D (U, B) be such that r(z)<r(¢$). If 4 and B are positive operators in B(K) and
r(A)<r(PBP) then there exists a positive operator C in B(®) such that r(C)<r(B)
and PCP=4. Thus, with ¥ a minimal projection in U then r(z(&))<r(PEP), so
there exists >0 in W', CE=C and PCEP=1(E). Thus there exists a positive op-
erator A’ in A’ such that 7(4)=PA' AP, for all A in A. By Theorem 3.1 7(4)=
(PA’ P)PAP=PAP=¢(A), and ¢ has minimal range.

Remark 4.13. Let A and B be C*-algebras, B acting on the Hilbert space £.
Let v and ¢ be maps in (U, B). If x is a unit vector in § denote by I, (resp. J,)
the left kernel of the state w,o7 (resp. w;o¢). Then r(z)<r(¢) if and only if
I.>J, for each unit vector z in . In fact, with 4>0 in U then r(v(4))<r($(4))
if and only if n(7(4))>n(¢(4)) if and only if $(4)z=0 implies 7(4)z=0 for all =
if and only if w,0¢(4)=0 imp]ies w;o01{A4)=0 for all z if and only if I,>J, for
each unit vector x€%. If f is a state of B denote by I, (resp. J;) the left kernel
of the state foz (resp. fod) of A. It is a plausible conjecture that if Y is an
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abelian C*-algebra then ¢ is extreme if and only if, whenever 7€ (Y, B) and I,oJ,
for all states f then 7=4¢.

Example 4.14. In view of Theorem 3.1 and Lemma 4.9 it might be conjectured
that if 9 and B are C*-algebras, € the center of U, and ¢ extreme in D (U, B), then
¢ restricted to € is extreme in D(C,B). This is false, as the following example
shows. Let A=M,® M; and B=M, Let ¢’ be the map of ¥ into B defined as
follows: if A€M, and BE M, let

0 0 0000
@ 5 0 0

(4)= $(B)=

#( 0000/ 0 (B
0000 0

Let 8=¢'(I), and let ¢=8"%¢' St The center € of U equals CI,® CI,, where I,
is the identity operator in M;(1=2,3). Clearly ¢ (resp. ¢|C) is extreme in D (Y, B)
(resp. D(C, B)) if and only if ¢’ (resp. ¢'|C) is extreme in DY, B, S) (resp. D(E,B,9)).
By Theorem 4.10 ¢|€ is not extreme in D (€, B). We show ¢’ has minimal range.
Suppose T €D (WU, B, 8) and r(z)<r(¢’). If E is a l-dimensional projection in A then
either £ € M, or E € M;, and ¢'(E)=TF is a 1-dimensional projection in B, say E € M,.
r(t(B))<F, so ©(E)=AF. Let P=(a;)€ M, be the projection with a,,=1. Since
t([)=¢'(I)=28, and 1=8,;=¢'(P),;, 1(P);;=1. Thus, by linearity,

([ 2)es), e

2
where B€M,. Now E=(l_xl y 2)-
g 1-le|

Thus 7(E),=|«*=2F,=2]«[* Thus i=1 unless z=0. Let E be a projection as
above with x+0,1. Let G=1I,—E. Then t(E)=¢ (E) and 7(G)=¢ (). Moreover,
7(P)=¢'(P). Thus

t(ly— Py=1(E)+1(Q)—T(P)=¢'(E) + ¢ (@) — ¢'(P)= ¢’ (I,— P).

Thus 7(E)=¢'(E) for each 1-dimensional projection E in M,. Similarly v(E)=4¢'(E)
for each 1-dimensional projection £ in M, Thus v=¢’, and ¢’ has minimal range.

4.3. Geometry. We show that the extremal maps in D (U, B), A an abelian C*-

algebra and B a matrix . algebra, are “approximately’’ homomorphisms. In view of
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Lemma 4.9 we may assume 9 is an abelian matrix algebra and each extreme map
in (U, B) is injective.

DerFINITION 4.15. Let {S,}ecs be a finite set of self-adjoint operators acting on
a Hilbert space. We say the set is linearly independent if >,c 1k, S,=0 with k, real
numbers implies k,=0. The set is said to be a minimal set if there exist real constanis
k, such that D,c1k.S,=1I, and if J<I and hs are real numbers then DpgeshgSp=1
implies J=1.

We omit the easy proof of the following lemma.

LeMMA 4.16. Let {S,}.c; be a finite set of self-adjoint operators. Then the following
three conditions are equivalent.

(i) {Su}acs is @ minimal set.

(i) {Su}ees s linearly independent and there exist real numbers k,+0 such that
Zae I ko: Saz = I .

(i) There exist unique k,=0 such that D,crk,S,=1.

We denote {S.}eer by {Se,kujucr. We say {S., ki}eer is a positive minimal set
if each k,>0.

LEMMA 4.17. Let A be an abelian matriz algebra and B a matriz algebra. Let

E,, ..., E, be the minimal projections in A. Let ¢ be extreme and injective in D (A, B). Let

HE)= 3 kyFy,

Isisng

where k>0, and Fy; are the spectral projections for ¢ (E;), (i=1,...,n). Then {Fy, i}

18 a positive minimal set.

Proof. Suppose >, ;h; Fi;=0. Multiplying by a constant we may assume k;—
hy;=0 for all pairs (¢,§). Let B,=2;(ky—hy)Fy. Then B;>0. If we define 7 in
DU, B) by v(H)=B, then r(r)<r(¢), so t=¢ by Theorem 4.10. Thus h; =0, and
{Fy, k;} is a minimal set by Lemma 4.16.

If z is a unit vector in the Hilbert space § and F is a projection in B () then
the angle (x, F) between z and the subspace F is the angle between 0 and 7/2 radians
given by cos (z, F)=| Fz|. If F=[y] with y a unit vector in § then

cos® (x, [y]) = ([y] =, ) = ([z] y, y) = cos® (y, [2]),

so the angle (x,y)> between x and y is well defined.
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Let {[#.]}xcr be a set of 1-dimensional projections in B(H), P finite dimensional.
Suppose {[z,], k.} is a positive minimal set. Then

dim §=tr (I)=zllc,,

while 1= z k, cos® (z, [xz])
ael

if # is a unit vector in §). In particular the angles (z,, 25> are “‘almost” z/2 for
“almost” every pair («, f) in IxI. This condition is also sufficient in order that
{[z,], .}, be a positive minimal set. Let D be the determinant |(cos? (z;, y,>)|, where
I={1,2,...,n}, and D,(k=1,...,n) the determinant |(4;)|, where A4;=cos® (z;, 2;> if
j*=k, and Az=1. Then D and D, have 1’s on the main diagonal, so if the angles
{x;, z;> are sufficiently close to /2 the entries off the diagonal will diminish, except
the kth column in D, and D>0 and D,>0. Thus, if {[z]}i-1.....n is & set of 1-
dimensional projections such that there exist k; for which >,k [x]=1, then k=
D,/D it D=+0. If the angles {z, ;> are so large that D>0 and D,>0 (k=1,...,7n)

then {[x], k;} is a positive minimal set. We summarize the last results as follows.

ProrositioN 4.18. Let {[)}i-1....n be a set of l-dimensional projections such
that there exist real numbers k; (1=1,...,n) for which

2 ki[x]=1.
=1
If {[x], k;} is a positive minimal set then the angles {x;, x;> are so large that
1=3 k cos® {x, 2> (j=1,...,n).
i=1

Conversely, if the angles (x;,x;> are so large that D>0 and D;>0 (i=1,...,n) then

{lz)), &} is a positive minimal set.

5. Maps of classes 0 and 1

5.1. Two theorems. We characterize all maps of class 1 in D, B(H)) and of
class 0 in D (A, B), where A and B are C*-algebras and § is a Hilbert space, in a
way analogous to Segal’s characterization [18] of pure states in terms of vector states
and irreducible representations (Theorems 5.6 and 5.7). Recall that a map ¢ in
DA B(H)) is of class 1 if and only if w,¢ is a pure state of 9 for each vector
state w, of B(H), and ¢ is of class 0 in DU, B) if and only if f o is a pure state
18— 632933 Acta mathematica. 110, Tmprimé lo 6 décembro 1963.
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of ¥ for each pure state f of B. Following [3] we say that a positive linear map
vt one (*.algebra into another is faithful if its null space contains no non zero po-
sitive operators. We are indebted to R. Kadison for remarks which simplified the
proof of Theorem 5.6 considerably. We need some lemmas. The first with its proof

is almost a direct copy of [3, Proposition 3, p. 61].

