WEIGHTED TRIGONOMETRICAL APPROXIMATION ON \mathbb{R}^1 WITH APPLICATION TO THE GERM FIELD OF A STATIONARY GAUSSIAN NOISE

 \mathbf{BY}

N. LEVINSON and H. P. McKEAN, JR.

Massachusetts Institute of Technology (1)

Contents

1 a.	Introduction (weighted trigonometrical approximation))(
1 b.	Introduction (probabilistic part))]
2.	Hardy functions)2
3.	Discussion of $Z^- \supset Z^{+/-} \supset Z^- \cap Z^+ \dots \dots$);
4.	Discussion of Z^{\bullet})į
5.	Proof of $Z^{\bullet} \subseteq Z^{0+}$ (Δ Hardy or not)	L
6 a.	Proof of $Z^- \cap Z^+ \supset Z^{0+}(\Delta \text{ Hardy or not})$	1:
6 b.	Proof of $Z^{0+} = Z^{\bullet}$ (Δ Hardy)	14
6 c.	A condition that $Z^- \cap Z^+ = Z^{\bullet}$ (Δ Hardy)	L
6d.	A condition that genus $Z^{\bullet} = 0$ (Δ Hardy)	L
6 e.	Rational weights	2(
7.	A condition that $Z^{+/-} = Z^{\bullet}$ (Δ Hardy)	2
8.	A condition that $Z^{0+}=Z$	2:
9.	Discussion of Z_{\bullet}	24
0 a.	Special case $(1/\Delta = 1 + c_1 a^2 + \text{etc.})$	2
0 b.	Special case $(\Delta = e^{-2 a \frac{1}{2}})$	28
1.	An example (Δ Hardy, dim $Z_{\bullet} = \infty$, $Z^{\bullet} = Z^{0+} \neq Z_{\bullet}$)	3(
2.	Hardy weights with arithmetical gaps	3
l 3.	Entire functions of positive type	3
l 4.	Another condition for $Z^{+/-}_{\text{out}} = Z^{0+}_{\text{out}}(\Delta \text{ Hardy})$,	4:

⁽¹⁾ Supported in part by the Office of Naval Research and in part by the National Science Foundation, GP-149.

Notation

 $f^*(\gamma)$ $(\gamma = a + ib)$ denotes the regular extension of $f^*(a) = f(a)^*$ so that $f^*(\gamma) = (f(\gamma^*))^*$, $(\gamma^* = a - ib)$.

$$\int \text{stands for } \int_{-\infty}^{+\infty}.$$

$$\int_{1}^{\infty} \text{and the like stand for } \int_{1}^{\infty}, \text{ etc.}$$
 $e(\gamma)$ means e^{γ} .

1 a. Introduction (weighted trigonometric approximation)

Given a non-trivial, even, non-negative, Lebesgue-measurable weight function $\Delta = \Delta(a)$ with $\int \Delta < \infty$, let Z be the (real) Hilbert space $L^2(R^1, \Delta da)$ of Lebesgue-measurable functions f with

$$f^*(-a) = f(a), \qquad ||f|| = ||f||_{\Delta} = \left(\int |f|^2 \Delta\right)^{\frac{1}{2}} < \infty$$

subject to the usual identifications, and putting $Z^{cd} = the \ span \ (in \ Z)$ of e(iat) $(c \le t \le d)$, introduce the following subspaces of Z:

- (a) $Z^- = Z^{-\infty 0}$,
- (b) $Z^+ = Z^{0\infty}$,
- (c) $Z^{+/-}$ = the projection of Z^+ onto Z^- ,
- (d) Z^* = the class of entire functions $f = f(\gamma)$ ($\gamma = a + ib$) with

$$\overline{\lim_{R \uparrow \infty}} R^{-1} \max_{0 \leqslant \theta \leqslant 2\pi} \lg |f(Re^{i\theta})| \leqslant 0,$$

which, restricted to the line b=0, belong to Z,

- (e) $Z^{0+} = \bigcap_{\delta>0} Z^{0\delta}$,
- (f) Z_{\bullet} = the span of $(ia)^d$, d=0,1,2, etc., $\int a^{2d} \Delta < \infty$,
- (g) $Z^{-\infty} = \bigcap_{t<0} Z^{-\infty t}$.

 $Z^{-\infty\infty} = Z$ since $f \in Z$ implies $f \Delta \in L^1(\mathbb{R}^1)$, and in that case $f \Delta = 0$ if $\int f \Delta e(-iat) = 0$ ($t \in \mathbb{R}^1$); the functions $f \in Z^*$ are of 0 (minimal) exponential type, so-called.

 Z^* is either dense in Z or a closed subspace of Z; the second alternative holds in the case of a Hardy weight:

$$\int \frac{\lg \Delta}{1+a^2} > -\infty,$$

and under this condition

$$Z^- \supset Z^{+/-} \supset Z^- \cap Z^+ \supset Z^{0+} = Z^{\bullet} \supset Z_{\bullet}$$

Given a Hardy weight Δ , the problem is to decide if some or all of the above subspaces coincide; for instance, as it turns out, $Z^{+/-} = Z^{\bullet}$ if and only if $\Delta^{-1} = |f|^2$ with f entire of minimal exponential type, while $Z^{\bullet} = Z^{0+}$ for the most general Hardy weight.

 $Z \neq Z^-$ in the Hardy case, while in the non-Hardy case $Z = Z^- \cap Z^+ = Z^{-\infty}$, and, if $\Delta \in \downarrow$ also, then $Z = Z^{0+}$ too. ($\Delta \in \downarrow$ means that $\Delta(a) \geqslant \Delta(b)$ for $0 \leqslant a < b$.)

 $Z^{+/-}$ and Z^{0+} receive special attention below for reasons explained in the next part of the introduction.

S. N. Bernstein's problem of finding conditions on a weight $\Delta \leq 1$ so that each continuous function f with $\lim_{|a| \uparrow \infty} |f| \Delta = 0$ should be close to a polynomial p in the sense that $|f-p|\Delta$ be small, is similar to the problem of deciding if Z = Z or not, and it turned out that S. N. Mergelyan's solution of Bernstein's problem [10] and I. O. Hačatrjan's amplification of it [5] could be adapted to the present case.

1 b. Introduction (probabilistic part)

 Δda can be regarded as the spectral weight of a centered Gaussian motion with sample paths $t \to x(t) \in \mathbb{R}^1$, universial field B, probabilities P(B), and expectations E(f):

$$E[x(s)x(t)] = \int e^{ia(t-s)} \Delta.$$

Bring in the (real) Hilbert space Q which is the closed span of x(t) ($t \in \mathbb{R}^1$) under the norm $||f|| = [E(f^2)]^{\frac{1}{2}}$ and map $x(t) \to e(iat) \in \mathbb{Z}$. Q is mapped 1:1 onto \mathbb{Z} , inner products being preserved, and with the notations $Q^{cd} = the$ span of x(t) ($c \le t \le d$) and $B^{cd} = the$ smallest Borel subfield of B measuring x(t) ($c \le t \le d$), a perfect correspondence is obtained between

- (a) Z^- , $Q^- = Q^{-\infty 0}$, and $B^- = B^{-\infty 0} = the past$,
- (b) Z^+ , $Q^+ = Q^{0\infty}$, and $B^+ = B^{0\infty} = the \ future$,
- (c) $Z^{+/-}$, the projection $Q^{+/-}$ of Q^+ onto Q^- , and $B^{+/-}$ = the smallest splitting field of past and future,

(d)
$$Z^{0+}$$
, $Q^{0+} = \bigcap_{\delta>0} Q^{0\delta}$, and $B^{0+} = \bigcap_{\delta>0} B^{0\delta} = the \ germ$,

- (e) Z_{\bullet} , Q_{\bullet} = the span of $x^{(d)}(0)$, d = 0, 1, 2, etc., $E[x^{(d)}(0)^2] < \infty$, and the associated field B_{\bullet} .
- (f) $Z^{-\infty}$, $Q^{-\infty} = \bigcap_{t \le 0} Q^{-\infty t}$, and $B^{-\infty} = \bigcap_{t \le 0} B^{-\infty t} = the$ distant past.

 B^- , B^+ , B^{0+} , etc. do not just include the fields of Q^- , Q^+ , Q^{0+} , etc., but for instance, if $f \in Q$ is measurable over B^{0+} , then it belongs to Q^{0+} ; the proof of this fact and its analogues is facilitated by use of the lemma of Tutubalin-Freidlin [11]: if the field A is part of the smallest Borel field containing the fields of B and C and if C is independent of A and B then $A \subset B$.

 $B^{+/-}$ (= the splitting field) needs some explanation. Given a pair of fields such as B^- (= the past) and B^+ (= the future), a field $A \subset B^-$ is said to be a splitting field of B^- and B^+ , if, conditional on A, B⁺ is independent of B⁻. B⁻ is a splitting field, and as is not hard to prove, a smallest splitting field exists, coinciding in the present (Gaussian) case with the field of the projection $Q^{+/-}$ (see H. P. McKean, Jr. [9] for the proof). $B^{+/-}$ and so also $Z^{+/-}$ is a measure of the dependence of the future on the past.

Because $Z^{\bullet} = Z^{0+}$ for a Hardy weight, the condition $\Delta^{-1} = |f|^2$ (f entire of minimal exponential type) for $Z^{+/-} = Z^{\bullet}$ is equivalent in the Hardy case to the condition that the motion split over its germ ($B^{+/-} = B^{0+}$); this is the principal result of this paper from a probabilistic standpoint. Tutubalin-Freidlin's result [11] that if $\Delta \ge |a|^{-d}$ as $|a| \uparrow \infty$ for some $d \ge 2$ then $B^{0+} = B_{\bullet}$, is the sole fact about B^{0+} that has been published to our knowledge.

2. Hardy functions

An even Hardy weight Δ can be expressed as $\Delta = |h|^2$, h belonging to the Hardy class H^{2+} of functions $h = h(\gamma)$ ($\gamma = a + ib$) regular in the half plane (b > 0) with $h^*(-a) = h(a)$ and $\int |h(a+ib)|^2 da$ bounded (b > 0); such a Hardy function satisfies

$$\lim_{b\downarrow 0} \int |h(a+ib)-h(a)|^2 da = 0 \quad \text{and} \quad \int |h(a+ib)|^2 da \leqslant \int |h(a)|^2 da \quad (b>0).$$

Hardy functions can also be described as the (regular) extensions into b>0 of the Fourier transforms of functions belonging to $L^2(R^1, dt)$ vanishing on the left half line $(t \le 0)$. According to Beurling's nomenclature, each Hardy function comes in 2 pieces: an *outer* factor o with

$$\lg |o(\gamma)| = \frac{1}{\pi} \int \frac{b}{(c-a)^2 + b^2} \lg |h(c)| dc \quad (\gamma = a + ib)$$

and an inner factor j with

$$|j(\gamma)| \le 1 \ (b>0), \qquad |j(\gamma)| = 1 \ (b=0);$$

the complete formula for the outer factor of h is

$$o(\gamma) = e \left[\frac{1}{\pi i} \int \frac{\gamma c - 1}{\gamma + c} \lg |h(c)| \frac{dc}{1 + c^2} \right].$$

 $Z^+h=H^{2+}$, i.e., $e(i\gamma t)h$ $(t\geqslant 0)$ spans out the whole of H^{2+} , if and only if h is outer. H^{2-} stands for the analogous Hardy class for b<0. $L^2(R^1,da)$ is the (perpendicular) direct sum of H^{2-} and H^{2+} . Hardy classes $H^{1\pm}$ are defined in the same manner except that now it is $\int |h(a+ib)| da$ that is to be bounded. H^{1+} can be described as those functions h belonging to $L^1(R^1,da)$ with $\int e(-iat)hda=0$ $(t\leqslant 0)$; it is characteristic of the moduli of such functions that $\int \lg |h|/(1+a^2)>-\infty$ (see [7] for proofs and additional information).

3. Discussion of $Z^- \supset Z^{+/-} \supset Z^- \cap Z^+$

Given Δ as in 1 a, Hardy or not, the inclusions $Z \supset Z^- \supset Z^{+/-} \supset Z^- \cap Z^+$ are obvious, so the problem is to decide in what circumstances some or all of the above subspaces coincide. As it happens,

(a) either
$$\int \lg \Delta/(1+a^2) = -\infty$$
 and $Z = Z^- \cap Z^+ = Z^{-\infty}$
or $\int \lg \Delta/(1+a^2) > -\infty$ and $Z \neq Z^- \neq Z^- \cap Z^+$;

in the second (Hardy) case, $\int \lg \Delta/(1+a^2) > -\infty$, $\Delta = |h|^2$ with h outer belonging to H^{2+} , and the following statements hold:

- (b) $Z^- \neq Z^{+/-}$ if and only if $j = h/h^*$, restricted to the line, coincides with the ratio of 2 inner functions,
- (c) $Z^{+/-} = Z^- \cap Z^+$ if and only if $j = h/h^*$, restricted to the line, coincides with an inner function.
- (a) goes back to Szegö; the rest is new.

Proof of (a) adapted from [7]. $Z \neq Z^-$ implies that for the coprojection f of e(ias) upon Z^- , $f\Delta \neq 0$ for some s > 0. Because the projection belongs to Z^- , $e(-ias)fe(iat) \in Z^-$ ($t \leq 0$) and so is perpendicular (in Z) to f; also, f is perpendicular to e(iat) ($t \leq 0$), so

$$\int e^{ias} |f|^2 \Delta e^{-iat} da = \int f \Delta e^{-iat} da = 0 \quad (t \le 0).$$

But in view of $\int |f| \Delta \le ||f||_{\Delta} (\int \Delta)^{\frac{1}{2}} < \infty$, it follows that $f\Delta$ belongs to the Hardy class H^{1+} , whence $\int \lg (|f| \Delta)/(1+a^2) > -\infty$. But also $\int \lg (|f|^2 \Delta)/(1+a^2) < \infty$ since $f \in \mathbb{Z}$, and so $\int \lg \Delta/(1+a^2) > -\infty$, as stated. On the other hand, $\int \lg \Delta/(1+a^2) > -\infty$ implies $\Delta = |h|^2$ with h outer belonging to H^{2+} , and $Z \neq Z^-$ follows: indeed, since Δ is even, $h^*(-a) = h(a)$, and since $h^2 \in H^{1+}$,

$$\int e^{-iat} h^2 da = \int e^{-iat} j \Delta da = 0 \quad (t \le 0) \quad (j = h/h^*),$$

stating that $j \in Z$ is perpendicular to Z^- . $Z^- \neq Z^- \cap Z^+$ follows, since, in the opposite case, $Z^- \subset Z^+$ so that $Z^+ = Z$ and hence also $Z^- = Z$, against the fact that Δ is a Hardy weight. $Z^{-\infty} = \bigcap_{t \in \Omega} Z^{-\infty t} = Z$ follows in the non-Hardy case.

