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Notation

f*(y) (y=a+1b) denotes the regular extension of f*(a)={f(a)* so that f*(y)=
(f*")*, (y*=a—ib).
. oo
jstands forf .
fand the like stand forf , ete.
1

1

e(y) means e,

la. Introduction (weighted trigonometric approximation)
Given a non-trivial, even, non-negative, Lebesgue-measurable weight function
A=A(a) with [A<oo, let Z be the (real) Hilbert space L*(R', Ada) of Lebesgue-

measurable functions f with
¥
Fea=fa,  Il=Is-( firea) <

subject to the usual identifications, and putting Z° = the span (in Z) of e(iat) (c<t<d),

introduce the following subspaces of Z:

(8 Z- =29,

(by Z*=2">,

(¢) Z*'~ =the projection of Z* onto Z,

(d) Z>=the class of entire functions f=f(y) (y=a+1ib) with
lim R~! max lg |f(Re%)|<0,

Rfoo 0<0<2n
which, restricted to the line b=0, belong to Z,
(e} 2 =N2%,
>0
(f) Z.=the span of (ia)?, d=0,1,2, etc., [a** A< oo,
® Z7°=N2""

Z ** = since { € Z implies f A € L* (R"), and in that case fA =0 if [ fAe(—iat)=0
{t € RY); the functions f€Z* are of 0 (minimal) exponential type, so-called.
Z+ is either dense in Z or a closed subspace of Z; the second alternative holds

in the case of a Hardy weight:
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Ig A
A o,
1+a

Z oZ" " oZ NnZtoZ%=Z>Z..

and under this condition

Given a Hardy weight A, the problem is to decide if some or all of the above
subspaces coincide; for instance, as it turns out, Z*/~ =2 if and only if A7 =|f[?
with f entire of minimal exponential type, while Z*=Z"" for the most general Hardy
weight.

Z+Z  in the Hardy case, while in the non-Hardy case Z=Z" n2Z*=2Z">, and,
if A€ | also, then Z=2° too. (A€} means that A(a)>A(b) for 0<a<b.)

Z"'~ and Z°" receive special attention below for reasons explained in the next
part of the introduction.

S. N. Bernstein’s problem of finding conditions on a weight A<1 so that each
continuous function f with limjs e |f|A=0 should be close to a polynomial p in the
sense that |f—p|A be small, is similar to the problem of deciding if Z.=Z or not,
and it turned out that S.N. Mergelyan’s solution of Bernstein’s problem [10] and
I. O. Hadatrjan’s amplification of it [5] could be adapted to the present case.

1b. Introduction (probabilistic part)

Ada can be regarded as the spectral weight of a centered Gaussian motion with
sample paths t— x(t) € R', universial field B, probabilities P (B), and expectations E(f):

Efx(s)x(t)}= f DA,

Bring in the (real) Hilbert space @ which is the closed span of z (f) (¢ € R') under
the norm ||f||=[E(f*)]* and map z(t)->e(iat)€Z. @ is mapped 1:1 onto Z, inner
products being preserved, and with the notations Q“=the span of x(t) (c<t<d)and
B =the smallest Borel subfield of B measuring x(t) (c<t<d), a perfect correspondence

is obtained between

(@) Z7, @ =@ % and B~ =B *%=the past,

(b) Z*, @t =@, and B* =B =the future,

(¢) Z*'~, the projection @'~ of Q" onto @, and B/~ =the smallest splitting field
of past and future,
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(d) 2%, @' =NQY, and B*" = NBY® =the germ,
48>0 6>0

(¢) Z., Q.=the span of ¥ (0), d=0,1,2, etc., E[z® (0)*] < oo, and the associated
field B.,

Hh z==, Q“°°=QOQ'°°‘, and B‘°°=£|OB‘°°‘=the distant past.

B~, B*, B%, ete. do not just include the fields of @, @*, @°*, etc., but for in-
stance, if f€Q is measurable over B’", then it belongs to Q°*; the proof of this fact
and its analogues is facilitated by use of the lemma of Tutubalin-Freidlin [11]: if the
field A is part of the smallest Borel field containing the fields of B and C and if
C is independent of A and B then A<B.

B*/~ (=the splitting field) needs some explanation. Given a pair of fields such
as B~ (=the past) and B* (=the future), a field AcB~ is said to be a splitting
field of B~ and B¥, if, conditional on A, B* is independent of B~. B~ is a splitting
field, and as is not hard to prove, a smallest splitting field exists, coinciding in the
present {Gaussian) case with the field of the projection @'/~ (see H.P. McKean, Jr.
{9] for the proof). B*'~ and so also Z*'~ is a measure of the dependence of the
future on the past.

Because Z'=2Z"" for a Hardy weight, the condition A~'=|f|* (f entire of mini-
mal exponential type) for Z*'~=Z* is equivalent in the Hardy case to the condition
that the motion split over its germ (B*/~ =B%*); this is the principal result of this
paper from a probabilistic standpoint. Tutubalin-Freidlin’s result [11] that if A >|a|*
as |a| 4 co for some d>2 then B’* =B., is the sole fact about B°* that has been

published to our knowledge.

2. Hardy functions

An even Hardy weight A can be expressed as A=|k[%, k belonging to the Hardy
class H®* of functions A=h(y) (y=a-+1b) regular in the half plane (b>0) with
h*(~a)=h(a) and [|h(a+14b)|*da bounded (b>0); such a Hardy function satisfies

}’i% flh(a+ib)—h(a)|2da=0 and f|h(a+ib)|2da<f|h(a)|2da (5>0).

Hardy functions can also be described as the (regular) extensions into b>0 of the
Fourier transforms of functions belonging to L?(R',dt) vanishing on the left half line
(¢<<0). According to Beurling’s nomenclature, each Hardy function comes in 2 pieces:
an outer factor o with
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1 b .
lglo(V)l—;tfmlglh(C)ldc (y =a+ib)
and an inner factor j with

liml<1 ¢6>0),  |j|=1 (6=0);

the complete formula for the outer factor of h is

1 -1 d
o(y)=e [E f%; Ig | ()] 1—_:—05] .

Z*h=H*, ie., e(iyt)h (t>0) spans out the whole of H?*, if and only if % is outer.
H?~ stands for the analogous Hardy class for b<0. L*(R! da) is the (perpendicular)
direct sum of H®~ and H?'. Hardy classes H'* are defined in the same manner
except that now it is [|k(a-+1ib)|da that is to be bounded. H'" can be described as
those functions % belonging to L'(R', da) with | e( —iat) kda =0 (£ <O0); it is characteristic
of the moduli of such functions that [lg |k|/(1+a? > — oo (see [7] for proofs and
additional information).

3. Discussion of Z-DZ+—-DZ—NZ+

Given A as in 1 e, Hardy or not, the inclusions Z> Z~ > Z*'~5Z~ n Z" are obvious,
so the problem is to decide in what circumstances some or all of the above subspaces

coincide. As it happens,

(a) either §lg A/(1+a®)= —cand Z=Z NZ* =27
or [lgA/(1+a®)> —cc and Z+Z +Z nZ";

in the second (Hardy) case, [ lg A/(1+a%> — oo, A=|h[* with % outer belonging to
H**, and the following statements hold:

(b) Z~+=Z*"" if and only if {=h/h*, restricted to the line, coincides with the ratio
of 2 inner functions,
(¢) Z*'~=Z" nZ" if and only if {=h/k*, restricted to the line, coincides with an

inner function.

(a) goes back to Szegd; the rest is new.



104 N. LEVINSON AND H., P. MCKEAN. JR.

Proof of (a) adapted from [7]. Z+Z~ implies that for the coprojection. f of
e(ias) upon Z~, fA+0Q for some s>0. Because the projection belongs to Z-,
e(—tas)fe(iat) € Z~ (t<0) and so is perpendicular (in Z) to f; also, f is perpendicular
to e(tat) (£<0), so

Jemtpaceda= [1acttaa=o a<o.

But in view of [[f|A<||flla(fA)}<eoo, it follows that fA belongs to the Hardy
class H'*, whence [lg (|f|A)/(1+a%*> —oo. But also fIg(]f|*A)/(1+a?) < co since
f€Z, and o [lgA/(1+a?) > — oo, as stated. On the other hand, [lg A/(1+a? > — oo
implies A=|h[* with % outer belonging to H**, and Z+Z~ follows: indeed, since A

is even, k*(—a)="h(a), and since %€ H",
fe"““hzda=je"“‘jAda=O (t<0) (=h/k"),

stating that j€Z is perpendicular to Z~. Z~+Z NZ* follows, since, in the opposite
case, Z~<Z* so that Z"=Z and hence also Z~ =Z, against the fact that A is a
Hardy weight. Z=*° =zno Z=**=Z follows in the non-Hardy case.

Proof of (b). Given [lgA/(1+a%)> — oo, let A=|h[* with & outer as before and
prepare 3 simple lemmas.

Z* h=H*' since b is outer as stated in 2.

Z~h=]H* because Z h*=(Z*h)*=(H**)*=H*".

Z*'"h=ipi ' H**, p being the projection in L?(R') upon H?"; indeed, jpj'isa
projection and coincides with the identity just on jH?".

Coming to the actual proof of (b), if the inclusion Z~>Z*'~ is proper, then
Z h=jH? contains a function f=1j(j,0,)* perpendicular to Z*'~h=jpji ' H**, j, being
an inner and o,€ H*' an outer function. Because jpj '=1 on jH?", it follows that
f is perpendicular in L?(R') to H*', so f€H?*", ie., f=(j;0,)%, j, being an inner and
0, EH** an outer function; in brief, j(j,0,)* =(j,0,)*. Because |o,|=|o0,| on the line
b=0, the outer factors can be cancelled, proving that j=j,/7,. On the other hand,
if {=4,/ji, then f=](j,h)*+0 belongs to jH> =Z h. Also f=(j,h)* €H* so that f
is perpendicular in L?(R') to H?', and since f€jH?", it must be perpendicular to
ipi"H* =Z""h also. Z =+Z*'~ follows, completing the proof.

