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G R O U P S  

1. Results and fundamental concepts 
Results 

A Banach space X in which there is defined a continuous Lie multiphcation Ix, y] 

will be called a normed Lie algebra. One can assign to every normed Lie algebra X a local 

group consisting of-a sufficiently small neighbourhood of 0 in X in which the multiplication 

xy is given by  the Campbell-Hausdorff-Sehur formula 

xy = x § y + �89 + ~ [y[yx]] + ~ [x[yx]] 3 . . .  

(Birkhoff [3], Cartier [5] and Dynkin [10]). Let us denote this local group byL(X) .  I f  X is 

finite dimensional, then L(X)  is of Lie type and therefore it is always locally embeddable in 

a group (Ado [1], Cartan [4], Pontrjagin [17]). We shall say tha t  a normed Lie algebra X 

is an E-algebra if L(X)  is locally embeddable in a group. Since it has been discovered re- 

cently tha t  not all normed Lie algebras are E-algebras (van Est  and Korthagen [11]), i t  is 

natural  to ask which of them are. In  this direction we prove 

THI~OI~I~M 1. I / X  is a normed Lie algebra, y c  X is a closed ideal and 

a) the Lie algebra X~ Y is abelian, 

b) Y is an E-algebra, 

then X is an E-algebra. 

We shall use this theorem in order to prove tha t  an algebra X which is soluble, or 

soluble in a generalised sense is always an E-algebra. More precisely, let us say tha t  the 

normed Lie algebra X is lower soluble if there exists an ordinal number ~ and an ascending 

sequence 
{0} =x0 c XlC x 2 c  ... ... = z  

of closed subalgebras of X such tha t  
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a) if fl ~< ~ is not a l imit  ordinal number, then X~_ 1 is an ideal of X~ and the Lie 

algebra X~/X#_ 1 is abelian, 

b) i f /~<g is a limit number, then X~ is the closure of LJ~<#Xr in X. 

If  that  is so we shall also say that  X is lower soluble with sequence (X#)~<~ and we 

shall call the smallest ordinal ~ for which such a sequence exists, the type of X. We shall 

prove 

THEORE~t 2. Every lower soluble normed Lie algebra is an E-algebra. 

One should ask whether there exist lower soluble Lie algebras of arbitrary given type; 

the answer is positive and it is not hard to construct such algebras modifying Gluw 

construction of lower soluble groups of arbitrary type (cf. [12] where, to begin with one 

should replace the matrix groups by their Lie algebras). 

Added in proo/. Using ideas of van Est and Korthagen [11] the author is able to 

show that  the conclusion of Theorem 1 remains valid when the condition that  X / Y  is 

abelian is replaced by 

a') X / Y  is o/[inite dimension. 

Theorem 2 can be generalized correspondingly. 

Partial and local groups 

If  P is a set, D(n~=P ~ is a subset of the Cartesian product pn of n copies of P 

and /(n):DCn~ o P, then /(n) will be called an n-ary partial operation on P. Instead of 

(x 1, x 2 ..... x,)  E D (n) we shall say that/(n) (x 1 ..... x,) exists. A partial group is a set P together 

with a subset D (2) = P  • P and a binary partial operation/(2~ : D(~ _~p such that if we denote 

/(2) (x,y) by xy, then 

PG.1. If  xy and yz exist, then either both (xy)z and x(yz) exist and x(yz)= (xy)z or both 

(xy)z and x(yz) do not exist. 

PG.2. There exists an element e in P such that  xe and ex exist for every x in P and xe = 

e x = x .  

PG.3. For every x in P there exists a unique x -1 in P such that  xx -1 and x- ix  exist and 

XX - 1  = x - - i x  = e .  

PG.4. If  xy exists, then y-ix-1 exists and y-ix-1 = (xy) -1. 

The above definition is due to A. I. Malcev [15]. I f  P, P1 are partial groups then a 

mapping v2:P~P 1 will be called a homomorphism if for every x,y in P such that  xy exists 

we have that  v?(x)~fl(y) exists in P1 and is equal to V(xy). A homomorphism ~0 will be called 

an embedding if v 2 is injective (i.e. if x 4 y  implies ~p(x)~=~p(y)). If  P 1 is a group (i.e. if xy 
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exists for every x, y in P1) and an embedding ~fl : P  ~Px  exists, then we shall say t h a t  P is 

embeddable in a group. 

Certain n-ary  partial  operations in a partial  group P will be called words. These are 

defined by  induct ion on n as follows 

a) There exists exact ly one una ry  part ial  operation /(1) which is a word, namely  

the ident i ty  operation/(1~ (x) = x, 

b) Assume t h a t  n >  1 and tha t  for every k < n  we have defined wha t  we mean  by  

saying t h a t  a k-ary part ial  operat ion is a word. Then a partial  operation/(n~ will 

be called a word if and only if there exist numbers  k, 1 such tha t  k + l = n  and 

partial  operations /(k),/(l) which are words such that/(n~(x 1 ..... xn) exists if and 

only if /(k)(X 1 . . . .  , xk),/(z) (xk+l .... , xn) and /ok)(X 1 . . . . .  Xk)/(1) ( X k +  1 . . . . .  X n )  exist and, 

moreover  
/(~(x~ . . . . .  xn) = / (k) (x , . . . , xk) / (  ~)(x~+~ . . . . .  x~). 

We shall say tha t  P satisfies the general associative law if for every n, for all words 

1~,o,/<n) and for every n-tuple (xl, x~ .... , xn> E pn such tha t  both/<n) (x I .... , xn) and/~n) (x I .... , x~) 

exist, we have 
/ i  n) (x l  . . . . .  x~) = /(~n)(xl . . . . .  xn) .  

We shall use the following criterion of Malcev [15]. 

EMBEDDABILITY CRITERION. A partial group P is embeddable in a group i / a n d  

only i / P  satisfies the general associative law. 

By a local group we shall mean a set L together  with a subset D (2) c L  • L and a partial  

b inary  ope ra t ion / (2 ) :D(~-~L  such tha t  

LG.1. L is a topological Hausdorff  space, 

LG.2. L is a partial group with respect to/(~), 

LG.3. D (~) is an open subset of L •  

LG.4. The multiplication/(2): D (~) -~L is continuous, 

LG.5. The mapping x-+ x -~ is continuous. 

If  L is a local group and U c L ,  then we shall say tha t  xy exists in U if xy exists in L 

and xy E U. I f  U is open and U = U -1 = {x -~ I x E U} then U together  with the part ial  opera- 

t ion xy is a local group; we shall call U a piece of the local group L. I f  U is embeddable in a 

group, we shall say tha t  L is locally embeddable in a group. 

Analy t ic  mappings and manifolds 

I n  this section we shall define analyt ic  locally Banaeh manifolds and analyt ic  mappings  

of one such manifold into another.  Similar definitions concerning Ca-manifolds were given 
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by  S. Lang [14]. The analytic mappings of Banach spaces are due to R. S. Martin and A. D. 

Michal [16]. 

Analytic mapping. Let X, Y be Banach spaces and let, for every n, u n : X n ~  Y be a 

continuous n-linear mapping with norm ]lUn It (cf. [7], p. 99). For every <x 1 ..... xn> in X ~ such 

tha t  all x~ are equal to x, we shall write u,,x n instead of Un(X 1 . . . . .  Xn). 

Let U c X be open and let ]:U ~ Y. I f  x 0 e U, we shall say tha t  / is analyt ic  at  x0, if 

there exists a sequence ul,u2,u 3 .... where u~:X n-~ Y is n-linear and continuous such tha t  

for some Q > 0. 

A. 1. ~ max Ilu~xnU < c~, 
1 IIx II~<e 

oo 
A. 2. /(x o + x) =/(Xo) + X un x ~ for every II x H < Q. 

1 

We say tha t  /: U -* Y is analytic if / is analytic at  every x 0 in U. The series in A.2 will 

be called the power series of / a t  xo, and {x E X I It x l i < s win be called a ball of analytic 

convergence of tha t  series. 

Analytic mani/old. Let  X be a Banach space and let M be a set. An analytic X-manifold 

on M is a set of pairs {<U~,r where T is some index set, such tha t  

M.1. UU~=M, 

M.2. r U~-*X is injective and r  fl Us) is always open in X, 

:M.3. r162 r Us)-*X is always analytic, 

and moreover {< U,, ~ >  }3 ~ T is maximal with respect to these properties (i.e. if 

u {<u,r 

has the properties M.1, M.2 and M.3, then <U,r =<U~,r for some vET).  We call each 

pair  <U~,r a chart and we define a topology in M by calling a set U c M  open if and 

only if r (U fl U~) is open in X for every T. When considering only one manifold on M, we 

~hall denote it simply by M. 