Proof of (b). Given $\int \lg \Delta/(1+a^2) > -\infty$, let $\Delta = |h|^2$ with h outer as before and prepare 3 simple lemmas.

 $Z^+h = H^{2+}$ since h is outer as stated in 2.

 $Z^-h = iH^{2-}$ because $Z^-h^* = (Z^+h)^* = (H^{2+})^* = H^{2-}$.

 $Z^{+/-}h = jpj^{-1}H^{2+}$, p being the projection in $L^2(R^1)$ upon H^{2-} ; indeed, jpj^{-1} is a projection and coincides with the identity just on jH^{2-} .

Coming to the actual proof of (b), if the inclusion $Z^-\supset Z^{+/-}$ is proper, then $Z^-h=jH^{2-}$ contains a function $f=j(j_2o_2)^*$ perpendicular to $Z^{+/-}h=jpj^{-1}H^{2+}$, j_2 being an inner and $o_2\in H^{2+}$ an outer function. Because $jpj^{-1}=1$ on jH^{2-} , it follows that f is perpendicular in $L^2(R^1)$ to H^{2+} , so $f\in H^{2-}$, i.e., $f=(j_1o_1)^*$, j_1 being an inner and $o_1\in H^{2+}$ an outer function; in brief, $j(j_2o_2)^*=(j_1o_1)^*$. Because $|o_1|=|o_2|$ on the line b=0, the outer factors can be cancelled, proving that $j=j_2/j_1$. On the other hand, if $j=j_2/j_1$, then $f=j(j_2h)^*\neq 0$ belongs to $jH^{2-}=Z^-h$. Also $f=(j_1h)^*\in H^{2-}$ so that $f=j_2/j_1$ is perpendicular in $J^2(R^1)$ to $J^2=j_1$, and since $J^2=j_2$, it must be perpendicular to $J^2=j_1$. Also, $J^2=j_2$, also, $J^2=j_1$. Follows, completing the proof.

Proof of (c). $Z^- \neq Z^- \cap Z^+$ in the Hardy case, so if $Z^{+/-} = Z^- \cap Z^+$, then $Z^- \neq Z^{+/-}$, and according to (b), $j = h/h^*$ is a ratio j_2/j_1 of inner functions with no common

factor. $f \in Z^-h = jH^{2-}$ is perpendicular in $L^2(R^1)$ to $Z^{+/-}h = jp j^{-1}H^{2+}$ if and only if $j^{-1}f \in H^{2-}$ is perpendicular to $pj^{-1}H^{2+}$, or, and this is the same, to $j^{-1}H^{2+}$, and so, computing annihilators in jH^{2-} , $(Z^{+/-}h)^0 = jH^{2-} \cap H^{2-}$. Now $f \in jH^{2-} \cap H^{2-}$ can be expressed as $(j_2/j_1)j_3^*o_3^* = j_4^*o_4^*$ and the outer factors have to match, so $j_2j_4 = j_1 j_3$, and since j_1 and j_2 have no common factors, j_1 divides j_4 [1, p. 246] and $f \in jH^{2-} \cap (1/j_1)H^{2-}$. Because $j_1^*H^{2-} \subset H^{2-}$, $Z^{+/-}h$ can now be identified as $[jH^{2-} \cap (1/j_1)H^{2-}]^0 = jH^{2-} \cap (1/j_1)H^{2+}$, the annihilator being computed in jH^{2-} ; this is because $(1/j_1)H^{2-} = jj_2^*H^{2-} \subset jH^{2-}$ and $(1/j_1)H^{2-} \oplus jH^{2-} \cap (1/j_1)H^{2+}$ is a perpendicular splitting of jH^{2-} . But according to this identification, if $Z^{+/-} = Z^- \cap Z^+$, then $j(j_1h)^* = (1/j_1)h \in Z^{+/-}h \subset Z^+h = H^{2+}$, and h being outer, it follows that j_1 has to be constant, completing half the proof; the opposite implication is obvious using the above identification of $Z^{+/-}h$ in conjunction with $(Z^- \cap Z^+)h = jH^{2-} \cap H^{2+}$.

Example. $h=(1-i\gamma)^{-3/2}$ is outer belonging to H^{2+} and $Z^-=Z^{+/-}$; indeed, $[(1+i\gamma)/(1-i\gamma)]^{3/2}=j_2/j_1$ would mean that $j_1^2[(1+i\gamma)/(1-i\gamma)]^3=j_2^2$, and this would make j_2^2 have a root of odd degree at $\gamma=i$.

An outer function h belonging to H^{2+} is determined by its phase factor $j=h/h^*$ if and only if dim $Z^- \cap Z^+ = 1$; indeed, if dim $Z^- \cap Z^+ = 1$ and if o is an outer function belonging to H^{2+} with $o/o^* = j$, then $o \in jH^{2-} \cap H^{2+} = Z^- \cap Z^+ h$ and, as such, is a multiple of h. On the other hand, if $o/o^* = j$ implies $o = \text{constant} \times h$, then dim $Z^- \cap Z^+ = 1$ because if o is the outer factor of $f \in Z^- \cap Z^+ h = jH^{2-} \cap H^{2+}$, then $o/o^* = j/j$ with j an inner multiple of the inner factor of f. (j+1)o is outer [7, p. 76], and since $(j+1)o/(j+1)^* o^* = j$, it is a multiple of h. i(j-1)o is likewise a multiple of h, and so o itself is a multiple of h, j=1, and f too is a multiple of h.

4. Discussion of Z.

Before proving the rest of the inclusions $Z^- \cap Z^+ \supset Z^{0+} \supset Z^* \supset Z_*$, Mergelyan's solution of Bernstein's ploblem, and his proof also, is adapted to the present needs.

Given Δ , Hardy or not, let $Z^{\bullet} = Z_{\Delta}^{\bullet}$ be the class of entire functions f of minimal exponential type which, restricted to b = 0, belong to Z, let $\Delta^{+} = \Delta (1 + a^{2})^{-1}$, suppose $\int \Delta^{+} = 1$, and putting

$$\sigma^{\bullet}(\gamma) = the \ least \ upper \ bound \ of \ |f(\gamma)| : f \in \mathbb{Z}_{\Lambda^{+}}^{\bullet}, \ ||f||_{\Lambda^{+}} \leq 1,$$

let us check that the following alternative holds:

either $\vec{\sigma} \equiv \infty (b \neq 0)$,

$$\sup \int \frac{\lg^{+}|f|}{1+a^{2}} = \int \frac{\lg \sigma^{\bullet}}{1+a^{2}} = \infty, \text{ for } f \in Z_{\Delta^{+}}^{\bullet} \text{ with } ||f||_{\Delta^{+}} \leq 1,$$

and Z' is dense in Z,

or lg σ^* is a continuous, non-negative, subharmonic function,

$$\int \frac{\lg \ \sigma^{\bullet}}{1+a^2} < \infty,$$

$$\lg \sigma^{\bullet}(\gamma) \leqslant \frac{1}{\pi} \int \frac{b}{(c-a)^2 + b^2} \lg \sigma^{\bullet}(c) dc \quad (\gamma = a + ib, b > 0),$$

$$\varlimsup_{R \uparrow \infty} R^{-1} \max_{0 \leqslant \theta < 2\pi} \lg \ \sigma^{\bullet} (Re^{i\theta}) \leqslant 0,$$

and Z is a closed subspace of Z;

the second alternative must hold in the case of a Hardy weight as will be proved in 6b. Because $(f(\gamma^*))^* = f(-\gamma) \in Z^*$ if $f \in Z^*$,

$$\sigma^{\bullet}(\gamma) = \sigma^{\bullet}(\gamma^{*}) = \sigma^{\bullet}(-\gamma);$$

this fact is used without additional comment below.

Break up the proof into simple lemmas.

(a)
$$\sigma^{\bullet}(\gamma) \equiv \infty (b \neq 0)$$
 if and only if Z^{\bullet} is dense in Z .

Proof of (a). $\sigma^{\bullet}(\beta) = \infty (\beta = a + ib, b + 0)$ implies that $f \in \mathbb{Z}_{\Delta^{+}}^{\bullet}$ can be found with $\|f\|_{\Delta^{+}} \leq 1$, $|f(\beta)| > \delta^{-1}$, and hence

$$\left\|\frac{1}{c-\beta} + \frac{f-f(\beta)}{(c-\beta)f(\beta)}\right\|_{\Delta} = \left\|\frac{f}{(c-\beta)f(\beta)}\right\|_{\Delta} \le \left|f(\beta)\right|^{-1} \left\|\frac{c-i}{c-\beta}\right\|_{\infty} \left\|f\right\|_{\Delta^{+}} < \text{constant } \times \delta.$$

Breaking up $[f-f(\beta)]/(\gamma-\beta)f(\beta)$ into the sum of its odd and even parts f_1 and f_2 and then into the sum (with coefficients of modulus 1) of 4 pieces:

$$f_{11} = \frac{1}{2} (f_1 + f_1^*), \quad f_{12} = \frac{i}{2} (f_1 - f_1^*), \quad f_{21} = \frac{i}{2} (f_2 + f_2^*), \quad f_{22} = \frac{1}{2} (f_2 - f_2^*),$$

each of which belongs to Z^{\bullet}_{Δ} , it follows that if $g \in Z$ is perpendicular to Z^{\bullet}_{Δ} , then $\int g \Delta/(c-\beta) = 0$ $(\beta = a + ib, b = 0)$, whence

$$\int \frac{b}{(c-a)^2 + b^2} g \, \Delta \, dc = 0 \quad (b > 0),$$

and $g\Delta=0$ as desired. On the other hand, if Z_{Δ}^{*} is dense in Z, then it is possible to find an entire function f of minimal exponential type with $\|1/(c-\beta)-f\|_{\Delta} < \delta$ $(\beta=a+ib,\ b=0)$. Bring in an entire function g with $[g-g(\beta)]/(\gamma-\beta)g(\beta)=-f$; then

$$\delta > \left\| \frac{g}{\left(c - \beta \right) g\left(\beta \right)} \right\|_{\Delta} \geqslant a \ \ positive \ \ constant \ \ depending \ \ upon \ \ \beta \ \ alone \ \times \frac{\left\| g \right\|_{\Delta^+}}{\left| g\left(\beta \right) \right|},$$

and so

$$|g(\beta)| > \operatorname{constant} \times \delta^{-1} ||g||_{\Lambda^+}.$$

g is now split into the sum (with coefficients of modulus 1) of 4 members g_{11} , g_{12} , g_{21} , g_{22} of Z_{Λ^+} , and it develops that

$$\begin{split} \operatorname{constant} \times \delta^{-1} \left\| g \right\|_{\Delta^{+}} &< \left| g(\beta) \right| \leqslant \left| g_{11}(\beta) \right| + \left| g_{12}(\beta) \right| + \left| g_{21}(\beta) \right| + \left| g_{22}(\beta) \right| \\ &\leqslant \sigma^{\star}(\beta) \left(\left\| g_{11} \right\|_{\Delta^{+}} + \left\| g_{12} \right\|_{\Delta^{+}} + \left\| g_{21} \right\|_{\Delta^{+}} + \left\| g_{22} \right\|_{\Delta^{+}} \right) \\ &\leqslant 2 \, \sigma^{\star} \left(\left\| g_{1} \right\|_{\Delta^{+}} + \left\| g_{2} \right\|_{\Delta^{+}} \right) \leqslant 2 \, \sqrt{2} \, \sigma^{\star} \left(\left\| g_{1} \right\|_{\Delta^{+}}^{2} + \left\| g_{2} \right\|_{\Delta^{+}}^{2} \right)^{\frac{1}{2}} \\ &= 2 \, \sqrt{2} \, \sigma^{\star} \, \left\| g \right\|_{\Delta^{+}}, \end{split}$$

making use of $\int g_1^* g_2 \Delta^+ = 0$. But since δ can be made small, $\sigma^*(\beta)$ is in fact $= \infty$.

(b) Z' dense in Z implies

$$\sup \int \frac{\lg^{+}|f|}{1+a^{2}} = \int \frac{\lg \sigma^{\bullet}}{1+a^{2}} = \infty, \text{ for } f \in Z_{\Delta^{+}}^{\bullet} \text{ with } \|f\|_{\Delta^{+}} \leq 1.$$

Proof of (b). Given $f \in \mathbb{Z}_{\Delta^+}^*$, if $\beta = a + ib$ (b > 0), then

$$\lg |f(\beta)| \leq \frac{1}{\pi} \int \frac{b}{(c-a)^2 + b^2} \lg^+ |f(c)| dc$$

as follows from Nevanlinna's theorem [2:1.2.3] on letting $R \uparrow \infty$ and using

$$\lim_{R \uparrow \infty} R^{-1} \max_{0 \leqslant \theta < 2\pi} \lg |f(Re^{i\theta})| \leqslant 0.$$

Now apply (a).

(e)
$$\lg \sigma^{\bullet}(\beta) \leq \frac{1}{\pi} \int \frac{b}{(c-a)^2 + b^2} \lg \sigma^{\bullet}(c) dc$$
 $(\beta = a + ib, b > 0).$

Proof of (c). Obvious from (b).

(d) Z^{\bullet} non-dense implies that σ^{\bullet} is bounded in the neighborhood of each point $\beta = a + ib$ (b > 0); in fact, if Z^{\bullet} is non-dense $\lg \sigma^{\bullet}$ is a non-negative continuous subharmonic function $(b \neq 0)$.

