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1. Results and fundamental concepts
Results

A Banach space X in which there is defined a continuous Lie multiplication [z,y]
will be called a normed Lie algebra. One can assign to every normed Lie algebra X a local
group consisting of-a sufficiently small neighbourhood of 0 in X in which the multiplication
xy is given by the Campbell-Hausdorff-Schur formula

xy=x+y -+ §lxy] + Hlylyx]] + & [2[yx]] + ...

(Birkhoff {3], Cartier [5] and Dynkin [10]). Let us denote this local group by L(X). If X is
finite dimensional, then L(X) is of Lie type and therefore it is always locally embeddable in
a group (Ado [1], Cartan [4], Pontrjagin [17]). We shall say that a normed Lie algebra X
is an E-algebra if L(X) is locally embeddable in a group. Since it has been discovered re-
cently that not all normed Lie algebras are E-algebras (van Est and Korthagen [11]), itis

natural to ask which of them are. In this direction we prove
THEOREM 1. If X is @ normed Lie algebra, Y < X is a closed ideal and

a) the Lie algebra X|Y is abelian,
b) Y is an E-algebra,
then X s an E-algebra.

We shall use this theorem in order to prove that an algebra X which is soluble, or
soluble in a generalised sense is always an E-algebra. More precisely, let us say that the
normed Lie algebra X is lower soluble if there exists an ordinal number « and an ascending

sequence
{0}=X =X cX,c.. Xp=Xp <. X, =X

of closed subalgebras of X such that
14 — 652933 Acta mathematica 114, Imprimé le 19 octobre 1965,
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a) if f<a is not a limit ordinal number, then Xj_, is an ideal of Xz and the Lie
algebra Xg/X,_, is abelian,
b) if #<ois a limit number, then X, is the closure of U,.s X, in X.

If that is so we shall also say that X is lower soluble with sequence {Xjz}s<, and we
shall call the smallest ordinal « for which such a sequence exists, the type of X. We shall

prove
THEOREM 2. Every lower soluble normed Lie algebra is an E-algebra.

One should ask whether there exist lower soluble Lie algebras of arbitrary given type;
the answer is positive and it is not hard to construct such algebras modifying Gluskov’s
construction of lower soluble groups of arbitrary type (cf. [12] where, to begin with one

should replace the matrix groups by their Lie algebras).
Added in proof. Using ideas of van Est and Korthagen [11] the author is able to

show that the conclusion of Theorem 1 remains valid when the condition that X/Y is
abelian is replaced by
a') X/Y is of finite dimension.

Theorem 2 can be generalized correspondingly.

Partial and local groups

If Pis a set, D™cCP" is a subset of the Cartesian product P* of »n copies of P
and f™:D"™ P, then f™ will be called an n-ary partial operation on P. Instead of
&y, Xg, oo, X € D™ we shall say that fi (xy,...,,) exists. A partial group is a set P together
with a subset D® < P x P and a binary partial operation f2: D2 P such that if we denote
¥ (x,v) by xzy, then

PG.1. If zy and yz exist, then either both (xy)z and z(yz) exist and x(yz) =(xy)z or both
(xy)z and x(yz) do not exist.

PG.2. There exists an element ¢ in P such that xe and ex exist for every z in P and xe=
ex=zx.

PG.3. For every z in P there exists a unique z~! in P such that xx~! and z~'x exist and
=z lr=e.

PG.4. If zy exists, then y~la~1 exists and yle—1=(zy) L.

The above definition is due to A. I. Malcev [15]. If P, P; are partial groups then a
mapping y: P ~P, will be called a homomorphism if for every z,y in P such that xy exists
we have that p(x)yp(y) exists in P; and is equal to y(zy). A homomorphism y will be called
an embedding if y is injective (i.e. if z+y implies p(x)Fy(y)). If P, is a group (i.e. if zy
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exists for every z,y in P,) and an embedding y:P —P; exists, then we shall say that P is
embeddable in a group.

Certain n-ary partial operations in a partial group P will be called words. These are

defined by induction on » as follows

a) There exists exactly one unary partial operation f¥ which is a word, namely
the identity operation f)(z)=u,

b) Assume that n>1 and that for every k<n we have defined what we mean by
saying that a k-ary partial operation is a word. Then a i)axtial operation f™ will
be called a word if and only if there exist numbers k, I such that k+I{=% and
partial operations f®, {1 which are words such that f™ (x,,...,x,) exists if and
only if f* (zy, ..., x), P (@rys s X)) and fO (2, .., 2) FO (2411, ..., 2,) exist and,

moreover
T @y s ) = TN X1y ey T) O (Rt 15 o es )

We shall say that P satisfies the general associative law if for every =, for all words
fi?, 1Y and for every n-tuple {x,,%,, ...,z,> € P" such that both f{® (z,, ..., 2,) and f§® (25, ..., 2,)

exist, we have

D (Z1y 0ves ) =J52 (X1 0eer T)-

We shall use the following criterion of Malcev [15].

EMBEDDABILITY CRITERION. A partial group P is embeddable in a group if and
only if P satisfies the general associative law.

By a local group we shall mean a set L together with a subset D® < L x L and a partial
binary operation f: D' — L such that

LG.1. L is a topological Hausdorff space,

LG.2. Lis a partial group with respect to @,

LG.3. D@ is an open subset of L X L,

LG.4. The multiplication f'¥: D — [ is continuous,

LG.5. The mapping x -2~ is continuous.

H L is a local group and U< L, then we shall say that xy exists in U if xy exists in L
and xy€U. If U is open and U =U-1={z'|x €U} then U together with the partial opera-
tion zy is a local group; we shall call U a piece of the local group L. If U is embeddable in a
group, we shall say that L i8 locally embeddable in a group.

Analytic mappings and manifolds
In this section we shall define analytic locally Banach manifolds and analytic mappings

of one such manifold into another. Similar definitions concerning C,,-manifolds were given
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by 8. Lang [14]. The analytic mappings of Banach spaces are due to R. S. Martin and A. D.
Michal [16].

Analytic mapping. Let X, ¥ be Banach spaces and let, for every n, u,: X*—Y be a
continuous n-linear mapping with norm |u, || (cf. [7], p. 99). For every {a,,...,%,, in X" such
that all z; are equal to x, we shall write 2" instead of u,(x,, ...,xn).‘

Let U< X be open and let f: U Y. If 2 €U, we shall say that f is analytic at z,, if
there exists a sequence u;,u,,%,, ... where u,: X*—Y is n-linear and continuous such that
for some ¢ > 0.

oo
Al 3 max ||u, 2| < oo,
1 lizll<e

A2, floy+x)=flz,) + io u, 2" for every |z| <o.

We say that f: U —Y is analytic if f is analytic at every x, in U. The series in A.2 will
be called the power series of f at z,, and {x€X/| || <o} will be called a ball of analytic
convergence of that series.