Let  N be another analytic manifold and let ] :N  ~ M  be a continuous map such tha t  

~or any  two charts < U~, r < V s, ~s> of M and N respectively, the mapping 

r  : ~ s ( V s  I'~ / - 1 U , )  ---N X 

is analytic. Then we shall say t h a t / : N - + M  is analytic. I f  an analytic m a p p i n g / : N - + M  is 

bijective and the inverse/ -1:  M - ~ N  is also analytic then we shall call ] an analytic homeo- 

morphism. We shall use the following basic facts. 

Principle o/analytic continuation. I f  N is a connected analytic manifold, U c  N is open 

and /: N-*M,  g: N - ~ M  are analytic such tha t  / = g on U, then / = g on N. 
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Composition principle. I f  Q, M,  iV are analyt ic  manifolds and the  mappings [:Q-+M, 

g : M  ~ N  are analytic,  then so is their composite go/:Q ~ N .  

These are easily proved, once they  are known for the special case when M, N,  Q are 

Banaeh spaces. I n  t h a t  lat ter  case they  can be shown similarly as for finite dimensional 

spaces in [8]. 

Normed Lie algebra 
Let  X be a Banach space with norm [[. ]l over the field of real numbers.  We shall call X 

a normed Lie algebra if there is a Lie multiplication [x,y] defined in X (cf. Jacobson  [12]) 

�9 such tha t  

IIUx, y] H< Ilxll" Iiyll 
holds for every x, y in X.  

B y  saying t h a t  Y is a dosed  subalgebra of X,  we shall mean tha t  Y ~  X is a subalgebra 

in the usual sense and moreover  Y is a dosed  subset of X.  I f  Y is a closed ideal of X,  then  

the coset space X / Y =  {x+  Y I x E X }  can be made into a normed Lie algebra by  defining 

the norm and Lie multiplication by  

IIx+ Yll = i n f {  IIx+yl[  l y e  Y}; [ x +  Y , z +  Y]=[x , z ]+ Y. 

Notation: Let  ml, m2, ...,ink and na,n2, ...,nk be two sequences of non-negat ive integers. 

Then we shall denote by  
<ml, hi, m2, n2 ..... ink, nk; x, y> 

the sequence Xl,X2, ..., x, each of whose terms is equal either to x or to y, such t h a t  the  first 

m x terms are equal to x, the following n 1 terms are equal to  y, the following m2 equal to x, 

etc. (we then have r = ~ mi +n~). For  this sequence xl, ...,x, we define 

[ml, nl, m2,n2, ...,mk, nk; x,y] = 1 [x 1 [x2 [... [xr-1, Xr] ... ]]] 

if r > l  and we pu t  [ml, n I .... ,mk, nk; x,y] =x  I if r = l .  

The Campbell-Hausdorff--Sehur formula 

Let  X be a normed Lie algebra and let B =  { x E X ] e x p 2  [[ x [] <2}.  By  the SCH-formula 

(or series) we shall mean  the mapping  <x, y> ~ xy  of B • B into X defined by  

( -  1) ~+1 
k~l ~ (ml !n1 !m2!n~! . . .mk !nk ! ) - i [ml ,  nl, m2, n2 . . . . .  mk, n~;x,y] 

= x + y + �89 [xy] + 1 [y [yx]] + ~ [x [yx]] + .... 

where the ~ is over all sequences of k pairs <ml, nl> ..... <mk, n~} of non-negat ive inte- 

gers satisfying m~+n~>~l; i = , l  ..... k. The above form of the SCH-formula is due to  E.  B. 

Dynkin  [9]. 
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I t  is easy to see tha t  the series 

~ max  l ( m ~ , n l , . . . m k ,  nk,)-~[m~,nl ,  m , , n  ~ . . . . .  mk, nk;x ,y]  I 
k = l  Ilxll<~,llYll<,l 

is majorised by  the expansion of ~ = ~  (exp ~ exp ~ - 1) k in terms of tin/m! and ~n/n!. 

This proves tha t  any ball in X • X of centre <0,0> whose closure is contained in B • B is a 

ball of analytic convergence for the SCH-series. We shall need the following facts. 

(i) The mapping <x,y> --> x y  o / B  • B into X is analytic. 

Indeed, we have above its power series expansion at  <0, 0>. The analyticity of the map- 

ping at  any other <x0, Y0> E B • B follows from the fact tha t  every such point belongs to a 

ball of analytic convergence of the SCH-series (el. [16], Th. I I  28, p. 47 and [2]). 

(ii) The multiplication xy  defines a local group. 

Le t  L ( X )  be the ball {x E X ] exp 3 ]I x ]I < 2 }. Then, for every x, y, z EL(X)  such tha t  xy 

and yz are in B we have (xy)z =x(yz).  Proofs of this identity can be found in Birkhoff [2] 

Cartier [5] and Dynkin [9], [10]. Let  us say tha t  the product  xy  exists in L ( X )  if xy  E L(X) .  

Then L(X), together with the multiphation xy  is a local group; the unity e is the 0-vector 

in X and x -1 = - x  for every x. We shall denote henceforth the 0 in X by  e and we shall 

write occasionally x -~ instead of - x .  We note tha t  x ~ exists if and only if 2xE L ( X ) a n d  

then x ~ = 2x. 

(iii) I] z E B and xz = zx holds/or all su/]iciently small x in B,  then z commutes with every x 

in B and [x, z] = 0 / o r  every x in B.  

To prove this, take an arbi trary x in B and denote by ~ the open interval {2I)~eB} 
which obviously contains 0 and 1. I t  is clear tha t  

2-+(2x)z and ~-+ z(2x) 

are analytic mappings of ~ into X, and as they coincide for small 4, they are identical on 

3, whence xz =zx.  

To prove the second part  of our assertion we take any sufficiently small x in B so tha t  

2(x  -1(�89 z ) x )  = (x -1 (�89 x) (x -1 ( �89  = z -1 (�89 (�89 z) z = ~ - ~ z x  = z, 

whence x-l( �89 = �89 This shows tha t  �89 commutes with all sufficiently small x, and there- 

fore with all x. I terat ing this argument,  we obtain tha t  2-n z commutes with all x. I t  is now 

sufficient to apply the formula (ef. Birkhoff [3], Dynkin [10]) 

[x, z] = lira 2n{(2-nx) ( 2 - ' z )  (2-*x)-1 (2-nz)-l}. 
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Analytic local groups and analytic groups 

A local group L with mult ipl icat ion xy defined on D (~) c L • L will be called analyt ic  

if L is an analyt ic  manifold and  the  mappings  <x, y> -~ xy, x ~ x -1 are analyt ic  (L • L, and 

hence D (2~, has a na tura l  manifold structure) .  I f  X is a no rmed  Lie algebra,  then  the  local 

group L(X)  defined in the previous section is an analyt ic  local group. We shall call L(X)  the 

a.l.g, assigned to X. 

B y  an analyt ic  group we shall mean  an a.l.g, in which the produc t  of every  two ele- 

ments  exists. We shall use the following theorem 

EXTENSION OF ANALYTIC STRUCTURE. Let X be a normed Lie algebra, let L(X)  be 

the a.l.g, assigned to X and let Q c L ( X )  be an open ball o/centre 0 which, as an a.l.g, is em- 

beddable in a group. Then there exists a simply connected analytic group G and an em- 

bedding ~ :Q--> G such that sQ is an open subset o/ G and the map ~ :Q-->eQ is an analytic 

homeomorphism. 

The proof is the  same as for Lie groups (cf. Cohn [7], Theorems 2.6.2, 2.7.1, 7.4.3 and  

7.4.5). 

I f  G is an analyt ic  group then  by  a local analyt ic  endomorphism of G we shall mean  an  

analyt ic  mapp ing  ~o: V ~ G  where V c G  is an open neighbourhood of the  ident i ty  and  

~p(xy) =~o(x)~v(y) whenever  x,y, xy E V. I f  Iz = G, ~p will be called an  analyt ic  endomorphism.  

We shall use the following theorem (Chevalley [6], p. 49): 

EXTENSION OF LOCAL ENDOMORPHISM. I / G  is a simply connected analytic group, 

y~: V ---> G is a local analytic endomorphism and V is connected, then ~ can be extended to an 

analytic endomorphism. 

2. First embedding theorem 

I n  this section we shall p rove  Theorem 1. We assume th roughou t  t h a t  X is a no rmed  

Lie algebra and  Y is a closed ideal of X such t h a t  

a) X~ Y is an abel ian Lie algebra, 

b) Y is an E-algebra.  