Proof of (d). Given $\beta = a + ib$ (b > 0) and a point α near it, take $g \in Z_{\Delta^+}^{\bullet}$ with $\|g\|_{\Delta^+} \le 1$ and $|g(\alpha)|$ close to $\sigma^{\bullet}(\alpha)$, and let $f = 1 + [(\gamma - \beta)/(\gamma - \alpha)][(g - g(\alpha))/g(\alpha)]$, observing that f need not belong to $Z_{\Delta^+}^{\bullet}$ since $f^{\bullet}(-a) = f(a)$ can fail.

$$\left\|f
ight\|_{\Delta^{+}} = \left\|rac{eta-lpha}{c-lpha}-rac{eta-lpha}{c-lpha}rac{g}{g\left(lpha
ight)}+rac{g}{g\left(lpha
ight)}
ight\|_{\Delta^{+}} \leqslant \left\|rac{eta-lpha}{c-lpha}
ight\|_{\infty} (1+\left|g\left(lpha
ight)
ight|^{-1})+\left|g\left(lpha
ight)
ight|^{-1},$$

and so, as in the second part of the proof of (a),

$$1 = \left| f(\beta) \right| \leqslant 2\sqrt{2} \ \sigma^{\star}(\beta) \ \left\| f \right\|_{\Delta^{+}} \leqslant 2\sqrt{2} \ \sigma^{\star}(\beta) \ \left[\ \left\| \frac{\beta - \alpha}{c - \alpha} \right\|_{\infty} (1 + \left| g\left(\alpha\right) \right|^{-1}) + \left| g\left(\alpha\right) \right|^{-1} \right],$$

proving that $\sigma^{\bullet}(\alpha)$ is bounded on a neighborhood of β if $\sigma^{\bullet}(\beta) < \infty$. Because $1 \in Z^{\bullet}_{\Delta^{+}}$, $\sigma^{\bullet} \ge 1$ ($\int \Delta^{+} = 1$ is used at this place), so $\lg \sigma^{\bullet} \ge 0$, and since $\lg |f|$ is subharmonic for each $f \in Z^{\bullet}_{\Delta^{+}}$, $\lg \sigma^{\bullet}$ is also subharmonic. But now it follows that if $\sigma^{\bullet}(\beta) = \infty$ at one point $\beta = a + ib$ (b > 0), then it is also ∞ at some point of each punctured neighborhood of β , and arguing as in the first part of the proof of (a) with f perpendicular to Z^{\bullet}_{Δ} , $\int f \Delta/(c-\alpha) dc$ is found to vanish at some point of each punctured neighborhood of β and hence to be $\equiv 0$. Z^{\bullet} dense in Z follows as before, so Z^{\bullet} non-dense implies the (local) boundedness of σ^{\bullet} . It remains to prove that σ^{\bullet} is continuous ($b \pm 0$). On a small neighborhood of $\alpha = a + ib$, |f| ($f \in Z^{\bullet}_{\Delta^{+}}$) lies under a universal bound, σ^{\bullet} . An application of Cauchy's formula implies that |f'| lies under a universal bound on a smaller neighborhood of α , and so $|f(\beta_{2}) - f(\beta_{1})|$ lies under a universal constant B times $|\beta_{2} - \beta_{1}|$ as β_{1} and β_{2} range over this smaller neighborhood. But then

$$\begin{split} \left| f(\beta_2) \right| \leqslant \left| f(\beta_1) \right| + B \left| \beta_2 - \beta_1 \right| < \sigma^*(\beta_1) + B \left| \beta_2 - \beta_1 \right|, \\ \\ \sigma^*(\beta_2) \leqslant \sigma^*(\beta_1) + B \left| \beta_2 - \beta_1 \right|, \end{split}$$

so that

and interchanging the roles of β_1 and β_2 completes the proof of (d).

(e) Z[•] non-dense implies $\int \lg^+ |f|/(1+a^2) \le \int \lg \sigma^{\bullet}/(1+a^2) < \infty$.

Proof of (e). Z' non-dense implies the existence of $g \in Z$ perpendicular to Z_{Δ} ,

and since, if $f \in \mathbb{Z}_{\Delta^+}^*$, $(f - f(\beta))/(\gamma - \beta)$ is the sum (with coefficients of modulus 1) of 4 members of \mathbb{Z}_{Δ}^* ,

$$\int \frac{g^* f}{c - \beta} \Delta = \int \frac{g^* \Delta}{c - \beta} f(\beta) \equiv \hat{g} f \quad (f \in \mathbf{Z}_{\Delta^+}^{\bullet}, \ b \neq 0).$$

Because \hat{g} is regular and bounded $(b \ge 1)$, $\int \lg |\hat{g}(a+i)|/(1+a^2) > -\infty$; also

$$|\hat{g}f(a+i)| \leq ||g||_{\Delta} ||f||_{\Delta^{+}} \left|\left|\frac{c-i}{c-a-i}\right|\right|_{\infty},$$

so that $\sigma^{\bullet}(a+i) \leq \operatorname{constant} \times (1+a^2)^{\frac{1}{2}} \left| \hat{g}(a+i) \right|^{-1}$ and $\int \lg \sigma^{\bullet}(a+i)/(1+a^2) < \infty$. But as in the proof of (b),

$$\left| \lg \left| f(a) \right| \leq \frac{1}{\pi} \int \frac{\lg \sigma^{\bullet}(c+i)}{(c-a)^2+1} dc \quad (f \in Z_{\Delta^+}^{\bullet}),$$

and so

$$\int \frac{\lg\,\sigma^{\scriptscriptstyle\bullet}\,(a)}{1+a^2}\,da \leqslant \int \lg\,\sigma^{\scriptscriptstyle\bullet}\,(c+i)\,dc\,\frac{1}{\pi}\int \frac{da}{1+a^2}\,\frac{1}{(c-a)^2+1} = 2\int \frac{\lg\,\sigma^{\scriptscriptstyle\bullet}\,(c+i)}{c^2+4}\,dc < \infty\,,$$

as stated.

(f) If Z is non-dense in Z then it is a closed subspace of Z and

$$\overline{\lim}_{R \uparrow \infty} R^{-1} \max_{0 \leqslant \theta < 2\pi} \lg \sigma^{\bullet} (Re^{i\theta}) \leqslant 0.$$

Proof of (f).

$$R^{-1} \lg \sigma^{\star} \left(Re^{i\theta} \right) \leqslant \frac{1}{\pi} \int \frac{\sin \theta \left(1 + c^2 \right)}{\left(c - R \cos \theta \right)^2 + R^2 \sin^2 \theta} \frac{\lg \sigma^{\star}}{1 + c^2} dc \quad \left(0 < \theta < \pi \right)$$

according to (d). A simple estimate, combined with $\sigma^*(\gamma) = \sigma^*(\gamma^*)$ verifies

$$\overline{\lim_{R \uparrow \infty}} \ R^{-1} \lg \sigma^{\bullet} (Re^{i\theta}) \leq 0 \quad (\theta = \pi/4, \ 3\pi/4, \ 5\pi/4, \ 7\pi/4).$$

Phragmén-Lindelöf is now applied to each of the sectors between $\pi/4$, $3\pi/4$, $5\pi/4$, $7\pi/4$; for instance, in the sector $[\pi/4, 3\pi/4]$, each $f \in \mathbb{Z}_{\Delta^+}^*$ with $||f||_{\Delta^+} \leq 1$ satisfies

$$|f(\gamma)e^{i\gamma 2^{\frac{1}{4}}\delta}| \le |f(Re^{i\theta})|e^{-R\delta} \le A \quad (\pi/4 \le \theta \le 3\pi/4)$$

$$|f(\gamma) e^{i\gamma 2^{\frac{1}{2}}\delta}| \le \sigma^{\bullet}(Re^{i\theta}) e^{-R\delta} \le B \quad (\theta = \pi/4, 3\pi/4)$$

with a constant B not depending upon f, and so

$$|f(\gamma)e^{i\gamma(2\delta)^{\frac{1}{2}}}| \leqslant B \quad (\pi/4 \leqslant \theta \leqslant 3\pi/4),$$

or $\sigma^{\bullet}(Re^{i\theta}) \leqslant Be^{R(2\delta)^{\frac{1}{4}}} \quad (\pi/4 \leqslant \theta \leqslant 3\pi/4).$

 Z^{\bullet} closed follows since |f| $(f \in Z_{\Delta}^{\bullet})$ lies under a universal bound (σ^{\bullet}) on any bounded region of the plane.

Mergelyan's alternative is now proved; several additional comments follow. Given $f \in \mathbb{Z}_{\Delta^+}^{\bullet}$, $(\gamma + i)^{-1} fh \in H^{2+}$ while $(\gamma + i)^{-1} \in H^{2+}$ is an outer function, so that

$$\begin{split} \lg |fh(i)|^2 &\leqslant \frac{1}{\pi} \int \frac{\lg |(c+i)^{-1}fh|^2}{1+c^2} + \frac{1}{\pi} \int \frac{\lg |c+i|^2}{1+c^2} \\ &= \frac{1}{\pi} \int \frac{\lg |fh|^2}{1+c^2} \leqslant \lg \left(\frac{1}{\pi} \int \frac{|f|^2 \Delta}{1+c^2}\right) = \lg \left(\frac{1}{\pi} \|f\|_{\Delta^+}^2\right), \end{split}$$

and so $\pi^{\frac{1}{2}} \sigma^{\bullet}(i) \leq |h(i)|^{-1}$. Now it is proved that this upper bound is attained if and only if h^{-1} is entire of minimal exponential type. Using the compactness that

$$\lim_{R \uparrow \infty} R^{-1} \max_{0 \leqslant \theta < 2\pi} \lg \sigma^{\bullet} (Re^{i\theta}) \leqslant 0$$

ensures, it is possible to choose $f \in Z_{\Lambda^+}^{\bullet}$ with $f(i) = \sigma^{\bullet}(i)$ and $||f||_{\Lambda^+} = 1$. As before,

$$|fh(i)|^2 \leq e \left[\frac{1}{\pi} \int \frac{\lg|f|^2 \Delta}{1+a^2}\right] \leq \frac{1}{\pi} \int \frac{|f|^2 \Delta}{1+a^2} = \frac{1}{\pi},$$

so if $\pi^{\frac{1}{2}}\sigma^{\bullet}(i) = |h(i)|^{-1}$, then the converse of Jensen's inequality implies that fh is constant; the other implication is trivial.

 σ (i) can also be computed from a Szegö minimum problem:

$$\frac{1}{\sigma^{\bullet}(i)^{2}} = \inf \int \frac{|1-f|^{2} \Delta}{1+a^{2}}, \text{ for } f \in Z_{\Delta^{+}}^{\bullet} \text{ with } f(i) = 0,$$

as the reader can easily check.

Because of the compactness of Z^{\bullet} used above, it is possible in the non-dense case to find $f = f_{\gamma} \in Z_{\Delta^{+}}^{\bullet}$ with $f(\gamma) = \sigma^{\bullet}(\gamma)$ and $\|f\|_{\Delta^{+}} = 1$. f_{γ} is unique and is perpendicular (in $Z_{\Delta^{+}}^{\bullet}$) to each $f \in Z_{\Delta^{+}}^{\bullet}$ vanishing at γ . $f_{\alpha}(\beta) \sigma^{\bullet}(\alpha)$ acts as a Bergman reproducing kernel for $Z_{\Delta^{+}}^{\bullet}$ since

$$\int f_{\alpha}^{*} [f - f(\alpha)] \Delta^{+} = 0 \quad (f \in Z_{\Delta^{+}}^{*})$$

implies

$$\int f_{\alpha}^{*} f_{\Delta^{+}} = f(\alpha) \int f_{\alpha}^{*} \Delta^{+} = \frac{f(\alpha)}{\sigma^{*}(\alpha)} \int |f_{\alpha}|^{2} \Delta^{+} = \frac{f(\alpha)}{\sigma^{*}(\alpha)}$$

5. Proof of $Z \subset Z^{0+}$ (Δ Hardy or not)

To begin with, each $f \in Z^{\bullet}$ can be split into an even part $f_1 = \frac{1}{2} [f(\gamma) + f(-\gamma)] \in Z^{\bullet}$ and an odd part $f_2 \in Z^{\bullet}$; the proof is carried out for an even function $f \in Z^{\bullet}$ with Hadamard factorization

$$f(\gamma) = \gamma^{2m} \prod_{n=1}^{\infty} \left(1 - \frac{\gamma^2}{\gamma_n^2}\right),$$

the odd case being left to the reader. A simple estimate justifies us in ignoring the root of f at $\gamma=0$; indeed $f_{\delta}=\delta^{2m}\left(1-\gamma^{2}/\delta^{2}\right)^{m}f/\gamma^{2m}$ is an even entire function of minimal exponential type, $|f_{\delta}/f|$ tends to 1 as $|\gamma|\uparrow\infty$ so that $f_{\delta}\in Z^{\bullet}$, and $||f_{\delta}-f||_{\Delta}$ tends to 0 as $\delta\downarrow 0$ so that if $f_{\delta}\in Z^{0+}$ then so does f.

Bring in the function

$$g(\gamma) = \prod_{|\gamma_n| < d} \left(1 - \frac{\gamma^2}{\gamma_n^2}\right) \prod_{n > d\delta} \left(1 - \frac{\gamma^2 \delta^2}{n^2}\right),$$

depending upon a small positive number δ and a large integral number d. Given $\delta>0$, $\varepsilon>0$, and $A<\infty$, it is possible to find $d_1=d_1\left(\delta,\varepsilon,A\right)$ and a universal constant B so that for each $d\geqslant d_1$,

- (a) $|f-g| < \varepsilon$ (|a| < A)
- (b) |g| < B|f| $(A \le |a| < d/2)$
- (c) |g| < B $(|a| \ge d/2)$
- (d) $g \in L^2(R^1)$.

