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1. Introduction

We have to do with linear first-order differential equations W'(z)= F(z) W(z),
where 2z is a complex variable, and F and W are functions taking values in an ar-
bitrary non-commutative Banach algebra 2 with identity E. In [4], E. Hille has dis-
cussed the existence and nature of analytic solutions when F is holomorphic, near a
regular point of F, and near a regular singular point, and has indicated how the
theory will go when the equation has an irregular singular point at infinity of rank 1.
The methods are adapted from the classical theory in which 9 is the complex field €.

The present paper adds to the discussion with an investigation, for the cases

p=1, of the equation
d
2 7 W)= (" Py+2" ' Pi+...+2Py_1+ P,) W(z), (1.1)

a general form of first-order differential equation having an irregular singular point
of rank p at infinity. Here P,, P,,..., P, are given elements of U, and an analytic
and algebraically regular solution W is sought which takes its values W(z) in .
The analogous equation in which W(z) is a column matrix and the P’s are square
matrices, over €, was discussed in detail by G. D. Birkhoff in [1]. He assumed P,
to be a matrix with distinet characteristic roots, and found solutions by writing W(z)
as a sum of Laplace integrals in the manner of Poincaré, using these to obtain
asymptotic expansions for the solutions, valid for z tending to infinity in appropriate
sectors of the plane, determined by the characteristic roots of P,. The same proce-
dure is adopted here, under an analogous though lighter restriction on P,: we find
a solution W(z) valid when z lies in appropriate sectors, corresponding to a pole x»

of R(4, Py), the resolvent of P,, whose residue idempotent has the property of being
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minimal. No assumptions are made upon the nature of the spectral set of P, com-
plementary to x, except that it shall not intervene too awkwardly between » and <.
We also find an asymptotic expansion for the solution. The discussion leans heavily
on the papers of Birkhoff and Hille. (For completeness, however, sufficient of this
background material is included here for this paper to be read without prior acquaint-
ance with these two.) A crucial part of the argument concerns the resolvent of a
p X p matrix C whose elements are in %: by a detailed analysis we are able to specify
the spectrum and the resolvent of C precisely, and thereby clarify some points which
are obscure or incompletely covered in Birkhoff’s paper. On the other hand, we do
not examine here the question of the algebraic regularity of the solution W(z), or the

number of solutions.

The paper describes work done at Yale University and at the Mathematical Institute,
Oxford. I am greatly indebted to Professor Hille, who suggested this investigation, and
who in lectures and conversations introduced me to this subject and its literature. It
is a great pleasure to thank him for his help. I must also thank Professor G. Temple
for his interest and encouragement. The work was supported in part by the United States
Army Research Office (Durham) under grant number DA ARO (D) 31-124-G 179, and by
the United States Educational Foundation in Australia, under the Fulbright Act.

2. Reduction of the differential equation

We use capital Roman letters for the elements of . The norm is written | - |.
Terms such as ‘derivative’ and ‘holomorphic’ for functions on € to U have the
meanings given in [5], Chapter III, § 2; contour integrals are defined as Riemann-
Stieltjes limits (see [5], Sections 3.3, 3.11). A prime usually denotes differentiation.
As a superfix, T denotes matrix transposition.

We observe first that the substitution in (1.1) of

= %0, %01 + %p 2.1
W(z) Y(z)exp(pz +p-—lz + ... oz,,_lz)z (2.1)
(g, @y, .., ¢, being constant scalars) leads to the equivalent equation

2Y' (2) = {2"(Py— agE)+2* 1 (Py— o, E) + ... + (P, — a, B)} Y (2). (2.2)

The verification is immediate. The observation is in general false if the «’s are non-
scalars in I, because the algebra is non-commutative. The transformation was used
by Birkhoif.
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Given (1.1), we shall assume that a preliminary transformation (2.1) has been

made, with scalars which will be determined presently, and we write
P=P,—~o,E (j=0,1,...,p). (2.3)

We attempt to solve (2.2) by Poincaré’s method as extended by Birkhoff; that is,
we suppose that there exists a solution

Y(z)=fesz”(z”‘lVl(s)—l—z”*sz(s)—l—...+zV,,_1(s)+ Vo(s))ds (2.4)

in the form of a sum of Laplace integrals, for an appropriate choice of the contour
¢ in the s-plane and functions V., V,,..., ¥V, taking values in 2. In this and the
following three sections we consider the determination of the ¥’s, and we return to
the choice of the contour ¢ in § 6.