Proof of (¢). Z~+Z~ nZ" in the Hardy case, so if Z*'"=Z~nZ", then Z~+Z"",

and according to (b), j=h/k* is a ratio 5,/4, of inner functions with no common
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factor. f€EZ h={H? is perpendicular in L*(R') to Z*/"h={pj *H?' if and only if
i"'f€H? is perpendicular to pj *H®*, or, and this is the same, to | 'H*', and so,
computing annihilators in jH?", (Z*"h)°={H* n H?>". Now f€jH?> nH* can be ex-
pressed as (j,/7,) 73 03 =ji of and the outer factors have to match, so j,j, =7, 75, and since
j, and §, have no common factors, j, divides §, [1, p. 246] and f€jH* n (1/5)H* .
Because j1H?™ < H*~,Z*'~ h cannow beidentified as[{ H*™ n (1/§,) H* 1°=1H?> n (1/5)H*",
the annihilator being computed in jH2"; this is because (1/4,) H2™ =ij3 H* <jH?*  and
(1/5)H* @ {H*> n(1/4,) H*" is a perpendicular splitting of jH*~. But according to
this identification, if Z*'"=Z"nZ*, then {(j,h)* =(1/§,)h€Z* " h<Z*h=H*', and h
being outer, it follows that j, has to be constant, completing half the proof; the
opposite implication is obvious using the above identification of Z*/~h in conjunction
with (Z~ nZ*Y)h=jH* n H*".

Example. h=(1—14y)""® is outer belonging to H®' and Z =2Z%""; indeed,
[(1+4y)/(1 — ép)]" = j,/4, would mean that 53[(1-+14y)/(1 —iy)]’ =13, and this would make
75 have a root of odd degree at y=i.

An outer function % belonging to H®* is determined by its phase factor j=hA/A*
if and only if dim Z~ nZ*=1; indeed, if dim Z~ nZ*=1 and if o is an outer func-
tion belonging to H?®" with o/0*=j, then o€{H® NH**=Z NZ'h and, as such,
is a multiple of A. On the other hand, if o/0*=] implies o= constant x h, then
dim Z"NZ*=1 because if o is the outer factor of f€Z™ n Z"h ={H?* n H?', then
0/0*=i/j with j an inner multiple of the inner factor of f. (j+1)o is outer [7, p. 76],
and since (j+1)o/(j+1)*0* =], it is a multiple of h. i(j~—1)o is likewise a multiple
of h, and so o itself is a multiple of &, =1, and f too is a multiple of A.

4. Discussion of Z*

Before proving the rest of the inclusions Z~ N Z*>Z% 52 > Z., Mergelyan’s
solution of Bernstein’s ploblem, and his proof also, is adapted to the present needs.

Given A, Hardy or not, let Z*=2Z3 be the class of entire functions f of minimal
exponential type which, restricted to =0, belong to Z, let A* =A(1+a®) "}, suppose
JA* =1, and putting

0" (y) = the least upper bound of |{(y)|:f€Z;+, ||fll\+<1,

let us check that the following alternative holds:
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either ¢ = co(b=+0),

lg* |f| Ig o . )
wup [l = [ 15 %= o, for 1€ 2,0 with Il <1

and Z* is dense in Z,
or Ig o° is a continuous, non-negative, subharmonic function,
Ig o*(y) < lf——b—2—~2 Ig o*(c)dc (y=a+1ib, b>0),
n)(c—a)’+b
lim B! max Ig o" (Re'®) <0,

R1too 0<0<2n

and Z° is a closed subspace of Z;

the second alternative must hold in the case of a Hardy weight as will be proved
in 6b. Because (f(y*)*=f(—y)€Z if f€Z",

o () =0 (y*)=0" (=)
this fact is used without additional comment below.
Break up the proof into simple lemmas.
(@) o*(y)=oo(b+0) if and only if Z* is dense in Z.
Proof of (a). o*(B)=oco(f=a+ib, b+0) implies that f€Z}. can be found with
||f“A+<l, [f(B)|> 67", and hence

1, 1~/(B)
=B (= B)(B)

/
(c=B) ()

<itel

A

.~ cc—:7§ 3} l|£]l .+ <constant x 4.
Breaking up [f—7(B)l/(y—B)f(B) into the sum of its odd and even parts f, and f,
and then into the sum (with coefficients of modulus 1) of 4 pieces:

. . 1 .
f11=%(f1+f;): f12=§z(f1’fr), f21=§1(f2+f;), ]l22=§(f2—f2),

each of which belongs to Zj), it follows that if g€Z is perpendicular to Z}, then
JgA/(c—B)=0 (B=a+ib, b+0), whence
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b
fm gAdc—O (b>0),
and gA=0 as desired. On the other hand, if Z) is dense in Z, then it is possible
to find an entire function f of minimal exponential type with ||1/(c—p8)—f|la<é
(B=a+1ib, b+0). Bring in an entire function g with [g—g(B8))/(y —B)g9(B)= —; then

g
(c—Bg(B)

6>

gl
= a positive constant depending upon f alone X Al

A g1

and so |9(I3) | > constant x§~* "9"A+-

g is now split into the sum (with coefficients of modulus 1) of 4 members g,;, 9,5,

Ja15 §a2 of Z3,, and it develops that

constant x ¢~ HQMA+ <lgBI<1g1(B |+ 1912 + 921 (B)] +|922(B)|
<o'(p) (”911||A+ + ”912"A+ +1192 "A+ + "922"A+)
<20 ([|g:ll g+ + 1 gall,+) <2V2 0" (19 54 + Nl g2 1540

=2V20 |lgll s

making use of [g{¢,A*=0. But since § can be made small, ¢* () is in fact = oo.

(b) Z* dense in Z implies

g'lf|_ [ lgo _ -
Supfmé— i‘+—ag——°0, fOT erA"' ww.th "]‘"A+<1

Proof of (b). Given f€Z;,, if f=a+1ib (b>0), then

b
iR 1g*|f(c)|de

1
1 <~
glil<s [
as follows from Nevanlinna’s theorem [2:1.2.3] on letting Rt oo and using

lim B! max lg |f(Re?)|<0.
Rtoo 0<6<2n

Now apply (a).

1 b
(0) lg 6'(ﬁ)<;tfmlg o‘(c)dc (ﬁ=a+ib, b>0)
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Proof of (c). Obvious from (b).

(d) Z* non-dense implies that o is bounded in the neighborhood of each point
B=a+ib (b>0); in fact, if Z° is non-dense 1g 0 is a non-negative conti-

nuous subharmonic function (b=+0).

Proof of (d). Given f=a+ib (b>0) and a point « near it, take g€ Z; . with

flgll,+ <1 and |g(a)| close to ¢ (a), and let f=1+[(y—B)/(y —)]1[(g—g(x))/g9(x)],
observing that f need not belong to Z, since f*(—a)=/f(a) can fail.

B-a f-x g . 9
c—a c—ag@) g

<||B=a

~
At cC—a

Wy =

“ A +lg@|™M+lg@|™

and so, as in the second part of the proof of (a),

-l <2V2e @ Il <2V2e @ [[E22] a+lo@i ol

proving that o"(«) is bounded on a neighborhood of g if 0" (f) < co. Because 1€Z°,,
0>1(f At =1 is used at this place), so lg 6" >0, and since lg |f| is subharmonic for
each f€Z,,, lg 6* is also subharmonic. But now it follows that if ¢°(f)=co at one
point f=a+¢b (b>0), then it is also o at some point of each punctured neighbor-
hood of f, and arguing as in the first part of the proof of (a) with f perpendicular
to Zy, [fA/(c—a)dc is found to vanish at some point of each punctured neighbor-
hood of f and hence to be =0. Z* dense in Z follows as before, so Z* non-dense
implies the (local) boundedness of ¢*. It remains to prove that ¢° is continuous
(b+0). On a small neighborhood of a=a+b, |f| (f€Z,,) lies under a universal
bound, ¢*. An application of Cauchy’s formula implies that |f| lies under a universal
bound on a smaller neighborhood of «, and so |f(B,) —f(B,)| lies under a universal

constant B times |B,—p,| as B, and B, range over this smaller neighborhood. But then

If(ﬂz)l < If(ﬂ1)|+B|l32_ﬂ1| <0'(ﬂ1)+B|ﬂ2—ﬂ1|’
so that o' (B;) <o (B) +B|B:— Bl

and interchanging the roles of 8, and f, completes the proof of (d).

(e) Z' non-dense implies [ 1g* |f|/(1 +a*) <[ 1g 0°/(1 +a®) < oo.

Proof of (e). Z° non-dense implies the existence of g€Z perpendicular to Zj,
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and since, if f€Z}., (f —f())/(y—p) is the sum (with coefficients of modulus 1) of
4 members of Zj,

* *A
ff_—f,gA=ff_ﬂf(ﬂ)Eyf (f€Zy+, b+0).

Because § is regular and bounded (b>1), {lg|d(a+1)|/(1+a% > — oo; also

c—1
c—a— 1|

b

|t @+l <llghallll,

so that o°(¢+14)< constantx(1+a*)?|f(a+4)|™" and [lgo(a+i)/(1+a®)<co. But
as in the proof of (b),
1 flgo (c+7)

Iglfa)] < 7 e—aprl de (f€Z,.),

and so
lg o* (a) J' } IJ' da 1 J‘Iga’(c-*—i)
da < . Sy - B\ Y ,
f1+a2 a, lga(c+z)dcn 1+a®(c—a)*+1 2 +4 de < o
as stated.