It is best to postpone the proof of (a), (b), (c), (d) and to proceed at once to the

Proof that $f \in \mathbb{Z}^{0+}$. Using (a), (b), (c) above,

$$\|f-g\|_{\Delta}^2 < \varepsilon^2 \int \Delta + 2(B+1)^2 \int_A^{d/2} |f|^2 \Delta + 2 \int_{d/2} (B+|f|)^2 \Delta$$

tends to 0 as $d \uparrow \infty$, $A \uparrow \infty$, and $\varepsilon \downarrow 0$ in that order. Because the entire function g differs from $\sin \pi \delta \gamma$ by a rational factor and, as such, is of exponential type $\pi \delta$, it follows from (d) in conjuction with the Paley-Wiener theorem that

$$g(a) = \int_{|t| < n\delta} e^{iat} \, \hat{g}(t) \, dt \quad \text{with} \quad \int_{|t| < n\delta} |\hat{g}|^2 \, dt < \infty.$$

But $\int_{|t|<\pi\delta} e(iat) \, \hat{g} \, dt \in Z^{|t|\leq\pi\delta}$, as is obvious upon noting the bound

$$\left\|\int_{|t|<\pi\delta}e^{iat}\;\hat{g}\;dt\right\|_{\Delta}^{2}\leqslant 2\,\pi\delta\!\int_{|t|<\pi\delta}\!|\hat{g}|^{2}\int\!\Delta$$

and so $f \in \bigcap_{\delta>0} Z^{|t|<n\delta} = Z^{0+}$ (see 6a).

Coming to the proof of (a), (b), (c), (d) above, it is convenient to introduce

$$p(\gamma) = p_m(\gamma) = \pi \gamma \prod_{n=1}^{m} \left(1 - \frac{\gamma^2}{n^2}\right)$$

and to check the existence of a universal constant B such that $Q \equiv |\sin{(\pi a)}/p(a)|$ is bounded as in

(e)
$$Q/B < egin{cases} e^{-a^{3}/m} & |a| < m \ e^{-a/2} & m \leqslant |a| < 2m \ e^{-m-2 \, m \, \lg \, (a/m)} & |a| \geqslant 2 \, m. \end{cases}$$

Proof of (e).

 $Q = \prod_{n>m} (1-a^2/n^2)$ for |a| < m, and since $1-c \le e$ (-c), Q < e $(-a^2/(m+1))$. Stirling's approximation is now used to estimate p below for $|a| \ge m$, removing first a factor a-m in case $m \le |a| < m+1$, and then $|\sin \pi a|$ is estimated above by 1 or

on this range. On the other hand, if m is the biggest integer $< d\delta$ and if |a| < d/2, then $\delta |a| < m$ so that the first appraisal listed under (e) supplies us with the bound

$$Q(a\delta) = \prod_{n>d\delta} (1-a^2\delta^2/n^2) < Be^{-a^2\delta^2/(m+1)} < Be^{-a^2\delta/2d},$$

and it follows that

$$B|f(a)| > \prod_{|\gamma_n| < d} \left| 1 - \frac{a^2}{\gamma_n^2} \right| \prod_{n > d\delta} \left(1 - \frac{a^2 \delta^2}{n^2} \right) = |g|,$$

as desired.

Proof of (c) and (d). On the range $|a| \ge d/2$,

$$\begin{split} \lg \prod_{|\gamma_n| < d} \left| 1 - \frac{a^2}{\gamma_n^2} \right| &\leq \int_0^d \lg \left(1 + \frac{a^2}{R^2} \right) \# (dR) \\ &= \# (d) \lg \left(1 + \frac{a^2}{d^2} \right) + \int_0^d \frac{2 a^2}{a^2 + R^2} \frac{\#}{R} dR \\ &\leq 2 \# (d) \lg \left(3 |a| / d \right) + 2 \int_0^d \frac{\#}{R} dR \\ &= o \left[d + d \lg \left(|a| / d \right) \right] \end{split}$$

for large d, while according to (e), if $|a| \ge d/2$ and if m is the biggest integer $< d\delta$, then

$$Q(a\delta) < Be[-\frac{1}{2}d\delta(1 + \lg(a/d))].$$

But then |g| < B for large d as stated in (c), while for $d > 8/\delta$

$$|g| < Be[-\frac{1}{4}d\delta(1 + \lg(a/d))] \quad (|a| > d/2).$$

But for still larger d, $d\delta (1 + \lg (a/d)) - 8 \lg a > 0$ for a > d/2, since the left side is positive at a = d/2 and increasing for a > d/2. Thus

$$|g| < B/a^2$$
 $(|a| > d/2)$

so that $g \in L^2(\mathbb{R}^1)$ as stated in (d).

6 a. Proof of $Z^- \cap Z^+ \supset Z^{0+}$ (Δ Hardy or not)

Given $f \in \mathbb{Z}^{0+} \subset \mathbb{Z}^+$, then $e(-ia\delta)f \in \mathbb{Z}^{-\delta 0} \subset \mathbb{Z}^-$, and

$$\begin{aligned} \| \left(e^{-ia\delta} - 1 \right) f \|_{\Delta} & \leq \max_{|a| \leq n} |e^{-ia\delta} - 1| \ \| f \|_{\Delta} + 2 \left(\int_{|a| > n} |f|^2 \Delta \right)^{\frac{1}{2}} \\ & \leq n\delta \ \| f \|_{\Delta} + 2 \left(\int_{|a| > n} |f|^2 \Delta \right)^{\frac{1}{2}} \end{aligned}$$

is small for $\delta = n^{-2}$ and $n \uparrow \infty$, so that $f \in \mathbb{Z}^-$ also. Our proof justifies 8-642906 Acta mathematica 112. Imprimé le 22 septembre 1964.

$$Z^{0+} = \bigcap_{\delta < 0} Z^{\delta 0} = \bigcap_{\delta > 0} Z^{|t| < \delta};$$

this fact will be used without additional comment below.

6 b. Proof of
$$Z^{0+} = Z^{\cdot}$$
 (Δ Hardy)

 $Z^{0+} \subset Z^{\bullet}$ is proved next for a Hardy weight Δ . Combined with the previous result $Z^{0+} \supset Z^{\bullet}$, this gives $Z^{0+} = Z^{\bullet}$.

Given $f \in \mathbb{Z}^{0+}$, it is possible to find a finite sum

$$f_n = \sum c_k^n e(i\gamma t_k^n)$$
 with $0 \le t_k^n < 1/n$, $||f - f_n||_{\Delta} < 1/n$,

and hence

$$||f_n||_{\Delta} < 1/n + ||f||_{\Delta} \leq 1 + ||f||_{\Delta}.$$

Phragmén-Lindelöf is now applied to obtain bounds on $|f_n|$. Because $|f_n|$ is bounded $(b \ge 0)$ and f_n is entire, $f_n h \in H^{2+}$, so

$$\int |f_n h(a+ib)|^2 da \leq \int |f_n|^2 \Delta$$

is bounded $(b>0, n \ge 1)$, and an application of Cauchy's formula to a ring supplies us with the bound

$$|f_n h| \leq B_1 \quad (b \geq 1, n \geq 1).$$

Also, $|e(-i\gamma/n)f_n|$ is bounded (b<0), so

$$|e^{-i\gamma/n} f_n h^*| \leq B_2 \quad (b \leq -1, n \geq 1)$$

with a similar proof. Next, the underestimate

$$\pi \lg |h(a+ib)| = \pi \lg |h^*(a-ib)| \ge \int \frac{b \lg^-|h|}{(c-a)^2 + b^2} dc \ge B_3 (1+a^2) \int \frac{\lg^-|h|}{1+c^2} dc$$

$$\ge B_4 |e^{-B_4 \gamma^2}| \quad (1 \le b \le 2, \ B_4 > 0)$$

justifies the bound

$$|g_n| \leq B_6$$
 for $1 \leq b \leq 2$, $n \geq 1$ with $g_n \equiv e(-B_5 \gamma^2) f_n$.

Because $|g_n|$ tends to 0 at the ends of the strip $|b| \le 2$, it is bounded $(\le B_6)$ in the whole strip according to the maximum modulus principle. In particular, $|f_n| \le B_7$ on the disc $|\gamma| \le 2$. A second underestimate of |h| is obtained from the Poisson integral

for $\lg |h|$: $\lim_{R \uparrow \infty} R^{-1} \lg |h(Re^{i\theta})| = 0$ $(\theta = \pi/4, 3\pi/4)$, and it follows from the resulting bound

$$|f_n| \leq B_8 e^{\delta R} \quad (R \geq 1, \ \theta = \pi/4, \ 3 \pi/4)$$

and its companion

$$|e^{-i\gamma/n}f_n| \le B_9 e^{\delta R}$$
 $(R \ge 1, \ \theta = 5 \ \pi/4, \ 7 \ \pi/4)$

combined with an application of Phragmén-Lindelöf to each of the 4 sectors between $\pi/4$, $3\pi/4$, $5\pi/4$, $7\pi/4$, that

$$|f_n| \leq B_{10} e^{(\delta+1/n)R}.$$

But now it is legitimate to suppose that as $n \uparrow \infty$, f_n tends on the whole plane to an entire function f_∞ ; moreover, this function is specified on the line b=0 since $||f_n-f||_{\Delta}$ tends to 0 as $n \uparrow \infty$. Accordingly, the entire function f_∞ is an extension of f, and since $|f_\infty| \leq B_{10} e(\delta R)$, it is clear that $f \in Z_\Delta^*$ as desired.

If Δ is non-Hardy then it is possible for Z^{0+} to contain Z^{\bullet} properly. Indeed let $\Delta(a)$ be even, non-increasing for a>0, and non-Hardy. Then, as will be proved in 8, $Z^{0+}=Z+Z^{\bullet}$.

 Δ non-Hardy does not ensure that Z^{\bullet} is dense in Z; in fact if $\int_{-1}^{1} \lg \Delta/1 + a^{2} = -\infty$ while $\Delta \ge 1/a^{2}$ ($|a| \ge 1$), then $f \in Z^{\bullet}$ satisfies $\int |f|^{2}/(1+a^{2}) < \infty$, and a simple application of Phragmén-Lindelöf implies that f is constant; in short, dim $Z^{\bullet} = 1$.

6 c. A condition that $Z^- \cap Z^+ = Z^- (\Delta \text{ Hardy})$

$$Z^- \cap Z^+ = Z^*$$
 if Δ is a Hardy weight and if $\int_{-d}^{+d} \Delta^{-1} < \infty$ $(d < \infty)$.

Proof. The idea is that $f \in \mathbb{Z}^- \cap \mathbb{Z}^+$ is regular for $b \neq 0$ and can be continued across b = 0 if Δ is not too small (see T. Carleman [3] for a similar argument).

Given $f \in \mathbb{Z}^- \cap \mathbb{Z}^+$, then $fh \in H^{+2}$, $\lim_{b \downarrow 0} f(a+ib) = f(a)$ except at a set of points of Lebesgue measure 0 [7, p. 123], and so the Lebesgue measure of

$$A \equiv (a: \sup_{0 \le b \le \delta} |f(a+ib)| > \varepsilon^{-1}, |a| < d)$$

tends to 0 as δ and $\varepsilon \downarrow 0$; it is to be proved that

$$\sup_{0\leqslant b<\delta}\int_{A}\bigl|f(a+ib)\bigr|\,da$$

is small for small δ and ε for each $d < \infty$. Bring in the summable weight

$$B = \Delta^{-1} \qquad (|c| \le 2d)$$

= $(1 + c^2)^{-1} \quad (|c| > 2d);$

then for larged,

$$\begin{split} &\left(\int_{A} |f(a+ib)| \, da\right)^{2} \\ & \leq \int |fh(a+ib)|^{2} \, da \, \int_{A} [\Delta(a+ib)]^{-1} \, da \\ & \leq \|f\|_{\Delta}^{2} \int_{A} da \, e \left[\frac{1}{\pi} \int_{|c| \leq 2d} \frac{b}{(c-a)^{2} + b^{2}} \lg \Delta^{-1} \, dc\right] \, e \left[\frac{1}{\pi} \int_{|c| > 2d} \frac{b}{(c-a)^{2} + b^{2}} \lg \Delta^{-1} \, dc\right] \\ & \leq 2 \, \|f\|_{\Delta}^{2} \int_{A} da \, e \left[\frac{1}{\pi} \int_{(c-a)^{2} + b^{2}} \lg B \, dc\right] \end{split}$$

and an application of Jensen's inequality implies

$$\sup_{0\leqslant b\leqslant \delta} \left[\int_{A} |f(a+ib)| da \right]^{2} \leqslant 2 \|f\|_{\Delta}^{2} \int Bdc \sup_{0\leqslant b\leqslant \delta} \int_{A} \frac{b}{(c-a)^{2} + b^{2}} \frac{da}{\pi}$$

$$\downarrow 2 \|f\|_{\Delta}^{2} \int_{\mathbf{0}, \delta>0}^{A} Bdc = 0 \quad (\delta, \ \varepsilon \downarrow 0).$$

Using this appraisal, it follows that

$$\lim_{b \downarrow 0} \int_{-a}^{+d} |f(a+ib) - f(a)| da = 0;$$

the analogous result for b < 0 follows from a similar appraisal. Choose c so that f(c+ib) tends boundedly to f(c) as $b \downarrow 0$ and define

$$g(\gamma) = \int_{c}^{a} f(\xi + ib) d\xi + i \int_{0}^{b} f(c + i\eta) d\eta \quad (\gamma = a + ib).$$

g is regular $(b \pm 0)$ since $f \in \mathbb{Z}^- \cap \mathbb{Z}^+$ is such, it is continuous across b = 0 and hence entire, so f = g' is likewise entire, and all that remains to be proved is that f is of minimal exponential type.