We shall show t h a t  X is an E-algebra.  

The SCH-formula  defines for  all x, y in B = {x E X ] exp 2 X l x 11<2 } their  p roduc t  xy. 

Denote  b y  ~ the  coset x+  Y E X / Y .  We shall use only the following consequence of a); 

a ' )  - ~ = ~ + ~  /or every x, y in B. 

To prove  a'),  note tha t ,  as X / Y  is abelian, we have  Ix, y] E Y for all x,y in X,  and  as the  only 
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term in the SCH-formula which is not a bracket is x + y ,  it follows that  xy and x + y  are in 

the same Y-coset. 

Let us adopt from now on the convention that  all balls are open balls in X with 

centre 0 = e. If  L(X)  is the a.l.g, assigned to X then we have from b) that  there exists a ball 

Q c L ( X )  such that  Q N Y is embeddable in a group. By the principle of extension of analytic 

structure there exists a simply connected analytic group G and an embedding e:Q N Y ~ G 

such that  e(Q N Y) is an open subset of G and the map e:Q N Y-+e(Q N Y) is an analytic 

homeomorphism. To simplify the notation, we shall assume that  e is the inclusion map, so 

that Q N Y ~ G is a neighbourhood of e in G. 

In  the local group Q we have, for every natural n, an open neighbourhood Un of e such 

that  /(n)(Xl, ...,Xn) exists, for every word/(n) and every xl,...,x~ in U n (i.e. if x I .... ,XnE Un, 

then XlX,...x ~ E Q and this product does not depend on the way of placing the brackets). 

Let V be any ball contained in U~0. We shall prove that  the local group V can be embedded 

in a group; this will be done by embedding V in a partial group P (Lemma 4) in which the 

general associative law is valid. Before doing this, we shall establish some relations between 

G and V. 

The action of  V on G 

LEMMA 1. There exists an analytic mapping r V • G ~ G  such that 

r y) = x- ly  X 

/or every xE V, yE V N Y. Moreover, y ~ r  is /or  every x in V an endomorphism o/G. 

Proo/. For every x in V the mapping y-~ x - ly  x takes V N Y into G. Indeed, if x E V 

and y E V N Y, then 

x - l y x  = - ~ + ~ + ~ = 9 = 0  

by a'). Since V V V ~ Q ,  we conclude that  x - l (V  N Y ) x c Q  N Y c G  for every x in  V. From 

V~ U10 it follows that  the product of any six elements of V exists in Q and does not depend 

on the way of inserting the brackets. Thus it is seen that  y ~ x -1 yx  is a local endomorphism 

of G, defined on V N Y. This endomorphism is clearly analytic and by one of our remarks 

above it can be extended to an analytic endomorphism of G. Let us denote the latter by 

r i.e. r = x - i yx  for all ( x , y )  E V • ( V N Y) and, for every fixed x in V , y ~ r  is 

an analytic endomorphism of G. I t  remains to prove that  ~ is analytic on V • G, and for 

this purpose it is enough to show that  the restriction of ~ to V • y0(V N Y) is analytic, for 

every Y0 in G (the product Y0(V N Y) is in G). Since G is connected, it is generated by V N Y. 

Thus yo=yly~...yn where y,E V N Y and hence 
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r =r yl) r y2) ... r r yoly) 

for every y in G. Using the composition principle for analytic functions, we find tha t  the 

m a p s  

( x, y)  --> x - l  (yoly) x =r (x, yoly) 

and (x, y~->x- ly~x=r Yi); i = 1  . . . .  ,n  

are analytic on V• Y) and thus r is 

on V• 

Notation: We shall denote r by y~. 

analytic on tha t  manifold, and hence 

A set of representatives of Y-cosets in V 

Let V~ Y be the image of the ball V under the natural  map X - > X / Y ;  the coset x + Y 

belongs to V / Y  if and only if (x + Y) N V =~ 0.  

LEMM.~ 2. I t  is possible to select/rom every coset ~ belonging to V / Y  a representative 

x~ E ~ N V such that i / t ~  E V/Y ,  then xt~ = tx~, /or every real t. 

Proo/. Let K be the boundary of V so tha t  V U K is a closed ball. We ca]] a coset 

fl E X / Y t a n g e n t  to Kif f l  N K r 0 andfl N V =O.  ~re select now from every set{fl, - f l } c  V / Y  

where fl and - f l  are tangent to K, one of the two eosets. I f  eft is selected (s = 1 or - 1 ) ,  we 

associate with (fl, - f l }  an arbitrarily chosen element x~ E eft N K and we take the elements 

tx~; I t] < 1 as the representatives of the eosets tefl. Since for every coset a 4 0 intersecting V 

there exists a unique ~ > 1 such tha t  ~ is tangent to K (7 is the greatest number  such tha t  

�9 ~ N K 4  0), we have defined x~ uniquely. Clearly t:r N V 4  0 implies xt~ =tx~. 

A formula  for the multiplication in V 

We shall say tha t  an element x of V is written in normal form if x =x~a, where x~ is one 

of the representatives defined in the previous section and a E G. 

LEMMA 3. Every x in V has a unique normal/orm. I /x~a,  x~b are any two elements o] V 

in normal/orms and their product (x~ a) (x~ b) also belongs to V, then its normal/orm is 

(x~ a) (x~ b) = x~+p C~. ~ a x~ b, 

where C~. ~ = x~l~ x~ x~ E G. 

Proo/. I f  x E V and a is the Y-coset containing x, then 

x~lx  = - x ~  + ~ =  - ~  + ~ = 0  
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by  a'), i.e. the element a = x~ 1 x is in Y. Clearly a is in V ~ U Y ~ Q f3 Y ~ G. I f  x~a = xrc 

are two normal  forms of x, then x~-4- 5 = ot -4- 0 = x r -4- 5 = F -4- 0 whence x~ = xr and a = c. I f  

x~a, x~b are in normal  forms, and  (x~a) (x~b) E V, then (x~a) (x~b) = o~ + fl E V /  Y and thus 

x~+~ exists. Moreover 

x~a x~b = (x~+~ xg~+~) x~(x~ x ~ )  ax~b = x~+~ e~.~a~ ~b 

because the multiplication can be performed in any  order, by  V ~  U10 (note t ha t  a, b E VV,  

thus we have above a produc t  of 10 elements of V). Also 

8~.~ = x~ -+~x~  = - ~ + ~ + ~ + z ~ =  - ( a + ~ ) + a + f i = o ,  

whence C~.~E Y. Clearly C~.~E V a N Y ~  Q N Y ~ G .  This completes the proof. 

Remark. I /C~ .~  exists, i.e. i /  ~,fl, zc+flE V / Y ,  then the set o /a l l  real t / o r  which Ct~.t,~ 

exists is an open interval ~ .  ~ containing 0 and 1, and 

t --> Ct~. t~ 
is an analytic mapping o] ~ ,  ~ into G. 

Indeed ,  we have  ~.a={tlt~,t[Lt(~+~)e V/Y}. :By Lemma 2, 

Ct~. t~ - xt(~+~) xt~ xt~ - ( - tx~+~) (tx~) (tx~), 

which shows tha t  the map t ~ Ct~. t~ is the composite of linear maps (t--> tx~, etc.) and of the 

group multiplication, hence it is analytic.  

The partial group P 

I f  ~ , f l ,~+flE F / Y  and a, bEG are such tha t  x~a, x~b and (x~a) (x~b) E V, then the nor- 

mal form of (x~a) (x~b) is x~+~ C~.~ a~b .  But  U~.~ a ~ b  remains meaningful for arbi t rary  

a, b E G, provided a ~  is read as r a), as in Lemma 1. This suggests 

L E M M A  4. Let P denote the set V / Y  • G together with the multiplication 

<or, a> (fl, b> = <~.4. fl, C~. ~ a ~  b> 

such that the product < a,a> <fl, b > exists i / a n d  only i/ot.4.flE V / Y. Then P is a partial group. 

The mapping i x : V --> P given by 

iX(X~ a) = (a,  a>, 

where x~ a run8 over all elements o/ V in their normal/orms,  is an embedding o / V  into P.  
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Proo/. I t  is easily checked tha t  (0,e> is the identity of P and tha t  the inverse of (a,a> 

is ( - a ,  (a-1)-~>. Only the associative law PG.1 is not trivial; we shall prove it now. 