(f) If Z* is non-dense in Z then it is a closed subspace of Z and

lim B max lg o (Re'®) <0.
Rtoo 0<0<2n

Proof of (f).
sin 0 (1+c®) Igo*
(c—R cos 8)*+ R® sin® 6 1+ ¢*

R 'lgo (Re'®) < 1 f de (0<0<m)
7

according to (d). A simple estimate, combined with ¢ (y)=a"(p*) verifies

lim R '1g ¢* (Re®)<0 (0=n/4, 31/4, 5n/4, Tn/4).

Rtoo

Phragmén-Lindelsf is now applied to each of the sectors between =/4, 3m/4, 5n/4,
7x/4; for instance, in the sector [z/4, 37/4], each f€Z, . with {[f{|, <1 satisties

|f(p) €72 | <|f(RY)| e <A (n/4<0<37/4)

l1(y) 70| <o" (R e ™ <B (0=n/4, 37/4)

with a constant B not depending upon f, and so
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lf(y) €72} < B (n/4<0<37/4),

or 0" (Re'®) < BeP  (n/4<0<37/4).

Z closed follows since |f| (f€Z3) lies under a universal bound (¢*) on any bounded

region of the plane.

Mergelyan’s alternative is now proved; several additional comments follow.
Given f€Z ., (y+i) ' fh€ H** while (y+4)"'€H"" is an outer function, so that

lg [(c+i) 2 fh) flglcﬂ|2
2L
lg|fh(z)| f 1+¢? +7t 1+¢?

-3 [l e (L [5) e (L)

and so zmto* (4)<|h(s)|"". Now it is proved that this upper bound is attained if and

only if b7 is entire of minimal exponential type. Using the compactness that

lim R~! max lIgo* (Re'®)<0

Rtoo 0<8<2n

ensures, it is possible to choose f€Z}, with f(i)=¢" (i) and || fll,+=1. As before,

alis) .2 mz 1
2Le =_
I [nf 1+ a? 1+a® =’
so if mto*(4)=|k(i)|!, then the converse of Jensen’s inequality implies that fA is

constant; the other implication is trivial.

o' (i) can also be computed from a Szegd minimum problem:

2
o (z)2 fll +|2A, for fEZ'A+ with f{z)=

as the reader can easily check.

Because of the compactness of Z° used above, it is possible in the non-dense case
to find f=f,€Z;,, with f(y)=0"(y) and ||f]],+=1. f, is unique and is perpendicular
(in Z,.) to each f€Z,. vanishing at y. f-(f) o’ (x) acts as a Bergman reproducing

kernel for Z'A+ since

ff:[f—/(a)]A+=o (fez.)

implies jf: f+=1() ff:A«L 2 ((05)) J'fa|2 ;((0;)
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5. Proof of Z: CZ% (A Hardy or not)

To begin with, each f€Z° can be split into an even part f,=3[f(p)+f(—y)€Z"
and an odd part f,€Z'; the proof is carried out for an even function f€Z* with

Hadamard factorization
oo 2
fp) =y 11 (1 —y—g),
n=1 Vn
the odd case being left to the reader. A simple estimate justifies us in ignoring the
root of f at y=0; indeed f;=0"(1—9%/8%"f/4*" is an even entire function of mini-
mal exponential type, |fs/f| tends to 1 as |p|} o so that f;€2°, and ||fs—f||s tends
to 0 as 6 0 so that if f;€2Z°" then so does f. ‘
Bring in the function

giy)= 11l ( —f) I1 (1—7'262),

2 2
lral<a\  ¥n/) n>ao Z

depending upon a small positive number 4 and a large integral number d. Given
0>0, £>0, and A <oo, it is possible to find d,=d,(, ¢, 4) and a universal con-
stant B so that for each d=>d,,

(@) |f—gl<e (la]<4)

®) lg|<Blfl (4<|a|<d/2)

(¢) |g|<B (la]|=d/2)

(d) g € L*(RY).

It is best to postpone the proof of (a), (b), (c), (d) and to proceed at once to the

Proof that f€Z°*. Using (a), (b), (c) above,

d

I1-gl3 <& [a+2+ 1y |

A

12
A+ 2f B+]])A
a;2

tends to 0 as d $ oo, 4} oo, and ¢ 0 in that order. Because the entire function ¢
differs from sin ndy by a rational factor and, as such, is of exponential type nd, it
follows from (d) in conjuction with the Paley—Wiener theorem that

g(a):f ¢ §(t)dt with f |§|2dt < .
|t <nd

|t |<nd

But [|¢<ase(iat) §dt € Z''1<™ as is obvious upon noting the bound
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] e
|t |<nd

and so f€ N ZI'1<™=2Z°" (see 6a).
>0

2
<276 |g|2fA
A |t]<nd

Coming to the proof of (a), (b), (c), (d) above, it is convenient to introduce

m 2
P =pn(y)=ay I1 (1 —”—2)
n=1 n
and to check the existence of a universal constant B such that @=|sin (na)/p(a)|

is bounded as in

—a
e m

(e) Q/B<je * m<|a|<2m

emEmIEEm gl > 9m,

la| <m

Proof of (e).
Q=TIIs>m (1 —a?/n% for |a|<m, and since 1—c<e (—c), @<e (—a?/(m+1)).
Stirling’s approximation is now used to estimate p below for |a|>m, removing first

a factor a—m in case m<lal<m+1. and then lsin mal is estimated abhove hv 1 or
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on this range. On the other hand, if m is the biggest integer <dd and if |a| <d/2,
then d|a]<m so that the first appraisal listed under (e) supplies us with the bound

Q(a5)= H (1 _a262/n2) <Be—a!6¢/(m+l)<Be—a=6/2d’
n>dod

> di

and it follows that

T

Blf(a)l> II 2
VY

lynf<d

a® 62)
1 — T = ’
n1>_£6 ( n? lg l
as desired.

Proof of (¢) and (d). On the range |a|>d/2,

2

d 2
1-2 <f0 lg(l +%)#(dR)

Ig
Ya

fyal <@
2

a ¢ 242
~#(d) g (1+(ﬁ)+ OF_FRzng

<24#(d) g (3|a|/d)+2fd-gd1%
0
=o[d+dlg (|a]/d)]

for large d, while according to (e), if |a|>d/2 and if m is the biggest integer <ds,

then
Qad) <Be[—1Ldo(1+1g (a/d))].

But then |g|<B for large d as stated in (c), while for d>8/4
lg| <Be[—}dd(1+1g (a/d)] (|a]>d/2).

But for still larger d, dé (1 +1g (a/d)) —8 Ig a>0 for a>d/2, since the left side is positive
at a=d/2 and increasing for a>d/2. Thus

lg| <B/a® (|a|>d/2)
so that g€ L*(R") as stated in (d).

6 a. Proof of Z—NZ+DZ%* (A Hardy or not)
Given f€Z°* = Z*, then e(—iad)f€Z % <Z~, and

. ¥
" (e—tad__ l)f”A< Irillzfledﬂd_ ll "f"A"" 2 (£a|>n|f|2A)

3
<mlflsr2([ ira)

2

is small for §=n"" and n 1 co, 8o that f€Z~ also. Our proof justifies

8 — 642906 Acta mathematica 112. Imprimé le 22 septembre 1964.
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Zo+____ n Z&O= n Z|t|<6;

d<0 >0

this fact will be used without additional comment below.

6 b. Proof of Z°+ = Z- (A Hardy)

Z’* <7 is proved next for a Hardy weight A. Combined with the previous result
Z** > 7, this gives Z°* =2Z-.
Given f€Z°*, it is possible to find a finite sum

fa=2che(@yty) with 0<ti <1/n, ||f—fulla<1/n,
and hence falla<l/n+Nflla<1+]flla-

Phragmén-Lindelof is now applied to obtain bounds on |f,|. Because |f,| is bounded
(b=>0) and f, is entire, f, k€ H?**, g0

[ith@+mpda < [inpa

is bounded (>0, n>1), and an application of Cauchy’s formula to a ring supplies
us with the bound

|[foh|<B, (=1, n>1).
Also, |e(—14y/n)f,| is bounded (b<0), so
le™ f,h*|<B, (b<—1, n>1)

with a similar proof. Next, the underestimate

. . blg |A| g™ |k]
= * 2y | =21
7 lg |h(a+ib)| == lg |h* (a—1b)| = (c—a)2+bzdc>B3(l+a)f1+cz de

>B,|e” %" (1<b<2, B,>0)
justifies the bound
|gn| < Bs for 1<b<2, n>1 with g,=e(—B;9? fa.
Because |g,| tends to 0 at the ends of the strip |b]<2, it is bounded (< B,) in the

whole strip according to the maximum modulus principle. In particular, |f,}<B; on

the disc |y|<2. A second underestimate of |k| is obtained from the Poisson integral



TRIGONOMETRICAL APPROXIMATION ON R! 115

for lg |A|: limgte R™'1g |k (Be®)|=0 (6 =n/4, 37/4), and it follows from the resulting
bound

|fa| <Bs®® (R>1, 0=n/4, 37/4)
and its companion

e f,|<Bye’® (R>=1, 0=5n/4, Tn/4)

combined with an application of Phragmén-Lindel6f to each of the 4 sectors between
n/4,3n/4, br/4, Tn/4, that
|fn| <B10 e(d+1/n)R.

But now it is legitimate to suppose that as n 4 o, f, tends on the whole plane to an
entire function f.; moreover, this function is specified on the line b=0 since || f,—f|la
tends to 0 as n 1 co. Accordingly, the entire function f, is an extension of f, and
since |fo|<Bjge(d R), it is clear that f€Zy as desired.