Because $fh \in H^{2+}$, $\int |\lg|fh||/(1+a^2) < \infty$, and since $\lg^+|f| \le \lg^+|fh| - \lg^-|h|$, the integral $\int |\lg|f||/(1+a^2)$ is also convergent; also, $\lg|fh|$ is smaller than its Poisson integral, so

$$\lg^+ \left| f(Re^{i\theta}) \right| \leq \frac{1}{\pi} \int \frac{R \sin \theta \lg^+ \left| f(c) \right| dc}{R^2 - 2 Rc \cos \theta + c^2} \quad (0 < \theta < \pi),$$

 $\lg |h|$ being expressible by its Poisson integral since h is an outer function. According to this bound,

 $\int_0^{\pi} \lg^+ \left| f(Re^{i\theta}) \right| d\theta \leqslant \frac{2}{\pi} \int_0^{\pi} \lg^+ \left| f(c) \right| \lg \left| \frac{R+c}{R-c} \right| \frac{dc}{c}$

and

$$\begin{split} \int_{R}^{2R} dR \, \int_{0}^{\pi} d\theta \, \lg^{+} \left| f(Re^{i\theta}) \right| & \leq \, \frac{2}{\pi} \int_{0}^{1} \lg^{+} \left| f(c) \right| dc \, \int_{R/c}^{2R/c} \lg \left| \frac{t+1}{t-1} \right| dt \\ & < B_{1} (1+R^{2}) \, \int_{0}^{1} \frac{\lg^{+} \left| f(c) \right|}{1+c^{2}}, \end{split}$$

as a simple appraisal justifies. A similar bound holds for $\lg^+|f|$ in the lower half plane b < 0, so that

$$\int_{R}^{2R} dR \int_{0}^{2\pi} d\theta \, \lg^{+} \left| f(Re^{i\theta}) \right| < B_{2}(1+R^{2}),$$

and it follows that between each large R and its double 2R can be found an R_1 with

$$\int_0^{2\pi} \lg^+ \left| f(R_1 e^{i\theta}) \right| d\theta < 2 B_2 R_1.$$

An application of the Poisson-Jensen formula now supplies us with the bound

$$\lg^+|f| < B_3 R \quad (R \uparrow \infty),$$

and a second application of the fact that $\lg^+|f|$ is smaller than its Poisson integral supplies the additional information that

$$\overline{\lim_{R \uparrow \infty}} R^{-1} \lg^{+} |f(Re^{i\theta})| \leq 0 \quad (\theta = \pi/4, 3\pi/4, 5\pi/4, 7\pi/4).$$

Phragmén-Lindelöf is now applied to each of the 4 sectors between, with the result that

$$\overline{\lim_{R \uparrow \infty}} R^{-1} \max_{0 \leqslant \theta < 2\pi} \lg^{+} |f(Re^{i\theta})| \leqslant 0,$$

and the proof is complete.

A second proof of $Z^{0+} \subset Z^{\bullet}$ can be based on the above; indeed, if $f \in Z^{0+}$ and if f_n is chosen as in 6b, then

$$\int |(f-f_n)h(a+i)|^2 da \leq ||f-f_n||_{\Delta}^2 < 1/n^2,$$

and so $f(a+i) \in Z_{\Delta(a+i)}^{0+}$ with $\Delta(a+i) = |h(a+i)|^2$. But $\Delta(a+i)$ is positive and continuous, so

$$Z^{0+}_{\Delta(a+i)} \subset Z^{-}_{\Delta(a+i)} \cap Z^{+}_{\Delta(a+i)} = Z^{\bullet}_{\Delta(a+i)},$$

proving that f(a+i) is entire of minimal exponential type.

 $Z^* \neq Z^- \cap Z^+$ if, for instance, $\int_{-1}^{+1} \Delta/a^2 < \infty$; indeed in this case,

$$\frac{1}{\pm ia + \delta} = \int_0^\infty e^{-\delta t} e^{\pm iat} dt \in \mathbb{Z}^{\pm} \quad (\delta > 0),$$

while

$$\left\|\frac{1}{ia\pm\delta} - \frac{1}{ia}\right\|_{\Delta}^2 \le \delta^2 \int_{|a|>1} \Delta + \int_{|a|\leqslant 1} \frac{\Delta}{a^2} \frac{\delta^2}{a^2 + \delta^2}$$

tends to 0 as $\delta \downarrow 0$, so that $1/ia \in \mathbb{Z}^- \cap \mathbb{Z}^+$.

The Hardy weight $\Delta = a^2 e(-2|a|^{-\frac{1}{2}})/(1+a^4)$ illustrates the point that $f \in Z^- \cap Z^+$ can be regular in the punctured plane but have an essential singular point at $\gamma = 0$. Define $f = \gamma^{-1} \cos(1/\gamma^{\frac{1}{2}})$; then $f_{\delta} = f(\gamma + i\delta)$ $(\delta > 0)$ is of modulus $\leq |a|^{-1} e(1/|a|^{\frac{1}{2}})$ on the line so that $||f - f_{\delta}||_{\Delta}$ tends to 0 as $\delta \downarrow 0$, while, as an application of the Paley-Wiener theorem justifies, $f_{\delta} = \int_0^{\infty} e(iat) f_{\delta}(t) dt$ with f_{δ} and $tf_{\delta} \in L^2[0, \infty)$. $f_{0+} = f \in Z^+$ follows and a similar argument with $\delta < 0$ proves that $f \in Z^-$ also.

6 d. A condition that genus Z'=0 (Δ Hardy)

Each $f \in Z^*$ is of genus 0 and $\int_1 \lg \max_{0 \le \theta < 2\pi} |f(Re^{i\theta})|/R^2 < \infty$ if $\int_1 \lg^- \Delta(ib)/b^2 > -\infty$ or, and this is the same, if $\int_1 \lg^- \Delta \lg a/a^2 > -\infty$.

Proof. To begin with, $\int_1 \lg^- \Delta(ib)/b^2$ and $\int_1 \lg^- \Delta(a) \lg a/a^2$ converge and diverge together; indeed, since $\int_1 \lg^+ \Delta(a) \lg a/a^2 \le \int_1 \Delta < \infty$, the convergence of $\int_1 \lg^- \Delta(a) \lg a/a^2$ combined with the Poisson formula

$$\lg \Delta(ib) = \frac{1}{\pi} \int \frac{b}{a^2 + b^2} \lg \Delta(a) da,$$

leads at once to the bound

$$\int_{1} \frac{\left| \lg \Delta(ib) \right|}{b^{2}} \leq \frac{1}{\pi} \int \left| \lg \Delta(a) \right| da \int_{1} \frac{db}{b(b^{2} + a^{2})},$$

the second integral converging, since

$$\int_{1}^{\infty} \frac{db}{b(b^2+a^2)} \sim \frac{\lg a}{a^2} \quad (a \uparrow \infty).$$

On the other hand, if $\int_1 \lg^- \Delta(ib)/b^2 > -\infty$, then $\int_1 \lg^- \Delta(a) \lg a/a^2$ is not smaller than a positive multiple of

$$\begin{split} \int_{1} \lg^{-} \Delta\left(a\right) da \, \frac{1}{\pi} \int_{1} \frac{db}{b(b^{2} + a^{2})} &\geqslant \int_{1} \frac{db}{b^{2}} \, \frac{1}{\pi} \int \frac{b}{a^{2} + b^{2}} \, \lg^{-} \Delta\left(a\right) da \\ &= \int_{1} \frac{db}{b^{2}} \left(\lg \, \Delta\left(ib\right) - \frac{1}{\pi} \int \frac{b}{a^{2} + b^{2}} \, \lg^{+} \Delta\left(a\right) da \right) \\ &\geqslant \int_{1} \lg^{-} \Delta\left(ib\right) / b^{2} - \, \operatorname{constant} \, \times \int \lg^{+} \Delta\left(a\right) > - \infty \, . \end{split}$$

Given $\int_1 \lg^- \Delta(ib)/b^2 > -\infty$, if $f \in \mathbb{Z}_{\Delta}$, then f is of genus 0 and

$$\int_1 \lg \max_{0 \leqslant \theta < 2\pi} |f(Re^{i\theta})| / R^2 < \infty;$$

indeed, since $\Delta(ib)$ is bounded $(b \ge 1)$,

$$\Delta^{o}(b) = \Delta^{o}(-b) = \Delta(ib)/b^{2} \quad (b > 1)$$

= 1 (0 \le b \le 1)

is a Hardy weight, and if $f \in Z_{\Delta}^*$, then |fh| is bounded $(b \ge 1)$, $|fh^*|$ is bounded $(b \le -1)$, and $\int |f(ib)|^2 \Delta^o db < \infty$, i.e., $f(i\gamma) \in Z_{\Delta^o}^*$. But then $\int_1 |\lg|f(ib)||/b^2 < \infty$, and combining this with $\int_1 |\lg|f(a)||/a^2 < \infty$ and an application of Carleman's theorem, one finds that the sum of the reciprocals of the moduli of the roots of f has to converge [2; 2.3.14], i.e., that the genus of f is 0. Because $f^+ = f + f^* \in Z_{\Delta}^*$ satisfies

$$\int_{1} \lg^{+} \left|f^{+}\left(ib\right)\right| b^{2} < \infty \ \ \text{and} \ \ \int_{1} \lg^{+} \left|f^{+}\left(a\right)\right| / a^{2} < \infty \,,$$

it is of genus 0. It is also even, so $\int_1 \lg \max_{0 \le \theta < 2\pi} |f_+(Re^{i\theta})|/R^2 < \infty$ [2; 2.12.5]; the same holds for $f_- = f - f^* \in Z_\Delta^*$ since γf_- is entire, even, and of genus 0, so

$$\int_1 \lg \max_{0 \leqslant \theta < 2\pi} |f(Re^{i\theta})|/R^2 < \infty$$

as stated.

 $\int \lg^- \Delta(ib)/b^2$ can diverge even though each $f \in \mathbb{Z}_{\Delta}^*$ is of genus 0, as can be seen from the Hardy weight Δ :

$$e^{a^{\frac{1}{2}}}\Delta = 1$$
 on $[0, 1) + [2, 3) + \text{etc.}$
= $e[-a/\lg^2(a+1)]$ on $[1, 2) + [3, 4) + \text{etc.}$

 Δ is Hardy since $(a \lg^2(a+1))^{-1}$ is summable, while

$$\int_{1} \lg^{-} \Delta \lg a / a^{2} \leq \sum_{\substack{d \text{ odd} \\ d \geq 1}} \int_{d}^{d+1} (a \lg (a+1))^{-1} = -\infty,$$

so that $\int_1 \lg \Delta(ib)/b^2 = -\infty$. Given $f \in \mathbb{Z}_{\Delta}^{\bullet}$,

$$B_1 = \|f\|_{\Delta}^2 > \int_{2\,d}^{2\,d+1} |f|^2\,e^{-2\,a^{\frac{1}{2}}} > |f|^2\,e^{-2\,a^{\frac{1}{2}}}$$

at some point $2d \le a < 2d+1$ $(d \ge 0)$, so an application of the Duffin-Schaeffer theorem [2; 10.5.1] applied to $fe(-\gamma^{\frac{1}{2}})$ on the half plane $a \ge 0$ supplies us with the bound $|f|e(-a^{\frac{1}{2}}) < B_2$ on the half line $a \ge 0$. $|f|e(|a|^{\frac{1}{2}}) < B_3$ on the left half line for similar reasons. Phragmén-Lindelöf applied to $fe(-(2\gamma)^{\frac{1}{2}}e^{-t\pi/4})$ on the half plane $b \ge 0$ together with an analogous argument on b > 0 supplies the bound $|f| < B_4 e[(2R)^{\frac{1}{2}}]$ on the whole plane, and it follows that f is of genus 0.

6 e. Rational weights

 $\dim Z^{+/-} = d < \infty$ if and only if Δ is a rational function of degree 2d.

See, for example, Hida [6] from whom the following proof is adapted.

Proof. dim $Z^{+/-} = d < \infty$ implies $Z^{+/-} \neq Z$, so Δ is a Hardy weight and can be expressed as $|h|^2$ with h outer. Define the Fourier transform $f(t) = (1/2\pi) \int e(-iat) f(a) da$ and note that if $j = h/h^*$ and if p is the projection upon H^{2-} , then $Z^{+/-}h = jpj^{-1}H^{2+}$ is of the same dimension d as

$$[pj^{-1}H^{2+}]^{\hat{}} = \operatorname{span} [pj^{-1}e^{tat}h:t>0]^{\hat{}} = \operatorname{span} [pe^{tat}h^*:t>0]^{\hat{}}$$

= $\operatorname{span} [(e^{tat}h^*)^{\hat{}}i(s):t>0]$
= $\operatorname{span} [(\hat{h}(t-s)i(s):t>0],$

where i(s) is the indicator of $s \le 0$. $[pj^{-1}H^{2+}]^{-}$ has a unit perpendicular basis f_1, \ldots, f_d , and $\hat{h}(t-s) = c_1(t)f_1(s) + \ldots + c_d(t)f_d(s)$ $(s \le 0)$ with (real) coefficients c_1, \ldots, c_d . Choose $g_1, \ldots, g_d \in C^{\infty}(-\infty, 0]$ vanishing near $-\infty$ and 0 with det $[\int_{-\infty}^0 f_i g_j] = 0$; then

$$\sum_{i\leqslant d}c_i\int_{-\infty}^0 f_ig_jds=\int_{-\infty}^0 \hat{h}(t-s)\,g_jds \quad (j\leqslant d,\ t>0),$$

so that $c_1, \ldots, c_d \in C^{\infty}(0, \infty)$, and it follows that $\hat{h} \in C^{\infty}(0, \infty)$ also. Given $0 < t_0 < \ldots < t_d$, a dependence with non-trivial (real) coefficients must prevail between $\hat{h}(t_0 - s), \ldots, \hat{h}(t_d - s)$ $(s \le 0)$, and since $\hat{h} \in C^{\infty}(0, \infty)$, it is possible to find a differential operator D with constant (real) coefficients and degree $\le d$ annihilating \hat{h} on the half line t > 0. But this means that \hat{h} is a sum of $\le d$ terms $t^a e^{bt} \cos ct$, the permissible a filling out a series 0, 1, 2, etc., b < 0, and the trigonometrical factors either absent or both permissible.

 Δ rational of degree $\leq 2d$ follows at once upon taking the inverse Fourier transform. On the other hand, if Δ is rational of degree 2d, then it is a Hardy weight $|h|^2$ with h outer, h is also rational (of degree d), \hat{h} is a sum of terms $t^a e^{bt} \cos_{\sin} ct$ as above, the number of them coinciding with deg h and the trigonometrical factors either absent or present in pairs, and dim $Z^{+/-} = d$ follows from dim span $[\hat{h}(t-s) i(s): t>0] = d$.