LEmma 5.1. Let A and B be von Neumann algebras and ¢ a positive linear map
of A into B. If ¢ is ultra weakly continuous then there exists a minimal projection E
in U—the support of ¢—such that $(A)=¢(EAE) for all A in U, and the map
EAE — ¢ (EAE) is faithful.

Proof. Let § denote the left kernel of ¢. Then J is the intersection of the left
kernels of the states fo¢, where f runs through the ultra weakly continuous states
of B (Remark 3.7). By [3, Theorem 1, p. 54] § is ultra weakly closed. By [3, Co-
rollary 3, p. 45] there exists a unique projection F in U such that J={T €A:TF="T}.
Since F is self-adjoint, F is also in the right kernel of ¢. Let E=I—F. Then
$(4)=¢(EAE).

LemMmA 52. Let § and & be Hilbert spaces and ¢ in D(B(R), B(D)) be of class
1 and ultra weakly continuous. Let x be a unit vector in . Then w,$=w,, where y
is a unit vector in &, and ¢ ([y])=1[z] or (ly))=1.

Proof. Since w,¢ is an ultra weakly continuous pure state of B(K) it follows
from [3, Theorem 1, p. 54] that w.¢ is a vector state w,. To simplify notation let
Y=¢(y]) and X=[z]. Then 0<Y <7 and w,(Y)=1. Thus YX=X<Y.

To prove Y equals X or I we first assume the dimension » of § is finite and
use induction. If n=1 the lemma is trivial.

Suppose n=2 and that Y+ X. We may then assume B(9)=M, and

1 0
Y = ( )’
0 »p
where p=0. Let w be a unit vector in & orthogonal to y. Let F=[y]+[w]. Then
FBR)F =~ M, Let ey, e, ey, and e,, be the matrix units in ¥ B (K)F and assume
[y]=ey, [w]l=ey. If w, is a vector state of M, then w,¢ is a vector state of B(RK),
and for some scalar k>0 kw,$ is a vector state or 0 on FB(K)F. Thus
wutﬁ(eu) wu¢(622) = Iwu¢ (912) |2- (1)

Now 0< ¢ (e, +ey)<I. Hence
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95(622):(2 (q)) and ¢(e12)=(g :)

If w=(u,,u,) is a vector in C? the following equations

hold: wuPley)=|u, |2 +p |“2l2’
wy P (eg5)=¢ |“2|27
®y P (€5) = b U |2+ 7t uy + s,
Thus, using (1),
|t|u2[2+mi1u2+su1122|2=|t|2[u2|4+ (|r|2+|sl2) |”’1|2|“2|2
+2 R (rF+ 58) | up P @, up) + 2R (75 (8, 4,)%)
=q|u2|2(|u1|2+p|u2|2).

Now, if f,, f,, f; are complex valued functions of the two complex variables u, and
%, such that

fr Qg Vg [y =R (o (|, P ) By g+ fo (T ], | a]) (@ w0)?),
then it is easily verified that f,=f,=f;=0. Applying this to the above it follows that
+5=0=135 |t[>=pq, and |r*+|s|*=g¢.

Thus ¢=0, and ¢ ([w])=¢ (es)=0. Since this holds for every unit vector w ortho-
gonal to y, and since ¢ is ultra weakly continuous, ¥ =1, as asserted.

Suppose’ #>3, and assume the lemma is proved whenever dim $<n—1. Let
E be a projection in B (§) containing z and dim E=k<n. Then E ¢ E is of class 1

and ultra weakly continuous in
D(B(R), EB (D) E)=D(B(K), My),

and w,=w,¢=w,0E¢E. By induction assumption EYE equals X or E. If EYE=X

then
0=E(Y-X)E=((Y-X}EY(Y-X)!E,

so (Y-X)E=0, and YE=X=EY, taking adjoints. Similarly, if EYE=F then
E(I—-Y)E=0, and EY=YE=E. Thus Y commutes with every projection containing x.
Since n >3 this is possible only if ¥ equals X or I.

If § is not finite dimensional it follows from the above that ¥ commutes with
every finite dimensional projection containing z. Hence Y equals X or I. The proof

is complete.
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LemMmMa 53. Let ¢ in D(M,, M,) be of class 1 and faithful. Then ¢ is either a

*.isomorphism or a *-anti-isomorphism.

Proof. If n=1 the lemma is trivial. Assume n>2. Then ¢ is not a state. If
x and 2z are orthogonal unit vectors in C" then w,¢=w, and w,¢=w,, where y and
w are orthogonal unit vectors in C". In fact, by Lemma 5.2 ¢ ([y]) = [¢] and ¢ ([w])} =
[z], and
0 < w, ((w]) = 0, ¢ ([w]) = w: ([z])=0.

Thus [w]y=0, and y and w are orthogonal. Let e;(i,j=1,....,n) denote the matrix
units in M,. Then ¢; (=1, ..., n) are orthogonal 1-dimensional projections. By the above
there exist % orthogonal 1-dimensional projections F; (i=1, ...,7n) such that ¢ (F;) =e;.
Replacing ¢ by ¢ (U*-U), where U is a unitary operator in M, if necessary, we may
assume F,=e,. Let k+j. Let E=ey+ey; Then $(E)=E. If A€M, and 0OSEAE<E
then 0< H(EAE)< $(E)=E, so

H(EAE) = EQ(EAE)E = $(EAE) E = EQ(EAE).

Since operators EAE with A >0 generate EM,E =M, linearly the equation above holds
for all operators EAE in EM, E. Thus E¢E is faithful and belongs to D(EM, E, EM, E).
If z is a unit vector in F then w,¢=w, with y a unit vector in £. Indeed, w,(¥) =
w0, p(E)=w(E)=1, so y€E. Thus E¢E is of class 1 and faithful in (EM, E, EM, E).
Moreover, ¢, E = Ee,;=Ee; E, so e,;€ EM, E. At this point we have to refer the reader
to a result in chapter 8. It follows from Lemma 8.9 (i) that E¢FE is either an isomorphism
or an anti-isomorphism such that ¢{e) = EdE(e;) =€ ¢, or e®e; with 0 <0< 2. This
holds for all k, j. It follows that ¢ is injective. Since each 1-dimensional projection in M,
is in ¢(M,) as w,¢=w, with ¢([y])=[z], ¢ is surjective and strongly positive. Thus ¢
is an order-isomorphism of M, onto itself. Thus ¢ is a C*-isomorphism [11, Corollary 5],
hence is a *-isomorphism or a *-anti-isomorphism [10, Corollary 11]. The proof is com-
plete.

If & is a Hilbert space defined by the operations {a, x} - az, {z,y} - x+y, and
{z,y} — (x,y), where a is a complex number and z and y are vectors in &, we denote
by ¢ the conjugate map R — K, where & is defined by the operations {a,z}— dz,
{x,y} >=z+y, and {z,y} > (y, z).

LemMa 54, Let § and K be Hilbert spaces, and let ¢ in D(B(K), B(H)) be of
class 1 and ultra weakly continuous. Then ¢ is either a vector state of B(R), or there
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exists a linear isometry V of § into & such that ¢(A)=V*AV, or $(A)=V*c*A*cV
for all A in B(R).

Proof. Let P be the support of ¢ (Lemma 5.1). Let p denote the map A—>PAP
of B(R) onto PB(R)P. If we can show that ¢ restricted to PB (K) P is of the form
described above then ¢=(|PB(R)P)op is of the form described. We may thus
assume ¢ is faithful and not a state. Let K be a finite dimensional projection in

B(H). Then
E 121 [x:]

with #; mutually orthogonal unit vectors in §. w,¢=w,. By Lemma 5.2 ¢ ([y:])=

[7;], and as shown in the proof of Lemma 5.3 the y; are mutually orthogonal. Let

P30

The map E¢E is of class 1 in D(B(R), EB(DH)E). Let @ be its support (Lemma
5.1). Then in particular, E¢(G)H=E(F)E=E$(GFG)E. Now G(I—-F)G>0 and
E$(G(I—F)G)E=0. Since E¢(G-G)E is faithiul on GB(R) G, ¢ —F)G—=0, and
G=FG. Thus F>@. Since 0<¢()<I and E¢(G)E=E=¢(F), $(Q)=¢(F). Thus
¢ (F—G)=0. Since ¢ is faithful F=G. Thus E$E is faithful and of class 1 in

DEFBR)F, EB)E) (=2D(M,, M,)).