If A is non-Hardy then it is possible for Z°* to contain Z properly. Indeed let
A(a) be even, non-increasing for @ >0, and non-Hardy. Then, as will be proved in 8,
2’ =Z+7.

A non-Hardy does not ensure that Z* is dense in Z; in fact if 1, g A/14+a%) = — o
while A>1/a* (|a|>1), then f€Z* satisfies [|f[?/(1+a?) <o, and a simple applica-
tion of Phragmén-Lindelof implies that f is constant; in short, dim Z°=1.

6 c. A condition that Z—N Z+=2Z- (A Hardy)
Z-nZ*=Z if A is a Hardy weight and if [TGA < oo (d<oo).

Proof. The idea is that f€Z™ NZ* is regular for b+0 and can be continued
across b=0 if A is not too small (see T. Carleman [3] for & similar argument).

Given f€Z™ NZ*, then fh€ H*, lim, o f(a+b)=f(a) except at a set of points
of Lebesgue measure 0 [7, p. 123], and so the Lebesgue measure of

= . y -1
A_(a.oilz£)6|f(a+zb)|>e s |la| <d)
tends to O as  and £ 0; it is to be proved that

sup f |f(a+ ib)|da

0 b<d

is small for small § and e for each d< co. Bring in the summable weight
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B=A"! (le]<24d)

=1+ (|e|>24d);
then for larged,

(LIf(a+ib)|da)2

éfffh(a-f—ib)[zdaf [A{a+1ib)] ' da

1 b 1 b _
< 2 - _—1 14 —f —_—1 Ald]
lmujﬁa4%ﬁuad@—@“wng c]eL Mﬂd®“®“¢2g °

1 b

and an application of Jensen’s inequality implies

2 b da
. 2 PP R
sup, UA| f(a,+zb)|da] <2 IIIIIAdecoglgg, L c—a)+b n

¥ 2I|f”2Aan Bdc=0 (8, & 0).

6, e>0

Using this appraisal, it follows that
+d

lim j |f(a+1ib) - f(a)|da=0;
v}0J)-a

the analogous result for b<0 follows from a similar appraisal. Choose ¢ so that
f(c+1b) tends boundedly to f(c) as b| 0 and define

9(y)=f flé+ib)dé+i fo fle+in)dy (y=a-+ib).

g is regular (b+0) since f€Z~ N Z* is such, it is continuous across b=0 and hence
entire, so f=g¢' is likewise entire, and all that remains to be proved is that f is of
minimal exponential type.

Because fhE€H**, [|lg|fh||/(1+a?)< oo, and since lg*|f|<lg™|fh|—1g~|A], the
integral §|lg|f||/(1 +a?) is also convergent; also, lg|fh| is smaller than its Poisson
integral, so

1oy L [Rsin 6 1g"|f(c)| de
gl R <2 [

"R*—2Rccos 0+c? (0<0<a),

lg |A| being expressible by its Poisson integral since % is an outer function. According
to this bound, ‘
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R+c
—c

2Rjc
f de do 1g* |f(Re'Y)| < flg Ifc)ldcf llg’—’!dt

Ig*|f(c)]
1+R2)f T

c

7 ) 2
f 1g* |f(Re)|db < = flg HOIR
0 T

and

as a simple appraisal justifies. A similar bound holds for Ig*|f| in the lower half
plane b<0, so that

2R 2n
J de do lg* |{(Re'®)| < B, (1 + R?),
R 0
and it follows that between each large R and its double 2 R can be found an R, with
27 .
f lg*|f(R,€%)|d6 <2 B, R,.
0

An application of the Poisson—Jensen formula now supplies us with the bound
lg*|f|<B;R (R* o0),

and a second application of the fact that Ig* |f| is smaller than its Poisson integral
supplies the additional information that

13;15 R Ulgt |f(Re®)| <0 (0=n/4, 37/4, 5n/4, Tn/4).
Rloo

Phragmén-Lindelof is now applied to each of the 4 sectors between, with the result that

lim R™* max lg*|f(Re)| <0,

Rt 0<h<2n
and the proof is complete.
A second proof of Z'* <Z' can be based on the above; indeed, if f€Z°" and if

f» is chosen as in 6b, then

fl(f—fn)h(a+i)|2da< If=falla<1/n%

and so f(a+4) €23y with A(@+i)=|h(a+14)>. But A(a+1) is positive and con-
tinuous, so
thaqti) < ZZ(aH) N ZX(aH) = ZZs(a+i),

proving that f(a+4) is entire of minimal exponential type.
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Z'4+Z nZ* if, for instance, {*]1A/a’< oo; indeed in this case,

1 ~8t _tiat
—_— = di eZi >0 ,
+iat+é fo ¢ ¢ ¢ ( > )

2 A 52
<a2f A+f a_&
A la)>1 laj<1 0F a*+ 82

tends to 0 as 80, so that 1/ia€Z™ nZ*.

The Hardy weight A=a%e(—2|a| ¥)/(1+a") illustrates the point that f€Z~ n Z*
can be regular in the punctured plane but have an essential singular point at y=0.
Define f=y"" cos (1/y}); then f,=f(y+48) (8>0) is of modulus <|a| " e(1/|a[*) on
the line so that ||f—/;||s tends to O as 8| 0, while, as an application of the Paley-
Wiener theorem justifies, fs= f&°e(iat)fs(t)dt with f; and tf; € L*[0, ). fo,=f€Z"

follows and a similar argument with <0 proves that f€Z~ also.

1 1

hi
while iat+é ia

6d. A condition that genus Z°=0 (A Hardy)
Each { € Z* is of genus 0 and f, 1g maxocpzx |f(Re®)| /R < oo if [, 1g"A(1b)/b*> — oo
or, and this is the same, if [,1g" Alga/a*> — oo.

Proof. To begin with, f, Ig~ A(ib)/b* and {, 1g” A(a) 1g a/a® converge and diverge
together; indeed, since {, Ig* A(a) lg a/a? < f, A < oo, the convergence of ,1g~ A(a)lga/a®
combined with the Poisson formula

. 1 b
lg A(’Lb) =7—tfm lg A(a)da,

leads at once to the bound

lgAGp)| _1 f db
T g Sn)led@ld | paay

1

the second integral converging, since

db Iga
[t~ @t

On the other hand, if §, lg~ A(sh)/b*> — oo, then [, 1g” A(a)lg a/a® is not smaller
than a positive multiple of
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db 1
flg A a‘)da’ f b(bz+a2) f — a +62 lg A(a)

db b
sz (1 A (3b) - lf 2+bzlg A(a)da)

>f lg” A(sb)/b® — constant xf]g*A(a)> — oo,
1
Given [, lg” A(ib)/b*> — oo, if f€Z, then f is of genus 0 and

J‘ lg max |f(Re®)|/R:< oo;
1 (/]

0<0<2x
indeed, since A (b} is bounded (b>1),
A°(B)=A°(~B)=A(iB)/B (b>1)
-1 0<b<1)
is a Hardy weight, and if € Zy, then |fA| is bounded (b>1), |fh*| is bounded (b< —1),
and |f(@b)[PA°db< oo, ie., f(iy)€Z). But then f,|lg|f(ib)]||/b*< oo, and combining
this with f,|lg |f(a)]|/a®<c> and an application of Carleman’s theorem, one finds

that the sum of the reciprocals of the moduli of the roots of f has to converge
[2; 2.3.14], i.e., that the genus of f is 0. Because f*=f+f* €Z, satisfies

~l~lg’“|f+(ib)|b“‘<oo and flg+|f+(a)|/a2< oo,
1 1

it is of genus 0. It is also even, so [, lg maxocpezn |f+ (RE®)|/R? < oo [2; 2.12.5]; the
same holds for f_={—f* € Z} since yf. is entire, even, and of genus 0, so

fulg max |f (Re)|/RA< oo,
0<h<

as stated.

§ g7 A(@b)/b* can diverge even though each f€Zj is of genus 0, as can be seen
from the Hardy weight A:

t
e* A=1 on [0,1)+[2,3)+ete.

=e[—a/lg*(a+1)] on [1,2)+[3, 4) +ete.

A is Hardy since (a lg?(a+1))"! is summable, while

a+1
flg Alga/a’< (alg (@a+1))"'=— oo,
ddodd d

>3

so that [, Ig A(ib)/b*= — . Given f€Z,
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— 2 2arl 2 —2a* 2 —2a*
B=|fla> | liPe >

at some point 2d<a<2d+1 (d>0), so an application of the Duffin-Schaeffer theo-
rem [2; 10.5.1] applied to fe(—y?) on the half plane a>0 supplies us with the bound
|f| e(—at) < B, on the half line a>0. |f|e(ja|!) < B, on the left half line for similar rea-
sons. Phragmén-Lindelsf applied to fe(—(2y)* e”*™*) on the half plane b>0 together
with an analogous argument on b> 0 supplies the bound |f| < B, e[(2 R)!] on the whole
plane, and it follows that f is of genus 0.

6 e. Rational weights
dim Z*'~=d < oo if and only if A is a rational function of degree 2d.
See, for example, Hida [6] from whom the following proof is adapted.