Formal substitution of (2.4) in (2.2) followed by a rearrangement of terms gives

J;esz” ( zpl 2R, (s)) ds=0, (2.5)

k=

(pSE — Po)Vc(s) — =21 PVis(s) (1<k<p),

where Ug(s)= » (2.6)
Cp-BVies(6)~ 5 PVisl) (p+1<k<2p)

k-1
7

Write the sum in (2.5) in the form

2p 2p Y4
kzlz”-’fvﬁ > EPTEUL 4P Y P, = 8, + 278, (2.7)
= I k=1

=p+1

and integrate by parts in (2.5), using

% (€547) = 2P es2®,

We get f e 8, ds + [S,es2”], — f es?? % Syds=0. (2.8)

4

In order that (2.4) satisfy (2.2), it suffices then to choose the V’s so as to satisfy

8,=2

s e

identically in 2, i.e. to satisfy
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AU,
Uiy =2 F (k=1,2, ..., ), (2.9)

and to choose the contour so that the sum of the integrated terms in (2.8) vanishes
and the integrals converge. Thus we are led, by the substitution of (2.6) in (2.9),

to the system of equations

(A—psE)v'(s)=Bwv(s), (2.10)
where v(s) is the column matrix (V,(s), V,(s), ..., Vp(s))", 4 and B are the triangular
matrices

P, E+P, P,, P, P,
P, P, ' 2E+P, P,,
A= . . , B= ) : Pyo |,
. . . Fp+l
P, , P, P pE+P,
(2.11)

and E is the identity matrix. Write R(A, 4)=(AE— A4)™', the resolvent matrix of 4;

(2.10) is
v'(s)= — R(ps, A) Bv(s). (2.12)

Let B,,=%B,(A), denote the Banach space of vectors composed of p components

belonging to 9, with € for scalar field, and norm
o=Vl + 7l + .. + [Vl (2.13)

If A has finite dimension #, the dimension of B, is np; if A is infinite-dimensional,

so is B,. To find a solution v of (2.12), we consider the analogous equation
V'(s)= — R(ps, A) BV (s) (2.14)

in M,, =M, (), the algebra of p x p matrices with elements in A. As norm for I,

we may take the maximum of row sums: if X €, and the (7, j) element of X is X,
b4

9, is then a Banach algebra over €, with ¥ as a left and right operator domain.

If V is a solution of (2.14), each of its columns is separately a solution of (2.12);
conversely, any p solutions v,,...,v, of (2.12) can be put together to form a solu-
tion ¥V of (2.14). If the v’s are linearly independent over €, it is not necessarily true

that V is regular in I%,: for example, the idempotent matrix J ((3.8), below) satisfies
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J(E—J)= 0 and is therefore singular, but it is a triangular matrix, and its columns
are therefore linearly independent. However, it is true that if ¥ is regular, its columns
are linearly independent. For suppose that A, v,+...+ 2, v,=0 is a non-trivial linear
relation among. its columns. Then if A4 is the matrix each of whose columns is
(ML E,...,2, E)Y, we have ¥A=0, and V is singular.

A regular solution of (2.14) therefore provides p linearly independent solutions
of (2.12), while any non-zero solution of (2.14) provides at least one non-zero solu-
tion of (2.12). We therefore consider equation (2.14). Its solutions depend upon the
singularities of R(ps, A) B.

In the following discussion we assume p>1. The case p=1 is trivially excep-

tional, and may be dealt with similarly.

3. The resolvent of 4

To find R(4, 4) explicitly, assume it to be a lower triangular matrix X, and
equate corresponding elements in the identity X(AE—~ A)=E. The elements of X are
easily determined recursively, and the matrix is found to be a two-sided inverse. In

this way we obtain

R
S, R

RLA)=| 8, S R , (3.1)
Sy 8, 8, R

where R=R(1, P,)=(AE—P,)™", the resolvent of P, in %,
S,=RP;R,
8,=RP,R+RP,RP,R,

and generally S,=>RP,RP.,R...RP R, (3.2)
™
where ‘(r)’ beneath the summation sign means that the sum is taken over all ordered

partitions (¢, 4y, ..., ¢,) of 7:
Gty .. F=r, 21,621, ..,0,2>1.

These formulae show that the singularities of R(ps, A) occur precisely at the sin-

gularities of R(ps, P;). In general, a simple pole of the latter will produce a pole of
the pth order in the former.
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Let » be an isolated point of Sp (P,), the spectrum of P,, and ¢ the comple-
ment of % in Sp (P,), assumed non-empty. Now Sp (P,)=Sp (P,) —, Choose

o =1%; (3.3)
then (1) if I" is an oriented envelope of 0, e.g. a sufficiently small circle about 0
containing no other points of the spectrum, the integral

1 —
J=du=5— LR(A, Py da (3.4)

defines a proper idempotent J in A: J*=J,J+E, O; J commutes with P,. The func-
tions JR(A, P,) and (E—J)R(4, P,) have holomorphic extensions in the complements
of {0} and o—x respectively; and for |1|>0,

JR(4,By=T+ 3 YR (3.5)
A 2 A
Assume that JPy=xJ. Then
R(, By)=JR(, P)+(E~J)R(LPy =3 + H), (3.6)

where H(1) is holomorphic away from ¢ —x: that is, R(4, I_’O) has a simple pole at
the origin with residue J, and the spectrum of A4 consists of a pole at the origin
of order <p, together with o — .

In the rest of the paper the discussion refers to a fixed simple pole x, and the
suffix in J, and other dependent expressions will be omitted. The only assumption
made upon ¢ is that implied in the existence of the sector 2, in § 6 below. If there
are several such poles, each gives rise to solutions of (1.1) valid for z in appropriate
sectors. We do not attempt to discuss solutions which may be determined by more
complicated singularities.