By Lemma 5.3 E ¢ E is either an isomorphism or an anti-isomorphism on FB (&) F.
If A is an operator in B(RX) such that 0<A<I then ¢(FAF)<$(F)=E, and
E$(FAF)E=¢(FAF). By Lemma 5.1, for all 4 in B(8), $(FAF)=E ¢ (FAF)E=
ES(4)E.

Let {E;}ie; be a monotonically increasing net of finite dimensional projections in
B(H) converging ultra weakly to I. Let F; be the (finite dimensional) projection in
B(K) such that ¢(F;)=E,. Then {F}i; is a monotonically increasing net. In fact,
if E,>E,; then, by the preceding,

P (I—-F)F)=E¢(I~F,)E,=E E,$(I—F,)E.E,=0,

so that F,(I—F,)F;=0. Thus F,F,=F, and F,>F, Let B(R!), denote the unit
ball in B(R). Then the map B(R),xB(K) - B(K) by (8, T)—> 8T is ultra strongly
continuous [3, p. 35] and similarly for §.  Now E,—1I ultra weakly, hence ultra

strongly [3, p. 37]. Hence in particular, E;SE,—> S ultra strongly for each operator
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S in B(H). Thus F,—I ultra weakly. In fact, if there exists an operator T >0
such that 7— F, =T for all [€J then

0=¢(F,\TF)=E $(T)E,— $(T),

and ¢(T)=0. Since ¢ is faithful 7=0, and F;— I ultra weakly. If 4 and B are
operators in B(K) it follows that F; AF,—~A and F,BF,— B ultra strongly, so
F, AF, BF,—> AB ultra strongly, hence ultra weakly. If dim F,>2, Ex¢ E| F, B (R) F;
is an isomorphism or an anti-isomorphism, say an isomorphism. Then E,¢ E,| F; B (R)) F,

is an isomorphism for all 1€J, and
$(4B) =E!ligll¢((FzAFz) (F.BF}))
=lim ¢ (F AF) E,$ (F,BF) B,
=£],i5 Ei$(4)E$(B)E,
=¢(4)(B).

Thus ¢ is a homomorphism or an anti-homomorphism. Since ¢ is faithful ¢ is in-
jective. Also ¢ (B(R)) is ultra strongly dense in B(H). By [3, Corollary 2, p. 57]
d(BR)=B(H). If ¢ is an isomorphism it follows from [3, Proposition 3, p. 253]
that ¢ is spatial, say ¢(4)=U*AU with U an isometry of § onto & If ¢ is an
anti-isomorphism then by [3, p. 10]¢ (4)=U*c*4*cU. The proof is complete.

Remark 5.5. If B is an irreducible C*-algebra acting on a Hilbert space § then
each vector state of B(P) is pure on B. Hence, if A is a C*-algebra and ¢ is in
DU, B) then w, ¢ is a pure state of A for each vector state w, of B if and only if
é is of class 1 in D (U, B(H)). We say ¢ is of class 1 in D (U, B). It is thus no restric-
tion to consider maps of class 1 in D(A,B(PH)) rather than maps of class 1 into

irreducibly represented C*-algebras.

THEOREM 5.6. Let A be a C*-algebra and § a Hilbert space. Then a map ¢ in
DA B(D)) is of class 1 if and only if either ¢ is a pure state of A or $=V*gV,
where V is a linear isometry of §) into a Hilbert space &, and g is an irreducible *-homo-

morphism or *-anti-homomorphism of U into B(R).

Proof. 1t is clear that if ¢ is of one of the forms described then ¢ is of class 1.
Assume ¢ is of class 1. Let w, and w, be vector states of B(H). Then ;¢ and

w,¢ are pure states of U. We show they are unitarily equivalent. In fact, let z
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be a unit vector in §) orthogonal to z and y (if dim $ =2 argue similarly). Define

unit vectors w; (¢=1,...,5) as follows:
wy =2, wy,=2" (w+2), wy=2z, w,=2" (y+2), wy=y.
Then lwi —win|F=2—-2<1 (@=1,...,4).

If we can show w,, ¢ is unitarily equivalent to w,, ,0¢ (i=1,...,4) then w, ¢ is

unitarily equivalent to w,¢. We may thus assume |[z—y| <1. Then, with 4 in A
and ||4[|<1,

[(w:~ @) (A)|<|(4 (@~ y), o) |+ ]| Ay, z—y)|<2||A]| |2 —y]l < 2.

Hence ||w,¢—w, d|| <2, so by [7, Corollary 9] w,$ and w, ¢ are unitarily equivalent.
Let y be the irreducible *-representation of A of the Hilbert space & induced by
. ¢, [18]. Then w,¢=w,yp for each vector state w, of B(PH). Thus =7 oy with
n of class 1 in D(yA), BD)), and w, (4 (y(4)))= w, (¢ (4)) = w, (p(4)) for each A
in %. Thus w,n=w, By [13, Remark 2.2.3] n has an extension % to D(p ()",
B9H) (=D(B(KR), B(D))), which is ultra weakly continuous. w, o7 is an ultra weakly
continuous state on B(R), equal to w, when restricted to u (). By continuity
7= ww, and 7 is of class 1 in D(B(KR), B(H)). An application of Lemma 5.4 comple-
tes the proof.

TaEOoREM 5.7. Let U and B be Calgebras and ¢ in DU, B). Then ¢ is of
class 0 if and only if for each irreducible *-representation y of B, p o is either a
pure state of A or yod=V*oV with V and o as in Theorem 5.6.

Proof. Each irreducible *-representation of B is cyclic and hence unitarily equi-
valent to the *-representation induced by a state. Thus, by Remark 5.5 and Theo-
rem 5.6 it suffices to show ¢ is of class 0 if and only if p o is of class 1 in
DU,y (W) for each irreducible *-representation ¢ due to a state. If f is a pure state
of B then f=w,d;, where ¢, is an irreducible *-representation of B on a Hilbert
space ;. Moreover, w, ¢, is a pure state of B for each unit vector w in §,. Thus,
¢ is of class 0 in DU B) if and only if w,P;0¢ is a pure state of Y for each
pure state f of B and each unit vector w in §, if and only if ¢;0¢ is of class 1 in
DA, B () for each pure state f. The proof is complete.

5.2. Applications.

CororLrary 5.8. If W is a C*-algebra and ¢ is of class 1 in DU, B(D)) then
either ¢ (N) is the scalars in B(DH) or $A) is strongly dense in B (D).
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Proof. By Theorem 5.6 it suffices to show that if B is an irreducible C*-algebra
acting on a Hilbert space & and V is a linear isometry of § into & then V*BV is
strongly dense in B($). Let £>0 be given, and let z,, ..., 2, be n unit vectors in §.
Let B be in B(f). We have to show there exists 4 in V*BV such that ||[(4— B) x| <e.
The operator VBV*€B(]). Therefore there exists ¢ in B such that

(C—VBV*)Vx| <e, i=1,...,n.
If A=V*CV then, since B=V*VBV*V,

4 - Byal| = |(V*CV - V*VBV* )zl = | V* (O~ VBV*) Vai|
<|[(c-VBV*)Va| <e.

COROLLARY 59. Let A and B be C*-algebras and ¢ be a surjective C*-homo-
morphism in DU, B). Then ypod is either a *-homomorphism or a *-anti-homomor-

phism for each irreducible *-representation v of B.

Proof. By Lemma 2.3 ¢ is of class 0 in DU, B). Let y be an irreducible
*.representation of B on a Hilbert space §. By Theorem 5.7 y o ¢ is either a pure
state of A or is of the form V*pV, where p is an irreducible *-homomorphism or
*.anti-homomorphism of U on a C*-algebra acting on a Hilbert space &, and V is an
isometry of §) into & Now wpo¢ is a C*-homomorphism. If po¢ is a state, it is
thus a homomorphism. We may therefore assume yo¢=V*oV. Let P be the pro-
jection VV* in B(K). Then the map 4> PAP is a O*-homomorphism of g(¥), since
the map B— VBV* is an isomorphism of B(§) into B(R). With A4 self-adjoint in o (¥),

(AP~ PAP)* (AP— PAP)= (PA*P — PAPAP)— (PAPAP— PAPPAP)
= PA®P— (PAP)*=0.

Thus AP=PAP=PA for each self-adjoint operator 4 in o(A). Thus P€g(A)’, Thus
P=1, and the map A—>V*AYV is an isomorphism of p(A). Thus y o ¢ is either a

homomorphism or an anti-homomorphism of 2.