" Proof. dim Z*'~ =d < oo implies Z""+Z, so A is a Hardy weight and can be
expressed as |h[? with & outer. Define the Fourier transform f(t)=(1/2 ) [ e( — iat) f(a) da
and note that if {=%/k* and if p is the projection upon H*, then Z*'~"h=ipj H?* is
of the same dimension d as

[pi tH®*]" =span[pi~'e®h:t>0]" =span [pe*h* :¢>0]"
= gpan [(€h*) " i (s) : t>0]
= span [t —s)i(s) : > 0],
where i(s) is the indicator of s<0. [pj 'H?*']" has a unit perpendicular basis f,, ..., fa,

and h(t—s) =c, (t)f,(s) + ... +cq(t) fa(s) (s<0) with (real) coefficients c,, ...,¢;. Choose
1> --+>ga € C°(— 0,0] vanishing near — oo and 0 with det [[%s fig;]+0; then

1} 0
Zc;f ffy;d8=f hit—s)g,ds (j<d, t>0),
i<d J-o o

so that ¢, ...,c, € C*(0, o0), and it follows that & € C*(0, o) also. Given 0<ty<...<iy,
a dependence with non-trivial (real) coefficients must prevail between %(t, —9), ..., hit;—s)
(8<0), and since % €C>(0, o), it is possible to find a differential operator D with con-
stant (real) coefficients and degree <d annihilating £ on the half line £>0. But this

. cos . - .
means that % is a sum of <d terms t%e sin ct, the permissible g filling out a series
i

0, 1,2, etc., b<0, and the trigonometrical factors either absent or both permissible.
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A rational of degree <2d follows at once upon taking the inverse Fourier transform.
On the other hand, if A is rational of degree 2d, then it is a Hardy weight |%[?

. . ) © ., CO8
with h outer, b is also ratlonal (of degree d), % is a sum of terms *¢¥ _ ¢i as above,

the number of them coinciding with deg’ and the trigonometrical factors either absent
or present in pairs, and dim Z*/~ =d follows from dim span [h(t—s)i(s):t>0]=d.
A rational of degree 2d implies that

(@) h=pyp,/Ps Do Py, P2 being polynomials in iy with roots on the line in the
case of p, and in the open half plane b<O0 in the case of p, and p, and
of degrees dy,d,, d, (=d) with dy+d, <d,,

(b) Z* =2 =Z. = polynomials in iy of degree <d,—d,—d,,

(¢) Z~nZ*=1/p, x polynomials in iy of degree <d,—d,,

(d) Z*'~=1/popT * polynomials in iy of degree <d,(=d),

esp.,

() Z*=Z~nZ"* if and only if h has no roots on b=0,

) Z~nZ"=Z" if and only if b has no roots in b<O0,

(€ Z""=Z"nZ*=2Z"—2""=Z. if and only if h has no roots at all.

Proof of (a). Obvious.

Proof of (b). {€Z, implies f|f[?/(1+a*?< oo, and a simple application of Phrag-
mén-Lindeléf implies that f is a polynomial; the bound on its degree is obvious.

Proof of (¢). f€Z" NZ" implies p,f €ZxoNZko (A°=|p,/p,|*), and since A° is
bounded from 0 on bounded intervals, p,f € Zyo (Section 6c). But then p,f has to be
a polynomial as in the proof of (b) above, the bound on the degree of this poly-

nomial is obvious, and the rest of the proof is a routine application of Z~ N Z*h=
{H? n H* (j=h/k").

Proof of (d). Use the formula Z*'~h=jH* 0 (1/7,) H*" (1=7,/4,) of Section 3 and
match dimensions.

Proof of (e), (f), (g). Obvious.

7. A condition that Z+/- =Z' (A Hardy)

Given a Hardy weight A=|h|* (b outer), Z*'~=2Z" if and only if h is the re-

ciprocal of an entire function of minimal exponential type.
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Proof. Suppose h is the reciprocal of an entire function f of minimal exponential
type; then h=1/f implies f|g.aA™'<oo (d<oo), so Z'=Z NZ" (6¢), and to com-
plete the proof of Z*/~=2", it is enough to check that j=h/h*={f*/f is an inner
function (Section 3(c)). But 1/f="h being outer, it is root-free (b>0), and

1 b
18|f|=;fmlg|f|dc (6>0),

while f*, as an entire function of minimal exponential type with [1g|f*|/(1+a?) < oo,

satisfies
1 b
* <~ P *
so f*/f is regular (b>0) with

Iff/fl=1 (=0)

* l b %
|f /f|<e[; fmilglf /f|dc]=1 (6>0),

ie., f*/f is inner.
On the other hand, if Z*/~ =2 and if p is the projection upon H®, then the
projection of e(iat) (¢>0) upon Z~:

W ipi ek (1=h/R")

=h lipe®th*

0
=h"1j 51— f e*ds je“‘“ et h* de
T o

~12 1 ° ia. —ic(t—s) *
=h 1£ eds||e hdc

=h-l’if° easho-o) (B=g [ehae=F)
Yon 27 ’

—o0

belongs to Z°, and since its conjugate also belongs to Z°,

—iat

L * ias = .
i ), ¢ hds=f(a)€Zy (t>0).

Choose ¢>0 belonging to the Lebesgue set of & so that limso &7 fi™ hds=A(t)+0
and 67! fi**|A|ds is bounded as & | 0.
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t+d
e iat f e hds

¢

27 || fevs — fillar < +

1/1+a?)

t+d
f elas MS

¢

oo
(e—ta(t+6) _ e—zat) f elas hds
t+d

1/(1+a?)

(e — l)f e hds
t+o

)

1/(1+a?)

e
f e hds
t+6

1/(1+a?)

) mefi)”

< constant X §

< constant x 6,

and it follows, thanks to the bound limg 1 e B~! maxXoco<zs 1g o (Re'®) <0, that 6 (fr40— f2)
can be made to tend on the whole plane to some f*€Zx+ as § | 0 via some series
6, > 8,> ete. Going back to the definition of f,=f, it develops that

—h(t)/2nh(a) = [iaf + '] € Za+,

and the proof is complete.

8. A condition that Z°+=2Z

2 =2 if f,daja*lg f(Ae®® = — oo with 0 <B€?t, [,e?P <oo, and
fiB/a® < oo,

A has to be non-Hardy for this integral to diverge since
da _ da Ae 28
J e [ [ Sl [ 2]
Ig (2a) da  [a® [Ae?®
=f17rd“+ e8],
2 -2B
[ [ 257
1 @ 12 l2J)e ¢
>f1g(f“)da+1f daflgsA—fdafl—’;
1 @ 2 J4 a € 1 af

1
> constant + 5 J. lg~A/a?;
1

also, it A€}, then [,daa21g f,Ae™*® and [, 1g"A/a® converge or diverge together,
since under this condition,
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J o< Glense )
[ % [ oo

< f lg A/a®+ constant;
1

esp., if A€}, then Z°" =Z if and only if f,lgA/a*= — .

As to the proof of the original statement, if f,daa™?lg f,Ae = — oo with B as
above and if Z°" =Z, then ZY“°+Z for small 8, and it is possible to find f€Z
with [ fe(iat) Ada=0 (|t|<4). But

[naes<is([se>)t @sn,
so that f——lgflflAe"B — oo,

and according to Levinson [8, p. 81], this cannot happen unless f=0.

9, Discussion of Z.

I. O. Hadatrjan’s contribution to the Bernstein problem [5] is adapted as follows.

Consider the span Z.=Z., of (real) polynomials p of iy belonging to Z, let
Ja**A<oo (d>1), let o.(y) be the least upper bound of |p(y)| for p € Z.n+ with
l»]la+ <1, and let us prove that the following alternative holds:

either ¢.=oco (b=+0),

.
supfﬁ%l:fl*gg'—z=oo, for p €Z.p+ with ”p”A+<1,

1+a l+a
and Z.=7,
or lg 0. is & continuous, non-negative, subharmonic function,
Ig 0.
<
f 1+a? 7

1 b .
lgO'.(‘y)g; J‘mlgd.((?)dc (‘}l—-a+’bb, b>0),

lim B! max Ig ¢.(Re'®) <0,
R?too 0<6<2n

and Z.+7Z;

tn the second case, Z.<Z, the two coinciding if and only if o.=0¢" (b==0).
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Proof. The proof is identical to the discussion of Z* (Section 4), excepting the
final statement to which attention is now directed.

Given ¢.=0¢"< oo while Z.+Z*, then it would be possible to find f€Z4, f=0,
with [f*a?A=0 (d>0); this implies

ff*p_c—__ggf_)A=0 (B=a-+ib, b+0),

and it follows that

*A *A —3 .
cf—ﬂ =U<cfﬂ)1;(ﬂ>\< z—:s"lAlp<ﬁ)l‘lllpllA+ (B=a+ib, b=+0),
esp.,

Chose g€ Zj+; then [ f*gA(c—p)™" tends to O at both ends of a=0 so that

x99 .
i=[r 4P

*A
(4

satisfies | (i) | < o(1) + |g(it)] ( b

=o(1)+|g(ib)| o(o- () )
=o(1) +{g(ib)} o(0" (i6))
=o(1) (|b]1 o),

and since § is entire of minimal exponential type, Phragmén-Lindelof implies §=0.
But then [f*g(c—B) 'A=g(B) [f*Ac—p)'=0 if B is a root of g€ Zy+ (b+0), so
taking g=(y—1)f €Z+ and B=1, ||f|?=fg(c—i)"'A=0, and the proof is complete.

10 a. Special case (1/A=1+c,a’+ ete.)

Haédatrjan [5] states the analogue for the Bernstein problem of the following result:

If 1/A=1+c¢a*+c,a*+ ele. (cy, ¢y, ebc.>0) and if [a**A<oco (d=0), then
either A is non-Hardy and Z.=Z or A is Hardy and Z.=27'.

Proof. py=2ncacy,y®™ can be expressed as |gs|% ¢, being a polynomial in iy of
degree d with no roots in the closed half plane 5>0. As d 4 oo,
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] lg A?
Ig|g.()[*= fglqdl? ngz

1+¢? l1+¢

) A
while "%"A*'—‘—fficzT L,

so either [1gA/(1+c?) = — oo, g.(i)=oo0, and Z.=Z or A is Hardy (A=|k|*> with &
outer). Because |g,|*=p,<A"!, an application of Lebesgue’s dominated convergence
test shows that A™'=1limg4w gs (6=>0) in the second case.