The same spectral resolution can be applied to 4 in the algebra I, Thus the

integral
1

J=J=-—"— f R(A, A) dA = residue of R(4, A4) at 0, (3.7
27 r

defines a lower triangular idempotent matrix

(M) [5], Section 5.6.



DIFFERENTIAL EQUATIONS WITH IRREGULAR SINGULAR POINT 215

J
K, J
3.8
J=\ K, K, J ; (3:8)
K,. K, K, J
and clearly, for r=1,2,...,p—1,
K,=—1—_ f S,dA=residue of S, at 0. (3.9)
2 T

It will be convenient on occasions to write S,=R, K,=J.

LemMA 1. Let the residue idempotent J at the simple pole 0 of R (A, P,) be mini-
mal, that is, let JUAJT be o division algebra isomorphic with the complex field.(X) Then
by successive choice of oy, o, ..., %p_1 we can ensure that R(A, A) has a simple pole at
the origin.

The proof is by induction on the diagonals of R. The leading-diagonal elements
R have simple poles already. Again,

J = {J JP,J K

Since, by assumption, to every A4 €% there corresponds a scalar a such that JAJ =aJ,

we can define numbers 7y, 7y, ..., 7, by
JP;J=mJ (j=0,1,...,p). (3.10)
Choose o =, . (3.11)

Then JP,J = (7, ~o,)J =0, and 8, has at most a simple pole at A=0.

Assume that for some 7 less than p-1, the poles at 0 of R, S,,..., S, have, by
choice of «,..:, &, been reduced to orders <1; we show that we can do the same
for 8.1 by choosing «,,; appropriately. Now

8s1= > RP,R...RP, R
(r+1)
=RP,S,+RP,S, ; +...+RP,S,+ RP, 1R

_ (%+) P, (’%) - (%Jr) P, (K7+)

J = J Gri1 |, K
+(—+...)P,+1 (I+...)=?“+ //1+1+"" say.

() [7], p. 45.
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It will be sufficient therefore if «,., is chosen so that the expression
Grs1=JP,K,+JP,K, 1+...+JP,K,+JP,.,J (3.12)
is zero. To show that this choice is possible, we use the set of identities
KJ+K, K, +...+K,K; ;+JK,=K, (t=0,1,2,...,p—1) (3.13)

(obtained by comparing corresponding elements in the identity J*=J). We have
4 _ r—j T T
Gr+1 = Z JP;+1 z K,—-j,i.Ki = z J ( Pr‘k+1Kk4) Ki. (314)
i=0 i=0 i=0 k=i

Let the numbers 6, ; (j=1,2,...,p—1) be those defined under the basic assumption by
J(P,K;+P,K; y+...+P; 1K, +P;K))J =0;,1J. (3.15)
Then (3.14) becomes
Gri1=0rJ+G K +G Ko+ ... + G K, 1+ G K+ (Pria— a1 B)J.

The inductive hypothesis implies that G, = G, = ... = G, = 0,80 Gy = (Or 11+ 7r1 — %r11)
and choice of a,.; so that G,,;=0 is therefore possible. Then S;.; has at most a

simple pole at A=0; the result follows by induction. The «’s are determined by

a=m;+0, (G=1,2,...,p—1). (3.16)
More specifically, we define 6, =0, and then determine oy, 0,, &, 0, ..., %p_1 succes-
sively by using (3.16) and (3.15) alternately, so that G,=...=Gp_1=0.

It is clear that the minimality of J is crucial to the proof of the lemma. Next

we show that, with this restriction, the simple pole is the only case to be considered.

LeMMa 2. If the residue idempotent J of P, is minimal, R(A, P,) has at most a

simple pole at the origin.

Proof. By the properties of J,

J(Py—nE)=J*(Py—nE)=J (Py— xE)J = (7ty— %) J . (3.17)
If #,=%x, then we have (3.6), and 0 is a simple pole. Suppose m,+x. From (3.5)
we get
1
JE®, Py A=yt n

and (3.6) shows that the singularity of R(A,P,) at 0 is in fact removable.
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Henceforth we assume that R(A, P,) has a simple pole at A=0 with minimal
residue idempotent there, and that the a’s have been chosen so that R(A, 4) has a
simple pole at A=0. We remark that in general another simple pole A=y of R(4, P,)
would determine a different choice of the o’s.

Equation (2.14) now has a regular singularity at s=0, and can be written
sV'(s)= —sR(ps, A)BV (s)= ( > s Cm) V{s), (3.18)
m=0

with c=C,= —p 'JB. (3.19)

We can suppose that the series converges in norm for |s|<p, for some p>0.

4. Solution of (3.18)

Define (1) the commutator T4 of an element A4 of M, to be the bounded linear

transformation of €(IN,) given by
TA[X]—AX— X4 (XeM,). (4.1)

The solving of (3.18) proceeds as follows. If we attempt to make a trial solution by

expressing V(s) as a power series in s, three distinct cases present themselves.

Case A. No positive integer belongs to Sp(Tc). In this case the formal substitu-
tion of

Vis)= S A,sC"E, A =E 4.2)

n=0

in (3.18) leads to a set of equations
(n€C—T¢)[4,] :,ZIC"A""‘ n=1,2,...), (4.3)

from which the coefficients 4, can be determined successively, and with these values,
the series in (4.2) converges absolutely for 0<|s|<p and is an actual solution of
(3.18), fundamental in the sense that ¥(s) has an inverse in I, when s is in the

punctured disc.