CoROLLARY 5.10. If A and B are C*-algebras and ¢ is of class 0 in DA, B)
then ¢ maps the center of U into the center of B, and $(AC)=¢(A)$(C) for all A in
A and C in the center of A.

Proof. Let v be an irreducible *-representation of B. Let € be the center of .
Then g o¢ is either a pure state of A or of the form V*oV with V and ¢ as in
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Theorem 5.6. Since g is irreducible o(€) is the scalars in (). Thus y o ¢(C) is the
scalars in o (B). Thus yp o ¢ restricted to € is a state, hence a homomorphism. Since
the irreducible *-representations of B separate points ¢|& is a homomorphism. If f
is a pure state of B then f|$(€) is a homomorphism. By [14, Corollary] ¢(Q) is
contained in the center of B. By [14, Lemma] (or from Theorem 3.1 and Lemma
2.4) $(AC)=¢(A)$(C) for each A in ¥ and C in €. The proof is complete.

We recall that a C*-algebra U is a GOR algebra if it has a composition series
{I,} (an increasing family {I,} of two-sided ideals indexed by the set of ordinals less
than or equal to some ordinal y such that I,=0 and I,=%, and if « is a limit
ordinal then Ug., I is dense in I,) such that I,.1/I, is CCR. A CCR algebra is a
O*-algebra each of whose irreducible *-representations consists of completely conti-
nuous operators. Kaplansky has proved [16, Theorem 7.4] that the homomorphic
image of a GCR algebra is GCR. We show a similar result for class 0 maps.

CoROLLARY 5.11. Let A be a GCR algebra and let B be a separable C*-algebra.
Suppose there exists a map ¢ of class 0 in DU, B) such that whenever y is an ir-

reducible *-representation of B on a Hilbert space of dimension greater than 1 then
wod¢ is not a state. Then B is GCR.

Proof. Let g be an irreducible *-representation of B on the Hilbert space 9.
By [6, Theorem 1], to show B is GCR it suffices to show y(B)>E(H)—the comple-
tely continuous operators in B (). By [5, Theorem 2] it suffices to show that y(B)
contains some non zero operator of finite rank. If dim $=1 this is trivial. Other-
wise p o= V*oV, where V is a linear isometry of § into a Hilbert space &, and ¢
is an irreducible *-homomorphism or *-anti-homomorphism of U into B (K). By (6, Theo-
rem 1] o(A)>E(R). Thus

P(®B)>ypod W) =T V>V EWR)V,

which contains operators of finite rank. Thus o (B)>C(H), and B is GOR.

6. Decomposition of positive maps

6.1. General results. Let % and B be C*.algebras and ¢ a positive linear map
of % into B. Let 1, denote the identity transformation of M, onto itself. Following
[20] we say ¢ is completely positive if $®1, is a positive linear map of the algebraic
tensor product A® M, into B® M, for each integer n=1. If B acts on a Hilbert
space § then ¢ is completely positive if and only if ¢= V*oV, where V is a bounded
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linear map of § into a Hilbert space & and p is a *-representation of A on & [20,
Theorem 1].

Lemma 6.1. Let A be a C*-algebra and B an abelian C*-algebra. Then every bound-

ed positive linear map of N into B is completely positive.

Proof. Every pure state of BRM, is of the form f®g, where f is a state
of B and g a state of M,. Indeed, let 2 be a pure state of B®M,. The center of
B M, is B®C,, where C, denotes the algebra of operators of the form Al with 1
a complex number and I the identity in M,. By Theorem 3.1, if 4 is in B and B
in M, then

h(A®B)=h((A4QI)(I®B))=h{(ARI)h(I® B).

Denote the state 4 —>h(4®1I) of B by f and the state B—~>h(I®B) of M, by g.
Then, if >, A;® B, is any element in B M, then

h(ZAi®Bi):zi:h(Ai®Bt)=Zih(Ai®I)h(I®Bi)= zi:f(Ai)g(Bi)
:‘Zf®g(Ai®Bi)=f®g(iZAi®Bi)'

Thus A=f®g as asserted.

Let ¢ be a positive linear map of A into B. We have to show that for each
integer n>1, ¢®1, is a positive linear map of A® M, into B® M,. Let h be a pure
state of B® M,. By the preceding paragraph h=f®g, where f and g are states of
B and M, respectively. Thus

ho(¢®1,)=(f®g)o(¢®1,)=(fod)®y,

which is the tensor product of two positive linear functionals, and is hence positive
[21]. It follows that ¢®1, is positive, and ¢ is completely positive. The proof is
complete.

THEOREM 6.2. Let A and B be C*-algebras and ¢ a bounded positive linear map
of A into B. Then ¢=1i0(V*V), where ™' is an order-isomorphism of B into an
abelian C*-algebra € acting on a Hilbert space , V a bounded linear map of  into a
Hilbert space &, and o a *-representation of A on K. Moreover, if ¢(I)=1 we may

assume H< & and V is a projection.

Proof. Let X be the pure state space of B (the w*-closure of the set of pure
states of 3B). Let u be the (canonical) order-isomorphism of B into C(X) ([9]). Let
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n be a faithful representation of C(X) as operators on a Hilbert space §. Let
C=7(C(X)). Let j=nou. Then jod is a positive linear map of U into €, so is
completely positive by Lemma 6.1. By [20, Theorem 1], j o= V"oV, where V and
o are as described. Let 1= on §(B). Then ¢=1i o (V*oV). If $(I)=1 then j(¢ (I))=1,
and ¥V may be chosen to be an isometry of § into & The map % of € into B(K)
defined by A—>VAV* is an isomorphism, and P=VV”* is a projection in B(K). Let
i=(Xo0j)". Then ¢=1io0(PpP). The proof is complete.

6.2. Order-homomorphisms. Let U be a C*-algebra and U, the set of self-adjoint
operators in . We say a linear self-adjoint subset J of U is an order ideal if J N A,
is an order ideal in A,. If B is a C*-algebra then a map ¢ in D(A, B) is an order-

homomorphism if ¢ |, is an order-homomorphism of ¥, into B,.

LevMMA 6.3. Let  be a uniformly closed order ideal in the C*-algebra U such that
S s linearly generated by positive operators. Then J is a two-sided ideal in U if and
only if there exists a C*-algebra B and a bounded positive linear map of U into B
whose null space is 3.

Proof. It § is a two-sided ideal then § is the null space of the canonmical ho-
momorphism A —A/J. By [19] B=A/J is a C*-algebra. Conversely, suppose there
exists a C*-algebra B and a bounded positive linear map ¢ of A into B whose null
space is §. By Theorem 6.2 ¢=14¢(V*oV), where i ' is an order-isomorphism of B
into a (*-algebra € acting on a Hilbert space ), o a *-representation of U on a
Hilbert space &, and V a bounded linear map of § into &. J is the null space of
the map V*oV. The null space of the map g(4) >V*o(4)V is o(J), which is an
order ideal in o(Y) by Lemma 2.9, and is linearly generated by positive operators
since ¥ is. To show that J is an ideal it suffices to show ¢(J) is an ideal in g(%).
We may thus assume ¢ is of the form 4-—>V*AV and J is the null space of ¢. If
A>0 in J then V*AV=0, so AV=0=V"4, taking adjoints. Since J is linearly
generated by positive operators 0=AV =V*4 for each 4 in J, and J is a two-sided

ideal. The proof is complete.

THEOREM 6.4. Let U and B be C*-algebras and ¢ an order-homomorphism in
DU, B). Then the null space of ¢ is a two-sided ideal in A and ¢ (A) is uniformly closed.
é is a C*-homomorphism if and only if for each self-adjoint operator A in U, p(A)*€HN).
If ¢ is surjective and vy is an irreducible *-representation of B then wod is either a

homomorphism or an anti-homomorphism of .
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Proof. By Lemma 6.3 the null space of ¢ is a two-sided ideal in U. Factoring
it out we may assume ¢ is an order-isomorphism. If A4 is a self-adjoint operator in

A then, by spectral theory,
4]l =max {|], [},

where x=inf {a € R: al > 4}, y=sup {bER: bI < A4}.