Now in the second case, if f € Z) is perpendicular to Z.,, if g € Zy+, and if

pr=[r 2

as before, then

Adc Ad Adc 12
i) [ 20| [ Lol <||f||A( '—L';b—) <l ([25) " = Wrhateror,
¥ *
and so lg‘(ib)lS‘ /cg_AiZC f Adc
E+1 | oy g(ib) ffasAde
<"f"A(fc +b2|g| A dc) +dlil(f) qd(cb) ’f c—1b

= o(1) + |gh(i®)| || f|| a (7w /D).

Since the Poisson integral applies as an inequality to lg |(y +%) 'gh| and as an equality
to g |y +il,

1 b b(c*+ 1
oo <e |2 (i tglont] <2 [ Digpar —o),

and so limy 4 |§(3)| = 0. Repeating the proof as b | — co justifies lim, - o |§(4b)| =0,
and now §=f=0 follows as in Section 9.

A special case of the above is the fact that if » is the reciprocal of an entire
function and if the roots of ! fall in the sector —3n/4<0< —n/4, then Z.=2Z";
obvious improvements can be made, but Z.=2Z' does not hold without some condi-

tion on the roots of ™' as the example of Section 11 proves.
As a second application, it will be proved that
Z.=Z" in case Ala)=e(—2|al’) (0<p<1);

similar but more complicated cases can be treated in the same fashion (see below).
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Proof. It suffices to construct a weight A°=(1+c,a®+ete.)”! with non-negative
coefficients, positive multiples of which bound A above and below. Define #(R)=
[OR?+1/2] with an adjustable >0, the bracket denoting the integral part, and let

st [ ) vam-ae [
—
with S o+ 1/21+1/2 (Bo+1/2)
e (a®+ ™) c
and J2=2a26 f (a®+c*?) 1 de.
0

In J,, subtitute ¢c=|a|?t and let 7' =(2/p) f, (1 +¢*")"}, obtaining J,=2|a|’. Coming
to J,, note that the numerator under the integral sign is periodic and that its average
over a period is 0, so that J, tends to a constant as |a| 1 co. J, is then bounded,
80 A is bounded above and below by positive multiplies of A° and the proof is
complete.

Z.=Z" also holds in the more general case of a Hardy weight.

A=Awp(—JTV%9a)

provided w €1 and w{c) lge tends to oo as ¢ 1 oo.

Proof. Under the above condition it is possible, according to Y. Domar [4], to
find a reciprocal weight 1/A°=1+¢,a®+ete. with non-negative coefficients such that
A is bounded above by a positive multiple of A° and below by a positive multiple
of A’=A’(fa) with a constant depending upon 6> 1 alone. Because

Z'A0=Z.AGDZ'A’
each f€Z, can be approximated in Z,s by a polynomial p so as to have

flf(a/ﬂ) —p(a/0)[* A< constant x 8 || f —p||%s
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small, and to complete the proof it suffices to check that fs(a)=f(a/0) tends to fin
Z, as 0] 1. But this is obvious from the fact that

ol =0 I aGa~ Ik @41

while f, tends to f pointwise under a local bound.

By the same method it is easy to prove that if A has the above form with
w€ t and f,w/c®=c (non-Hardy case), then Z.=Z.

Domar’s paper was brought to our notice through the kindness of Professor

L. Carleson.

10b. A special case (A=e—2lalt)
A=exp(—2|a|t) falls under the discussion of 10a, but it is entertaining to check
Z* =Z. from scratch using the following special proof.

‘A=|r|* with

e~ 1/2¢

— _ 3 ,—indy * iyt
h=e[—(2y)? e "] fo e (2nt3)*dt’

and A is outer since

. 1 {lg|h
Ig |(i)| = ~2*=,—,f15;17|2

(see [7, p. 62]).
Given f € Z}, a simple application of Phragmén-Lindeldf supplies us with the bound

fy)<Be[(Y2+8)VR] (6>0);

hence, |f(y*)|< Be[(l@ +0) R), and according to Poélya’s theorem [2; 5.3.5],
1y® = fe”’”g = fe"'"’g = fcosh (yw) g dw,

ie., )= fcosh (V;—/w) gdw,

the integral being extended over |w|=2%+§ and g being regular outside |w|=2}
and at oo. Accordingly, if f€Z* is perpendicular to Z., then
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0= ffadA da = fgdw fcosh (Vaw) a*Ada
= fg [f: cosh (Vaw) afe et 4 f: cos (Vaw) (— a)® 8"2“*]
= ng“ [f: cosh (Vaw) ety J:o cos (Vaw) e'z"*]
=2 ng““ [f: sinh (aw) e 2* + f : sin (aw) e‘2"]

1 1 1 1
— D2d+1 _ _
J"q [2——10 2+w+2i+w 2i~—w]

16w
- d+1
ng2 16— wt’

Because [e"”g=f(»?) is an even function, [guw®=0 (d odd) and since w/(16 —w*) is
a sum of powers w® (d=1(4)), it follows that

1 1 1 1
= — - =
0 ngd[2—w 2+w+2i+w 2i—w} (¢>0),

d s 0= 1 - 1 + 1 - 1 dw
and so I o—wrt 2+w—1t 2itw—t Zi—wtt

=g(t+2) +g({t—2) —g(t — 2¢) —g(t + 27)
for small [¢].

Draw four circles, each of radius 2}, having centers at 2, 2¢, —2 and —2i re-
spectively. The circles with centers at 2 and 2¢ are tangent at 4, which is 1+4. The
circles with centers at 2 and —2¢ are tangent at B, which is 1 —¢. The point C is
—3++¢ and lies on the circle with center at —2. Using this diagram depicting 4
discs on each of which just one of the summands can be singular, it follows that
git—2)= —g(t+2)+g(t—2¢)+g(t+2{) can be singular only at A and B since the
second member is non-singular on the rest of |t—2|<2}. Now if g(t—2) is singular
at 4, then g(¢+2) is singular at C=A4—4 and that is impossible, so ¢g(t —2) cannot
be singular at A, nor, for similar reasons, at B. But then g is entire, and by Cauchy’s

theorem, f(¥?)= { cosh (yw) g =0, completing the proof.

Z =Z""%Z NZ*=2Z=Z"" =Z. can be proved at little extra cost. Z~ n Z* =2°
is obvious from Section 6, and so it suffices to prove that j=h/k* =e[2isgn (a)|a|!]
is not a ratio j,/§, of inner functions (Section 3). But in the opposite case, jf € H**
(f=14,k), so that
9 - 642906 Acta mathematica 112. Imprimé lo 22 septembre 1964,
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02% fe‘“”jfda (t<0)

= Re [f eviat e”“é)‘da] =T1m [f ebt e('z.b)z’(i—l)f(,’:b) db] s
0 0

since

72
—- i inteifi2 .
f e iRe te2tR e f(Reie) Reibede

0

2
_ogpt _emnt -
< f gBstubt 2R sind2 - 2R cos @2~ pap
[1]

tends to 0 as B4 co. Because f=f* (a=0),
0 =Tm [¢®F (b)) =sin (26) e (ib)  (b0),
and that is absurd.
An entertaining illustration of the delicacy of the projection Z*/~ is thus ob-
tained. Z''"4Z* as was just proved, so naturally the condition that Z”’-_-=Z', to
wit, that A=|f{"® with f entire of minimal exponential type, does not hold. But as

proved in 10a, e(—2]a|*) is bounded above and below by positive multiples of such
a weight.

11. An example (A Hardy, dim Z.=c0, Z'=Z" +Z.)

4 weight A exists with the following properties:

(@) flgA/(1+a*) > — oo, ie., A is a Hardy weight,
(b) fa** A< oo (d=0), ie., dim Z.= oo,

(€) Z.+2"=2"".

Consider for the proof

6n:1/3inhnny y+n:%2‘i6nv Y-n= ~n2~i6n;

1/h(y)= 11 (1—1), A=1hp,
fn|>0 n
zsinnV;jsinh&'zV;—/z
a*y

f ,,91(1”?7;)’ and g=f/(1—y2)=n2(1~y—i),

nz

and break up the proof into a series of simple lemmas.

(a) 0<Bl<‘fh|<32 if l'yinﬂ?% (n>1), while 0<Ba<‘fhl l('y-—-yin)/(y$n2)‘
<B, if lytn®<i; a similar appraisal holds with k* in place of h.

(b) g€Za.

(¢) A is a Hardy weight and §a**A<co (d>0).

(d) g¢Z.s.
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Proof of (a). Obvious.

Proof of (b). g is entire of minimal exponential type with ¢g*(—a)=g(a), so it is
enough to check that | g|la<oo. But (a) supplies us with the bound |fh|<B;, so
|gh| < Bs/(1—a?), and since |gh|< Bg for small |a|, [|g]la<oe.

Proof of (¢). h™! is entire and free of roots in the closed half-plane b>0, and
Ala+ib) €| as a function of b>0, so it suffices to check

nit+n+}

faZdAS > @ A<oco  (d>0).
8

n=3 Jnt-n+1

But on |a—n% <4,

o (a—n?)? a—n’ 7’a a—n? _
A<Bilflz I Y | | ‘ ‘: : = | =\ <B;nPe ™,
(@~n")"+0q 1 sinh Va [sinzVa
2d+6 ,—2nn
n?*8e
and hence - a®*A<B,

(a—n2)?+ 62
on this range, while on the rest of R’ —n+1<a<n®+n+1,

aZdA < (,n+ 1)2(13%']:]—2 <B9,n2d+6 e*2nn’
so that

nhinry da
a2dA <Blo n2d~r6 e—Znn 5 2_‘_,',1’241-}»7 e~2nn <Blln2d+7 e——nn’
ni-n+} a*+ 6z

which is the general term of a convergent sum.