Case B. Some positive integers belong to Sp(ZLc), but they are all poles of the re-

solvent operator M(A, Tc). In this case we make a formal substitution of the form

(*) For explication of the following remarks, see the discussion in Hille [4], of which they are
an abridgement. We denote elements of €(it,), the algebra of bounded linear transformations on
M,, by Fraktur capital letters, writing € for the identity operator.
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W (s,7) = 3 An(n) s+ H0E,  Ao(n) =n"E (44)

for ¥V (s), where 7 is a small scalar parameter, and N is the sum of the orders of the
poles of (4, Tc) which occur at the positive integers. This leads to equations like
(4.3), from which the coefficients can be determined successively, and lim, oW (s, %)
is then a solution of (3.18) for 0<|s|<p, which may, however, be identically zero.

To obtain a fundamental non-zero solution it may be necessary to form

lim —ai W (s, n);

n—>0 677N

this fundamental solution in general contains logarithmic terms, up to (log s)".

Case C. Sp (Zc) contains positive integers which are not poles of R(4, Tc). This
case appears to be somewhat intractible.
It is clear from these results that the nature of Sp(¥Tc) must be clarified before

we attempt to solve (3.18). Here we are helped by the following result.

LeMma 3.(1)

(i) Sp Te)S{a—p: o, BESP(C)}.

(i) Suppose that y, belonging to Sp (Lc), can be written as the difference of poles
o, Bi of R(4, C) (say of orders p;,v; respectively) in only a finite number of ways. Then
y is a pole of R(A, Tc), of order <max; (u;+»—1).

We show in the next section that the only singularities of R(4, C) are simple
poles at 0, —p™', —2p7 %, ..., —1. It then follows from Lemma 3 that 1 is the only
positive integer which could be in Sp (Z¢) and that it would then occur as a simple
pole. This confines the discussion to Cases A and B, with the necessity of at most

one differentiation in the latter case, and thus represents a considerable simplification.

5. Spectrum and resolvent of C
Write H=JBJ= —pClJ. (5.1)

Then, since J is idempotent, we have

—pC*=HC, H:= —pCH. (5.2)

() Foguel [3]; quoted in [4].
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Lemma 4. Sp (C)= —p ' Sp (H).
Proof. By using (5.1) we can easily verify the identities
P?*AAE— C)= (pAE— H—pC) (pAE+ H), (5.3)

(pAE + H+ pC) (AE — C)= A(pAE+ H), (5.4)

pAE+H+pC (p}.E——H—pC)l

~ o (5.5)

Suppose A+0. If —pA¢Sp (H), the right-hand side of (5.3) is a regular element
of M, and so A ¢ Sp (C). Conversely if A ¢ Sp(C), (5.4) and (5.5) show that — pi ¢Sp (H).
Thus the lemma is established, except for the role of the point 1=0.

Again, (5.2) can be written

(H+pC)C=0, (H+pC)H=0. (5.6)

If H+pC=0, then (pAE+ H) '=p *(AE— C)?, and the lemma follows immediately.
If H+pC=+ 0, then C and H are singular elements, so that 0 belongs to the spectrum
of both. The lemma now follows in this case also.

We get at the spectrum of C through H, which is a more amenable matrix. To
do this, it is convenient for the purposes of exposition to introduce new elements
P,.1,P,.s,...,Ps,_1 in ¥ which we take to be of the form

Pp+1= *%+1J’ Pp+2= —Otp+zJ, teey P2p—1= —ozp-1d;

the scalars op.1, %p2, ..., dzp-1 are to be fixed presently. Let 4* be the 2p x 2p
matrix got by enlarging 4, using the new P’s:

0

Ml

A* = 1 .1_30
Pyu P, P,

This has a resolvent R*(A, 4*) of the same form as (3.1), with elements S, defined
by (3.2) for r=1,2,...,2p—1, those for r=1,2,...,p—1 being the same as before.
The residue idempotent J* has the same form as (3.8), K,, ..., Ks, 1 being the re-
sidues of §,,...,82p-1, sn that (3.9) holds for r=0,1,...,2p—1, and (3.13) for
t=0,1,...,2p—1. But S,,...,8:5-1 do not necessarily have simple poles at the origin,
so we use the process in the proof of Lemma 1 to reduce their poles to orders <1
by choosing oy, ..., azp_; appropriately. That is, we define G,.; for r=0,1,2,...,2p—2
by (3.12), and 8,1 for j=1,2,...,2p—1 by (3.15), and define the o’s by
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ap=m,+0, ao=0 (@GF=p+tl,...,2p—1). (5.7)

That is, having previously found oy, 8,, o, 03, ..., xp_1 in succession, we continue in

the same way to find 8, ay, Op11, %ps1, ---, %zp—1, using (5.7) in place of (3.16), so that
G=0 (j=1,2,...,2p—1). (5.8)