Since ¢ is an order-isomorphism in D(¥,B), al >4 if and only if al>¢(4) and
bI<A if and only if bI<$(4). Thus |#(4)[|=]| 4], and ¢ is an isometry on self-
adjoint operators. If (4,) is a Cauchy sequence of operators in a C*-algebra and
A;=B;+1iC, with B, and C; self-adjoint operators, then (B;) and (C,) are Cauchy
sequences. Indeed, B;=1} (4,+ AF) and C,;= (24)"'(4;—A}). Thus

| By — Bl = 3 [[(4,— 4i) + (4, — A)*|| < [| 4;,— A,

and similarly, [[C;—Cil<||4,— 4] Let (4(4;) be a Cauchy sequence in ().
Then ¢(4;)=¢(B;)+i¢(C;), with B; and C, self-adjoint in . Thus (¢ (By)) and (¢ (C)))
are Cauchy sequences. Since ¢ is an isometry on self-adjoint operators (B;) and (C))
are Cauchy sequences in U, say B,— B and C;,— C. Let A=B+14C. Then A€, and

$(A)=¢(B)+id(C) = lim (¢ (B)+16(C)) = lim é(4)).

Thus ¢(4,)—~¢(4) in $(A), and ¢(2A) is uniformly closed. If ¢ is a ¢*-isomorphism
then, clearly, ¢(4)*=¢ (4% €d(N) for each self-adjoint operator 4 in A. Conversely,
suppose this condition is satisfied. We proceed as in the proof of [11, Theorem 2].
Let 4 be self-adjoint in 2. Let B be the self-adjoint operator in U such that ¢(B)=
$(4)2< (4%, by [11, Theorem 1], so B< A However, for ¢ ' we can assert,
¢ (P (A))=B=> (¢ ($(4))?= 4% (note that ¢ is defined on the C*-algebra gener-
ated by #(4) and I). Thus B= 4% and ¢(4%)=¢(4)?, so ¢ is a C*-isomorphism. If
¢ is surjective and w is an irreducible *-representation of B then ypo¢ is a homo-
morphism or an anti-homomorphism by the above and Corollary 5.9.

Not all order-isomorphisms of one (*-algebra into another are C*-isomorphisms.
In fact, if A is a C*-algebra and X its pure state space, then the canonical order-
isomorphism g of ¥ into C(X) is a C*-isomorphism if and only if u is abelian. How-
ever, u is extreme in D (Y, C(X)). Indeed, let ¥ be the set of pure states of A. Then
Y is demse in X. Let 7 €D, C(X),AI), t<u. For each point y in ¥ the map
A ~> u(A4) (y) is a pure state of A, and if 4 >0 then 7(4) (y) <u(4)(y). Thus 7(4) (y) =
Au(A) (y) for each 4 in ¥ and y in ¥. By continuity v(4)=Au(A4) for each 4 in
A, hence T=21y, and u is extreme. Note that u is of class O if and only if Y=X.
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Not all order ideals generated by positive operators in a C*-algebra U are two-
sided ideals. For example, if P is a projection in ¥ then PAP is an order ideal in

U generated by positive operators.

6.3. A Radon-Nikodym theorem.

TarorEM 6.5. Let A and B be C*-algebras and €D (U, B). Then there exists
a decomposition ¢ =10 (PoP) of ¢, where i™" is an order-isomorphism of B, a *-rep-
resentation of W on a Hilbert space &, P a projection in B(K), suck that [p(A)Pl=1
and such that if y is a positive linear map of A into B and p < b then there exists an
operator 8" in o(N)', 0<S<I, such that

vl i P(4)=i(PS'(4)P)
or a m .

Proof. Applying the universal representation to the C*-algebra € in Theorem
6.2. we may assume each pure state of € is a vector state, ¢=io(PoP), and
[o(A)P1=1, (note that [p(A)P]€(A)’). Since p<¢, y=ioy op with

p: o) =i (B)<=C,

and 0<yp'<P-P. Let X be the set of unit vectors in & such that e, is a pure
state of €. If x€X then [x]<[Po(N)x]<[Cx]=[x] since w, is pure (see e.g. Theo-
rem 3.9). With w, and , distinct pure states of €, [o()z][o(A)y]=0. In fact,
with 4 and B in o(¥),

(4w, By) = (x, A* By)= (P, A" By) = (x, PA* By) =0,

since PA*By€[y] and x is orthogonal to y. From [3, Lemma 1, p. 50] it follows
that there exists S; in o(¥)’, 0<8;<I such that w,y’ =w.(S;+ ). Let

8:=[o(U) 2] 82 [0 (A)=].

Then w,y =w,(S;* ). Let (¢)ic; be an orthonormal basis for P with ¢;€ X for each
l€J. Let 8'=2,.;8,. Then 8 €p(A) and 0<8 <I. Moreover, if 4€o(A) then

We, (8'4)= We, (IZJ Se, 4)= We, (Se,A) = W, 'l/’l (4).

Thus, if x= ) 1,¢; is a vector in P then
leJ
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0, (8'4)= (S'A“Z] he, gllz &)
=1e21 Mz |2 (8'A4e;, €)
=IGZJ [ 417 (e, (87 4)
= ('P’ (4) Z e, Z Aey)
iy 1es
= wW; ('P’ (A))

Thus PS'AP=vy' (A) for all 4 in o(N), and y(4)=1(PS8e(4)P) for each 4 in Y.
The proof is complete.

We cannot expect a much stronger type of Radon-Nikodym Theorem for posi-
tive linear maps of C*-algebras. For example, let T, be the diagonal 3 x 3 matrices
and ¢ be an injective but not extreme map in D(D,, M,), (it is easy to find such
a ¢). Then there exists 7€D (D,, M,, 3 I) such that 0<7v<¢ and 743 ¢. If there
exists 8'€D,(=D3) such that v=¢(8"- ) then §'=11, since ¢ is injective, so the
“natural” form for the Radon-Nikodym Theorem cannot hold.

COoROLLARY 6.6. Let A and B be C*-algebras and ¢=1i o (PoP) be as in Theo-

rem 6.5. Let
Z={S’EQ(QI)’: PS'AP€Ei 1 (B) for all A€o}

Then ¢ is extreme if and only if the map P-P is injective on Z.

Proof. Let © be a map in DU, B, A1) such that v<¢$. Then there exists &
in Z such that 7(4)=1(PSo(4)P) for each 4 in A. If P-P is injective on Z then
8'=AI, since AI€Z and PS'P=AP=PAIP. Thus t=1¢, and ¢ is extreme. Con-
versely, suppose ¢ is extreme and §'€Z, PS'P=0. By Lemma 2.3 the map io(P-P)
is extreme in D(p(A),B). By Theorem 3.1 PS8'o(4)P=0 for all 4 in A Now
[o(A)P]=1I. Thus vectors of the form p(d)xz, x€P and A€, generate a dense
linear manifold in &, and 0=P8 =S"*P=p(4)8*P=_8*p(4)P for all 4 in U
Thus 8'=0. The proof is complete.

7. Local decomposition of positive maps

The decomposition theory developed in chapter VI is in some respects unsatis-
factory. For example, in the notation of Theorem 6.2 the map V*pV need not be
extreme in DY, €) if ¢ is extreme in D(A,B). The question studied in this chapter
is the following: if U is a C*-algebra, § a Hilbert space, and ¢ a positive linear
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map of A into B(H), can ¢ be written in the form V*oV, where V is a bounded
linear map of § into a Hilbert space &, and g is a C*-homomorphism of U into
B(R)? We shall see that “locally” ¢ is of this form (Theorem 7.4), and globally ¢
is “almost” of this form (Theorem 7.6).

DEeriNiTION 7.1. Let ¢ be a positive linear map of a C*-algebra N into B(H),
$ being a Hilbert space. We say ¢ is decomposable if there exists a Hilbert space R,
a bounded linear map V of O into &, and a C*-homomorphism o of U inio B(K) such
that ¢="V*oV. ¢ is locally decomposable if for each mon zero vector x in §) there
exists o Hilbert space R, a linear map V, of &, into §, such that | V,| <M for all
x, and a C*-homomorphism o, of A into B(K,) such that

VeolA)Viz=g(d)e

for all A in . ¢ is locally completely positive if for each x+0 in § there exists a

decomposition
Veoe (*)Viz=¢()2

as above, with the property that each g, is a *-homomorphism.

LeEmMMa 7.2. Let A be a C*-algebra, § a Hilbert space, and ¢ a positive linear
map of WA into B(DH) with $(I)<I. If x is a non zero vector in §) then there is a
*_representation y of U as a C*-algebra on a Hilbert space &, a vector y in & cyclic
under w(N), and a bounded linear mapping V of the set

{w(A)y: A self-adjoint in A}~
into §), such that Vy(A)V*z=d¢(A)x for each self-adjoint A in A.