Proof of (d). g € Z., implies the existence of polynomials p, € Z., with ||g —ps|a <9.
ps can be supposed even since g is such; also, as § | 0, ps; tends to g on the whole
plane under a local bound (o.< o), so that po.(0)=¢(0)=1, and according to Hur-
witz’s theorem, the roots of p; tend to the roots +2% +32 etc. of g. Rotate the
roots of ps onto the line b=0 and put its bottom coefficient = 1, defining a new
polynomial g5 with |gs]| <|ps/ps(0)] (6=0) and | gs||a<||pslla/|2s(0)| bounded as § | 0;
it is this boundedness of | gs]|s that leads to a contradiction.

Evaluate | ¢3h*, integrating about the semicircle Re' (—7/2<6<x/2) and then
down along the segment joining ‘B to ~+¢R with R half an odd integer. Bound the
integral on the arc with the aid of |fA*|<B, and let R 1 oo, obtaining

L ereinyap- S G0N _
o | = 5 TR,
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Because A*(ib) >0 and |gs(ib)| > |ps (3b) /ps(0)|, an application of Fatou’s lemma combined
with |fh*|> B, >0 justifies the under-estimate:

Qoi 5 [0 > By [ 1/ By [ 0 .
1 1

Qs is now estimated again with the contradictory result that it is bounded
as 0 | 0.

f (gsh)®2=0, the integral being taken around the arc Re'®(0<0<x/2), down the
segment joining ¢R to 0, and thence out along the segment joining 0 to R with
R half an odd integer. Bound the integral along the arc as before and let R %} oo,

obtaining

[T whran = = [t @<lol < B

the first integrand being positive.
§ (@shY (y —y,)/(y —y2) is now evaluated along the same curve, giving

I 2O —yn [T 22TV, 20, %y,
fo (gsh)* (ib) Fye %fo (gsh)* (a) P 4710, (gsh)" (yn);
this supplies the bound

4ndy |gshlyn)[* < J; (gsh)® (3b) + fo |gsh |2 (@) < 2B;5= By,

and it follows that

a B2 (yn)
<B & ! .
or < Bue 2, (/8 D
.2
But, since [(y —y7) *| < B, 7= car Y=y

7]
[(1/R*Y (ya) |t <2B,e™™/|f(¥2)|,
while [hym) |2 < 4Bs2 | f(ym) %,

and combining these bounds leads at once to the desired contradiction:

Qor < B“ngllf(y:)l < Bm”zln‘s < oo,
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Z* is sometimes closed under f—'f ={f’, but this can fail; indeed in the above case,

- Bf (a—n% - n®d2
[f2 (@—n®)2+062" "1 (a—n?)®+ 62

A (la—n2| <V8,),

while on the same range, ['g|>Bye™ n"”

so that ||'g||]a=co because
4o} n89% 214 +f
-8 -8

m_&(a—n%2+6§

is the general term of a divergent sum.

12. Hardy weights with arithmetical gaps

Consider a weight A that bounds above a decreasing Hardy weight |h|* (b outer)
on an arithmetical series of intervals:

la—(2n—1)c|<d (0<d<e, n=0, 1, etc.)
but is otherwise unspecified. Then

(a) Z* is a closed subspace of Z,
(b) Z'>Z°, and hence in accordance with Section §, Z*=Z°*.

As an application, it is easy to derive the lemma of Tutubalin-Freidlin [11}:
that if A>|a|™®" (m>0) far out, then Z°* =Z.; indeed, according to (b), f€ Z°* is
an entire function of minimal exponential type, and since oo > | |f|?/(1+a?)™, a simple
application of Phragmén-Lindeléf implies that f is a polynomial (of degree <m). Ac-
tually, it is enough to have A>|a|™®" on an arithmetical series of intervals, as the
reader can easily check using (b) and the Duffin-Schaeffer theorem [2; 10.5.1].

Proof of (a). Similar to that of (b).

Proof of (b). f€Z'" implies the existence of a sum f; of trigonometrical func-
tions e(iat) with |t| <8, real coefficients, and ||f—fs|[a <9, and it follows that
2n-1)c+d

B> 3> f T b > 24 foh(an)

2n-1)c—-d

for some |a,—(2n—1)c|<d with a constant B, not depending upon . Bring in an
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entire function g of exponential type < & with [g|<|h| far out on =0 and lg|>}
on the two 45° lines: to be explicit, let

(1= Tl eos (y/7)

with 1<y, <y, <ete.

and #R)= > 1=0 (B<1)

yn<R
: R -1
=[3f @Zh'—dA] (R>1),

1

the bracket denoting the integral part and |A(1)] being supposed <1, choose n, so that

% dB
lgn i< TI e"’”"=e[Rfc#—(B—)] (C=Yn; lyl=

n=n,

<e[R #(B)] [3Rf fBlgW ldA]

Ig||”? f“’lglhl1 ]
[:m’ofl 44+ 3R 4B

eR

<e,

and use the obvious [cosa|<e(—a?/3) (|a|<1) to bound |g(a)| for large |a| as follows:

et |gla)| < H AR [ _Q; aj #—(;i)]

Vn/

a” #(R)—#(Ial)]
[3 Jia R?

(o2 1
<e f f lglhl dAd~R f“_ @]
lal Jla]

3 ) B
_ al? Ig [A]™?
—-e_ 2J;a| o dR+ %

< ;f 148 o

<[h]et.
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fsg is then entire of exponential type d-+¢ and |fsg(a.)| < B, with a constant B, not
depending upon 4. An application of the Duffin-Schaeffer theorem [2; 10.5.3] implies
|fsg] < B; on the whole line b=0 if d+¢ is small enough, B, being likewise inde-
pendent of 4. Phragmén-Lindeléf now implies that |fsg|<B,e[(d+¢) R], and since
lgl>% on the two 45° lines, |fs|<2B,e[(0 +¢) R] there. Phragmén-Lindelsf is now
applied to each of the 4 sectors between the 45° lines; this supplies us with the
bound |fs| <2B,e[2(6 + &) R], establishing the compactness of f, as é | 0, and it follows
that each limit function f,, is entire of exponential type <2e with |f—fo:|[a=0.
But this means that f is the restriction to b=0 of an entire function of exponential

type <2 and since ¢ can be made as small as desired, f € Z,, and the proof is
complete.
13. Entire functions of positive type

Given a Hardy weight A=|h|* and a positive number o, let Z® be the class of
entire functions f=f(y) of exponential type <p:

lim R~ max lg|f(Re")| <o,

Rtoo 0<6<2n
which, restricted to the line b=0, belong to Z. Then

700 = gltlse+ _ n Z|t|<q'.

e'>e

Proof. We first prove the inclusion
A=Y AL
If f€Z"<e% then it is possible to find (real} sums of trigonometrical functions:
fuly) = 2 ci eliyti)
with |t;|<p+1/n and ||f—f.[a<1/n. Given 6>1/n, f,e[iy(o+8)]h belongs to H*,
and much as in Section 6b,
lfuh| < B e@ 9% (h>1), |fo2*| < B, (b< —1),
and lfal<By (y|<2)

with constants B,, B,, B; not depending upon n. An appraisal of % on 0 =n/4, 3n/4
and of * on 0=5x/4, Tn/4 leads to

ol < By
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much as in Section 6b, B, being likewise independent of n, and since ||f — f,|la < 1/7,
it follows that as n 4 oo, f, tends on the whole plane to an entire function f. of
exponential type <p, coinciding with f on b=0. But then f€Z, and the inclusion
is proved.

As in Section 5, it suffices for the proof of the opposite inclusion:
7t < Zlti<e+

to consider even functions f€ Z*® with Hadamard factorization

)= T1 (1":—)

Because " "
Ig*|f@)P<Ig* (@) [fA) ~lg" A<|f(@) A —1g"A,
| satisfies f%%?‘l < 005

it follows that L
lim R~*1g|f(Re")| <po|sin 6|
R} oo

[8, p. 27] and that the roots of f in the half-plane a >0 have a density D<g/x:
lim n/|ya| =D
n—>oo

(8, Theorem VIII]. Also, it is permissible to assume that the roots of { are real. Consider
for the proof

¢ 2 2
K =T1(1-%)he) witn o= T1(1- )
Then |f, (a)| <|f(a)| and the roots of f,(y) have the same density D; this implies [2; 8.2.1]
that f, is of type D. Hence f, is also of type =D and so f, € Z*¢. But then (P -1y [ €2,
so (Y®—1)"f,€Z"® (n<d). All these functions have real zeros and hence we may assume
them in Z!<¢*_ f{ is a sum of these, so f, € Z2""/<¢*, and since ||f—f,||a is small for large
d it follows that f€ ZII<e* also. From here on the roots of f are real: 0 <y, <y, < etc.

Given o' >p, let us grant the existence of an entire function g of exponential
type <o’ with ||f—g]|la as small as desired and g € L*(R"). As in Section 5, an applica-
tion of the Paley-Wiener theorem implies f € Z"<¢, and f € Z¥<¢* follows. Accordingly,
it suffices to produce such an entire function g.
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Given a small positive number &< 1, define

d=(¢/8):, D,=D—-48/2, D*=D+6/2,

a=11(1-%). - 1T (1-ZF), se- 11, (1-25),

ynsd n n>Dsd n>ed

and let us check the following lemmas leading to the properties of g=g¢,¢,9, needed
for the proof of f€Z'1<¢" indicated above; in the lemmas, ¢,, c,, etc. denote positive
constants depending upon ¢ alone, and it is understood that if ¢ andjor d is un-
specified, then ¢ has to be small enough and d large enough, the smallest admissible
d depending in general upon e. At a first reading, just note the statements of lemmas
(a)—(g) and then turn to (h).