 Δ rational of degree 2d implies that

- (a) $h = p_0 p_1/p_2$, p_0, p_1, p_2 being polynomials in iy with roots on the line in the case of p_0 and in the open half plane b < 0 in the case of p_1 and p_2 , and of degrees d_0, d_1, d_2 (= d) with $d_0 + d_1 < d_2$,
- (b) $Z^{\centerdot} = Z^{0+} = Z_{\centerdot} = polynomials in iy of degree <math>< d_2 d_1 d_0$,
- (c) $Z^- \cap Z^+ = 1/p_0 \times polynomials in iy of degree <math>< d_2 d_1$,
- (d) $Z^{+/-} = 1/p_0 p_1^* \times polynomials$ in $i\gamma$ of degree $< d_2(=d)$, esp.,
- (e) $Z^{\bullet} = Z^{-} \cap Z^{+}$ if and only if h has no roots on b = 0,
- (f) $Z^- \cap Z^+ = Z^{+/-}$ if and only if h has no roots in b < 0,
- (g) $Z^{+/-} = Z^- \cap Z^+ = Z^{\bullet} Z^{0+} = Z$, if and only if h has no roots at all.

Proof of (a). Obvious.

Proof of (b). $f \in \mathbb{Z}_{\Delta}^*$ implies $\int |f|^2/(1+a^2)^d < \infty$, and a simple application of Phragmén-Lindelöf implies that f is a polynomial; the bound on its degree is obvious.

Proof of (c). $f \in Z^- \cap Z^+$ implies $p_0 f \in Z_{\Delta^o}^- \cap Z_{\Delta^o}^+$ ($\Delta^o = |p_1/p_2|^2$), and since Δ^o is bounded from 0 on bounded intervals, $p_0 f \in Z_{\Delta^o}^+$ (Section 6 c). But then $p_0 f$ has to be a polynomial as in the proof of (b) above, the bound on the degree of this polynomial is obvious, and the rest of the proof is a routine application of $Z^- \cap Z^+ h = iH^{2-} \cap H^{2+}$ ($i = h/h^*$).

Proof of (d). Use the formula $Z^{+/-}h = jH^{2-} \cap (1/j_1)H^{2+}$ $(j = j_2/j_1)$ of Section 3 and match dimensions.

Proof of (e), (f), (g). Obvious.

7. A condition that $Z^{+/-} = Z^*$ (Δ Hardy)

Given a Hardy weight $\Delta = |h|^2$ (h outer), $Z^{+} = Z^*$ if and only if h is the reciprocal of an entire function of minimal exponential type.

Proof. Suppose h is the reciprocal of an entire function f of minimal exponential type; then h=1/f implies $\int_{|a|< d} \Delta^{-1} < \infty$ $(d < \infty)$, so $Z^* = Z^- \cap Z^+$ (6 c), and to complete the proof of $Z^{+/-} = Z^*$, it is enough to check that $j = h/h^* = f^*/f$ is an inner function (Section 3(c)). But 1/f = h being outer, it is root-free $(b \ge 0)$, and

$$\lg |f| = \frac{1}{\pi} \int \frac{b}{(c-a)^2 + b^2} \lg |f| dc \quad (b > 0),$$

while f^* , as an entire function of minimal exponential type with $\int \lg |f^*|/(1+a^2) < \infty$, satisfies

$$\lg |f^*| \le \frac{1}{\pi} \int \frac{b}{(c-a)^2 + b^2} \lg |f^*| dc \quad (b > 0),$$

so f^*/f is regular (b>0) with

$$|f^*/f| = 1$$
 $(b=0)$

$$|f^*/f| \le e \left[\frac{1}{\pi} \int \frac{b}{(c-a)^2 + b^2} \lg |f^*/f| dc \right] = 1 \quad (b > 0),$$

i.e., f^*/f is inner.

On the other hand, if $Z^{+l-} = Z^*$ and if p is the projection upon H^{2-} , then the projection of e(iat) (t>0) upon Z^- :

$$\begin{split} h^{-1} \dot{j} p \dot{j}^{-1} e^{iat} h & \quad (\dot{j} = h/h^*) \\ &= h^{-1} \dot{j} p e^{iat} h^* \\ &= h^{-1} \dot{j} \frac{1}{2\pi} \int_{-\infty}^{0} e^{ias} ds \int e^{-ics} e^{ict} h^* dc \\ &= h^{-1} \dot{j} \frac{1}{2\pi} \int_{-\infty}^{0} e^{ias} ds \left(\int e^{-ic(t-s)} h dc \right)^* \\ &= h^{-1} \dot{j} \frac{1}{2\pi} \int_{-\infty}^{0} e^{ias} ds \hat{h}(t-s) & \left(\hat{h} = \frac{1}{2\pi} \int e^{-iat} h dt = \hat{h}^* \right), \end{split}$$

belongs to Z^{\bullet} , and since its conjugate also belongs to Z^{\bullet} ,

$$\frac{e^{-iat}}{2\pi h} \int_{t}^{\infty} e^{ias} \hat{h} \, ds \equiv f_{t}(a) \in Z_{\Delta}^{\bullet} \quad (t > 0).$$

Choose t>0 belonging to the Lebesgue set of \hat{h} so that $\lim_{\delta\downarrow 0} \delta^{-1} \int_t^{t+\delta} \hat{h} ds = \hat{h}(t) \pm 0$ and $\delta^{-1} \int_t^{t+\delta} |\hat{h}| ds$ is bounded as $\delta\downarrow 0$.

$$\begin{split} 2\pi \left\| f_{t+\delta} - f_{t} \right\|_{\Delta^{+}} & \leq \left\| \left(e^{-ia(t+\delta)} - e^{-iat} \right) \int_{t+\delta}^{\infty} e^{ias} \hat{h} ds \, \right\|_{1/(1+a^{2})} + \left\| e^{-iat} \int_{t}^{t+\delta} e^{ias} \hat{h} ds \, \right\|_{1/(1+a^{2})} \\ & = \left\| \left(e^{ia\delta} - 1 \right) \int_{t+\delta}^{\infty} e^{ias} \hat{h} ds \, \right\|_{1/(1+a^{2})} + \left\| \int_{t}^{t+\delta} e^{ias} \hat{h} ds \, \right\|_{1/(1+a^{2})} \\ & \leq \operatorname{constant} \times \delta \, \left\| \int_{t+\delta}^{\infty} e^{ias} \hat{h} ds \, \right\|_{1} + \int_{t}^{t+\delta} \left| \hat{h} \right| ds \left(\int \frac{da}{1+a^{2}} \right)^{1/2} \\ & \leq \operatorname{constant} \times \delta. \end{split}$$

and it follows, thanks to the bound $\overline{\lim}_{R\uparrow\infty} R^{-1} \max_{0\leqslant \theta<2\pi} \lg \sigma^{\bullet}(Re^{i\theta}) \leqslant 0$, that $\delta^{-1}(f_{t+\delta}-f_t)$ can be made to tend on the whole plane to some $f^{\bullet}\in Z_{\Delta^{+}}^{\bullet}$ as $\delta\downarrow 0$ via some series $\delta_{1}>\delta_{2}>$ etc. Going back to the definition of $f_{t}\equiv f$, it develops that

$$-\widehat{h}(t)/2\pi h(a) = [iaf + f^{\bullet}] \in Z_{\Delta^{+}}^{\bullet},$$

and the proof is complete.

8. A condition that $Z^{0+} = Z$

$$Z^{0+}=Z$$
 if $\int_1 da/a^2 \lg \int_a \Delta e^{-2B}=-\infty$ with $0 \leq B \in \uparrow$, $\int_1 e^{-2B} < \infty$, and $\int_1 B/a^2 < \infty$.

 Δ has to be non-Hardy for this integral to diverge since

$$\begin{split} \int_{1}^{1} \frac{da}{a^{2}} \lg \int_{a} \Delta \, e^{-2B} &\geqslant \int_{1}^{1} \frac{da}{a^{2}} \lg \left[a^{3} \int_{a} \frac{\Delta \, e^{-2B}}{c^{3}} \right] \\ &= \int_{1}^{1} \frac{\lg \left(2a \right)}{a^{2}} \, da + \int_{1}^{1} \frac{da}{a^{2}} \lg \left[\frac{a^{2}}{2} \int_{a} \frac{\Delta \, e^{-2B}}{c^{3}} \right] \\ &\geqslant \int_{1}^{1} \frac{\lg \left(2a \right)}{a^{2}} \, da + \int_{1}^{1} \frac{da}{a^{2}} \left[\frac{a^{2}}{2} \int_{a} \frac{\lg \Delta \, e^{-2B}}{c^{3}} \right] \\ &\geqslant \int_{1}^{1} \frac{\lg \left(2a \right)}{a^{2}} \, da + \frac{1}{2} \int_{1}^{1} da \int_{a} \frac{\lg^{-} \Delta}{c^{3}} - \int_{1}^{1} da \int_{a} \frac{B}{c^{3}} \\ &> \mathrm{constant} + \frac{1}{2} \int_{1}^{1} \lg^{-} \Delta / a^{2}; \end{split}$$

also, if $\Delta \in \downarrow$, then $\int_1 da \, a^{-2} \lg \int_a \Delta e^{-2B}$ and $\int_1 \lg^- \Delta/a^2$ converge or diverge together, since under this condition,

$$\begin{split} \int_{1} \frac{da}{a^{2}} \lg \int_{a} \Delta \, e^{-2B} & \leqslant \int_{1} \frac{da}{a^{2}} \bigg(\lg \Delta + \lg \int_{a} e^{-2B} \bigg) \\ & \leqslant \int_{1} \lg \Delta / a^{2} + \lg \int_{1} \frac{da}{a^{2}} \int_{a} e^{-2B} \\ & < \int_{1} \lg \Delta / a^{2} + \text{constant} \, ; \end{split}$$

esp., if $\Delta \in \downarrow$, then $Z^{0+} = Z$ if and only if $\int_1 \lg \Delta/a^2 = -\infty$.

As to the proof of the original statement, if $\int_1 da \, a^{-2} \lg \int_a \Delta e^{-2B} = -\infty$ with B as above and if $Z^{0+} \neq Z$, then $Z^{|t| < \delta} \neq Z$ for small δ , and it is possible to find $f \in Z$ with $\int f e(iat) \, \Delta \, da = 0$ ($|t| < \delta$). But

$$\int_{a} |f| \Delta e^{-B} \leq ||f||_{\Delta} \left(\int_{a} \Delta e^{-2B} \right)^{\frac{1}{2}} \quad (a \geq 1),$$

$$\int_{a} \frac{da}{a^{2}} \lg \int_{a} |f| \Delta e^{-B} = -\infty,$$

so that

and according to Levinson [8, p. 81], this cannot happen unless f = 0.

9. Discussion of Z.

I. O. Hačatrjan's contribution to the Bernstein problem [5] is adapted as follows. Consider the span $Z_{\bullet} = Z_{\bullet \Delta}$ of (real) polynomials p of $i\gamma$ belonging to Z, let $\int a^{2d} \Delta < \infty$ $(d \ge 1)$, let $\sigma_{\bullet}(\gamma)$ be the least upper bound of $|p(\gamma)|$ for $p \in Z_{\bullet \Delta^+}$ with $||p||_{\Delta^+} \le 1$, and let us prove that the following alternative holds:

either
$$\sigma \cdot \equiv \infty \quad (b \pm 0),$$

$$\sup \int \frac{\lg^+ |p|}{1+a^2} = \int \frac{\lg \sigma \cdot}{1+a^2} = \infty, \text{ for } p \in Z_{\cdot \Delta^+} \text{ with } ||p||_{\Delta^+} \leqslant 1,$$

$$and \quad Z_{\cdot} = Z,$$

$$or \quad \lg \sigma \cdot \text{ is a continuous, non-negative, subharmonic function,}$$

$$\int \frac{\lg \sigma \cdot}{1+a^2} < \infty,$$

$$\lg \sigma \cdot (\gamma) \leqslant \frac{1}{\pi} \int \frac{b}{(c-a)^2 + b^2} \lg \sigma \cdot (c) dc \quad (\gamma = a+ib, \ b > 0),$$

$$\lim_{R \uparrow \infty} R^{-1} \max_{0 \leqslant \theta < 2\pi} \lg \sigma \cdot (Re^{i\theta}) \leqslant 0,$$

$$and \quad Z_{\cdot} \neq Z;$$

in the second case, $Z \subset Z'$, the two coinciding if and only if $\sigma = \sigma'$ $(b \neq 0)$.

Proof. The proof is identical to the discussion of Z^* (Section 4), excepting the final statement to which attention is now directed.

Given $\sigma \cdot = \sigma^* < \infty$ while $Z \cdot \neq Z^*$, then it would be possible to find $f \in Z_{\Delta}^*$, $f \neq 0$, with $\int f^* a^d \Delta = 0$ $(d \geq 0)$; this implies

$$\int f^* \frac{p - p(\beta)}{c - \beta} \Delta = 0 \quad (\beta = a + ib, \ b \neq 0),$$

and it follows that

$$\left| \int \frac{f^*\Delta}{c-\beta} \right| = \left| \int \frac{f^*\Delta p}{(c-\beta) p(\beta)} \right| \leq \left\| \frac{c-i}{c-\beta} f \right\|_{\Delta} |p(\beta)|^{-1} ||p||_{\Delta^+} \quad (\beta = a+ib, \ b \neq 0),$$

esp.,

$$\left| \int \frac{f^* \Delta}{c - ib} \right| = o(\sigma_*(ib)^{-1}) \quad \text{as } |b| \uparrow \infty.$$

Chose $g \in Z_{\Delta^+}^{\bullet}$; then $\int f^* g \, \Delta \, (c - \beta)^{-1}$ tends to 0 at both ends of a = 0 so that

$$\hat{g} \equiv \int f^* \frac{g - g(\beta)}{c - \beta} \Delta$$

satisfies

$$\begin{aligned} |\hat{g}(ib)| &\leq o(1) + |g(ib)| \left| \int \frac{f^* \Delta}{c - ib} \right| \\ &= o(1) + |g(ib)| o(\sigma \cdot (ib)^{-1}) \\ &= o(1) + |g(ib)| o(\sigma^* (ib)^{-1}) \\ &= o(1) \quad (|b| \uparrow \infty), \end{aligned}$$

and since \hat{g} is entire of minimal exponential type, Phragmén-Lindelöf implies $\hat{g} \equiv 0$. But then $\int f^* g(c-\beta)^{-1} \Delta = g(\beta) \int f^* \Delta (c-\beta)^{-1} = 0$ if β is a root of $g \in Z_{\Delta^+}^*$ $(b \pm 0)$, so taking $g = (\gamma - i) f \in Z_{\Delta^+}^*$ and $\beta = i$, $||f||^2 = \int f^* g(c-i)^{-1} \Delta = 0$, and the proof is complete.