Analytic manifold. Let X be a Banach space and let M be a set. An analytic X-manifold
on M is a set of pairs {(U;, ;> }:er where T is some index set, such that

M1l UU.=M,
M.2. ¢,:U,—X is injective and ¢.(U, n U,) is always open in X,
M3. é.é;':¢.(U.nU,)—~X is always analytic,

and moreover {{Us, ¢;> }zer is maximal with respect to these properties (i.e. if

{{Un ¢ }rer U KU}
has the properties M.1, M.2 and M.3, then (U,¢> =<U,,¢,> for some v€T). We call each
pair (U,,$,> a chart and we define a topology in M by calling a set U< M open if and
only if ¢.(U n U,) is open in X for every v. When considering only one manifold on M, we
shall denote it simply by M.
Let N be another analytic manifold and let f: N —~M be a continuous map such that
for any two charts <U,,¢.>, {V,,y,> of M and N respectively, the mapping

¢1f1l’;1 :Pu(Vu U)X
is analytic. Then we shall say that f: N —M is analytic. If an analytic mapping f: N —~M is
bijective and the inverse f~1: M —N is also analytic then we shall call f an analytic homeo-
morphism. We shall use the following basic facts.
Principle of analytic continuation. If N is a connected analytic manifold, U< N is open
and f: N >M, g: N -M are analytic such that f=g on U, then f=g on N.
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Composition principle. If @, M, N are analytic manifolds and the mappings f:Q—-M,
g: M —N are analytic, then so is their composite gof:Q —>N.

These are easily proved, once they are known for the special case when M, N, @ are
Banach spaces. In that latter case they can be shown similarly as for finite dimensional

spaces in [8].

Normed Lie algebra
Let X be a Banach space with norm || - || over the field of real numbers. We shall call X
a normed Lie algebra if there is a Lie multiplication [z,y] defined in X (cf. Jacobson [12])

-such that

Itz ylll<llzll- Iyl
holds for every z,y in X.

By saying that Y is a closed subalgebra of X, we shall mean that ¥ < X is a subalgebra
in the usual sense and moreover Y is a closed subset of X. If Y is a closed ideal of X, then
the coset space X/Y={x+Y|«€X} can be made into a normed Lie algebra by defining
the norm and Lie multiplication by

lz+ Y| =inf{||lz+y||y€Y}; [c+Y,z+Y]=[z,2]+7Y.

Notation: Let my,my,...,m;, and n,,n,, ...,n;, be two sequences of non-negative integers.

Then we shall denote by
Mgy Togs Mgy gy ey My s X5 YD

the sequence x,,%,, ..., ¢, each of whose terms is equal either to z or to y, such that the first
m, terms are equal to x, the following 7, terms are equal to ¥, the following m, equal to z,

etc. (we then have =72 m;+n;). For this sequence z,,...,z, we define

1
(71,701, Mg, Tog,y o, M s X, Y] = p [y [z [ .. [y, 2] 11
if r>1 and we put [m,,7y,..., 1, 0 T, y] =2, if r=1.

The Campbell-Hausdorff-Schur formula
Let X be a normed Lie algebra and let B={x€X|exp2| x| <2}. By the SCH-formula
(or series) we shall mean the mapping {z,y> —xy of B X B into X defined by
0 ( -1 )k+1 _
Yy = ,le % (my ! tmytn,!t ...yl my!) 1 [my, ny, Mg, g, .., My, M5 Z, Y]
=x+y+ayl+hlylyel] + &2 yz]]+ ...,
where the > is over all sequences of k pairs {my,n,>,...,(m,n,> of non-negative inte-

gers satisfying m;+n;>1; =], ...,k The above form of the SCH-formula is due to E. B.
Dynkin [9].
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It is easy to see that the series

e

k

1
-1 .
max - (mlng ! oml g Y [y, ny, my, my, Lo g, s 1, Y]
k=1 Iz <& lly i<y

is majorised by the expansion of >7%; (exp & exp # — 1)F in terms of £™/m! and #"/n!.
This proves that any ball in X X X of centre {0,0> whose closure is contained in B x Bis a

ball of analytic convergence for the SCH-series. We shall need the following facts.
(i) The mapping {z,y> — zy of B X B into X is analytic.

Indeed, we have above its power series expansion at {0,0). The analyticity of the map-
ping at any other {(x,,y,> € B X B follows from the fact that every such point belongs to a
ball of analytic convergence of the SCH-series (cf. [16], Th. II 28, p. 47 and [2]).

(i) The multiplication xy defines a local group.

Let L(X) be the ball {x€X|exp3|«| <2}. Then, for every x,y,2€L(X) such that xy
and yz are in B we have (zy)z =2(yz). Proofs of this identity can be found in Birkhoff (2]
Cartier [5] and Dynkin [9], [10]. Let us say that the product 2y exists in L(X) if zy € L(X).
Then L(X), together with the multipliation zy is a local group; the unity e is the 0-vector
in X and 2= —z for every x. We shall denote henceforth the 0 in X by e and we shall
write occasionally 21 instead of —z. We note that xz? exists if and only if 2x € L(X) and

then a2 =22.
(iii) If z€ B and zz=2zx holds for all sufficiently small x in B, then z commutes with every x
in B and [x,2]=0 for every x in B.

To prove this, take an arbitrary = in B and denote by 7 the open interval {i|Az€ B}
which obviously contains 0 and 1. Tt is clear that

A—>(Az)z and A-z(lx)

are analytic mappings of ¥ into X, and as they coincide for small 4, they are identical on
F, whenece xz =zzx.

To prove the second part of our assertion we take any sufficiently small z in B so that
271 32)2) = (¢ 32) 2) (0T (o) r) =2 (B2) (BR) e —a T e =,

whence 2~1(}z)x =4z. This shows that }z commutes with all sufficiently small , and there-
fore with all ». Iterating this argument, we obtain that 27" z commutes with all . It is now
sufficient to apply the formula (cf. Birkhoff [3], Dynkin [10])

[x,2]= lim 2"{(2 " z) (2" "2) (2" "x) "} (2 "2)"1}.
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Analytic local groups and analytic groups
A local group L with multiplication xy defined on D®c L x L will be called analytic

if L is an analytic manifold and the mappings {x,y> - xy, -1 are analytic (L X L, and
hence D2 has a natural manifold structure). If X is a normed Lie algebra, then the local
group L(X) defined in the previous section is an analytic local group. We shall call L(X) the
a.l.g. assigned to X.

By an analytic group we shall mean an a.l.g. in which the product of every two ele-

ments exists. We shall use the following theorem

EXTENSION OF ANALYTIC STRUCTURE. Let X be a normed Lie algebra, let L(X) be
the alg. assigned to X and let Q< L(X) be an open ball of centre 0 which, as an a.l.g. is em-
beddable in o group. Then there exists a simply connecled analytic group G and an em-
bedding £:Q —G such that £Q is an open subset of G and the map e:Q —£Q is an analytic

homeomorphism.

The proof is the same as for Lie groups (cf. Cohn [7], Theorems 2.6.2, 2.7.1, 7.4.3 and
7.4.5).

If G is an analytic group then by a local analytic endomorphism of G we shall mean an
analytic mapping 9:V —G where V<@ is an open neighbourhood of the identity and
play) =p(x)p(y) whenever x,y,2y€V. If V=G, v will be called an analytic endomorphism.
We shall use the following theorem (Chevalley [6], p. 49):

EXTENSION OF LOCAL ENDOMORPHISM. If G is a simply connected analytic group,
p:V— G is alocal analytic endomorphism and V is connected, then y can be extended to an

analytic endomorphism.