R* (1, A*) now has a simple pole at i=0.
We shall need

LeMma 5. For r,t=0,1,...,2p—2,

Kig(P,K,+P,K, 1+ ...+ P, K, + P, J)
= (K. P+ K 1 Py+ ...+ K Py +J Pyiy) Kr . (5.9)

Proof. From the definition (3.2) of the S’s we have, for j=1,2,...,2p—2,

8:1=8P,R+8, 1P,R+...+8,P;R+RP, 1R
=RP,S;+RP,S; 1+...+RP;8,+RP;..R.
Therefore
Sei1 (PySy+Py Sy y+ ...+ P, 8+ Py J)
= (S, P,R+8,_1P,R+...+8,P.R+RP,  R)(P, S, + ...+ Pr11J)
= (8t P+ 81 Pyt ... + 8, P+ RPi11) Sri1. (5.10)

In the first and last expressions in these equations write each S; as its power series
K;27'+... in 4, and equate coefficients of A°%: (5.9) follows.

We are now in a position to evaluate the matrix product H=JBJ. Write

>3
oo
I

v

1
- , Q= . (6.11)
P :

P, P
The product JQJ is a lower triangular matrix; we show that JPJ is also, with zeros
in the leading diagonal, and hence that H is lower triangular. The (i,§) element of

JPJ is
(JPJ); ;= (sth row of J) P (jth column of J)

p—j /min @, 7+y) _
= z ( z Ki_ﬂPp_j_y+ﬂ) Ky. (512)
y=0 B=1



DIFFERENTIAL EQUATIONS WITH IRREGULAR SINGULAR POINT 221

Consider the ith row. Suppose j>i: the inside sum runs from 1 to i, and the
double sum

i p—i+f-1 _ p-j+f-1
=2 Ki—ﬁ( 2 Py jipy Ky — 2. Py_sip-y Ky) .
B=-1 y=0 y=p—j+l1

The second inside sum is void when §=1. Thus

i-1 p-j+f~1 _ p—j+i-1 _ i p~f+f-1 _
(JPJ)s.;= z Ki g > Py _jyipyKy+J 2 Pp_jriy K, - > Kip Z Pyojipy K,.
B=1 y=0 y=0 =2 y=p—j+1

The second term on the right is G_;.i, by (3.12), while to the first we can apply
Lemma 5. Thus the (¢,4) element of JPJ equals

-1 ji-g-1 i p-jta-1__
Z ( Z KdPi—ﬂ—é) Ky yep+ Gpjra— zKi~az Z Po_jrayK,y.
B=1\ 6=0 a=2 y=p-i+1

The two double sums cancel each other, and G,_;.;=0. Thus (JPJ), ;=0 for j=>i.
Suppose j<i. Then we write

i—7-1 j+y p-f

UPDy= 5 545 5 =545, say.

y=0 f=1 y=i-jg=1

i p-j+8-1 i~4~1  p-jif-1\
Now 22= zKi—ﬂ( 2 -2 2 )Pv—i+ﬁ—y K,=T,—T,—T, say.
=1 y=0 y=0  y=p—j+l

Here we deal with the first double sum by using Lemma 5 and (3.12) as before: T,
equals G,_;;; plus a double sum which cancels with 7. Thus 7, —7,=0, and

(JPJ);=2,—T,

i—f=1 ff+p i

= Z Z - Z)Ki—ﬂpp—iﬂ?—yKv

y=0 \f=1 g=1

= — Ki iy sPpisK, (B=j+y+é)

From (5.7) and (3.13) we deduce:

i-j
(JPJ).;=0 (j=1), gl Oprs Kijs (i<i). (5.13)

16— 632933 Acta mathematica. 110. Imprimé le 6 décembre 1963.
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0
Op:1 0

Write O=1 62 6,1 O , O=0+0Q. (5.14)
0217—1 | 0p+2 ' 0p+1. 0

It can be verified by direct evaluation that

JPJ=JOJ, (5.15)
so that, by (5.11),

H=JBJ=J(©+Q)J=JDJ. (5.16)
The (¢, §) element of H is

i-7 i-§
H,,= 62 0515 Kt_,_6=7'K;_,+ﬁZI BKi_;-s Kz (i>7]; empty sums are zero). (5.17)
=1 =

Lemma 6.
1 2
Sp (C g{o, _1 __,...,_1}.
p (C) » T p

The singularities at —p™,..., — 1 are simple poles at most, and 0 is a pole of order
exactly 1.(1)

Proof. H is now known to be a lower triangular matrix, and its leading diago-
nal is (J,2J,3J,...,pJ). The resolvant R (4, H) can be formulated by the method
used to derive (3.1), although in this case the formula is more complicated since ele-

ments of a given diagonal are not necessarily equal. Let L,=R(1,mJ); we find

[R (A’ H)]r.r =L,
while for r>s,

L, (5.18)

-1, 8

[R(A,H), = (r,Zs)LT H, L, H, . L,H,,.. H
where ‘(r, s)’ beneath the summation sign means that the sum is taken over all ordered
sets (i, ¢y, ..., 6i—1) of integers for which

T>0 >8> >0 s
Since J is a proper idempotent,

L.=R(, mJ)=E;—J z%n (m=+0), (5.19)

(1) The lemma can be strengthened: see the last paragraph of this section.
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and the spectrum of mJ consists of simple poles at 0 and m. It follows from (5.18)
that Sp (H) consists of simple poles (at most) at A=1,2,...,p, together with a pole
of order <p at 1=0.