Proof. Let f=w,$. Say |jz]|=1. Then f is a state of A. Let ¢, be the *.rep-
resentation induced by f of A on §, and let z (=2, be a cyclic vector for ¢,(%)
in §; such that w,¢,=f. For 4 self-adjoint in A, define V ¢,(4)z2=¢(4)x. Now the set
{¢;(4)a: A4 is self-adjoint in A}~ is a real linear subspace of §), whose complexifica-
tion is dense in §,. If ¢{(4)z=0 then

0=(¢r(4%) 2, 2) = {(4*) = ( (4") 2, 2) > ($ (4)*x, %) 20,

by use of [11, Theorem 1]. Thus ¢(4)z=0. If follows that V is well defined and
linear. Note that V¢ (I)z=Vz=¢(I)x and that

(V*x, ¢y (A)2) = (z, V §;(4) 2) = (z, $(A) 2) = [ (4) = (2, §; (4) 2)
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for each self-adjoint 4 in A. Thus V*r=z, and V¢,(4)V*x=¢(4)z for each self-

adjoint 4 in . Moreover,

l4(4) ]| = ( (4)° 2, 2) < ($(4) 2, 2) = {(A") = || s (4) 2],
so that ||V]|<1. Let y=¢, &=, and y=2. The proof is complete.

LemMMA 7.3. Let ¢ be a positive linear map of the C*-algebra A into B(D), H
being a Hilbert space, such that ¢(I)<I. Then ¢ satisfies the inequality

G(A*A+AA*) > $(A*) $(A) + $(A)$(4%)
for all A in U

Proof. The operators A+ A* and i(4 — A") are self-adjoint. By [11, Theorem 1]
A+ A" +((1(A—A"))>$(A+ A%+ $(i(4~ A7)
A straightforward computation now yields the desired result.
THEOREM 7.4. Every bounded positive linear map of a C*-algebra U into the

bounded operators on a Hilbert space § is locally decomposable. ¢ is locally completely

ﬁosz’tive of and only if there exists a scalar o>0 such that the Cauchy—Schwarz inequality

() (4%4) > (x ) (A7) (x ) (4)

18 satisfied for all A in 2.

Proof. Multiplying ¢ by a scalar we may assume ¢(I)<I. Let x be a non zero
vector in § and f and ¢, as in Lemma 7.2. Define ¢; in terms of the right kernel
as a *-anti-homomorphism (i.e.[4,B]=f(4B*), &,={A4:[4,4]=0}, ¢;(C)(A+ &)=
AC+&)) of A on the Hilbert space §;, and let y,=¢,® ¢7. Let &, be the Hilbert
space £;® H; with the inner product

oz, yoy)=%(y)+1(E,y),

where y,2€§,; and ¥y 2’,€%;. v is a C*-homomorphism of A into B(K,). With z,
and y, the “wave functions” of f for ¢; and ¢, respectively, let z,=z,® y,. Define
a map V' of the linear submanifold y,(A)z, of & into H by V'y,(4)2,=¢(A)x, for
each 4 in A. Note that if y,(4)z,=0 then ¢ (4)a,=0=¢s(4)y,. Thus

br (A%) by (A) 2= by (A% A) 2= 0= b7 (A%) 1 (A) yr = b7 (A A%y,

so that f(44*)=f(4*4)=0. Thus by Lemma 7.3
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0=((¢(4"4)+ ¢ (44%)x,2)

= (($(A™)$(A)+4(4) ¢ (4%) 2, 2) >0,
and ¢(Ad)z=¢(4*)2=0. Thus V' is well defined and linear. Moreover,

V' | =sup {|[$(d)z|l: ||y (4)z] =1}
=sup {|[¢(d)z||: ||¢; (4)zr @ ¢7 () y,|*=1}
=sup {||¢(4d)z]l: (p(4*4+ A4%)x,x)=2}.

By Lemma 7.3, if (¢(A*A+AA")x,x)=2 then (($(4*)d(4)+$(4)d(A™)2,2)<2, s0
that [|¢(4)z||*<2. Thus |V’]|<2!. Extend ¥’ by continuity to all of the subspace
E=[y;(A)z], and call the extension V' Define the linear map V of & into by V
restricted to E equals V' and V restricted to I—E equals 0. Then ||[V] <2 Asin
Lemma 7.2 it is straightforward to show that V¢ (4)V*x=¢(4)z. Letting V,=V and
0.=1%s we see that ¢ is locally decomposable. :

Suppose there exists >0 such that a¢ satisfies the Cauchy—Schwarz inequality
(xd) (A*A) > (x ) (A%) (xp) (4) for all 4 in A. By Lemma 7.2 there exists a *-rep-
resentation p of ¥ as a C*-algebra on a Hilbert space &, and a vector y in &, cyclic
under (%), and a linear mapping V of the set {p(4)y: 4 is self-adjoint in A}~ into
9 such that ||V]|<1 and Vy(4)V*z=¢(A)z for each self-adjoint 4 in A (we still
assume ¢(I)<I). As in Lemma 72 f=w,¢, y=z, and p=¢,. If ¢(B)z;=0 then
é;(B*B)z;=0, so that

0=/(B*B)=(¢(B*B)z, ) >a(¢(B*) ¢ (B)z,x) >0,
so ¢(B)x=0. Thus V has a linear extension to the linear manifold ¢;(U)x;. Since
l¢B)z|P<a | ¢s(B) % |V]| <ot Since x, is cyclic ¥ has a continuous linear
extension to , and Vy(4)V*x=¢(4d)x for all 4 in A. Letting V.=V and g, =y
we conclude that ¢ is locally completely positive.

Conversely, let ¢ be a locally completely positive map of U into B (§). Then for
each vector 240 in § there exists a Hilbert space R,, a linear map V, of &, into
$H with |[V,||<M for all x40, and a *.representation g, of U on &, such that
Vo (A)Vix=¢(A)x for all A in A Let «=M2 Then for z in § and 4 in ¥,

(xp(A*A) 2, 2) = (V. 0, (A*A)VEx, 2) = o> M? || 0, (A) VEc]|?
> Ve lles (D VZ ] > | Ve e (A) V|
=a*|¢ ()= (2P (4" x$(4) 2, 2),
and a¢ satisfies the Cauchy-Schwarz inequality a¢(4*4)>ad(4*)xd(4). The proof

is complete.
19—632933 Acta mathematica. 110. Imprimé le 11 décembre 1963.
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CorOLLARY 7.5. Let ¢ be a bounded positive linear map of one C*-algebra U into
the bounded operators on a Hilbert space. Suppose ¢ is a trace, i.e. $(A*A)=H(AA*) for
all A in A. Then ¢ is locally positive.

Proof. By Lemma 7.3 ¢ satisfies the inequality 2¢$(4*4)> ¢ (4*) b (4)+ H(4)p(A4%)
for all 4 in U, so that }$(A*4)>}4(4%) }$(4). By Theorem 7.4 ¢ is locally
completely positive.

TaEorREM 7.6. Let A be a C*-algebra and ¢ a bounded positive linear map of A
into the bounded operators on a Hilbert space §. Then there exists a Hilbert space &,
a continuous linear map V of § into & a C*-homomorphism o of A into B (R), and
a linear (not mecessarily continuous) map W of & into § such that

¢=WpoV.

Proof. Let (e)ics be an orthonormal basis for §). By Theorem 7.4, for each
l€J there exists a Hilbert space & =8,, a bounded linear map V,=V, of & into

9, and a C*-homomorphism 01=¢,, such that V,g,(4)VIe;=¢(4)e, for each 4 in U.
Let 8= ©,., 8. If z€$ then x=1;; are;. Define the map V of § into & by

Vz=3 ai/V*e;=2 a1z, z1=V"*e,.
leJ ledJ

Then V is linear. V is continuous since
Ve lP=3lal |zl =3 @ (D e, ed<$ D] 3 = || =]
let leJ let

Define the map W of & into § by W (Cics )= D1esVi2:, where 2,€R,. Then W is
linear. Let o= ®c;0:. Then g is a C*-homomorphism of % into B (]), and ¢ = WpV.
The proof is complete.

When ¢(4)x="V,0.(4)Vzz as in Theorem 7.4 we say V,p.V: is a local de-
composition of ¢ at x.