I t  is easily seen tha t  if (a ,  a> (fl, b> and <fl, b> (~, c> exist, then 

((a,a> (~,b>) (~,c> and (a,a> ((~,b> <~,,c>) 

exist or do not exist simultaneously depending whether a +fl +~  is or is not in V/Y.  Assume 

tha t  these products exist. Then it is not hard to see that  we have an open interval ~ contain- 

ing 0 and 1 such tha t  

(<ta, a> <tfl, b>) (t~,c> 

both exist for all t e ~ and are equal to 

where 

and (to~,a> (<tfl, b> (t:~,,c>) 

<t(cc+fl+7), Fl(t ,a,b).c > and <t (a+f l+~) ,  F2(t,a,b)'c ), 

F1 (t, a, b) = Ct(~ +~). ty (Ct~. t~ a ~tz b) ~ ' ,  

~ (t, a, b) = Ct~. t~+~) a~t(~+r ) Ct~. t ,  b ~t~. 

The Cartesian product ~ • G • G is a connected analytic manifold in a natural  way. 

Moreover, the maps t--> Ct(~,+g). t:,, (t,a> -+ aZt~ = r etc. are analytic by Lemmas 1, 2 and 

the Remark  following Lemma 3. This implies the analyticity of the maps 

FI,~: ~•215 

But if (t, a, b> E ~ • G x G is sufficiently near to (0, e, e>, then we have, by Lemma 1 

~'T 1 ( t ,  a, b) = - 1  (xt(~+~+,) xt(~+~) xt,) (x;~ -1 

F~(t,a,b) = -1 -1 -x (xt(~§ zt~ xtr) (x? 1 bxt,), (xtr axtr (xt(~+~+r) xt~ xt~+:,)) 

whence Fl(t  , a, b )=  F~(t, a, b). I t  follows now, by  the principle of analytic continuation that  

F I = F 2  on ~ • G • G. In  particular we have Fl(1,a,b)=F~(1,a,b ) which proves tha t  

((a,a> (fl, b>) <~,,c> =(a,a> (<fl, b> <:y,c>). 

To complete the proof of Lemma 4, we note tha t  # is evidently an injection. Moreover, 

the formula (x:,a) (x/~b)=x~+~ C~.~aZ~b valid in V (Lemma 3), implies tha t  # is a homo- 

morphism. Hence it is an embedding. This completes the proof. 

Remark. I f  [(n) is a word and (al ,  al>,  ..., <an, an> EP are such that/(n)(<a, a> ..... (an, an> ) 
exists, then a 1 -~ a S "~-,.. "~- a n ~ V / Y  and [(n)(<~l, Ux> .... , (~n, un>) exists for all (u  a .... , un> in G n. 
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The general associative law in P 

The proof of this law is much the same as tha t  of the associative law, but, of course, 

we do not find the functions F1, F 2 explicitly. Instead, we use the following 

L~MMA 5. I /  ~,fl, . . . ,z are arbitrary fixed n elements o/ V / Y and/(~) is a word such that 

/(n)((o~,a>, </~,b> ..... (~,h>) exists/or all (a,b ..... h> in G ~ (see Remark  in previous section) 

then there exists an open real interval ~ containing 0 and 1 and an analytic mapping 

<t,a,b ..... h>~F( t ,a ,b , . . . ,h )  

o/ ~ •  ~ into G such that /(")(<tcc, a>,...,<tu, h>) exists /or every <t,a,b .... ,h> in ~ •  ~ and 

l~n)(<ta, a>, <tfl, b>,..., <tx, h> ) =<t(~ + fl +... +~), F(t,a,b,. . . ,h)>. 

Postponing the proof of Lemma 5, we shall deduce now the general associative law 

in P. Suppose that/(1 ~ is another word such that/(l~)((~,a>, <fl, b> ..... <~,h>) is defined for 

all (a,b, ...,h> in G ~. We have to show tha t  

/("~((~,a>, <fl, b>, . . . ,  (x,h>) =/(l")(<a,a>, <fl, b>, . . . ,  (~,h>), 

which by  Lemma 5 is equivalent to 

F(1,a,b ..... c) =Fl(1,a ,b , . . . ,c) ,  

where F 1 is related to/(1 n) in the same way as F to 1("). Let us denote by  f~ c V a ball such 

tha t  if Xl ..... x2n are any 2n elements of f~, then the product XlX~...x2= exists in whichever 

way we insert brackets and belongs to V. Let  ~0 be the real interval such tha t  tx~, tx~ . . . . .  

tx~ E f~ for all t E ~o. I f  <t, a, b ..... h> E ~o • ~n, then (tx~)a, (tx~)b,..., (tx~) h E ~  which implies 

tha t  in the local group V 

/(n) ( xt~ a, xt~ b . . . . .  xt~ h) = ](1 ~) ( xt~ a, xt~ b . . . . .  xt~ h ). 

Applying the embedding # (Lemma 4), we deduce tha t  

/(n)(<t~, a>, <t/3, b> . . . . .  <t~, h>) =/~)((ta, a>, <tfl, b> . . . . .  (tT, h>) 

holds for all <t, a, b . . . . .  h> in ~0 • f~n. I t  follows now from Lemma 5 tha t  the functions F and 

~1 coincide on the open subset (~0 N ~ N ~1) •  of the connected manifold (~ fl ~1) • GL 

Since they are analytic, they are identical on (~ 0 ~1) • G~, in particular they are equal 

when t = 1. This proves the general associative law in P. 

Proo] o /Lemma 5. The proof is by induction on n. The Lemma holds trivially for n = 1. 

Now let n be any integer and assume tha t  the Lemma holds for every word/ (~  with k <n .  
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Let  ~,fl . . . .  ,y,O .. . .  ,~ be a rb i t r a ry  n fixed elements  of V / Y  and let 

/(n)(<~,a}, <fl,b>, ..., (~,,c>, <(~, d} , . . . ,  (u,  h>) 

exist  for  all <a, b . . . .  , c, d . . . . .  h> in GL There exist  integers k, 1 < n and  words/(1 k),/(2 l) such 

t ha t  k + l = n and/(~J (~1 . . . . .  ~:~) exists in P if and  only if 

/(1 k) (~1 . . . .  , ~k),/~l) (~k+l . . . . .  ~=) and  fl ~) (~x . . . . .  ~)/~') (~k+l . . . . .  ~ )  

exist  and  then  
1 <~) (~1 . . . .  , ~n) = / i / c )  (~1 . . . . .  ~k) 1(~ ~ (~k+, . . . . .  Sn)- (1) 

In  part icular ,  1(1 ~) ((~, a )  . . . . .  (7,  c))  and  1~>(<(~, d)  . . . . .  <~, h))  are defined for all <a . . . . .  c} 

in G ~ and  all ( d , . . . ,  h> in G( Hence,  b y  the induct ive assumption,  there exist open inter- 

vals ~/~, ~ containing 0 and 1 and  analyt ic  mappings  F~: ~ • G ~--> G, F~ : ~ • G~---> G such 

tha t  
/i~)((t~, a>, . . . ,  <t~,, c}) = (t(a~ §  + ~), -~1 (t, a, . . . ,  c)>, 

/(2z)(<t(~, d > , . . . ,  <tu, h>) = <t(~ + . . .  + ~), F~( t , d  . . . . .  h)>. 

Le t  ~ c ~1 rl ~2 be an open interval  containing 0 and  1 such t h a t  

t ( a + . . .  + y + t + . . .  + z )  E V / Y  

for  every  tE ~ (see R e m a r k  in previous section). Then for all ( t , a  . . . .  ,c, d . . . . .  h> in ~ x G n 

the produc t  of the  above two words /(1 k),/(2 l) exists. Using the  ident i ty  (1) we obta in  

that /<n)(( ta ,  a} . . . . .  (ty, c}, (t~, d} . . . . .  <tu, h}) exists and  f rom the mult ipl icat ion formula  in 

L e m m a  4 we find t h a t  

F(t ,  a . . . . .  c, d, . . . ,  h) = Ct(~+...+r),t(o+...+~)(Fl(t, a . . . . .  c))~t(~+...+~) F~ (t, d . . . .  , h). 

B y  the R e m a r k  following L e m m a  3, t---> Ct<~+... +~). t(~+... +~) is an analyt ic  mapp ing  of ~t into 

G. Thus Ct(~+...+r). t(~+...+~) can be regarded as an  analyt ic  funct ion of the var iable  

<t,a . . . .  , c , d ,  . . . , h }  E ~ •  n, 

not  depending on <a . . . .  , c, d, . . . ,  h>. Since 

(Fl  (t, a . . . . .  c))Xtr +...+~) = r +~ , F l  (t, a . . . . .  c) ) 

we conclude f rom L e m m a  1 t h a t  this funct ion is analyt ic  on ~ • G k and hence on ~ • G n (not 

depending on <d,...,h}). Similarly YF~(t,d . . . .  h) can be regarded as analyt ic  on ~ • G n. I t  

follows now t h a t  • is the produc t  of three  functions which are analyt ic  on ~ • GL This 

completes  the  proof  of L e m m a  5 and  of Theorem 1. 