Now by (5.4) and (5.5),

R(%,C)= —A"'R(—pi, H)(pA E+ H+ pC). (5.20)

From this the lemma follows, except for the order of the pole at 0. It remains to
show that this is exactly 1. We do this by first obtaining the Laurent series for
R(A, H) about the origin. We state and prove two lemmas on the way.

LeMmaA 7. Let A be a lower triangular scalar matriz, of order p. Then there exists
a unique matrix Z, of the same kind, such that

JAIZJ=J=JZJAJ, (5.21)
if, and only if, none of the elements in the leading diagonal of A vanishes.

Proof. Write M=JAJZJ, N=AJZ]J, and let 6;; &, ;, M;; and N,; denote the
(¢, 7) elements of A,Z, M and N respectively. We assume ; ;=0 for i<j, and de-
termine the diagonals of Z inductively, starting with the leading one. For the kth
subdiagonal, 0<k<p—s, s=1,2,...,p,

s+k

Ms+k.s= _ZSKS'HC‘“N“'S' (522)

It can be verified that M., contains only those elements of Z which are in the
leading diagonal and k subsequent diagonals. For M =J it is necessary that {; ;0;,=1
j=1,2,...,p). Suppose, for j=0,1,...,k—1, that ls;s(s=1,2,...,p—4) have been
chosen so that

s+

Ms+j.s= ZsKs—H'—uNg;_s:Kj (7'=0, 1,...,k_1). (523)

Then, for s=1,2,...,p—k,

s+k Stk—a

Mip,s= Zs ﬁ:zo KsKsiiopN,s (by (3.13))
k s+k—p k
=ﬂ§)Kﬁ ;s Ks+kfu~ﬁNz,s:JMs+k.s+ﬁ21KﬁKk—ﬁy

ie. Myrs=I Mo s+ Ki—JKy. (5.24)
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Similarly, by using instead the factorization M=JAJZ-J, we find

Ms+k.s=Ms+k.sJ+Kk—KkJ- (5.25)
Premultiply (5.25) by J and add to (5.24); we get
Ms+k.s=Kk+JMs+k.sJ—JKkJ- (5.26)

The only element from the kth subdiagonal of Z which occurs in JM,, k. sJ i8 {sir,s
and its coefficient there is dsix.s.xJ. Thus (5.26) shows that, by the minimal pro-
perty of J and under the proviso in the statement of the lemma, we can choose
Csins 50 that Mg,y =K It is easily seen that M, ,=J, M,,1, ;= K,; the first equa-
tion of (5.21) follows by induction. It is clear the Z is determined uniquely.

Similarly, there is a unique matrix Z’ for which JZ'JAJ=J. It follows that
JZ' J=JZ]J, and so Z'=Z. The lemma is proved.

The lemma is clearly a statement about a subset of regular elements in the alge-
bra JM,J. We shall write Z=A°, and call this matrix the reciprocal of A. With
this notation, we now establish the Laurent series for R(A, H) about the origin.

LeMma 8. R(4, H) has a simple pole at A=0, and for 0 < |A|<v=1lim | F*} ",

R(A,H)=%:1—F—1W—A2W—..., (5.27)

where F=J®°J, ®° being the reciprocal of ®=0 +Q.

Proof. We may assume from what is known so far that R(Z, H) has a repre-

sentation

p-1 p—2
R(A,H)=-QAT+%+...+%+%—F—AF2—FF3—..., (5.28)

where U is idempotent, and the series converges for 0<|i|<w, say. Now

R(}, H)(\E—H)=E=(AE— H)R(}, H), (5.29)
and since JH=H=H],

R(A, H)(AJ—H)=J=(AJ-H)R(J, H);
therefore AR, H)Y(E-J)=E—J=A(E—J)R(}, H). (5.30)
Substitute from (5.28) in (5.29), and compare coefficients of powers of A: we find

Q=UH, (6.31)
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—FH=U—-E= —HF, (5.32)
F*H=F=HF* (5.33)

Again, substitute from (5.28) in (5.30): we find
UE-J)=E-J=(E-]) U, (5.34)
FE-J)=0=(E—]J)F. (5.35)

We first use (5.34) to show that U=E—J. Let U, ; denote the (i,7) element
of U, so that U, ;=0 for i<j, and U,;;=E—J, by (5.19). Let 1 <k<p, and assume
that for j=1,2,...,k—1

Upry= —K; (r=§+1,§+2, ..., p); (5.36)

we shall deduce the same identities for j=k. Comparing the (r,r—k) elements in
the first equation of (5.34) we get

Unrs(B=T)=Uryxs1 Ky — oo = Uy 1 Ky — (BE—J) K= — Ko,
which, with (5.36) and (3.13), gives
Uirx=UsrxJ — Ky + K, J. (6.37)
Similarly, the second equation of (5.34) gives
Unr-x=JUsp-x— K+ JK. (5.38)

In a similar fashion, by comparing the (r,7—%) elements in U?=U and using (5.36)
and (3.13), we find