2. First embedding theorem

In this section we shall prove Theorem 1. We assume throughout that X is a normed
Lie algebra and Y is a closed ideal of X such that

a) X/Y is an abelian Lie algebra,
b) Y is an E-algebra.

We shall show that X is an E-algebra.
The SCH-formula defines for all 2,y in B={xz€X|exp2]|x[<2} their product zy.
Denote by & the coset ++ Y €X/Y. We shall use only the following consequence of a);

a') wy==Z+§ for every x, y in B.

To prove a'), note that, as X/Y is abelian, we have [z,y]€ Y for all z,y in X, and as the only
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term in the SCH-formula which is not a bracket is z +y, it follows that zy and «+y are in
the same Y -coset.

Let us adopt from now on the convention that all balls are open balls in X with
centre 0 =e. If L(X) is the a.l.g. assigned to X then we have from b) that there exists a ball
Q@< L(X) such that @ n Y is embeddable in a group. By the principle of extension of analytic
structure there exists a simply connected analytic group G and an embeddinge:Q n ¥ - @
such that &(@ n Y) is an open subset of G and the map £:Q N Y —¢(@ n Y) is an analytic
homeomorphism. To simplify the notation, we shall assume that ¢ is the inclusion map, so
that @ N Y < @G is a neighbourhood of ¢ in G.

In the local group @ we have, for every natural #, an open neighbourhood U, of e such
that f™(x,,...,x,) exists, for every word ™ and every z,,...,x, in U, (ie. if z,,...,2,€U,,
then x;x,...x, € Q and this product does not depend on the way of placing the brackets).
Let ¥ be any ball contained in U,,. We shall prove that the local group V can be embedded
in a group; this will be done by embedding V in a partial group P (Lemma 4) in which the
general associative law is valid. Before doing this, we shall establish some relations between
Gand V.

The action of ¥ on G
LEMMA 1. There exists an analytic mapping ¢:V x G~ G such that

bz, y)=z"y z
for every x€V, y€V N Y. Moreover, y —¢(x,y) is for every x in V an endomorphism of G.

Proof. For every x in V the mapping y >z 'y z takes ¥ N ¥ into G. Indeed, if €V

and y€V n Y, then L
x lyr= —Z+y+r=4=0

by a’). Since VVV<g, we conclude that x4V n Y)a<@ n Y<@ for every zin V. From
V< U, it follows that the product of any six elements of V exists in @ and does not depend
on the way of inserting the brackets. Thus it is seen that y 21 yx is a local endomorphism
of @, defined on ¥V n Y. This endomorphism is clearly analytic and by one of our remarks
above it can be extended to an analytic endomorphism of G. Let us denote the latter by
&(x,y), i.e. p(x,y) =xyx for all (x,y> €V x(V 0 Y) and, for every fixed z in V,y—>d(x,y) is
an analytic endomorphism of G. It remains to prove that ¢ is analytic on ¥ X @, and for
this purpose it is enough to show that the restriction of ¢ to V Xy,(V n Y) is analytic, for
every ¥, in G (the product y,(¥V n Y) is in G). Since @ is connected, it is generated by ¥ n Y.
Thus y,=y,¥s...4, where 4,€V 0 Y and hence
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B(2, ) =$(@,50) B ) .. B ) S, Yo ™)

for every y in G. Using the composition principle for analytic functions, we find that the
maps
<, > > a7y ) w=¢ (z,95Y)

and =z iy z=¢@, y); 1=1,...,n
are analytic on V Xy (V nY) and thus é(z,y) is analytic on that manifold, and hence
on VXxG@.

Notation: We shall denote ¢(x,y) by v*.

A set of representatives of Y-cosets in V

Let V/Y be the image of the ball ¥V under the natural map X -X/Y; the coset x+Y
belongs to V/Y if and only if (z+Y) n V+0.

LeMMA 2. It is possible to select from every coset o belonging to V|Y a representative
2, € NV such that if ta €V]Y, then x,, =tx,, for every real &.

Proof. Let K be the boundary of V so that VU K is a closed ball. We call a coset
BEX|Y tangent to Kif 8 N K+ @ andf n V =0. We select now from every set{f, —f}< V /¥
where § and —f are tangent to K, one of the two cosets. If ¢f is selected (e=1 or —1), we
associate with {8, — B} an arbitrarily chosen element 24€ ¢ N K and we take the elements
tx.g; |t| <1 as the representatives of the cosets tef. Since for every coset &=+ 0 intersecting V
there exists a unique 7>1 such that 7« is tangent to K (7 is the greatest number such that
1 N K+ @), we have defined a, uniquely. Clearly te N V &= implies x;, =x,.

A formula for the multiplication in V'

We shall say that an element x of V is written in normal form if 2 =2, a, where «x, is one

of the representatives defined in the previous section and a €G.

LevMa 3. Every x in V has a unique normal form. If x,a, x5b are any two elements of V
in normal forms and their product (x,a) (xb) also belongs to V, then its normal form is

(ro @) (wﬁb) = Taip Oa, 8 azﬁb>

where Cy, 5= 5%, 25 € Q.
Proof. If €V and « is the Y-coset containing z, then

o= —%,+F=—a+a=0
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by a’), i.e. the element a =2, 'z isin Y. Clearly a is in VU Y<@Q N Y < Q. If z,a==z,c¢
are two normal forms of «, then z,+d= a+0=x—y+ ¢=9+0 whence z,=x, and a=c. If
¥, a, b are in normal forms, and (z.a) (x5b) EV, then (z,a) (xsb) =a+BE€V/Y and thus

%+ exists. Moreover
Zp @ pb = (Terp Taip) Tu (T 25 ") A 25l = 2445 Cr g 0™ Pb

because the multiplication can be performed in any order, by V< U,, (note that a,b€EVV,
thus we have above a product of 10 elements of V). Also

Cop = loTap= — Fpup+ &+ = — (a+f)+a+ =0,
whence C, s€Y. Clearly C, g€ V3N Y< @ n Y<G. This completes the proof.

Remark. If C, g exists, i.e. if a,f,a+BEV|Y, then the set of all real t for which Cy, i3
exists is an open interval ¥, s containing O and 1, and

£~ Cta. g
s an analytic mapping of Fu s into G.

Indeed, we have ¥, 5= {t|ta,t8,t(x+B)€EV/Y}. By Lemma 2,
Cla, 15 = Tica+p) Ta Tep = (— 1arp) (t2a) (t2p),
which shows that the map ¢ > C,,, (s is the composite of linear maps (t - tx,, etc.) and of the

group multiplication, hence it is analytic.