Remark 7.7. Let ¢ be a bounded positive linear map of a C*-algebra ¥ into a
C*-algebra B acting on a Hilbert space §. Let # be a non zero vector in §. Suppose
the local decomposition V;0.V: of ¢ at x is such that V.p.(4)V; commutes with B’
at x for each 4 in A (ie. if B'€YB’ then V,p,(4)V;B z=B'V,0.(4A)Viz). Then
$(A)y="V,0:(A)Viy for all y in [B’'z]). In fact, by continuity we may assume
y=B'z with B’ in B’. Then

Ve0:(A)Viy= V.0, (A)ViB x=BV,0,(A)Viz=B ¢(Ad)xz=¢(4)y.
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In particular, if « is a separating vector for B then [B'z]=1I, and ¢ is decompo-
sable, and ¢ is completely positive if and only if ¢ is locally completely positive.
The following proposition is another result to this effect.

ProrosiTioN 7.8. Let A be a C*-algebra and § a Hilbert space. Let ¢ be a
positive linear map of U into B(H) with ¢(I) invertible. Suppose ¢ is decomposable,
¢="V"oV, where V is a bounded linear map of § onto a Hilbert space R, and ¢ is a
C*-homomorphism of A onto an algebra of operators acting on K. If ¢ s locally com-

pletely positive then ¢ is completely positive.

Proof. First assume ¢ is a C*-homomorphism of A onto a C*-algebra B acting
on §. Then ¢ is a *-homomorphism. In fact, if not then by Corollary 5.9 there
exists an irreducible *-representation y of B such that p o¢ is an irreducible anti-
homomorphism and %(B) acts on a Hilbert space §, of dimension greater than 1.
Since ¢ is locally completely positive there exists by Theorem 7.4 & >0 such that
$(A*A)>0p(4%)$(A4) for all 4 in A. Composing with g it follows that for every
operator B in the irreducible C*-algebra v (B) there exists >0 such that BB* >« B*B.
Using [12, Theorem 1] it is easy to show dim §,=1, contrary to assumption. Thus
¢ is a homomorphism. In the general case replace V by o(I)V. Then V is still sur-
jective. We may thus assume o (I) is the identity operator in B(R), and V*V =¢ (I).
By the preceding it suffices to show p is locally completely positive. By assumption
there exists «>0 such that ¢(4*4)>ad(4*)$(4). Since ¢(I) is invertible there
exists y >0 such that [|[V*Vz| =|¢(I)z|=yp|lz| for all x€$H. Thus, since V is sur-
jective, there exists 6 >0 such that ||V*z]|>4|z| for all z€ 8. If g is not locally com-
pletely positive then for any >0 there exist  in & and 4 in % such that

(0(4*4)z, )< B |lo(4) .
Choose § so small that 8/6°<a. Then if z=Vy,
all¢ (D)< (A" )y, y)=(e(4* ) z,2)<Bllo(4) V"
<P |V*e()Vy|*=p/3* |6 (D) yl* <l b (A)y]?

a contradiction. Thus g is a *-homomorphism. The proof is complete.

8. Maps of 2X2 matrices

We classify the extreme points in D (M,, M,). In order to make the classifica-

tion as neat as possible we make the following
19* — 632933
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DeriNiTiON 8.1. Let A and B be C*-algebras. Let ¢ and v be maps in DU, B).
Then ¢ and v are unitarily equivalent if there exist unitary operators U in U and V
in B such that ¢=V*z(U*-U)V.

It is clear from Lemma 2.2 that ¢ is extreme if and only if 7 is extreme.

THEOREM 8.2. Let ¢ be a map in D(M,, M,). Then ¢ is extreme if and only

if ¢ is unitarily equivalent to a map of the form

(a b) (a ab+ fec )

-—> - ’
c d gc+ fb ya+eb+Ec+dd
where |e|*=2y(©—|af*—|B[) in the case when y+0, and || or |B| equals 1 when
y=0.

The proof is divided into some lemmas. We first recall some facts about M,.
If 2= (x;,...,2,) is a unit vector in C* then [z]=(z;%;). If (ay) is a matrix in M,

then
o ((ay)) = {Zj @y &5 %4

We denote by e; the matrix units in M,.

Lemma 83. Let f be a state on M,. Then f is pure if and only if

[f ()P =1F(ew)f(e), 1<3, j<m.

Proof. If f is a linear functional on M, and [z]=(x; %) is a 1.dimensional pro-
jection, let E be the matrix (f(e;)) in M,. Then

w, (B) =i.§j: fley) Tz, = [ ([x]).

Thus f is positive if and only if £>0. If f is a state then 0<E<I. If {is a pure
state then f=w, for some unit vector z, and f(e;) ==&, so that |f(e,)[>=7F(es)f(es)-

Conversely, suppose this equation is satisfied. Then E is a projection. Inded,

(Ez)ii = ; f(ew) Hews) = ; f(ew) flew) = f(e) f{I) = E\.

Since 0<XE<I, E—E*>0 and has zeros on the diagonal. Thus E=E?. With z a
unit vector in the range of E,

1= w,(E)={([=])-
Thus f=w,, and f is pure.

In particular we have proved
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COROLLARY 84. Let f be a linear functional on M,. Then f is positive if and

only if
f(e11) =0, f(eg5)>0, and If(em) Izéf(en)f(en).

LemMA 8.5. Let ¢ be an exireme map in D(M,, M,). Then there exists a veclor
state w, of M, such that w,¢ is a pure state of M,.

Proof. Suppose not. Then for all unit vectors z in C*

@, P (ery) Wb (eg5) > I Wz ¢ (e12) 12’

by Lemma 8.3 and Corollary 8.4. Since the unit sphere in C? is compact there exists
>0 such that
U< @y (1) 0 P (€5) — | 2 b (e10) [°

for all unit vectors z in C®. Since |w d(e,)[><1

(1+a) ] ;P (er9) I2 S, p(ey) 0P ()

Define two maps yp* and y~of M, into M, as follows: y* is linear,

p* (eu) = plen) (6=1,2), p*(en) = (1 10) ¢ (ers), v (€)= (1) b (ew),

where 6>0 is such that (1+68)*<1+a« By Corollary 84 y*€D (M, M,) and

=4y +3y . Since ¢ is extreme we have arrived at a contradiction. The asser-

tion follows.

LevMmA 86. If ¢ is extreme in D(M,, M,) ¢ is unitarily equivalent to a map of

the form
(a b) (a ob + fe )
— ~ .
c d ac+pb  ya-+eb+ gc+dd

Proof. Write ¢ in the form

$u(4) ¢12<A))'

A =
#E) (qsm(A) bual )

Up to unitary equivalence we may by Lemma 8.5 assume ¢,, is the pure state
(@) = ay;. Then ¢y, (e55)=0. Thus ¢y, (ez) =0=chy, (¢;;). The lemma follows.-
We fix a map ¢ in D(M,, M,) of the form described in Lemma 8.6.

Lemma 8.7. |a|+|g]|<ét

Proof. Since ¢ is positive
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(JalP+]8P) [ + 2R (xfb%) < ya®+a2Reb+ dad, (2)

whenever >0, d>0, |b|*<ad. Replace b by—b in (2) and add the two inequalities

obtained. Then )
(a2 +18%) 6>+ 2R (xfb®) < ya®+ bad.

Choose 0 such that R(xfb*e*®)=|afb?|=|a||B]8]*. Then
(lal + [B1? bl < pa + dad.
This holds for |[b|*=ad and all a>0. Hence (|a|+]|B])®<é.
Lemma 88. If |a|+|B|=05% then there exists a real number r such that &*= — afir®.

Proof. If af=0, say f=0, then |«|=0% and (2) takes the form d|b[*<ya®+
2aReb+dad. In particular, if b is such that Reb= —|¢|Vad and |b*=ad, then

2|8|V(ﬁ<ya. Since this holds for all d, ¢=0. Assume xf+0. If |b[*=ad and
R(xfb®) =|a|| 8|6 then (2) takes the form ya+2Reb>0. This holds for every d>0.
Thus Reb=0. Apply this to —b then 0<R(e(—b))= —Reb, so Reb=0. Now
R(xBb®) =|ax||B]|6]* and b=]b|e® implies e*®af=|a||B], and € =(|a||f])? (xf) *.
Thus R(e(|x||B|/xB)})=0, or e(af) ? is purely imaginary. The lemma follows.

LemMa 8.9. Suppose |e|=Vyd. Then ¢y is a vector state, say due to the umit
vector (x, w). ¢ is extreme if and only if one of three cases occurs.

(i) if =0 then |a| or |B| equals 1.

(ii) if w=0 then a=p§=0.

(iii) if sw+0 then a= —}¢®|w| (wE/dz), f=13¢°|w.