U,-,r_k=U,-,r_kJ+JU,-,T_k+JKk+KkJ‘Kk. (539)

Add (5.37) to (5.38) and subtract (5.39), to find U,,,_,= — K, which was to be proved.
It can be verified that (5.36) holds for j=1; it therefore holds for j=1,2,...,p—1;
ie. U=E-—].
From (5.31) it follows that Q=0, and so A=0 is a simple pole of R(J, H).
Again, (5.32) gives
FH= J=HF; (5.40)

and (5.35) gives F=JF=FJ=JFJ. (5.41)

It remains to verify that F=J®°J. Since H=J®J, this value for F satisfies
(5.40) and so (5.32), and by (5.41), also (5.33). Thus the representation (5.27) with
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this F satisfies (5.29) for 0<|4|<v; the uniqueness of the representation implies the
result.
The Laurent series for the resolvent of C can now be written down. Using (5.20),

we get
E+pFC

R(}, C)= I

—(pFR2C+A(pFy*C—22(pF)*C+ .... (5.42)

Since C is singular (cf. (5.6)), the residue is non-zero and R(4, C) has a simple pole
at 2=0. Lemma 6 is now fully established.

The conclusions in the last paragraph of § 4 follow. We can write
o
?R(Hn,ic)=%—%—n%2—n233—... 0<|n]<9) (5.43)

for some ¢ >0, J being an idempotent operator. If J=, we have Case A. Suppose
S*+9. We substitute (4.4) with N =1 into (3.18) and equate coefficients of all powers
of s except the first, obtaining

Ay (n)=nE,
A, () =%R(1 +7,Zc) [C, 4,] :\(} [Ci]—n & [Cl+..., (5.44)

A, (n)=R(n+9nZc) [Z C,An_,] (n=2,3,...).
r=1
Thus a solution of (3.18) is

Ve (s) = 71}i_1>r'1) W(s,n)={s3[C]+RE, Te) [C,F[C]+ ...} s, (5.45)

and this is not identically zero if J[C,]+ O, and is fundamental if [C,] is regular.
The solution

Vo, (s) =lin(1) é%(;’n)= {E—sFC]+...}sC+s log s {J[C,]+...} sC. (5.46)
n->
is fundamental.

It is possible to compute J. Let the residue idempotent of R(A, H) at A=k
(k=1,2,...,p) be U,. Tt is not difficult to show that the leading diagonal of Uj has
J in the kth position and zeros elsewhere, so that U,<+ O (thus all poles of R(A, H)
in fact have order exactly one). Then the elements of U, can be found by methods
akin to those of Lemma 8. The formulae are complicated. The residue idempotent
of R(4,C) at A= —kp~' is found to be —pk U, C. A formula due to Daletsky (1)

can be used to show that

3[X]= — (E+pFC)XU,C (XeM,).

(M [2]; quoted in [4].
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6. Solution of (1.1)

It remains to obtain a solution of (1.1) from a solution of (3.18).
There exist a priori estimates for solutions of (3.18). Suppose that ¢ (of § 3) is
such that, in some open sector 2 with vertex 0, R(ps, A) is holomorphic. Write 2,

for any closed ‘interior’ sector. Then

M =sup |sR(ps, A) B| (6.1)
se X

exists and is finite. Let s, s, lie on the same ray Y from 0, in 2, Then(!) for any
solution V of (3.18) we have

IV l<k Vo)l |s| for |s|>|sl, (6.2)
VItV sl |s|™™ for |s|<]sl, (6.3)

where the constants k,, k, depend upon 2.
We take the contour ¢ in (2.4) to be a loop coming from infinity along Y, en-
circling the origin once in a counterclockwise sense, and returning to infinity along Y.

If 2z is such that
re (sz2’)<0 for s on T, (6.4)

the estimate (6.2) can be used to show that this choice of ¢ fulfils the requirements
of § 2. Then any non-zero solution ¥(s) of (3.18) determines by (2.4) a solution Y(2)
of (2.2), and in turn a solution W(z) of (1.1); W(z) is valid for z lying in some sector
determined by the requirement that a ray Y exists in 2 for which (6.4) holds. It
is sufficient for our purposes if the solution ¥ is not identically zero: it need not be

fundamental. Let ¥ be such a solution, with non-zero jth column

v;=Ve; (e;=jth column of E),

and write {7=(2""1,2°"%,...,2,1). The corresponding solution of (1.1) is
7,40 ] m+0,
W(,-)(z)=z PTEP eXPp 5 zp+pj z +...t (np_1+0,,_1)z Y(j) (Z), (65)
with Y (2)=C" f e’ V(s)dse,.

(1) Cf. [4], § ¢
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7. Asymptotic expansion for the solution

We obtain an asymptotic formula for Y(z) when |z| is large, for the case where

the solution ¥(s) contains no logarithmic terms. The method comes from Horn [6].
Take V(s)= f A, sCt"E = §(s)s€, S(s)= > 4,5, (7.1)
n=0 n=

the A’s being supposed determined, and the series converging absolutely for 0<|s|<p,
and write

N N
fe“’p V(s)ds=J e”p{V(s)— > A, sc+"E} ds+ > A,,f e sC+nE dg
[ c n= n=0 c

0
=T,+T,, say. (1.2)

To simplify the discussion, we suppose Y chosen so that sz” is real and negative for
s on Y. Thus if 3, is the sector x<6<p, the discussion applies to points z in the
sector

¥ ] <arg 2<% (7.3)
p 8 p

also f eszpsc+nEd8=z—p(C+(n+1)E)f €? wC+E dyp,
¢ e

where ¢’ is a loop contour from infinity along the negative real axis.