For  the proof of Theorem 2 we shall need the  
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Remarks: Let us assume tha t  the above embedding #:  V-+P is an inclusion, so tha t  

V ~ P .  G is generated by  V fl Y ~ G ,  for we have xn=nx  if x ,  nxGQ, and hence V fl Y 

generates Q fl Y which generates G by assumption. Since we have in P 

<0, a> <0,b> = <0, ab>, for all a, be  G, 

it follows tha t  V fl Y generates in P the group G c P .  We have shown above tha t  there 

exists a group H containing P. I t  follows tha t  G is the subgroup of H which is generated by  

V N Y .  

Without assuming tha t  all embeddings are inclusions, we can state these remarks as 

THEOREM 1'. Let X ,  Y satis/y the assumptions o/Theorem 1, let Q c  X be a ball and let G 

be a simply connected analytic group such that there is an embedding e :Q fl Y ~ G with the prop. 

erty that e(Q fl Y) is an open subset o /G  and e:Q fl Y ~ e(Q fl Y) is an analytic homeomor- 

phism. Then there exists a ball V c Q, a group H and an embedding ~1: V -+ H such that 

1) G is the subgroup of H generated by ~( V fl Y), 

2) ~ = e o n  VN Y. 

3. Second embedding theorem 

Let X be a normed Lie algebra which is lower soluble with sequence {X~}~<~. We shall 

prove tha t  X is an E-algebra. Our proof is by  induction; we show tha t  for every ~ < ~, X~ 

is an E-algebra. This is trivially the case for ~ =0.  I f  ~ is not a limit number  and XZ-1 is an 

E-algebra, then so is Xp, by Theorem 1. The main difficulty of the proof is in showing tha t  

X~ is an E-algebra if ~ is a limit number and we know tha t  each X~ with 7 < ~ is an E-algebra 

The proof will be prepared in the following three sections and then given in the fourth one. 

l~ac universal enveloping group of a partial group 

Let P be a partial  group and let e :P -+ G be an embedding in a group G such tha t  the 

subset e(P) c G generates G. We shall say tha t  G is a universal enveloping group (u.e.g.) for P 

with embedding e :P -+ G if every diagram, 

P 

1 
G H 
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where H is a group and ~ :P -~H is a homomorphism can be completed to a commutative 

diagram, 

P 

G ~ H  

where v is a homomorphism. An immediate consequence of this definition is the following 

LEMMA 1. I /  in a commutative diagram 

P 

H ,, G 

the group G is a u.e.g./or P with embedding e, H is a group, ~ :P ~ H  is a homomorphism, H is 

generated by ~(P) and/~ : H---> G is a homomorphism, then # is an isomorphism and H is a u.e.g. 

/or P with embedding ~. 

Proo/. Combining the above diagram with the preceding one, we obtain 

H 

P 

~ G , H  
~u v 

Since v(#(~(x)))= ~(x) holds for every x EP and H is generated by~(P),  H-~> G-~ H is the 

identity on H. This, together with the fact t h a t#  :H-~ G is surjective (because ~u(~(P)) =~(P) 

generates G) implies tha t  ~ is an isomorphism with inverse v. 

LEMMA 2 (Existence o/a u.e.g.). Let P be a Tartial group which is embeddable in a group 

and let F be the/ree group with the set o// tee generators P. Let us call an element u o / F  an 

e-element i / the/ollowing condition holds 
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there exist al, a 2 . . . . .  a .  E P ,  co,, oJ~ . . . . .  ~o. E ( - 1, 1} and a word /(n) such that 

a'~ ~ a~t ... a~" = u holds in F,/(n)(aT~, .... a~") exist~ in P and/(") (aT', .... a~") = e 

in P.  

Let N c  F be the set o /a l l  e.eiements o/ F. Then N is a normal subgroup o/ F and i/ 

e : F-~  F / N  denotes the natural homomorphism, then the restriction o/e to P is in~ective and F[N 

is a u.e .g . /or  P with embedding e:P ~ F [ N .  

Proo/. I t  is easily seen t h a t  N is normal  and t h a t  e : P - ~ F ] N  is a homomorphism.  Let  

: P  ->H be a homomorphism into a group H. We shall prove tha t  there exists a commuta-  

tive diagram 

F 

N 

Indeed,  since F is freely generated by  P ,  the  mapping  ~ : P - ~ H  can be extended to  a homo- 

morphism ~ :  F -~H. This gives a commuta t ive  diagram 

P 

F .H 
7g 

where i is the inclusion map.  Since ~ : P - ~ H  is a homomorphism,  we have ~(u) = e  for every 

e-element u in F ,  thus ~ ( N ) =  e. I t  follows t h a t  F-~>H factorises th rough  F-5> FIN,  so 

tha t  we have a commuta t ive  diagram 

F ~ H  

F 

N 
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The two diagrams thus obtained imply the required one. Finally to show that  s :P-+F[N is 

an embedding it is enough to take any embedding ~ :P-~H and use the commutativity of 

our diagram. 

Partial subgroup. Let  P be a partial group and let P o c P  be such that  

a) if x, y E P o and xy exists then xy E Po, 

b) if x E Po, then x -1 E P0. 

Then P0, together with the multiplication xy will be called a partial subgroup of P 

(local subgroup, if P is a local group). 

LEMM), 3 (The u.e.g, o/a dense local subgroup). Let L be a local group which is embeddable 

in a group and let L o ~ L be a local subgroup such that L o is a dense subset o/the space L. Let G 

be a u.e.g. /or L with embedding e:L-->G. Then the subgroup Go c G generated by ~(Lo) is a 

u.e.g. ]or L o with embedding e:L o -> G o (more precisely etLo:Lo-~ Go). 

Proo/. We consider the free groups F and F o with sets of free generators L and L o. 

Let  N c  F be the normal subgroup consisting of all those elements u which satisfy condition 

(*) of Lemma 2 where P should be replaced by L. Let  N o c  F o be defined similarly (replace 

P by Lo). Let  further 

e : F - - > ~  and eo:~o-->~o 

be the natural homomomorphisms. Then, by Lemma 2, F IN and Fo[N o are u.e.g.'s for L 

and L o with embeddings 

e : L -+ and %" L o -->--  
�9 /Yo" 

We can assume without loss of generality that  F I N  is the group G mentioned in the Lemma. 

The subgroup G O of G = F / N  which is generated by e(Lo) is FoN/N; indeed, L o generates the 

subgroup F o in F, thus e(Lo) generates .the subgroup S(Fo)= FoN/N in s (F )= FIN .  To 

prove that  _~oN/N is a u.e.g, for L o with embedding e :L o ~ F o N / N  it is enough, by Lemma 1, 

to find a homomorphism/~: FoN/N -~Fo/N o such that  the diagram 

Lo 

-~o N j /  . F o 
N ~ No 

1 5 - -  652933 Acta mathemati~ 114. I m p r i m 6  le 15 oc tob re  1965. 
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co mmu t e s .  No w suppose  t h a t  we h a v e  p r o v e d  t he  e q u a l i t y  

lV0=F0 n N. 

T h e n  F o / N o = F o / . F o  f i n  a n d  we can  t a k e  for # t he  n a t u r a l  i s o m o r p h i s m  ju: F ~ , / N - - >  

Fo /  F o N N .  F o r  e v e ry  a i n L  o we h a v e  e(a) = a N  a n d  ~u(aN) = a (  F o N .N) = a N o =  eo(a ). H e n c e  

t h e  d i a g r a m  c o mmu t e s .  

P r o o / o ~  N O = F 0 ~ N .  O n l y  t he  inc lus ion  N N F 0 c N O is n o t  ev iden t .  Le t  u E N N F o. 