Proof. Case (i), x=0. Say ¢=3}((d+¢')+(d—¢")) with ¢+¢ in D(M,, M,).
Then a=3%((a+a')+(x~a')) and similarly for f. Then a necessary and sufficient
condition for ¢+¢’ to be in D(M,, M,) is that |ata'|+|BL+B|<]1, as follows from
inequality (2). If af+0 choose k such that

0<k<l, (1+k)|a|<1, and OS(I ?k%) 1Bl <1.
Let o' =ko, p'= —k|«||B|™* B. Then

Iaia’|+|ﬁiﬂ’|=(1ik)la|+(1¢ k%) |B]=x|+]8]<1.

Thus if |[«[+]|B|<1 or xf=+0 then ¢ is not extreme. Thus, if ¢ is extreme then

|a| or |8| equals 1. Conversely, if |«| or || equals 1 then ¢ is even extreme of class 0.
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Case (ii), w=0. Then ¢ is a pure state, and clearly a=pf=0.
Case (iii), 2w=+0. Let F be the projection

lwl* _Jwl
| |? w w o)
oz | 2>

Then ¢,, (F)=0, so ¢, (F)=0. Hence a= —f(wi/wx). Since ¢,, and ¢,, are pure
states it follows that ¢ is extreme if and only if |8| is maximal, i.e. by Lemma 8.7,
if and only if || +|B8|=|w|, i.e. if and only if |B| (|(wZ/@x)| + 1) =|w]|, or =14 €' |w|.
The proof is complete.

LeMma 810. [e* <2y —|a2—|B8]). If |a|+]|B]|=06% then |r|<2y*, where r is the

number found in Lemma 8.8.

Proof. If y=0 then clearly ¢=0. Assume p+0. In inequality (2) replace b by
ib and obtain )
(laP+ 1B |8 — 2R (xfb*) < ya® +2aReib+ dad.
Let b be such that Reb(l+i)= —2t|¢||b|, and suppose |b|*=ad=1. Adding the

above inequality and inequality (2) we obtain for a =0,
|«|*+|BF <ya®—2tale|+6.

The function f(x)=ya®—2}
|BP< —|el*(2y) ™" +6, and the first assertion of the lemma follows. If |a|+]|8|=6%
then |¢|*<2y2|a||B|. By Lemma 8.8 |e[*=|x||8]|72. Thus r2<4y.

el +9d has its minimum for x=2"%y"'|¢|. Thus |«|*+

Lemma 811, If |’ =29 —|x|*—|B[?) and y=+0 then |a|+|B| =6t

Proof. There exists 0 between 0 and 27 such that e=e"(2y (8 —|x|?—|B]")E.
Let b=¢™® TLet ad=1. Then inequality (2) becomes

la* +|BP+2R(xfe ) <ya®—2a(2y (0 —|«|*—|B[))E +46.
The function
f@)=ya®—2@2y@—|af ~|8)ta+o
has its minimum for x= (29" (6 —|«[*—|B[}))}. Then f(x)=2(|«[*+|B8[?)— 4, and by
the inequality above and Lemma 8.7
d<|al +]B ~2R(@fe ™) < (|a| +|B])*<o.

The proof is complete.



276 E. STORMER

Lemma 812, If ¢ is extreme and y+0 then |el*=2y(8—|a|*—|B[").

Proof. Suppose first |«|+|f|<d*. Then, if |¢|=V8y then ¢ is not extreme by
Lemma 8.9. If |¢|<Véy then by Lemma 8.11 |e]2 <290 —|«|>—|8[%, so there is room

for perturbations on each one of «, 8, and £. Thus ¢ is not extreme in that case.

It |o|+|B|=06% but |sP<2p(S—|xf*—|B[*) then |e|<Vdy, because if |e|=Véy
and |x|+|8|=06' then by Lemma 8.10 éy<2y(d—|al*—|B[*), and 0<(Ja|+|B])?*~
2|al’—2|pf= — (l«| = |B])* <0, so that 2y(@—|af ~|p[)=2y(@E—§8)=yd=[e[* By
Lemma 8.8 &= —afir?, where by Lemma 8.10 |r|<2y%. If |r|<2y? then there is
room for perturbations on g, and ¢ is not extreme. If r=2y* then 4y|al|p |=]el*<
2y —|x[*—|B[?), contrary to the assumption that |«|+]8|=6% Thus |¢[*=2y(6—
|[* = 18[)-

Proof of Theorem 8.2. It remains to show that if |e]*=2y(d—|«|?—|B[*) and
y=0 then ¢ is extreme. Suppose ¢ =13} (¢, +¢,) with ¢, =¢+¢', p,=¢—¢’, and ,,

¢2 E @ (‘M27 M2), and
, ((a b)) ( O a’b /3'6 )
[ d 0(,'6 ﬂ,b V’a/ €'b 8'6 6’d )

We have to show o«'=f'=y'=0§"=¢ =0. Notice that 9= —4§'. We may assume
y’20. By Lemma 8.10 and the parallellogram law
2|efP+2|eP=|e+e | +]|e—¢|
<2y +y) O+ ~|at o= [B+B])
2=y 0= —|a—o P~ BT
=4y —laf'~|aP -8~ |8
+29' 28 +(la—a P = et )+ (1B = |8+BT).
Now |a—o&'*—|a+a'|*= —4Raa’. Thus by Lemma 8.11
le'P< =2y’ P+ ) -2y + 4y (]| +]B] 8D (3)
If =0 then o' =p'=¢'=0, and ¢ is extreme. If a'=p" =0 then 9 =¢ =0, and
again ¢ is extreme. We shall show o’ =8 =0. Apply inequality (2) to ¢, and ¢,,
add the two inequalities obtained, and use the parallellogram law. Then
(JafP+ ] P+ B+ 8 )P+ 2R (2B + o' B b)) <ya®+2aR(eb) +ad.
Therefore

P+ B +2R (e B 0Y) < (ya? +2aReb+ dad) — (| + |8 B[+ 2R (xfB%). (4)
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By our assumption on & there exists b3=0 such that the right side of inequality (4)

is zero. Thus
0=’ P+ |62 +2R@ B D) =(|«'|— |8 |)P]6)F=0.

Thus |&'|=|f’|. Then o'f'=|a'|?e®, af=¢?|x||f|. Let b=¢'? and ad =|b[*=1.
Then R(«' B8 =|a’|* cos (6+2¢), R(xfd®)=|a||B] cos (0+2¢). By Lemma 8.8 and

Lemma 8.11 ¢?= —xfs® and e=iet*®2)y|a||]. Thus Reb= —2Vy|«||B] sin (3o +¢).
Thus inequality (4) reads

2|’ F(1+ cos (0-+2¢))
<ya®—4alya||B] sin (3o +¢)+2|a||](1— cos (o+2¢)).

Now 1— cos 24 =2 sin® w. Thus

0<2|«P(1+ cos (0-+2¢))
<ya*—4aly[«][B] sin (3o +¢) +4|«||B] sin* G o +g). (8)

For each ¢ such that sin ({o+¢)>0 let
ap=2Vy " a|[B] sin (1ot ¢).

Then the right side of inequality (5) is equal to zero. Letting ¢ vary it follows that

o' =0=pg". Thus ¢ is extreme. The proof is complete.

Example 8.13. Let ¢ be the map in D (M,, M,) determined by

¢((: 2)) B (g*c j:;ad)

with 0<d<1. By Theorem 8.2 ¢ is extreme. ¢ is also bijective and not of class 0.
Hence the assumption that ¢ be strongly postitive is necessary in Proposition 2.7
and Proposition 2.10. Moreover, ¢ does not have minimal range. In fact, if w,¢ is
a vector state w, then w, is the state (a;) > a,,. Indeed, let = (x;, x,) and y = (y,, ¥,).

Then the following equations hold:
|92l =2, [+ p |2,
|yal*= 0]z,
§1Y2=0% T, @,

Thus 8|z, [F|2, =1, [Fvaf? =8| 2af* (|2, P+ ¥ [%,[?), and dy]z,|*=0, so that z,=0. Thus
w; is the state we asserted. Let ¢ be the identity mapping of M, onto itself. Then
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r(t)<r(¢$). By Remark 4.13 it suffices to show the left kernel of w, contains that
of w,¢ for each vector state w, of M,. But w,¢ is either faithful or is the state

(@) = a,,, since a non vector state on M, is faithful. Thus r(?)<7(¢). Since i+,

¢ does not have minimal range.
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