The partial group P
If «,8,0+B€V]Y and a,b€Q are such that x,a, 2zb and (x,a) (xzb) €V, then the nor-
mal form of (x,a) (25b) I8 Zusp Cu, g a®fb. But C, 5 a*Fb remains meaningful for arbitrary

a, bE€G, provided a”8 is read as ¢(zs, @), as in Lemma 1. This suggests
LEMMA 4. Let P denote the set V|Y X @ together with the multiplication
<“’ a> <.B’ b> = <0C+ ﬂ: Caz.ﬁ arﬂb>

such that the product {«,a) {B,b> exists if and only if «+BEV|Y. Then P is a partial group.
The mapping u:V — P given by
u(xa @) =<a, ay,

where x, a runs over all elements of V in their normal forms, is an embedding of V into P.
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Proof. It is easily checked that (0,e> is the identity of P and that the inverse of {a,a}
is { —a, (@)~ "=>. Only the associative law PG.1 is not trivial; we shall prove it now.
It is easily seen that if {«,a)> (8,b) and (B,b> {y,c) exist, then

((oa> {B,6)) <y,e> and <a,a) ({B,b) <y, 0))

exist or do not exist simultaneously depending whether ¢+ +y is orisnot in V/Y. Assume
that these products exist. Then it is not hard to see that we have an open interval ¥ contain-
ing 0 and 1 such that

(Ctar, @y C1B,BY) Cty,ey  and <G> (CHBLBY Cty,c))
both exist for all t€ J and are equal to
o+ +y), Fift,a,b)-¢> and {Ha+g+y), Fyat,a,b):c),
where Fy(t,0,0)=Ciaip, 1y (Cta, 15078 D),

Fy(t,a,b) = Ciq, tg+y) a"tE+1 Cig, 4, b7

The Cartesian product J X G X is a connected analytic manifold in a natural way.
Moreover, the maps ¢ — Cyuip), 1y, <8, ) ~> a6 =(txs,a), ete. are analytic by Lemmas 1,2 and

the Remark following Lemma 3. This implies the analyticity of the maps
Flo FXExG-G
But if <t,a,b) € J X G x G is sufficiently near to <0,¢,e), then we have, by Lemma 1
Fy (8, @,b) = (@izspry Tocaspy Tey) (X (ichp) Tea Tep (%05 0215) b) 7)),
Fy (8, @,0) = (ii+p1y) Tta Tep 1) @ihry) A1) ey e Ty) (X D1y,

whence F,(t,a,b) = Fy(t,a,b). It follows now, by the principle of analytic continuation that
F,=F, on }xGx@G. In particular we have F,(1,a,b)= Fy(1,a,b) which proves that

K, a) {B,5)) y,¢) =<, a) (KB,b) (¥,0)).

To complete the proof of Lemma 4, we note that u is evidently an injection. Moreover,
the formula (x,a) (5b) =w,.5C, a6b valid in V (Lemma 3), implies that 4 is a homo-
morphism. Hence y is an embedding. This completes the proof.

Remark. If ' is a word and {a;,a,>, ...,{e,,a,> €P are such that f™({«,a),...,{ &y, ,>)
exists, then o + oy +... + o, € V/Y and ™ ({oyy, %y, .., {otn, %, >) exists for all {(u,, ..., u,> in G".
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The general associative law in P

The proof of this law is much the same as that of the associative law, but, of course,

we do not find the functions F,, F, explicitly. Instead, we use the following

LeEMMA 5. If a,B,...,% are arbitrary fized n elements of V|Y and f'™ is a word such that
fPa,a), {B,b),....{x, kD) exists for all {a,b,...,h)> in G* (see Remark in previous section)
then there exists an open real tnterval J containing 0 and 1 and an analytic mapping

{t,a,b,...,h>—>F(t,a,b,..,h)
of IXG" into G such that ™ ({a,a),...,{tx, b)) exists for every {t,a,b,...,h) in JxXG" and
FOa,a), BB, B, ey (it BY) =+ B+ ... +2), F(E,a,b,...,R)>.

Postponing the proof of Lemma 5, we shall deduce now the general associative law
in P. Suppose that f{” is another word such that f{”({a,a), {8,b>,...,{x,k)) is defined for
all {a,b,...,h> in G". We have to show that ‘

fPa,ay, <B,bY, ..., o6, B)) = fiP(Ke,a), {BybD, ..., . B)),
which by Lemma 5 is equivalent to
F(Ql,a,b,....,c)=F,(1,a,b,...,c),

where F, is related to /i in the same way as F to f™. Let us denote by Q < ¥ a ball such
that if x,,...,,, are any 2n elements of Q, then the product z,z,...z,, exists in whichever
way we insert brackets and belongs to V. Let J, be the real interval such that tx,, iz, ...,
tx, € Q for all 1€ F,. If {t,a,b,..., k) € J, xQ", then (tzx.)a, (tzs)b, ..., (tx,) R €QQ which implies
that in the local group V

[ (2@, 216D, ..., T b)) = [ (X0 @, Tipb, ..., Tix B).

Applying the embedding u (Lemma 4), we deduce that

™ (b, @), <B,bY, ..., b, B)) = fP({ba,a), <IB,b, ..., <{ty,h))
holds for all <¢,a,b, ..., k) in J, X Q™. It follows now from Lemma 5 that the functions F and
F, coincide on the open subset (F, N F N F,) XQ" of the connected manifold (F n F,) X G™.
Since they are analytic, they are identical on (¥ N J,) XG", in particular they are equal

when ¢t =1. This proves the general associative law in P.

Proof of Lemma 5. The proof is by induction on n. The Lemma holds trivially for n=1.
Now let % be any integer and assume that the Lemma holds for every word f*' with k <n.
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Let o,8,...,7,6,...,% be arbitrary » fixed elements of V/Y and let
f(n)(<“,a>, <ﬁ’b>’ ""<y’c>, <a’ d>’ ey <”’ h>)

exist for all <a,b,...,c,d,..., k) in G*. There exist integers k, I <z and words f{*, f#’ such
that k+7I=mn and f™ (&, ...,&,) exists in P if and only if

ik) (515 ceey Ek)y fg) (Ek+l’ LEXE) En) a‘nd f(lk) (Ep reey Ek) /(21) (§k+17 ...,§n)
exist and then

f(n) (51! '--,gn) =fik) (51’ st Ek) fg)(‘fkﬂ‘l’ y&n) (1)

In particular, i ({x,a),...,<y,c)) and (8, d, ..., <{x, kb)) are defined for all <a,...,c)>
in G* and all {4, ...,A> in G*. Hence, by the inductive assumption, there exist open inter-
vals 7,, 7, containing 0 and 1 and analytic mappings F,: J,XxG* -G, F,: J,x @ — G such
that

(e, @), ..., <ty, ) =<Ha+ ... +y), Fi(t a,...,c),

(8, D, ..., b, BY) =0+ ... + %), Fylt,d, ..., k).
Let 7<= #, n ¥, be an open interval containing 0 and 1 such that
Hoat...+y+d+...+x)EV]Y

for every t€ J (see Remark in previous section). Then for all {,q, ...,c, d,..., k) in FxX G*
the product of the above two words f{, f@ exists. Using the identity (1) we obtain
that f™({ta,a), ..., {y, >, E6,d>, ..., {ix, h)) exists and from the multiplication formula in
Lemma 4 we find that

F(t; @, ...,C, d, vees h) = 0t(a+...+y), @ +...+2%) (Fl (t; Ay .oy c))¢t(§+...+n) Fz (t; d: cevy h)'

By the Remark following Lemma 3, ¢ — Ciy..... 4y, t5+...+x 18 an analytic mapping of ¥ into

G. Thus Cur,, 1y, t0+... 4 can be regarded as an analytic function of the variable
ay e, d, . B> EFXG,
not depending on {a, ...,¢,d, ..., h>. Since
(Fy (6@, ..., )10+t = $(t2ss s, Fy (b @, ..., )

we conclude from Lemma 1 that this function is analytic on ¥ X G* and hence on ¥ X G" (not
depending on {d,...,k>). Similarly F,(t,d,..,k) can be regarded as analytic on FxG" It
follows now that F is the product of three functions which are analytic on Fx G". This
completes the proof of Lemma 5 and of Theorem 1.