T h e n  we h a v e  bl, b 2 . . . . .  b~ in  L 0 a n d  ~1, ~2, "" ,  ~m E {1, -- 1} such  t h a t  u = "1 "2 . . . .  ~ ,  

a n d  we h a v e  also al,  a 2 . . . .  , a n E L ;  w l ,  w~, . . . , w n E { 1 , -  1} a n d  a word  /(n) such  t h a t  

u = a~'  a~ ~ . a~" a n d  ~(n)/a~, a~, . ~, �9 . / ~ i , 2 . . . .  a n ) exis ts  in  L a n d  is equa l  to  e. W e  can  a s sume  t h a t  

- 1 - u  . . .  bq,~ no  cance l la t ions  are  possible  (otherwise we f i rs t  pe r fo rm  these).  Since 

u - -  b e'l b ~ . . .  bq'~m = a~' a~* . . .  a~ '~ a n d  al l  t he  b, a n d  as be long  to a set  of free gene ra to r s  of F ,  

i t  follows t h a t  a f ter  p e r f o r m i n g  al l  t he  possible  cance l la t ions  in  aT' . . .  a= we shal l  o b t a i n  

b[~ . . .  b~ ~. Th i s  impl ies  t h a t  {a~, a 2 . . . . .  a=} c a n  be w r i t t e n  as  the  u n i o n  of two  d i s jo in t  sets 

{a 1, a 2 . . . . .  an)  = {a,,,  a~,, . . . ,  a~,} U {at,, a 1 . . . . .  , ar } 

where  {a~,, a~ . . . . .  , a~,} = {bl, b 2 . . . . .  bz} .  I t  follows fu r t he r  t h a t  

1) if a, --> a; is a n y  m a p p i n g  of the  se t  {a I . . . . .  an} i n to  L such  t h a t  a~' k = a~; k = 1, 2 . . . . .  r, 

t h e n  (al) ~' (a~)~' . . .  (a~) ~- = u.  

W e  shall  use  the  fol lowing consequence  of 1): 

2) if a~-->a; a n d  a~-->a;' are  a n y  two m a p p i n g s  of the  set  {al, . . . ,  an} in to  L such  t h a t  

a~ k = a[~ = a~,for k = 1, 2 . . . . .  r, t h e n  the re  exists  a word / (2  n) such t h a t  

/(~n) ((a:)~,, (a~)Z,, . . . .  (a~) ~-, (a~')-~-, . . . ,  (a: ')  -~ ' )  = e 

i n  t h e  local  g roup  L. 

I n d e ed ,  we h a v e  b y  1) t h a t  

(al) ~ (a~)~ . . .  (a',) ~ (a'n')- '~ . . .  (a~') . . . .  u u  -1 = e 

holds  in  F a n d  since, b y  ax ioms  PG.2  a n d  PG.3  all p r o d u c t s  of t he  fo rm a a  -1, a - l a ,  ae, ea 
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where a EL, exist in L and have the same values as in F ,  the above product  will exist in L 

after brackets have been suitably inserted and will be equal to e. 

To prove now tha t  u E N 0, we shall show tha t  there exists a mapping  a~--> a~' as in 

1) such tha t  a~, ..., a~ E L 0 and/(~)((a~)~',. . . ,  (a~) ~ )  = e in L 0. F rom the axioms of a local 

group it  follows easily tha t  there exist neighbourhoods V1, V2, ..., Vn of al, a 2 . . . . .  am in L 

such tha t  for every <x 1 . . . .  , x=> E V 1 • V~ •  • Vn, /(~) (x~', x'~', . . . .  x~ ~) exists. Moreover, 

by  the cont inui ty  of multiplication, /(~) (xT ~, x~ '~, .... x~ ~) is near to e if the Vi are chosen 

small. We can therefore assume tha t  the V~ are such tha t  for every choice of x~, y~ E V~ 

(i = 11 .... n), the product  

/(n) (x~", ~" . . . .  x~ ) (I(~) ( y ~ , , . . . ,  ~ '0"~- z,, 

exists in L. Using axiom PG.4 we find tha t  this produc~ is identically equal to a word of the  

form 
(2 n ) / ~ o ~  ~ n  - 1 ~1 , . . . ,x~ , y ~ ,  .... y ;~ ' ) .  

Let  us prove tha t  if at--->a[ is a mapping  of {a 1 . . . . .  an} into L as in 1) such tha t  a~'E V~ 

holds for i = 1 , . . . ,  n, then/(n) ((a~)~,, (a~)~,, ..-, (a~)~) = e in L. For  assume to the cont rary  

tha t  for some such mapping,/(~) ((a~) ~ ,  (a~) ~ ,  . . . .  (a~) ~') = a 4: e and then take a mapping  
i t  t t  

a~--> a, as in 2) such tha t  a, e V, and/(~) ((a~') ~', .... a~') ~') is near enough to e to ensure 

a({ (~) ((a~') ~', .... (a~')~)) - I  # e. Then we h a v e  

i t  _~  H _ o j  1 l~ 2n) ((al)~', ..., (a'n) ~ ,  (an) , . . . ,  (al ) ) =i = e 

in L,  contradict ing the equali ty in 2) and the general associative law. 

I t  follows now, in particular, t h a t / ( ~  ((a~)~', .... (a'~) ~n) = e if a~--> a~" is a mapping  as in 

1) such tha t  a~E V~ OL  o, i = l  . . . .  , n. Such a~ exist because L 0 is dense in L. Since then, by  

1), u = (a~)~ ... (an) ~ we see tha t  u satisfies (*) and thus u E.N o. 

L E ~ M A  4 (The u.e.g, o/ a partial subgroup). Let P be a Tartial group, let P o c P  be a 

partial subgroup and let ~] :P-+H be an embedding in a group H such that the subgroup H o ~ H 

generated by ~(Po) is a u.e .g . /or  Po with embedding ~ :P0 ~Ho.  Let /urther  G be a u.e .g . /or  P 

with embedding e : P  -> G and let Go c G be the subgroup generated by e(P0). Then G o is a u.e.g. 

/or Po with embedding e and there exists an isomorphism v: G o -+ H o such that 
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Proo[. Since G is a u.e.g, for P,  there exists a homomorphism v: G--> H such that  the 

diagram 

P 

l 
G - H  

commutes. Since GoCG is the subgroup generated by e(P0) and H o C H  is the subgroup 

generated by ~(Po), it follows that  the commutativity of the diagram will be preserved 

when P, G and H are replaced by Po, Go and H o. But  from the eommutativity of 

Go 

Po 

. H o 

where H o is a u.e.g, for Po with embedding ~, it follows by Lemma 1 that  G o is a u.e.g, for Po 

with embedding e, and that  v: G o-~H o is an isomorphism. 

LEMMX 5 (The u.e.g, o/a  union). Let P be a partial group and let (P~ )~<~be an ascending 

sequence o/ partial subgroups such that P = (J~<~P~. Let G be a group and let {G~)~<~ be an 

ascending sequence o] subgroups such that G = Up<~G~. Let ]urther e :P---> G be an embedding 

such that e(P~) generates the subgroup G~c G/or every fl, and G~ is a u.e.g. /or Pg with era. 

bedding e. Then G is a u.e.g./or P with embedding e. 

Proo]. Let ~7 :P-~H be an arbitrary homomorphism of P in a group H. We have to 

find a homomorphism ~:G-~H such that  the diagram 

P 

G ~ H  
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commutes. Let  H ~ H  denote the subgroup generated by  ~(P~). Then ~ : P z ~ H ~  is an 

embedding and hence there is a homomorphism v~: G~ ~H~ which makes 

v~ 

commute. In  this diagram the homomorphism vt~:G~---> H~ is unique, for we must  have 

v~(e(x)) =~(x) for every s(x)Es(PB) and e(Pp) generates G~. But  if ~, <fl, then G~c Gp is the 

subgroup generated by E(Py) and H ,  c H~ is the subgroup generated by ~(Pr) whence i t  

follows tha t  the commutat ivi ty  of the above diagram will be preserved if we replace P~, G~ 

and H e by  P,,  G r and H r. Hence, by the uniqueness of vy: Gr ~Hr ,  it follows tha t  vr =v~ on Gv. 

Consequently there exists a mapping v: G-+H such tha t  v =v~ for each ft. I t  is clear tha t  v is 

the required homomorphism. 

Extensions of embeddings 

In  this section we shall prove three lemmas which will allow us to deduce tha t  a local 

group L is embeddable in a group if we know tha t  a dense local subgroup of L is embeddable 

(Lemma 6) or tha t  L is analytic and a certain piece of L is embeddable (Lemmas 7 and 8). 

L ~ MMA 6. Let L be a local group and let L o c L be a local subgroup which is dense in L and 

embeddable in a group. Then L is also embeddable in a group. 

Proo]. By assumption, the general associative law is valid in Lo; we assert tha t  it is 

also valid in L. For suppose to the contrary tha t  we have elements al,a ~ ..... a n in L and 

two words fl n),/~n) such that/~n) (a 1 . . . . .  an) and/(n) (a 1 . . . .  , an) exist and 

/i n) (al, ..., an) #/~n) (a 1 . . . . .  an). 