10 a. Special case
$$(1/\Delta = 1 + c_1 a^2 + \text{ etc.})$$

Hačatrjan [5] states the analogue for the Bernstein problem of the following result:

If $1/\Delta = 1 + c_1 a^2 + c_2 a^4 + etc$. $(c_1, c_2, etc. \ge 0)$ and if $\int a^{2d} \Delta < \infty$ $(d \ge 0)$, then either Δ is non-Hardy and Z = Z or Δ is Hardy and Z = Z.

Proof. $p_d = \sum_{n \leq d} c_n \gamma^{2n}$ can be expressed as $|q_d|^2$, q_d being a polynomial in $i\gamma$ of degree d with no roots in the closed half plane $b \geq 0$. As $d \uparrow \infty$,

$$\lg |q_a(i)|^2 = \frac{1}{\pi} \int \frac{\lg |q_d|^2}{1 + c^2} \uparrow \frac{1}{\pi} \int \frac{\lg \Delta^{-1}}{1 + c^2}$$

while

$$\|q_d\|_{\Delta^+}^2 = \frac{1}{\pi} \int \frac{p_d \Delta}{1+c^2} \uparrow 1,$$

so either $\int \lg \Delta/(1+c^2) = -\infty$, $\sigma_{\bullet}(i) = \infty$, and $Z_{\bullet} = Z$ or Δ is Hardy $(\Delta = |h|^2)$ with h outer). Because $|q_d|^2 = p_d \leq \Delta^{-1}$, an application of Lebesgue's dominated convergence test shows that $h^{-1} = \lim_{d \to \infty} q_d$ $(b \geq 0)$ in the second case.

Now in the second case, if $f \in Z^{\bullet}_{\Delta}$ is perpendicular to $Z_{\bullet \Delta}$, if $g \in Z^{\bullet}_{\Delta^{+}}$, and if

$$\hat{g}(\beta) \equiv \int f^* \frac{g - g(\beta)}{c - \beta} \Delta$$

as before, then

$$\left| q_d(ib) \int \frac{f^* \Delta dc}{c - ib} \right| = \left| \int \frac{f^* q_d \Delta dc}{c - ib} \right| \le \|f\|_{\Delta} \left(\int \frac{|q_d|^2 \Delta dc}{c^2 + b^2} \right)^{1/2} \le \|f\|_{\Delta} \left(\int \frac{dc}{c^2 + b^2} \right)^{1/2} = \|f\|_{\Delta} (\pi/b)^{1/2},$$

and so

$$\begin{split} |\hat{g}(ib)| &\leq \left| \int \frac{f^* g \, \Delta \, dc}{c - ib} \right| + |g(ib)| \left| \int \frac{f^* \, \Delta \, dc}{c - ib} \right| \\ &\leq \|f\|_{\Delta} \left(\int \frac{c^2 + 1}{c^2 + b^2} |g|^2 \, \Delta^+ \, dc \right)^{1/2} + \inf_{d > 0} \left| \frac{g(ib)}{q_d(ib)} \right| \left| \int \frac{f^* \, q_d \, \Delta \, dc}{c - ib} \right| \\ &= o(1) + |gh(ib)| \, \|f\|_{\Delta} (\pi/b)^{1/2}. \end{split}$$

Since the Poisson integral applies as an inequality to $\lg |(\gamma + i)^{-1}gh|$ and as an equality to $\lg |\gamma + i|$,

$$|gh(ib)|^2 \le e \left[\frac{1}{\pi} \int \frac{b}{b^2 + c^2} \lg |gh|^2 \right] \le \frac{1}{\pi} \int \frac{b(c^2 + 1)}{b^2 + c^2} |g|^2 \Delta^+ = o(b),$$

and so $\lim_{b\uparrow\infty} |\hat{g}(ib)| = 0$. Repeating the proof as $b\downarrow -\infty$ justifies $\lim_{b\downarrow -\infty} |\hat{g}(ib)| = 0$, and now $\hat{g}=f=0$ follows as in Section 9.

A special case of the above is the fact that if h is the reciprocal of an entire function and if the roots of h^{-1} fall in the sector $-3\pi/4 \le \theta \le -\pi/4$, then $Z_{\bullet} = Z^{\bullet}$; obvious improvements can be made, but $Z_{\bullet} = Z^{\bullet}$ does not hold without some condition on the roots of h^{-1} as the example of Section 11 proves.

As a second application, it will be proved that

$$Z = Z^* in case \Delta(a) = e(-2|a|^p) (0$$

similar but more complicated cases can be treated in the same fashion (see below).

Proof. It suffices to construct a weight $\Delta^o = (1 + c_1 a^2 + \text{etc.})^{-1}$ with non-negative coefficients, positive multiples of which bound Δ above and below. Define $\#(R) = [\theta R^p + 1/2]$ with an adjustable $\theta > 0$, the bracket denoting the integral part, and let

$$\begin{split} -\lg \Delta^o(a) &= \int_0^{} \lg \left(1 + \frac{a^2}{R^2} \right) \# \left(dR \right) = 2a^2 \int_0^{} \frac{\# \left(R \right) dR}{\left(a^2 + R^2 \right) R} \\ &= \frac{2a^2}{p} \int_0^{} \frac{\left[\theta c + 1/2 \right] dc}{\left(a^2 + c^{2/p} \right) c} \quad (c = R^p) \\ &= J_1 + J_2 \end{split}$$
 with
$$J_1 &= \frac{2a^2}{p} \int_0^{} \frac{\left[\theta c + 1/2 \right] + 1/2 - \left(\theta c + 1/2 \right)}{\left(a^2 + c^{2/p} \right) c} dc$$
 and
$$J_2 &= \frac{2a^2 \theta}{p} \int_0^{} \left(a^2 + c^{2/p} \right)^{-1} dc. \end{split}$$

In J_2 , subtitute $c = |a|^p t$ and let $\theta^{-1} = (2/p) \int_0 (1 + t^{2/p})^{-1}$, obtaining $J_2 = 2 |a|^p$. Coming to J_1 , note that the numerator under the integral sign is periodic and that its average over a period is 0, so that J_1 tends to a constant as $|a| \uparrow \infty$. J_1 is then bounded, so Δ is bounded above and below by positive multiplies of Δ^o , and the proof is complete.

Z = Z' also holds in the more general case of a Hardy weight.

$$\Delta = \Delta(0) e \left(- \int_0^{|a|} \frac{\omega(c)}{c} dc \right)$$

provided $\omega \in \uparrow$ and $\omega(c)$ lg c tends to ∞ as $c \uparrow \infty$.

Proof. Under the above condition it is possible, according to Y. Domar [4], to find a reciprocal weight $1/\Delta^o = 1 + c_1 a^2 + \text{etc.}$ with non-negative coefficients such that Δ is bounded above by a positive multiple of Δ^o and below by a positive multiple of $\Delta^\theta = \Delta^o(\theta a)$ with a constant depending upon $\theta > 1$ alone. Because

$$Z_{{}^{\bullet}\Delta}\theta = Z_{\Lambda}^{\bullet}\theta \supset Z_{\Delta}^{\bullet}$$

each $f \in Z^{\star}_{\Delta}$ can be approximated in $Z_{\Delta^{\theta}}$ by a polynomial p so as to have

$$\int |f(a/\theta) - p(a/\theta)|^2 \Delta \leq \operatorname{constant} \times \theta \|f - p\|_{\Delta^{\theta}}^2$$

small, and to complete the proof it suffices to check that $f_{\theta}(a) = f(a/\theta)$ tends to f in Z_{Δ} as $\theta \downarrow 1$. But this is obvious from the fact that

$$||f_{\theta}||_{\Delta}^{2} = \theta \int |f|^{2} \Delta(\theta a) \sim ||f||_{\Delta}^{2} \quad (\theta \downarrow 1)$$

while f_{θ} tends to f pointwise under a local bound.

By the same method it is easy to prove that if Δ has the above form with $\omega \in \uparrow$ and $\int_1 \omega/c^2 = \infty$ (non-Hardy case), then Z = Z.

Domar's paper was brought to our notice through the kindness of Professor L. Carleson.

10 b. A special case
$$(\Delta = e^{-2|a|^{\frac{1}{2}}})$$

 $\Delta = \exp(-2|a|^{\frac{1}{2}})$ falls under the discussion of 10 a, but it is entertaining to check $Z^* = Z_*$ from scratch using the following special proof.

 $\Delta = |h|^2$ with

$$h = e \left[-(2\gamma)^{\frac{1}{2}} e^{-i\pi/4} \right] = \int_0^\infty e^{i\gamma t} \frac{e^{-1/2t}}{(2\pi t^3)^{\frac{1}{2}}} dt,$$

and h is outer since

$$\lg |h(i)| = -2^{\frac{1}{2}} = \frac{1}{\pi} \int \frac{\lg |h|}{1+a^2}$$

(see [7, p. 62]).

Given $f \in \mathbb{Z}_{\Delta}^{\bullet}$, a simple application of Phragmén-Lindelöf supplies us with the bound

$$f(\gamma) \leq Be[(\sqrt{2} + \delta)\sqrt{R}] \quad (\delta > 0);$$

hence, $|f(\gamma^2)| \le Be[(\sqrt{2} + \delta) R]$, and according to Pólya's theorem [2, 5.3.5],

$$f(\gamma^2) = \int e^{\gamma w} g = \int e^{-\gamma w} g = \int \cosh(\gamma w) g dw,$$

i.e.,

$$f(\gamma) = \int \cosh\left(\sqrt{\gamma}w\right) g \, dw,$$

the integral being extended over $|w|=2^{\frac{1}{2}}+\delta$ and g being regular outside $|w|=2^{\frac{1}{2}}$ and at ∞ . Accordingly, if $f \in \mathbb{Z}^*$ is perpendicular to \mathbb{Z}_* , then

$$0 = \int fa^{d} \Delta \, da = \int g \, dw \int \cosh \left(\sqrt{a}w\right) a^{d} \Delta \, da$$

$$= \int g \left[\int_{0}^{\infty} \cosh \left(\sqrt{a}w\right) a^{d} e^{-2a^{\frac{1}{2}}} + \int_{0}^{\infty} \cos \left(\sqrt{a}w\right) (-a)^{d} e^{-2a^{\frac{1}{2}}} \right]$$

$$= \int g D^{2d} \left[\int_{0}^{\infty} \cosh \left(\sqrt{a}w\right) e^{-2a^{\frac{1}{2}}} + \int_{0}^{\infty} \cos \left(\sqrt{a}w\right) e^{-2a^{\frac{1}{2}}} \right]$$

$$= 2 \int g D^{2d+1} \left[\int_{0}^{\infty} \sinh \left(aw\right) e^{-2a} + \int_{0}^{\infty} \sin \left(aw\right) e^{-2a} \right]$$

$$= \int g D^{2d+1} \left[\frac{1}{2-w} - \frac{1}{2+w} + \frac{1}{2i+w} - \frac{1}{2i-w} \right]$$

$$= \int g D^{2d+1} \frac{16w}{16-w^{4}}.$$

Because $\int e^{\gamma w} g = f(\gamma^2)$ is an even function, $\int gw^d = 0$ (d odd) and since $w/(16 - w^4)$ is a sum of powers w^d ($d \equiv 1(4)$), it follows that

$$0 = \int g D^d \left[\frac{1}{2 - w} - \frac{1}{2 + w} + \frac{1}{2i + w} - \frac{1}{2i - w} \right] \quad (d \ge 0),$$

$$0 = \int g \left[\frac{1}{2 - w + t} - \frac{1}{2 + w - t} + \frac{1}{2i + w - t} - \frac{1}{2i - w + t} \right] dw$$

$$= g(t + 2) + g(t - 2) - g(t - 2i) - g(t + 2i)$$

and so

for small |t|.

Draw four circles, each of radius $2^{\frac{1}{4}}$, having centers at 2, 2i, -2 and -2i respectively. The circles with centers at 2 and 2i are tangent at A, which is 1+i. The circles with centers at 2 and -2i are tangent at B, which is 1-i. The point C is -3+i and lies on the circle with center at -2. Using this diagram depicting 4 discs on each of which just one of the summands can be singular, it follows that g(t-2) = -g(t+2) + g(t-2i) + g(t+2i) can be singular only at A and B since the second member is non-singular on the rest of $|t-2| \le 2^{\frac{1}{2}}$. Now if g(t-2) is singular at A, then g(t+2) is singular at C=A-4 and that is impossible, so g(t-2) cannot be singular at A, nor, for similar reasons, at B. But then g is entire, and by Cauchy's theorem, $f(\gamma^2) = \int \cosh{(\gamma w)} g = 0$, completing the proof.

 $Z^- = Z^{+/-} + Z^- \cap Z^+ = Z^* = Z^{0+} = Z$, can be proved at little extra cost. $Z^- \cap Z^+ = Z^*$ is obvious from Section 6, and so it suffices to prove that $j = h/h^* = e[2i \operatorname{sgn}(a) |a|^{\frac{1}{2}}]$ is not a ratio j_2/j_1 of inner functions (Section 3). But in the opposite case, $j \in H^{2+}$ $(j = j_1 h)$, so that

9-642906 Acta mathematica 112. Imprimé le 22 septembre 1964.

$$0 = \frac{1}{2} \int e^{-iat} \, jf \, da \quad (t < 0)$$

$$= \text{Re} \left[\int_0^\infty e^{-iat} \, e^{2ia^{\frac{1}{2}}} f \, da \right] = \text{Im} \left[\int_0^\infty e^{bt} \, e^{(2b)^{\frac{1}{2}}(i-1)} f(ib) \, db \right],$$

since

$$\left| \int_{0}^{\pi/2} e^{-iRe^{i\theta}t} \, e^{2iR^{\frac{1}{2}}e^{i\theta/2}} f(Re^{i\theta}) \, Re^{i\theta} \, id\theta \, \right| \leq \int_{0}^{\pi/2} e^{R\sin\theta t} \, e^{-2R^{\frac{1}{2}}\sin\theta/2} \, e^{-(2R)^{\frac{1}{2}}\cos(\theta/2-\pi/4)} \, Rd\theta$$

tends to 0 as $R \uparrow \infty$. Because $f = f^*$ $(\alpha = 0)$,

$$0 = \operatorname{Im} \left[e^{(2b)^{\frac{1}{2}}(i-1)} f(ib) \right] = \sin (2b)^{\frac{1}{2}} e^{-(2b)^{\frac{1}{4}}} f(ib) \quad (b \ge 0),$$

and that is absurd.