For the proof of Theorem 2 we shall need the
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Remarks: Let us assume that the above embedding u:V —P is an inclusion, so that
V<P. G is generated by VN Y@, for we have x"=nx if x, nz€Q, and hence ¥ n Y

generates @ N Y which generates G by assumption. Since we have in P
£0,a) €0,b> =<0, ab), forall a,b€Qq,

it follows that ¥ N Y generates in P the group G=P. We have shown above that there
exists a group H containing P. It follows that @ is the subgroup of H which is generated by
VnY.

Without assuming that all embeddings are inclusions, we can state these remarks as

TuEOREM 1'. Let X, Y satisfy the assumptions of Theorem 1, let Q< X be a ball and let G
be a simply connected analytic group such that there is an embedding £:Q N Y — G with the prop-
erty that e(Q N Y) is an open subset of Gand e: QN Y —>e(Q N Y) is an analytic homeomor-
phism. Then there exists a ball V< Q, a group H and an embedding n: V — H such that

1) G is the subgroup of H generated by n(V 0 Y),
2) n=eon¥VnY.

3. Second embedding theorem

Let X be a normed Lie algebra which is lower soluble with sequence {X;}s<,. We shall
prove that X is an E-algebra. Our proof is by induction; we show that for every 8 <«, X,
is an E-algebra. This is trivially the case for §=0. If § is not a limit number and Xj;_, is an
E-algebra, then so is Xj, by Theorem 1. The main difficulty of the proof is in showing that
Xpis an E-algebra if § is a limit number and we know that each X, withy <fis an E-algebra
The proof will be prepared in the following three sections and then given in the fourth one.

The universal enveloping group of a partial group

Let P be a partial group and let ¢: P — G be an embedding in a group ¢ such that the
subset e(P)< (f generates G. We shall say that G is a universal enveloping group (u.e.g.) for P
with embedding ¢:P - @ if every diagram,

P
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where H is a group and 7:P - H is a homomorphism can be completed to a commutative

diagram,

]

Ne—N

£
¢ »
v
where » is a homomorphism. An immediate consequence of this definition is the following

Lemma 1. If in a commutative diagram

&

De— N

n
H___
o
the group G is a w.e.g. for P with embedding &, H is a group, : P —H s a homomorphism, H is

generated by n(P) and u:H — G is @ homomorphism, then u is an isomorphism and H is a u.e.g.
for P with embedding .

Proof. Combining the above diagram with the preceding one, we obtain

H - G - H

Since »(u(n(x))) =7(x) holds for every x€P and H is generated by n(P), H e G- H is the
identity on H. This, together with the fact that u: H — @ is surjective (because u(n(P)) =¢&(P)

generates (f) implies that u is an isomorphism with inverse .

LEMMA 2 (Ezistence of a u.e.g.). Let P be a partial group which is embeddable in a group
and let F be the free group with the set of free generators P. Let us call an element u of F an

e-element if the following condition holds
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(*) there exist aj,a,,...,a,€P, @, 0y ..., 0,€{—1,1} and a word ™ such that
afa:...a% =u holds in F,{™ (a?, ...,a2") exists in P and f™ (a?, ..., a4?)=e
in P.

Let N F be the set of all e-elements of F. Then N is a normal subgroup of F and if
g: F —F|N denotes the natural homomorphism, then the restriction of ¢ to P is injective and F[N
is @ w.e.g. for P with embedding ¢:P—~F|N.

Proof. It is easily seen that N is normal and that ¢:P—F/|N is a homomorphism. Let
7:P->H be a homomorphism into a group H. We shall prove that there exists a commuta-

P

8J
¥
N

Indeed, since F is freely generated by P, the mapping 7: P -~H can be extended to a homo-

tive diagram

%

morphism zz: F' ->H. This gives a commutative diagram

P
F
where ¢ is the inclusion map. Since %:P -~H is a homomorphism, we have m(u)=e for every

e-element « in F, thus n(N)=e. It follows that F->H factorises through F1>F/N, 80

that we have a commutative diagram

I/

H

7T
F———*"H
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The two diagrams thus obtained imply the required one. Finally to show that ¢:P—~F/[N is
an embedding it is enough to take any embedding 7:P —~H and use the commutativity of
our diagram.

Partial subgroup. Let P be a partial group and let Py P be such that

a) if z,y€ P, and zy exists then xy € P,
b) if € P, then z~1€ P,

Then P,, together with the multiplication 2y will be called a partial subgroup of P
(local subgroup, if P is a local group).

LeMMA 3 (The u.e.g. of a dense local subgroup). Let L be a local group which 1s embeddable
in a group and let Ly< L be a local subgroup such that L, is a dense subset of the space L. Let G
be a u.e.g. for L with embedding e:L— G. Then the subgroup G,< G generated by &(L,) is o
u.e.g. for Ly with embedding &:Ly— G, (more precisely ¢|Ly:Ly— Gy).

Proof. We consider the free groups F and F, with sets of free generators L and L.
Let N< F be the normal subgroup consisting of all those elements « which satisfy condition
(*) of Lemma 2 where P should be replaced by L. Let No= F, be defined similarly (replace
P by L,). Let further

N F Lo
s.F—>N and so.F0—>No
be the natural homomomorphisms. Then, by Lemma 2, F/N and F/N, are u.e.g.’s for L
and L, with embeddings
e: L—>§ and EOZLO-—>1—1:;—0.
0
We can assume without loss of generality that /N is the group ' mentioned in the Lemma.
The subgroup G, of G@= F|N which is generated by &(L,) is F(N/N; indeed, L, generates the
subgroup F, in F, thus &(L,) generatés the subgroup &(Fy)=FN/N in ¢ F)=F|N. To
prove that Fy N/N is a u.e.g. for L, with embedding £:L,— F N[N it is enough, by Lemma 1,
to find a homomorphism u: F N[N —F,/N, such that the diagram

L,
& &g
F,N _Fy
N " N,

15— 652933 Acta mathematica 114. Imprimé le 15 octobre 1965.
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commutes. Now suppose that we have proved the equality
Ny=FynN.

Then Fy/N,=F,/Fo,n N and we can take for u the natural isomorphism u: FoN/N —
Fy/Fyn N. For every a in L, we have (@) =aN and g(aN)=a(F, N N)=aN,=¢,a). Hence

the diagram commutes.