Then it follows from the axioms of a local group tha t  there exist neighbourhoods V1, ..., Vn 

of a 1 .... ,an respectively such that/(1 n) (x 1 . . . . .  xn) exist if xjE Vj; j = 1 . . . . .  n. Moreover, since 

/~n) are continuous on V 1 • V 2 x . . .  x Vn, the Vj can be chosen sufficiently small to ensure 

for all <Xl,..., xn> in V1 • V2 • • Vn. But  since L 0 is dense in 15, all these x~ can be chosen 

from Z0, and we have a contradiction, by the general associative law in L o. Thus L is em- 

beddable in a group. 
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LEM~A 7. Let X be a normed Lie algebra, let L(X)  be the a.l.g, assigned to X and let 

U, Uo~ L (X  ) be balls such that 

U U c  U o and UoUoUoUoCL(X). 

Then, i/ V ~ U is any ball and ~] : V--> H is a homomorphism into a group, ~ can be extended to 

a homomorphism ~ : U--> H. 

Proo/. We shall show first tha t  there exists a mapping ~ : U  0-~H such tha t  ~ =~ on 

V and 
~(x) ~(v) = ~ ( ~ )  (1) 

provided v E V and x(tv) E U o for all 0 ~< t ~< 1. To obtain ~, we consider the diagonal 

n = { (x ,x )  ixE Uo}~ U o • U o 

and the neighbourhood ~ of D in U o • U 0 consisting of all pairs (x, xv) such tha t  v E V and 

x(tv) E U o for all 0 < t ~< 1. I t  is easy to see tha t  ~ is open and connected. To every (x, y)  

in ~ we assign the permutat ion T~.~:H-~H which takes an arbi trary z in H into z(~(x-ly)). 

We have ~u.~oT~.u =T~.~ provided (x ,y ) ,  (y ,z) ,  (x , z )E  ~.  Indeed, (x-ly) (y- lz)=x-lz  since 

the product of four elements of U 0 does not depend on the way the brackets are inserted. 

But  as x-Xy, y-lz,x-Xz E V, applying ~ we get ~(x-ly)~(y-lz) =~(x-lz) which we had to show. 

We shall apply now the principle of monodromy (cf. Chevalley [6], p. 46) to the simply 

connected space U0, the connected neighbourhood ~ of the diagonal D ~  U o x U o and the 

mappings ~.  ~. The principle implies th t  there exists a mapping ~ : U 0-~ H such tha t  ~ (e) = e 

and ~.~ (~ (x)) = ~  (y) for every ( x , y )  in ~.  In  other words, 

(x) ~(x-~y) = ~ (y) provided ( x , y )  E ~.  

Putt ing x=e,  we deduce tha t  ~ =~  on V. Thus (1) is proved. 

We shall now show tha t  the restriction of ~ to U is a homomorphism. Let y E U. Then, 

for every natural  n 

t EU, for k=O, 1 , . . . , n - I  and 0 ~ < t ~ I  (2) 

since (g//n) k (t y /n)  = ((k + t)/n) y. Thus, by  (1), 

 or =01 . . . . .  

provided y]n E V, which is so when n is large enough. Combining these equalities, we arrive 

at  ~ (y) = (~ (y[n)) n, for sufficiently large n. 
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Now let x, yE U. Then, for every n, by  (2), 

x t E U  0 for k = 0 , 1 , . . . , n - 1  and 0~<t~<l. 

Thus, b y  (1), ~ x ~ = ~ x for k = 0, 1 , . . . , n -  1, 

provided n is large enough to ensure y/nE V. Combining these n equalities we obtain 

(xy) = ~ (x) (~ (y/n))L Since (~ (y/n)) ~= ~ (y), if n is large enough, this gives us finally 

~(xy) =~(x)~(y) for every x, y in U. 

Remark. If  ~ : U--> H is a homomorphism,  then ~(y) = (~(y/n)) n holds for every y in U 

and n = 0,1,2 ..... 

Indeed,  (2) above, taken for t = 1, implies (3) for ~ and  every n. Combining the equalities 

(3) we obtain ~(y)=(~(y/n))L 

LEMMA 8. Let X and L(X)  be as Lemma 7, let 

C ~- {c E L (X) ]xc=cx /or  all x E L(X)  such that xc and cx exist} 

be the centre o] the local group L(X)  and let V, Q, U c  L(X) be open balls such that 

V c Q  and QQ~U.  

Let ]urther ~ : U--~ H be a homomorphism into a group H such that 

a) 7 :  V--> H is an embedding, 

b) i / c  E V N C and c ~ e, then ~(c) is o/in/inite order in H. 

Then ~ :Q ~ H  is an embedding. 

Proo/. Suppose tha t  under  the  above assumptions we have x # y  and ~ (x )=~(y ) fo r  

some x,y  in Q. Then, as ~(x-ly)=~(x-i)~(y)=(~?(x))-l~(y) holds in U, we get ~(c )=e  where 

c =x- ly  ~ e belongs to U. Let  us show tha t  c E C. We note that ,  by  a), the kernel K = 

{xE Ul~(x ) = e} is discrete in U. Bu t  if cEK, then  for all z sufficiently near to  e, 

~($--lcz) : ~(Z--1)~(C) ~(Z) = ( ~ ( Z ) ) - l ~ ( z )  = e. 

Thus z-lcz EK, and since K is discrete, we mus t  have z-lcz =c for all z sufficiently near to e. 
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Hence c E O (see Remark  (iii) about  the SCH-series). Taking n sufficiently large, we shall 

have e~=c/ne V A C, thus (~(c/n))~=e, by b). But  as ~(c)=(~(c/n)) ~ by the remark after 

Lemma 7, we obtain now ~(c) ~ e, a contradiction. Thus ~/is injective on Q. 

Lower soluble Lie algebras 

Let  X be a normed Lie algebra which is lower soluble with sequence{Xp}~<~. Let  Z~ 

denote the centre of X# and let Z= O~<~Z#. Every  two elements of Z commute,  for if 

ZleZ~,  z 2 e Z  7 and ~ < 7 ,  then z te  X r, zaeZ~ and [zt, z2]=O. Clearly X t = Z I C Z .  We 

shall call the sequence {X#}#<~ reduced if X 1 = Z. 

LEMMi 9. Every lower soluble normed Lie algebra X is lower soluble with a reduced 

sequence {X~}~<~. 

Proot. We shall define, for every ordinal number  ~ a sequence {X~}z,<= of closed sub- 

algebras of X so tha t  

1) x~o = {0}, x~=x, 
2) if fl is not a limit number, then X~-I is an ideal in X~ and X~/X~_, is abelian, 

3) if fl is a limit number, then U r<~ X~ is dense in X~, 

4) x~=x~ if r<~, 
5) Z ~ - I =  X~ if 5 is not a limit number,  

where Z ~ = U ~<~ Z~ and Z~ is the centre of X~. This will suffice to prove our Lemma,  for 

from 4) we have tha t  X~ -1 = X~ for some sufficiently large ~ whence by  5) it follows tha t  

Z ~- 1 = X~ - 1. But  as X~- 1 = Z~ - i, we have X~ - 1 = Z ~- t and thus Z ~ 1 =_ X~ - 1. 

The definition of the sequence {X~}#<, is by  induction on & We put  {X~}#<~ = {X~}p~<,. 

I f  ~ is not a limit number, and we have already defined {X~}a~<= for every # < ~ so tha t  

1)-5) are satisfied (with ~} replaced by/x),  we define 

X~0={0} and X ~ = Z  ~-1+x~-1  for f l />l ,  

i.e. X~ is the closure of the subspace of X spanned by  the subspaces Z ~-1 and X~ -1. I f  

z e g  ~ then [z, X~ -~] = X ~  -1, for we have tha t  either z belongs to a subalgebra of X} -~ 

or else it commutes with X~ -~. This shows that  X~ is a subalgebra. I t  is easy to check 

tha t  conditions 1), 3), 4) and 5) are satisfied, provided they are true if 8 is replaced by 

- 1. To check 2) assume tha t  fl > 1 is not a limit number.  We have to prove tha t  

a) Z ~-1 ~-1 Z ~ - I +  + X/~-I is an ideal in X~ -1, 

b) (Z t~-I -~- X~- I ) / (Z  t-1 -~- X~_ 1) is abelian, 
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for then analogous statements will be valid for the closures of these algebras. Let  

Z ~ - I _  l1 r]6-1 Z~-~ 1 -  l |  Z 6-1 +8 - ~ ~ and - 

v ~ - l / v ~ - I  is abelian. Then clearly [Z~+~ 1, X~ -1] = 0  and since .~, / ~ - 1  

[ Z ~ I ,  /~-13  c [ /~ -1 ,  /~ -13  c Xrt~-i ~f l -  1- 

Thus ,  [Z~-I+X~ -~, Z(~-1-4- X~-l]  = [Z~_) 1, X~- l ] -~  [X~ -1, x ~ - l ]  c V~-I  

This proves a) and b). 