(a) g is an entire function of expomential type m(D*+e)<p+n(d/2+ ).

Proof of (a). Obvious.

(b) |f—g| tends to 0 as d 4 oo independently of e(<1) and of |a|<A for each
A4>0.

Proof of (b).
e(—24%82/n?) <1—a?/n?<1 (la|<4)

for-n>ed-and d>24, so that as d § o

e(—24% Zdezn“z) <ggla)<1

is close to 1 independently of ¢(<1) and of |a|<A4.

() |gl<B|f| for |a|<d/2, B being the universal constant involved in the appraisal
(e) of Section 4.

Proof of (c). Because the roots of f have density D,
n/D*<y,<n/D, (n=mn)

with 7, depending only upon D, and D* and so only upon e. Given d >z, and
0<a<d/2, if § is so small that D*/D,<2, then

=1L, L0 %)

n n>Dyd n

’ D*2a2
so that /991> T1 (1—- : )

Dyd<n<D*d n
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and since, in this product,

2 2/ 2 (D+06/2)*
D*2a?/n <4———_(D—6/2)2<%
for small §, the bound 1—c>e(—2¢) (0<c<}) implies

//919.] > e[~ 24*D* 5 n]>e[—3a*(D* — D,)/d]=e(—3a%3/d).

D,d<ngD*d
On the other hand, the appraisal (e) of Section 5 implies
gs<Be(—a’e/d) (0<a<d/2),
and since 34 <& for small ¢, the desired bound follows.
@ lgl<e, (4/2<a|<D,d/D").

Proof of (d). Given d>2n, with n, as in the proof of (c), it.is possible to find

¢, and ¢, depending upon n,=n,(¢) (and so upon &) such that

D*2a2 D2a2
et ()

n<Dya D*a<n<Dyd n
for d/2<a<D,d/D". Define c,=c,/(nD"); then

|9:9,| < ¢;a™ " [sinaD* a|J, /T, T,

2 N*2
a-Dz —1)’ Jy =

,n2 i D*2a2 (
Dyagn<D*a n

Jio= 1 et J,=

2 *2 27
D3a<n<Dyd W — D*%q

2

D*2a2)

1—
Dyd<n<D*d ( n

J, is supposed non-void since the proof simplifies in the opposite case; also, it is
supposed below that the smallest integer n,>D*a does not exceed D*a+ 3}, the
discussion of J; being simpler and that of J, just a little more complicated if n,>
D*a+}. Bring out the leading factor of J,:

n} — D, %a? m—Dya_ 1+ad _ e?
~=
nf—D**a® "n,—D*a n,—D*a n,—D%a’

the product of other factors of J, does not exceed
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o)
=¢ g1+ ——
D*a+;~l<1n<D*d n—D*a D*a+§fn<D,d & n~D*a

Dyd—D#*a .
<e[2f lg (1+ad/c) dc]

0.

D
<e[2a6f \lg(1+1/c)dc]

0
since D,d <2D%a, and using the bound lg (1+1/c)<1/e, it follows that

ad aé%

J1<e[2aé(fllg(1+1/c)dc+lgD*/6)] S .
0

n,—D*a “n,—D*a

for small 4. Stirling’s approximation is now applied to obtain an underestimate of J,
for small §, using D*a—(n; —1)>1:

D*a—n__T(ad)

J >
2 * ad+1
Dya<n<D*a n (D%a) s

~ €y (aa)aa—;- e—llﬁ (D*a)—a6—1
>cy(D*a)"(8/eD")"

=c,(D*a)" e [— ad (lg-’is—*+ 1)]

3
>c,(D*a) e

with a universal constant ¢,. Similarly

Jy>

(n - aD*) - rD*d—a)
pa<nxpsa\ n ) I(D,d—aD*+1)(D*d)y¢!

[D* (d — )P @ D=k g~ D*d-a)
s (D*d - aD*)D'd—“D”-% e—D‘d+aD* (D*d)dd«i—l:

ev&d D*(d_a) Dyd-aD*-} d—a éd
(D.d— aD*) D*d [D*d—aD*] ( d )

=

2 Cg

—ad

> o (1-2 M>c e 29q72 1——]:)—* 66/(41)*1))
“*p'D,a*\" 4] T D* .

>c;a7 e[ — 26a—~ 0d1g (D*/6)]/(4D* D,) > csa 2 e(—Véa)/(4D* D,)

with a universal constant c¢;. Combining the bounds for J,, J,, J; and using 0 <n, —
D*a<1, it follows that
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sin zD*a
n,—D%a

3ast cs+8 sast a5t

cat3 ¥ <ca? e < cpe

|9:9.] < cea

with ¢, depending upon ¢ alone, d being increased if need be so as to achieve
Ccg+8

a®*®<e(adé?). But now the familiar appraisal (e) of Section 5 implies
t
lgs| < Be~*%",
and so l91=191929s] < Be;=¢,,

completing the proof of (d).

(e) lg|<es (D,d/D*<la|<d).

*2 2
Proof of (e). lg.| <ega®™ T] (D 2“ —1)

n<Dya n
for D,d/D* <a<d with constants ¢, and ¢,, depending upon n,=n,(¢) alone, so

Iglg2| <cpa™ Isin ”D‘al/"«i

*2 2 D*
with J,= 127 1-=2
DyagngD*d n Dyagn<Ded n
ng—D*a| I(D*d— D, a) I'(ad)
= n2 (D#d)D‘d-D.aﬂl ’

n, being determined from —3} <n,—D"a<}. Both gamma functions contribute to this
underestimate if, as is supposed below, D*a is not too close to D,a or to D*d; the
appraisal of J, is similar in the opposite case. Stirling’s approximation is now applied

to obtain
J4> 65 |n,— D*a|(D*d) T J

i —e|-p*a(t =% 1g (-2
with J5—e[ Dd( ) Ig T4

[ @b D*d
and J6=e[—-D d(m) lg (—ag-)]

Because d—a<d(1—D,/D*)=dd/D* and ad<dd, both J; and Jg are bigger than
e(—adt) for small 4, so

J,>¢y3|ny— D*ala % e(—3a V),

and the proof is completed as in (d) above.
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() lgl<en (d<|af<2d).

D* 242
Proof of (f). lg:| < ersa T1 ( 2 _1)62"6
Ded\ T

n<Dgy

for d <a<2d, the exponential accounting for the factors of

*2 3
D a_l)

2
Dyd<ngDed ( n

that exceed 1; the rest of the proof is similar to but simpler than that of (e).

@ lgl<ecy; (la|>2d), and g€ L*(RY).

D*zaz
Proof of (g). |g1] < o0 TI ( A 1)
ngDsd \ N
for a>2d, so |g192] < €00 |sin 2D*a| < cyga®™,

and using the familiar appraisal (e) of Section 5 to bound g,, it develops that

|g| < ch_ac“ e—ed(1+2(18ald))

But dlg (a/d)>lgl(g2% Iga (a>2d),
and SO Igl < 623 acu—ZSdls‘leg@d)

is bounded (a>2d) and belongs to L*R') if d is large enough.
(h) If—glla can be made as small as desired by appropriate choice of & and d.
Proof of (h).

A4 d/2 ]
Hli-gli< [ l—ab avemerp 1A+ [~ it
0 A4 a2

with an adjustable number 4, a universal constant B, and ¢,, (= the greatest of
€;, Cg €4 C7) depending upon e alone, provided ¢ is small enough and d(>24) is
large enough, the smallest admissible d depending upon &. A is now chosen so large
that (2B+1)* (7 |f?A<1/n and then & is chosen so small that ¢, =cy(e) < oo and
d is made so big that neither [¢'|f—g|®A nor [Fa(cy+|f])*A exceeds 1/n, with the
result that ||f—g||A <6/n.
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14. Another condition for Z+/— =Z% (A Hardy)

Because Z'"I<¢* js closed so is Z, but it is possible to go another step and

prove that,
if oe(y)=suplit)] f€Z2 . lfllar<1,
then lg 6* is a non-negative, continuous subharmonic function such that

lim B! max Ig 6¢ (Re'®) = p.
Rt 0<0<2n

Proof. Only the last statement needs a proof. Given f€Z¢., (y+14) ‘e fh€ H*",

and so

drefn| 1 bde |1 .
<= — (y=a-+ib, ;
g y+1}l nf(cﬂa)2+b2]g|a+z| (y=a+ib, b>0)

this leads at once to

1 bde
-bp .0 il T o0
Igle 0 (y)]<nj(c—a)2+bzlg6

since h(y)/(y +1) is outer. flgo?/(1+a* < oo is now proved as in Section 4 (e), and

it follows that o

}liimo R1'1g o (Re?) <g|sinf|
for 6=n/4, 3n/4; the same holds by a similar argument for 0=>57/4, Tn/4. An
application of Phragmén-Lindel6f as in Section 4 (f) completes the proof that o°¢ is
of type <p, and that the equality must hold follows since e(—iyp)€Z2, .

As an application of the bound for ¢°¢, it will be proved that if ZI<¢* >Z*/~,
and indeed if the projection of e(ias) upon Z~ belongs to Z"<¢* for a single s>0,
then Z*'~= 27" Suppose that projection belongs to Z'*<¢* for a single s> 0; then it
does so far a whole (bounded) interval of s with a larger g, and selecting such an s
from the Lebesgue set of
=t f e~ f(a) da

27 Jo

JT

and arguing as in Section 7 with ¢*¢ in place of ¢°, it is found that A™'is an entire
function of exponential type <p. But then j=h/h* is inner as in Section 7 so that
Z*-=Z"NnZ* also Z~ N Z*=2" since 1/A is locally summable (Section 6¢); and so
ZV- =7 =7 as stated.
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