Proof of Ny=F,n N. Only the inclusion N N F, < N, is not evident. Let u €N N F,.
Then we have b,,b,,...,b, in L, and g, 0,, ..., om€{1, — 1} such that u = b§ b ... %",
and we have also a,,a,,...,8,€L; 0, 0,,...,0,€{1, — 1} and a word f™ such that
u=aas"...a% and [ (aP,as", ...,a2") exists in L and is equal to e. We can assume that
in 68§ ... 5% no cancellations are possible (otherwise we first perform these). Since
u=b§"b8 ... b =a a3* ... a¥* and all the b; and a; belong to a set of free generators of F,
it follows that after performing all the possible cancellations in aj* ... a;» we shall obtain

b§' ... b2». This implies that {a,, a,, ..., a,} can be written as the union of two disjoint sets

{a,,ay, ..., 0.} ={ai, as,, ..., a4, } Ud{ay, a5, ..., a3}

where {a;,a,, ...,a;} ={b,b,, ..., b,}. It follows further that

1) if a@;~>a{ is any mapping of the set {a,, ..., a,} into Lsuch that a;, = a,;k=1,2,...,7,

then (a;)™ (@2)™ ... (@) =u.
We shall use the following consequence of 1):

2) if a;—>a; and a;—q;” are any two mappings of the set {a,, ..., @,} into L such that

@, = a;, = ayfor k=1,2, ...,r, then there exists a word f*™ such that

127 (@)™, (@3)™, ..., (@n)®, (an) "% ..., (@) ) ) =e

in the local group L.
Indeed, we have by 1) that

(@)™ (@2)™ ... (@n)® (@y ) ... (@) =uu'=e

holds in F' and since, by axioms PG.2 and PG.3 all products of the form aa~1, a~'a, ae, ea
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where a €L, exist in L and have the same values as in F, the above product will exist in L
after brackets have been suitably inserted and will be equal to e.

To prove now that u €N, we shall show that there exists a mapping a;,—>a; as in
1) such that ay, ..., @, € Ly and f™((a1)™, ..., (a,)**)=¢ in L,. From the axioms of a local
group it follows easily that there exist neighbourhoods V,, V,, ..., V, of a;,a,, ...,a, in L
such that for every (z,,...,%,> €V, x VX ...x V,, f™ (a0, 28", ..., 2%") exists. Moreover,
by the continuity of multiplication, f™ (z{*, x", ..., 2%) is near to e if the V; are chosen
small. We can therefore assume that the V; are such that for every choice of x;, y; €V,
(¢=1, ...,n), the product

7 @2 o a2n) (1 2 - )

exists in L. Using axiom PG.4 we find that this product is identically equal to a word of the
form
fEP @ o 2R Yn e Y ).

Let us prove that if a;—a; is a mapping of {a,, ..., a,} into L as in 1) such that a; € V,
holds for ¢=1, ..., n, then f™ ((ay)™, (¢2)™, ..., (@;)**) =e in L. For assume to the contrary
that for some such mapping, /™ ((a; )™, (@2)™, ..., (@n)*") =a=+e and then take a mapping
a;—~a;  as in 2) such that a;” € V; and ™ ((a;')*, ..., @y )®*) is near enough to e to ensure
a(f™ ((a )™, ..., (@2)*")) "t e. Then we have

E7 (@)™, ..., (@), (@)™, ...y (@) ") Fe

in L, contradicting the equality in 2) and the general associative law.

It follows now, in particular, that f™ ((a;)*, ..., (a,)*") =e if a,—>a; is a mapping as in
1) such that a,€V; N Ly, i=1,..., n. Such a, exist because L, is dense in L. Since then, by
1), uw=(a;)* ... (a,)"", we see that u satisfies (*) and thus u €N,

Lemma 4 (The u.e.g. of a partial subgroup). Let P be a partial group, let Py<=P be o
partial subgrouwp and let n:P—H be an embedding in a group H such that the subgroup Hy= H
generated by n(P,) is a u.e.g. for Py with embedding y:Py—>H,. Let further G be a u.e.g. for P
with embedding &:P — G and let Gy= G be the subgroup generated by e(P,). Then Gy 1s au.e.g.
for Py with embedding e and there exists an isomorphism v:Gy— H, such that

P, H,=Py5>@q,>>H,.
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Proof. Since G is a u.e.g. for P, there exists a homomorphism »: G~ H such that the

diagram
P

G ——— »H

commutes. Since G,< @ is the subgroup generated by £(P,) and H,< H is the subgroup
generated by 5(P,), it follows that the commutativity of the diagram will be preserved
when P, G and H are replaced by P, G, and H,. But from the commutativity of

P,
) n

Gy — — »H
o " 0
where H, is a u.e.g. for P, with embedding #, it follows by Lemma 1 that Gy is a u.e.g. for P,
with embedding ¢, and that v:G,—~H is an isomorphism.

LEMMA 5 (The u.e.g. of a union). Let P be a partial group and let {Pg} s, be an ascending
sequence of partial subgroups such that P= U g, Pp. Let G be a group and let {Gg}s<. be an
ascending sequence of subgroups such that G = U s<,Gy. Let further £: P — G be an embedding
such that e(Pg) generates the subgroup Gy<@ for every B, and G is a n.e.g. for Py with em-
bedding ¢. Then G is a n.e.g. for P with embedding e.

Proof. Let 5:P~H be an arbitrary homomorphism of P in a group H. We have to
find a homomorphism »:G ->H such that the diagram
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commutes. Let Hz< H denote the subgroup generated by #(Ps). Then 5:Pz~>Hy is an
embedding and hence there is a homomorphism vz: G —~Hg which makes

Py

Gs Hp

(]

commute. In this diagram the homomorphism »g:Gs—> Hj is unique, for we must have
vg(e()) =n(x) for every &(x) €e(Pp) and &(Ps) generates (5. But if y <, then G, < Gyis the
subgroup generated by £(P,) and H,< Hy is the subgroup generated by #(P,) whence it
follows that the commutativity of the above diagram will be preserved if we replace Py, G4
and Hp by P,, G, and H,. Hence, by the uniqueness of »,: G, > H,, it follows that », =yzon G,.
Consequently there exists a mapping »: G ~H such that » =v; for each . It is clear that v is

the required homomorphism.

Extensions of embeddings

In this section we shall prove three lemmas which will allow us to deduce that a local
group L is embeddable in a group if we know that a dense local subgroup of L is embeddable
{Lemma 6) or that L is analytic and a certain piece of L is embeddable (Lemmas 7 and 8).

LeMma 6. Let L be a local group and let Ly< L be a local subgroup which is dense in L and
embeddable in a group. Then L is also embeddable in a group.

Proof. By assumption, the general associative law is valid in Ly; we assert that it is
also valid in L. For suppose to the contrary that we have elements a,,a,,...,a, in L and

two words £, f§” such that f{® (a,, ..., a,) and {5 (a,, ..., a,) exist and
M@y oo Qn) F 57 (@4, ..., Q).

Then it follows from the axioms of a local group that there exist neighbourhoods V,,..., V,,
of ay,...,a, respectively such that f{* (z,,..., z,) exist if ,€ V;; j=1,..., n. Moreover, since
fi® are continuous on ¥, X V,x...xV,, the ¥V, can be chosen sufficiently small to ensure

(@, ey ) F 50 (g, -0, )

for all {x,,...,x,> in V; X VyX...x V,. But since L, is dense in L, all these z; can be chosen
from L,, and we have a contradiction, by the general associative law in L, Thus L is em-

beddable in a group.
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LeMMA 7. Let X be a normed Lie algebra, let L(X) be the a.l.g. assigned to X and let
U, Uy L(X) be balls such that

UUSU, and UUUU,L(X).