We are thus led to consider gamma functions of elements of I,. Definitions for
these are obtainable as follows from the operational calculus for a general Banach
algebra with identity, described in [5], Chapter V. Let X €IR,, and suppose that
none of 0, —1, —2,... belong to Sp (X); then

ro0-5; [ TORE X

v being an oriented envelope of Sp (X), defines I'(X) as a locally analytic function,
and I'(aE)=T'(«)E for scalar . If 1¢Sp (X), then also I'(X)= (X E)I'(X— E). Again,

1 -
YX)=5— L (D)1 R(, X) d& (7.4)

defines a locally analytic function for all X € It,; and 0, —1, ~2,... ¢ Sp (X), we have
p(X)=[['(X)]"*. The integral

w(X)=%z; f e wXdw (1.5)
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is also defined for all X€IR,; it can be verified (by expressing w* as a series and
using the properties of the opera,tional calculus) that w(X)=y(—X).

Since Sp (— ={—n, —p™,...,— (n—1)}, none of I'(—C—nE) (n=
0,1,2,...) is defined. However, we do have, for all X €N,

o(X)= —XoX-E)= —o(X-E)X, (7.6)
and w(C—E)=[(E—C)]"". Then (7.4) gives

w(C- m—ngfmlamlnmxnw——E+J 2
)

where U, is the residue idempotent of R(A, H) at A=F; and using (7.6) we obtain,

after some calculation,

b4
U"C, w(C+nE)= r=1,2,3,...). (1.7)
T =
p \p

The asymptotic expansion to be derived is: For fized N (>]C|-2),

o(C)= —

N
|2|P@-RERHL|| Y 5y (2) — L7 3 Ay 2~ C+@+DE o(C+nE) e)|| — 0 (7.8)
n=0
as z tends to infinity along a ray in the sector V.
Let the contour ¢ constitute the union of the several portions

¢,: those parts of the two arms along Y for which [s|>1}op,
¢,: the parts of the arms along Y for which d<|s|<}o,

cs: a counterclockwise circuit of the origin along |s|=4.
We may assume without loss of generality that $ p<1. On ¢, and ¢, we can write

Sl _S©dL P
_nzoAnS = om o CN+1(C—S)’ 60—{4'.'5'—%@},

|S(s)}<M,< o, for some constant M,, and deduce that

” ve ¢ (Ste) - ZA"S Cdsl @ ];ﬁlf ve || [s]"**|sC}|ds]. (7.9)

Write |s|=0. Then on c,Uc,
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Js€] < AChiion ol+2) _ 270l g-RC,

eszp=e_°'|3|p 6|z|p.

On c,, , while on ¢, |e*"|< e
on the right-hand side of (7.9) are

Thus the contributions of the integral

f<262"'C'IZI"”(N+2"CDF(N+2—|C|),

: (7.10)
f <2petlelf+2alClgn+2-1€],

Cs

The first bound is independent of d, so we may let § -0 in the second when N is
large.

The contribution of ¢, to Ty is dominated by
- N
[ e v+ 3 1] 1 lellsrlaol- .+ ¢, s
Let s, be the intersection of Y with |s|=}p. By (6.2),
Ql<2k1|V(so)|f e 12 Mdg,
ie
N o0
0, <2491 S | 4,] J 1P max (o* 161, " HEN g,
n=0 te

Now for positive & and 7, and real a,

f e o*do<27%E Te ¥ if £>2a max (1, T7Y).

T

Therefore Q <4k |V(s)l (3 0)¥ 2|2 e telV (7.11)
N

and Q<4219 2|2 3 |4, {(§ o) 1Che 012 71217, (7.12)
n=0

if |2| is sufficiently large.
From (7.10), (7.11) and (7.12) it follows that, given any &£>0 and any fixed
N(>|C]—2), we can find a Ky such that

|2|p ¥ +1-1ED) Ty|<e for |z]|>Ky. (7.13)

Now when the norms are defined by (2.13) and (2.15), we have
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I Xgll <zl 1x1 1l

for any f, g€%8,, X€I,. Therefore finally

N
1Y (2) = L7 2 Anz=?CH® 0B 0 (C+nE) e | <|IE" Tw el <p |2 " Tl

The formula (7.8) follows from this and (7.13).

Added in proof. 1t should be remarked that Birkhoff was in error in believing (1.1)

to be a canonical form: see Gantmacher, F. R., Theory of Matrices, Vol. II, p. 147. I am

grateful to Mr W. A. Coppel for drawing this to my attention.

Results related to the reduction in §2 and to Lemma 1 are announced in Turrittin,

H. L., Reducing the rank of ordinary differential equations, Duke Math. J., 30 (1963),
271-274.

[11.
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