I t  remains now to define X~ under the assumption tha t  ~ is a limit ordinal and all 

X~ with ~ < 5 are already defined and satisfy 1)-5). We define 

Then it is easy to check tha t  1), 3), 4) and 5) are satisfied. To prove 2) note tha t  from the 

inductive assumption 

a') U ,<aX~- i  is an ideal in U.<~X~,  

b') U , < ~ X ~ / U , < o X ~ - I  is abelian, 

hence analogous statements are valid for the closures of these spaces. This completes the 

proof of Lemma 9. 

Proof of  Theorem 2 

We assume tha t  the normed Lie algebra X is lower soluble with a reduced (cf./.,emma 9) 

sequence {X~}~<~. We consider the a.l.g. L(X) assigned to X and we wish to prove tha t  a 

piece of L(X) is embeddable in a group. 

Let  Q, U, U o be balls satisfying 

QQc U ~ UU ~ Uo ~ UoUoUoUo ~ L(X ); 

we shall show tha t  Q is embeddable in a group. We observe first tha t  for any subalgebra X~ 

we have 

(Q N X~) (Q N X,)  c U N X~ c (U N X,) (U N X,) 

(Uo n x,)  (Uo n x,)  (Uo n x,)  (~o n x,)  = L(X~). 

Let  us prove tha t  for every fl ~ 

a) the local group Q N X~ is embeddable in a group, 



232 s. SWIERCZKOWSKI 

and it is possible to assign to every Q 0 X~ a u.e.g. G~ with embedding s#:Q N X~--> G# so tha t  

b) / / 7  <fl, then O r is the subgroup o/G~ generated by s~(Q ~ Xr~ and sr=E ~ on Q ~ Xr, 

c) i / x  e Q ~ X x and x ~ e, then sx (x) is o/in/inite order in G~. 

1. We use induct ion on ft. Since X 0 - { e } ,  we can take Go= {e}, and then  so(e ) =e. 

Since X 1 is abelian, xy = x + y holds for any  x, y in Q N X,,  whence we have for the group X 1 

(with respect to vector  addition) an embedding ~ :Q A X 1 -+X 1 such tha t  ~(x) =x .  Let  O 1 be 

a u.e.g, for Q N X 1 with embedding s I :Q N X I --> O 1. Then there is a homomorphism v : O 1 --> X 1 

such tha t  the diagram 

Q n x l  

z / 
O 1 ~ Xl 

commutes.  Hence, if xE Q N X  1 and x~=e, then v(sl(x))=x and v((Sl(X))~)=nx~=efor n =  

l,  2, 3, . . . .  Consequently (el(X))~ ~ = e in O 1 which proves e). 

2. Suppose now tha t  we have a non-limit  ordinal ~ such t h a t  every fl < 6  satisfies 

a) and b). I n  particular, we have the embedding St_l:Qn Xo_l-->G~_l . Let  us introduce 

in Ge-1 the s tructure of an  X~_l-manifold such tha t  St-l(Q n x~_i) is open in O(~- 1 and 

E~ - 1 : Q N Xo _ 1 --> ee- 1 ( Q fi Xt_ 1 ) is an analyt ic  homeomorphism ( cf. Th. 2.6.2 and Th. 2.7.1 in 

Cohn [7]). We assert tha t  then  Or is s imply connected. To show this, we apply the prin- 

ciple of extension of analyt ic  structure,  by  which there exists a simply connected analyt ic  

group Og-i and an embedding e~_I:QNX~ 1---~O~-I such tha t  e'~_i(QnX,5 1) is  an open 

subset of O~_ 1 and the map  se- 1 : Q n Xo_ 1 ~ S~ - l (Q n X e _  1 ) is an  analyt ic  homeomorphism. 

Bu t  G~-I is a u.e.g, forQ fi Xo 1 whence there is a homomorphism v: G~-I --> Ge-1 such t h a t  the 

diagram 

Qn xo-1 

O~_i ~ O;_~ 

commutes.  Therefore v = e~_ 1 E~-ll holds on se-1 (Q fl Xe- , )  which shows tha t  v is a local topo- 

logical homeomorphism between G~-I and G~-I. Thus v:Go-i  --> Ge-1 is continuous, and since 
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it is surjective, as E~-I(Q N Xa-1) generates G'~-I, we obtain tha t  Ga-1 is simply connected. 

Applying Theorem 1', we find tha t  there exists a ball V~Q,  a group H and an embedding 

~?: V N X0--> H such tha t  

1) Ga-1 is the subgroup of H generated by ~(V N Xa-1), 

2) ~=ea-~ on VAXa_~. 

3. Let  us show first tha t  the embedding ~ : V N Xa -~ H can be extended to an embedding 

Q N Xa -~H. Let C0 be the centre of L(Xo). We show first tha t  if c E V N Ca and c =~ e then ~(c) 

is of infinite order in  H. Let Z a be the centre of the Lie algebra Xa. Applying our Remark  

(iii) about  the SCH-formula (Chapter 1), we find tha t  Co~Zo, and since Z0 c X i by  assump- 

tion (as {X~}~<~ is reduced), we obtain 

V N Go m V N X l c  V N Xo-I. 

Hence, if c E V N Ca then by  2) and by  the inductive hypothesis b) with fl = ~ - 1, y = 1 

?] (C) = ~ a - 1  (C) = E 1 (C) ~ G 1 C Ga-1 c H .  

Hence, if c ~ e then by  e), ~](c) is of infinite order in H. Applying now Lemmas 7 and 8 

we obtain tha t  the embedding U : V N X0 -~H can be extended to an embedding ~] : Q N Xa -~H. 

Par t  a) of our inductive assumption is now proved for fl = 5. 

4. I t  is clear tha t  the local group Q N Xa-1 is generated by  its piece V N X a _  1 (we  have 

x n =nx if x, nx E Q; n integral). Therefore the subgroup of Hgenera ted  by ~(Q N Xa-1) is the 

same as the subgroup generated by  ~(V N Xa-1), i.e. it is Ga-1. Moreover, since U and ea-1 

coincide on V N Xa-1, they must  coincide on Q N Xa-1. I t  follows tha t  the subgroup of H 

generated by ~/(Q N X0-1) is a u.e.g, for Q N X0-1 with embedding ~7. Let  G0 be a u.e.g, for 

Q N Xa with embedding ea. By  the above and by  Lemma 4 we obtain tha t  the subgroup 

G~-I of Ga which is generated by  ea(Q N X0-1) is a u.e.g, for Q N Xa-1 with embedding ea, 

moreover, there exists an isomorphism v: G~_I--> G0-i such tha t  the diagram 

Q fl Xo-i  

G~-i , G~-i 

commutes. 
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If  we now identify G~-I with G~_~ taking ~ to be the identity map, we obtain tha t  

e~ =e~-i on Q N X~-I, and tha t  G~-I is the subgroup of G~ generated by  e~(Q N X~_I). Thus 

b) is shown for fl =6. 

5. Now suppose that  5 is a limit number  such tha t  a) and b) hold for all fl <6. Let  

P = Q n X ~ ,  P o = U ( Q n x # ) ,  G=UG#. #<~ #<~ 

I t  is clear tha t  there exists an embedding e :P0-* G such tha t  e(Q N X~) generates the 

subgroup G~ of G and e =e# on Q N X~, for all fl <6. I t  follows from Lemma 5 tha t  G is a u.e.g. 

for P0 with embedding e. Since P0 is dense in P, Lemma 6 implies tha t  P is embeddable in 

a group. Thus par t  a) of the inductive hypothesis is proved for fl =6. 

Let G~ be a u.e.g, for P with embedding ~. Let  H be the subgroup of G~ generated by  

s~(P0). The map s~ :P0-~ H is an embedding, hence there exists a homomorphism v: G-+H 

such tha t  the diagram 

G - H  

commutes. But  by  Lemma 3, H is a u.e.g, for P0 with embedding e~, whence by Lemma 1, 

: G-~H is an isomorphism. Identifying H and G via ~ we obtain tha t  G c  G~ and e~ =e  on P0. 

Thus e~(Q N X#) generates the subgroup G# c G c G~ and e~ = e~ on Q N X~, for all fl < 6. Hence 

par t  b) of the inductive hypothesis is shown for fl =6, and the proof is now complete. 
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