Then, if V< U is any ball and n: V — H is a homomorphism into a group, n can be extended to
a homomorphism 7:U — H.

Proof. We shall show first that there exists a mapping #:U,—H such that 7 =7 on
V and
(%) 1 (v) = 5 (zv) (1

provided v€ V and z(tv) €U, for all 0 <¢<1. To obtain 7, we consider the diagonal
D={z,x)|x€U < Uyx U,

and the neighbourhood Q of D in Uy x U, consisting of all pairs {x,zv) such that v€ ¥ and
x(tv) €U, for all 0<t<1. It is easy to see that Q is open and connected. To every {z,y)>
in Q we assign the permutation 7, ,: H —H which takes an arbitrary z in H into z(n(z~y)).
We have 1, ,01,, =1, , provided {z,y>, {¥,2), {z,z> € Q. Indeed, (x~1y) (y~'2) =2~z since
the product of four elements of U, does not depend on the way the brackets are inserted.
But as 27ly,y 12,212 €V, applying  we get n(z~1y)n(y~'2) =n(x~'2) which we had to show.

We shall apply now the principle of monodromy (cf. Chevalley [6], p. 46) to the simply
connected space U, the connected neighbourhood € of the diagonal D< U, % U, and the
mappings 7,,,. The principle implies tht there exists a mapping 7 : Uy~ H such that 7j(e) =e
and 7, , (7 (x)) =7 (y) for every (z,y)> in Q. In other words,

7 (%) n(xz1y) =7 (y) provided {z,y>€EQ.

Putting x=e, we deduce that =7 on V. Thus (1) is proved.
We shall now show that the restriction of ﬁ to U is a homomorphism. Let y € U. Then,

for every natural n

N (.y
(7—&) (tE)GU, for k=0,1,...,n—1 and 0<t<1 (2)

since (y/n)¥ (ty/n) = ((k+1)/n)y. Thus, by (1),

()07 wrorenn

provided y/n € ¥, which is so when 7 is large enough. Combining these equalities, we arrive
at 7 (y) = (7 (y/n))", for sufficiently large n.
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Now let x,y € U. Then, for every =, by (2),

N\,
x(ﬁ) (tﬁ)EU0 for k=0,1,...,n—1 and 0<{<1,

. y x ¥ _ - y k+1) _ B
Thus, by (1), 7 (x (n) )n (n) 7 (z (n) for k=0,1,...,n—1,

provided » is large enough to ensure y/n€V. Combining these » equalities we obtain
7{zy) =n(x) ((y/n))". Since (5 (y/n))" =17 (y), if n is large enough, this gives us finally

n(zy)=n(x)nly) foreveryx,yin U.

Remark. If n: U — H is a homomorphism, then #(y) = {(5n(y/n))" holds for every yin U
and 2=0,1,2,....

Indeed, (2) above, taken for { =1, implies (3) for 5 and every ». Combining the equalities
(3) we obtain 7(y) = (n(y/n))".

Lrvmma 8. Let X and L(X) be as Lemma 7, let
O ={c€ L(X)|xc=cx for all x € L(X) such that xc and cx exist}
be the centre of the local group L(X) and let V, Q, U< L(X) be open balls such that
Ve@ and QR<U.
Let further n: U — H be a homomorphism into a group H such that

a) n:V—>H is an embedding,
b) if c€V N C and c+e, then n(c) is of infinite order in H.

Then 1:Q —H is an embedding.

Proof. Suppose that under the above assumptions we have x4y and %(x) =7(y) for
some ,y in @. Then, as n(x—ly) =n(z~1)n(y) = (5(x))~(y) holds in U, we get n(c) —¢ where
c=z"ly=e belongs to U. Let us show that ¢c€C. We note that, by a), the kernel K=
{x € Uln(x)=¢} is discrete in U. But if ¢c€ K, then for all z sufficiently near to e,

n(z"tez) =n(2)(c) n(z) = (=) *n(z) =e.

Thus z2-1cz € K, and since K is discrete, we must have z-l¢z =¢ for all 2 sufficiently near to e.



230 S. SWIERCZKOWSKI

Hence c€C (see Remark (iii) about the SCH-series). Taking » sufficiently large, we shall
have e+¢/n€V N C, thus (y(c/n))*+e, by b). But as 5(c)=(y(c/n))* by the remark after

Lemma 7, we obtain now #(c) # e, a contradiction. Thus 7 is injective on .

Lower soluble Lie algebras

Let X be a normed Lie algebra which is lower soluble with sequence {X;}s<.. Let Zg
denote the centre of X; and let Z= Us<.Zs. Every two elements of Z commute, for if
2,€ Zg, 2,€ Z, and <y, then 2 € X, 2,€ Z, and [z,,2,]=0. Clearly X,=Z,<Z. We
shall call the sequence {Xj}s<, reduced if X, =Z.

Lemma 9. Every lower soluble normed Lie algebra X is lower soluble with a reduced
sequence {Xg}s<y.

Proof. We shall define, for every ordinal number 8 a sequence {X3}s<, of closed sub-
algebras of X so that

1) X={0}, X=X, |
2)  if B is not a limit number, then X3_, is an ideal in X} and X3/X}_, is abelien,
3)  if B is a limit number, then U,.; X? is dense in X},

4)  XjcXjif y<d,

5) Z°7*< X{ if 6 is not a limit number,

where Z° = U s, Z5 and Z} is the centre of X5. This will suffice to prove our Lemma, for
from 4) we have that X' = X¢ for some sufficiently large 6 whence by 5) it follows that
Z° < X{7t But as X3 '« 287!, we have X3 1< 2Z%! and thus Z° 1=X{"1.

The definition of the sequence { X3} s, is by induction on 8. We put {Xg}s<. = { Xs}pca-
If § is not a limit number, and we have already defined {X}%}s<. for every u <4 so that
1)-5) are satisfied (with & replaced by y), we define

X3={0} and X}=2°"'+X}? for f>1,

i.e. X} is the closure of the subspace of X spanned by the subspaces Z°! and X3*. If
z€2Z°, then [z, X§ 1< X3!, for we have that either z belongs to a subalgebra of X3!
or else it commutes with X3™*. This shows that X} is a subalgebra. It is easy to check
that conditions 1), 3), 4) and 5) are satisfied, provided they are true if § is replaced by
d—1. To check 2) assume that 8> 1 is not a limit number. We have to prove that

a) Z° '+ X}1is an ideal in 2°71+ X5,
b) (271 +X5/(2°7 + XfY) is abelian,
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for then analogous statements will be valid for the closures of these algebras. Let

Z=UZz™" and Z%'=UZ
v=p v<B

Then clearly [Z%!, X3 ']=0 and since X5 /X%-} is abelian,

(2%, X5 <Xy, X3 < X5t
Thus, (27 4+ X5, 2271+ X3 =254, X9+ (X5 X3 e X8t
This proves a) and b).

It remains now to define X} under the assumption that § is a limit ordinal and all
X% with y < J are already defined and satisfy 1)-5). We define

X3=U X5.

pn<é

Then it is easy to check that 1), 3), 4) and 5) are satisfied. To prove 2) note that from the

inductive assumption

a')  Up,<s X5-1is an ideal in U ,.5 X%,
b)  Upucs X5/ U ucs X4-1 is abelian,

hence analogous statements are valid for the closures of these spaces. This completes the
proof of Lemma 9.

Proof of Theorem 2

We assume that the normed Lie algebra X is lower soluble with a reduced (cf. Lemma 9)
sequence {Xp}s<,. We consider the a.l.g. L(X) assigned to X and we wish to prove that a
piece of L(X) is embeddable in a group.

Let @, U, U, be balls satisfying

QR<UcUUc Uy U,U U U= L(X);

we shall show that @ is embeddable in a group. We observe first that for any subalgebra X,
we have

(@NXp)(@NXp)=U nXp=(U N Xp) (U N Xp)
< (Uy N Xp) (Uy 1 Xp) (U, 0 Xp) (U N Xp) = L(Xp).
Let us prove that for every § <«

a) the local group Q N Xz is embeddable in a group,
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and it is possible to assign to every @ N Xza u.e.g. G5 with embedding e3:Q N X3 — G so that

b) if y <P, then G, is the subgroup of G4 generated by e5(@ N X,y and &,=¢5 on QN X,,
c) ifx€QNX, and x+e, then & (x) i of infinite order in G,.

1. We use induction on 8. Since X,={e}, we can take G,={e}, and then &(e)=e.
Since X, is abelian, 2y =z +y holds for any z,y in @ N X, whence we have for the group X,
(with respect to vector addition) an embedding 7:Q N X, ~X, such that n(z) =z. Let G; be
a u.e.g. for @ N X, with embedding &, :Q N X, — G,. Then there is a homomorphism »: G; — X
such that the diagram

QnX,

& n=1

(£ N —. )
y
commutes. Hence, if x€ QN X, and z=e, then v(g(2)) =z and »((g(x))") =nx+efor n=

1,2,3,.... Consequently (¢, (x))"+e in G, which proves c).

2. Suppose now that we have a non-limit ordinal 4 such that every f <4 satisfies
a) and b). In particular, we have the embedding £5_;:Q N X5_1— Gs_-1. Let us introduce
in G4_; the structure of an X;_;-manifold such that es_1(Q N X, 1) is open in Gs-; and
€-1:QN X5 1—>e5-1(@ N X5_,) is an analytic homeomorphism (cf. Th. 2.6.2 and Th. 2.7.1in
Cohn [7]). We assert that then G;_, is simply connected. To show this, we apply the prin-
ciple of extension of analytic structure, by which there exists a simply connected analytic
group G5, and an embedding &5_;: QN X5 ;— G5_; such that &5_1(Q N X;_;) is an open
subset of G5_; and the map e5_1:Q N X;5_1 —>&5-1(@ N X;5-1) is an analytic homeomorphism.
But G5_; isa u.e.g.forQ N X, _; whence there is a homomorphism »: G5, — G5_, such that the

diagram
QNXs

’
E5-1 €5-1

’
G:S—l e G&—l
V4

commutes. Therefore » =¢;_; £51; holds on g5_1(Q N X;s-,) which shows that » is a local topo-

logical homeomorphism between G5_; and G5_;. Thusy:Gs_1— G5_, is continuous, and since
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it is surjective, as g5_;(Q N X;_;) generates G5_,, we obtain that Gs_, is simply connected.
Applying Theorem 1’, we find that there exists a ball V=@, a group H and an embedding
7:V N X5— H such that

1) @,_, is the subgroup of H generated by 5(V N X;_,),
2) n=g_1on VnXs,.

3. Let us show first that the embedding 5: ¥ N X5~ H can be extended to an embedding
QN Xs5—~H. Let Cs be the centre of L(X,). We show first that if c€ V N C5 and ¢ == e then 5(c)
is of infinite order in H. Let Z; be the centre of the Lie algebra X;. Applying our Remark
(1) about the SCH-formula (Chapter 1), we find that 0s< Z;, and since Z; < X, by assump-

tion (as {Xp}s<, is reduced), we obtain
VoG,V nX,c¥VnXsa
Hence, if c€ V N C; then by 2) and by the inductive hypothesis b) with f=6—1,y=1
7(c)=¢&5-1(c) =& (c)€E G, < Gs1< H.

Hence, if c+e¢ then by ¢), 5(c) is of infinite order in H. Applying now Lemmas 7 and 8
we obtain that the embedding #: ¥V N X; —H can be extended to an embedding :Q N X ~H.

Part a) of our inductive assumption is now proved for §=4.

4. It is clear that the local group @ N X,_, is generated by its piece ¥V N X;_; (we have
a" =nzx if x, nx € Q; n integral). Therefore the subgroup of H generated by n(Q N X,_;) is the
same as the subgroup generated by n(V N X;_,), i.e. it is G5_;. Moreover, since % and g5,
coincide on VN X,_;, they must coincide on @ N X,_;. It follows that the subgroup of H
generated by 5(Q N X;s_;) is a u.e.g. for @ N X,_; with embedding 5. Let G; be a u.e.g. for
@ N X; with embedding &;. By the above and by Lemma 4 we obtain that the subgroup
G351 of G5 which is generated by &(@ N Xs_1) is a u.e.g. for QN X;_; with embedding ¢,

moreover, there exists an isomorphism v:G5_; — G5_, such that the diagram
QNXsy

& N=2&s-1

&
Gd—-l———-—-———————bG&—l
14

commutes.
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If we now identify G5, with G,_; taking » to be the identity map, we obtain that
gs=¢g5-1 on QN X4_y, and that G;_; is the subgroup of G5 generated by &(Q N X;5_,). Thus
b) is shown for f=4.

5. Now suppose that 6 is a limit number such that a) and b) hold for all 8 <§. Let

P=@QnX,, P0=ﬂU6(QnXﬂ), G=ﬂl<_!,Gﬁ.

It is clear that there exists an embedding &:P,— G such that £(@ N X;) generates the
subgroup G of G and £ =¢; on @ N X, for all f < 4. It follows from Lemma 5 that G'is a u.e.g.
for P, with embedding ¢. Since P, is dense in P, Lemma 6 implies that P is embeddable in
a group. Thus part a) of the inductive hypothesis is proved for §=34.

Let G5 be a u.e.g. for P with embedding ¢;s. Let H be the subgroup of G generated by
£s(Py). The map g5:Py—> H is an embedding, hence there exists a homomorphism »: G —~H
such that the diagram

P
€ J &5
H

G— »
v

(-]

commutes. But by Lemma 3, H is a u.e.g. for P, with embedding ¢;, whence by Lemma 1,
v:G —H is an isomorphism. Identifying H and G via v we obtain that G< @ and g5 =¢ on P,.
Thus &5(@ N X;) generates the subgroup Gs< G< G5 and g5 =¢5 on @ N X}, for all § <4. Hence
part b) of the inductive hypothesis is shown for § =4, and the proof is now complete.
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