An entertaining illustration of the delicacy of the projection $Z^{+/-}$ is thus obtained. $Z^{+/-} \neq Z^*$ as was just proved, so naturally the condition that $Z^{+/-} = Z^*$, to wit, that $\Delta = |f|^{-2}$ with f entire of minimal exponential type, does not hold. But as proved in 10 a, $e(-2|a|^{\frac{1}{2}})$ is bounded above and below by positive multiples of such a weight.

11. An example (\triangle Hardy, dim $Z = \infty$, $Z' = Z^{0+} \neq Z$.)

A weight Δ exists with the following properties:

- (a) $\int \lg \Delta/(1+a^2) > -\infty$, i.e., Δ is a Hardy weight,
- (b) $\int a^{2d} \Delta < \infty$ $(d \ge 0)$, i.e., dim $Z_{\bullet} = \infty$,
- (c) $Z_{\bullet} \neq Z^{\bullet} = Z^{0+}$.

Consider for the proof

$$\delta_n = 1/\sinh \pi n, \quad \gamma_{+n} = n^2 - i\delta_n, \quad \gamma_{-n} = -n^2 - i\delta_n,$$

$$1/h(\gamma) = \prod_{|n| > 0} \left(1 - \frac{\gamma}{\gamma_n}\right), \quad \Delta = |h|^2,$$

$$f = \frac{\sin \pi \sqrt{\gamma} \sinh \pi \sqrt{\gamma}}{\pi^2 \gamma} = \prod_{n \ge 1} \left(1 - \frac{\gamma^2}{n^4}\right), \quad \text{and} \quad g = f/(1 - \gamma^2) = \prod_{n \ge 2} \left(1 - \frac{\gamma^2}{n^4}\right),$$

and break up the proof into a series of simple lemmas.

- (a) $0 < B_1 < |fh| < B_2$ if $|\gamma \pm n^2| \ge \frac{1}{2}$ $(n \ge 1)$, while $0 < B_3 < |fh| |(\gamma \gamma_{\pm n})/(\gamma + n^2)| < B_4$ if $|\gamma \pm n^2| < \frac{1}{2}$; a similar appraisal holds with h^* in place of h.
- (b) $g \in Z_{\Delta}$.
- (c) Δ is a Hardy weight and $\int a^{2d} \Delta < \infty$ $(d \ge 0)$
- (d) $g \notin Z_{\cdot \Delta}$.

Proof of (a). Obvious.

Proof of (b). g is entire of minimal exponential type with $g^*(-a) = g(a)$, so it is enough to check that $||g||_{\Delta} < \infty$. But (a) supplies us with the bound $|fh| < B_5$, so $|gh| < B_5/(1-a^2)$, and since $|gh| < B_6$ for small |a|, $||g||_{\Delta} < \infty$.

Proof of (c). h^{-1} is entire and free of roots in the closed half-plane $b \ge 0$, and $\Delta(a+ib) \in \downarrow$ as a function of b>0, so it suffices to check

$$\int_{8} a^{2d} \Delta \leqslant \sum_{n=3}^{\infty} \int_{n^{2}-n+\frac{1}{4}}^{n^{2}+n+\frac{1}{4}} a^{2d} \Delta < \infty \quad (d \geqslant 0).$$

But on $|a-n^2| < \frac{1}{2}$,

$$\Delta < B_4^2 \left| f \right|^{-2} \frac{(a-n^2)^2}{(a-n^2)^2 + \delta_n^2}, \qquad \frac{\left| a-n^2 \right|}{\left| f \right|} = \frac{\pi^2 a}{\sinh \pi \sqrt{a}} \left| \frac{a-n^2}{\sin \pi \sqrt{a}} \right| < B_7 n^3 e^{-\pi n},$$

and hence

$$a^{2d}\Delta \!<\! B_8 rac{n^{2d+6}\,e^{-2\pi n}}{(a-n^2)^2+\delta_n^2}$$

on this range, while on the rest of $n^2 - n + \frac{1}{4} \le a < n^2 + n + \frac{1}{4}$,

$$a^{2d}\Delta < (n+1)^{2d}B_2^2|f|^{-2} < B_9n^{2d+6}e^{-2\pi n},$$

so that

$$\int_{n^2-n+\frac{1}{2}}^{n^2+n+\frac{1}{4}}a^{2d}\Delta < B_{10}\left[n^{2d+6}\,e^{-2\pi n}\int\frac{da}{a^2+\delta_n^2}+n^{2d+7}\,e^{-2\pi n}\right] < B_{11}\,n^{2d+7}\,e^{-\pi n},$$

which is the general term of a convergent sum.

Proof of (d). $g \in Z_{\cdot \Delta}$ implies the existence of polynomials $p_{\delta} \in Z_{\cdot \Delta}$ with $\|g - p_{\delta}\|_{\Delta} < \delta$. p_{δ} can be supposed even since g is such; also, as $\delta \downarrow 0$, p_{δ} tends to g on the whole plane under a local bound $(\sigma_{\bullet} < \infty)$, so that $p_{0+}(0) = g(0) = 1$, and according to Hurwitz's theorem, the roots of p_{δ} tend to the roots $\pm 2^2$, $\pm 3^2$, etc. of g. Rotate the roots of p_{δ} onto the line b = 0 and put its bottom coefficient = 1, defining a new polynomial q_{δ} with $|q_{\delta}| \leq |p_{\delta}/p_{\delta}(0)|$ (b = 0) and $||q_{\delta}||_{\Delta} \leq ||p_{\delta}||_{\Delta}/|p_{\delta}(0)|$ bounded as $\delta \downarrow 0$; it is this boundedness of $||q_{\delta}||_{\Delta}$ that leads to a contradiction.

Evaluate $\int q_{\delta}^2 h^*$, integrating about the semicircle $Re^{i\theta}$ $(-\pi/2 \le \theta \le \pi/2)$ and then down along the segment joining iR to -iR with R half an odd integer. Bound the integral on the arc with the aid of $|fh^*| < B_2$ and let $R \uparrow \infty$, obtaining

$$\frac{1}{2\pi}\int q_{\delta}^2 h^*(ib)\,db = \sum_{n=1}^{\infty} \frac{q_{\delta}^2(\gamma_n^*)}{(1/h^*)'(\gamma_n^*)} \equiv Q_{\delta}.$$

Because $h^*(ib) > 0$ and $|q_{\delta}(ib)| \ge |p_{\delta}(ib)/p_{\delta}(0)|$, an application of Fatou's lemma combined with $|fh^*| > B_1 > 0$ justifies the under-estimate:

$$Q_{0+} \geqslant rac{1}{2\pi} \int g^2 h^*(ib) > B_{13} \int_1 f(ib)/b^4 > B_{14} \int_1 e^{\pi(2b)^{\frac{1}{2}}}/b^5 = \infty.$$

 Q_{δ} is now estimated again with the contradictory result that it is bounded as $\delta \downarrow 0$.

 $\int (q_{\delta}h)^2 = 0$, the integral being taken around the arc $Re^{i\theta}(0 \le \theta \le \pi/2)$, down the segment joining iR to 0, and thence out along the segment joining 0 to R with R half an odd integer. Bound the integral along the arc as before and let $R \uparrow \infty$, obtaining

$$\int_0^\infty (q_\delta h)^2 (ib) = -i \int_0^\infty (q_\delta h)^2 (a) \leqslant \|q_\delta\|_\Delta^2 < B_{15},$$

the first integrand being positive.

 $\int (q_{\delta}h)^{2}(\gamma-\gamma_{n})/(\gamma-\gamma_{n}^{*})$ is now evaluated along the same curve, giving

$$-\int_{0}^{\infty} (q_{\delta}h)^{2} (ib) \frac{ib - \gamma_{n}}{ib - \gamma_{n}^{*}} - i \int_{0}^{\infty} (q_{\delta}h)^{2} (a) \frac{a - \gamma_{n}}{a - \gamma_{n}^{*}} = 4\pi i \delta_{n} (q_{\delta}h)^{2} (\gamma_{n}^{*});$$

this supplies the bound

$$4\pi\delta_{n}\left|q_{\delta}h(\gamma_{n}^{*})
ight|^{2}\leqslant\int_{0}^{\infty}\left(q_{\delta}h
ight)^{2}\left(ib
ight)+\int_{0}^{\infty}\left|q_{\delta}h
ight|^{2}\left(a
ight)<2B_{15}=B_{16},$$

and it follows that

$$Q_{0+} < B_{16} \sum_{n=1}^{\infty} e^{\pi n} \left| rac{h^{-2}(\gamma_n^*)}{(1/h^*)^{'}(\gamma_n^*)}
ight|.$$

But, since

$$|(\gamma - \gamma_n^*) h^*| < B_4 \frac{|\gamma - n^2|}{|f|}$$
 near $\gamma = \gamma_n^*$,

$$|(1/h^*)'(\gamma_n^*)|^{-1} \leq 2B_4 e^{-\pi n}/|f(\gamma_n^*)|,$$

while

$$|h(\gamma_n^*)|^{-2} < 4B_3^{-2}|f(\gamma_n^*)|^2$$

and combining these bounds leads at once to the desired contradiction:

$$Q_{0+} < B_{17} \sum_{n=1}^{\infty} |f(\gamma_n^*)| < B_{18} \sum_{n=1}^{\infty} n^{-3} < \infty$$
.

Z' is sometimes closed under $f \rightarrow f = if'$, but this can fail; indeed in the above case,

$$\Delta > \frac{B_3^2}{|f|^2} \frac{(a-n^2)^2}{(a-n^2)^2 + \delta_n^2} > B_{19} \frac{n^6 \delta_n^2}{(a-n^2)^2 + \delta_n^2} \quad (|a-n^2| < \sqrt{\delta_n}),$$

while on the same range,

$$|g| > B_{20} e^{\pi n} n^{-7}$$

so that $\|g\|_{\Delta} = \infty$ because

$$\int_{n^2+\delta_n^{\frac{1}{2}}}^{n^2+\delta_n^{\frac{1}{2}}} \frac{n^6 \delta_n^2 e^{2\pi n-14}}{(a-n^2)^2+\delta_n^2} > B_{21} n^{-8} \int_{-\delta_n^{\frac{1}{2}}}^{+\delta_n^{\frac{1}{2}}} \frac{1}{a^2+\delta_n^2} > B_{22} n^{-8} e^{\pi n} \quad (n \uparrow \infty)$$

is the general term of a divergent sum.

12. Hardy weights with arithmetical gaps

Consider a weight Δ that bounds above a decreasing Hardy weight $|h|^2$ (h outer) on an arithmetical series of intervals:

$$|a-(2n-1)c| < d$$
 $(0 < d < c, n=0, \pm 1, etc.)$

but is otherwise unspecified. Then

- (a) Z^* is a closed subspace of Z,
- (b) $Z^{\bullet} \supset Z^{0+}$, and hence in accordance with Section 5, $Z^{\bullet} = Z^{0+}$.

As an application, it is easy to derive the lemma of Tutubalin-Freidlin [11]: that if $\Delta \ge |a|^{-2m}$ (m>0) far out, then $Z^{0+}=Z_{\bullet}$; indeed, according to (b), $f \in Z^{0+}$ is an entire function of minimal exponential type, and since $\infty > \int |f|^2/(1+a^2)^m$, a simple application of Phragmén-Lindelöf implies that f is a polynomial (of degree < m). Actually, it is enough to have $\Delta \ge |a|^{-2m}$ on an arithmetical series of intervals, as the reader can easily check using (b) and the Duffin-Schaeffer theorem [2; 10.5.1].

Proof of (a). Similar to that of (b).

Proof of (b). $f \in \mathbb{Z}^{0+}$ implies the existence of a sum f_{δ} of trigonometrical functions e(iat) with $|t| < \delta$, real coefficients, and $||f - f_{\delta}||_{\Delta} < \delta$, and it follows that

$$\|B_1 > \|f_\delta\|_\Delta^2 \ge \int_{(2n-1)\,c-d}^{(2n-1)\,c-d} |f_\delta h|^2 \ge 2d |f_\delta h(a_n)|^2$$

for some $|a_n - (2n-1)c| < d$ with a constant B_1 not depending upon δ . Bring in an

with

and

entire function g of exponential type $\leq \varepsilon$ with |g| < |h| far out on b = 0 and $|g| \ge \frac{1}{2}$ on the two 45° lines: to be explicit, let

$$g(\gamma) = e^{-\frac{\pi}{3}} \prod_{n=n_1}^{\infty} \cos(\gamma/\gamma_n)$$

$$1 < \gamma_1 < \gamma_2 < \text{etc.}$$

$$\#(R) = \sum_{\gamma_n < R} 1 = 0 \qquad (R < 1)$$

the bracket denoting the integral part and |h(1)| being supposed ≤ 1 , choose n_1 so that

 $= \left[3\int_1^R \frac{\lg|h|^{-1}}{A} dA\right] \quad (R \geqslant 1),$

$$\begin{aligned} |g(\gamma)| &\leqslant \prod_{n=n_1}^{\infty} e^{R/\gamma_n} = e \left[R \int_C \frac{\#(dB)}{B} \right] \quad (C = \gamma_{n_1}, \ |\gamma| = R) \\ &\leqslant e \left[R \int_C \frac{\#(B)}{B^2} \right] < e \left[3R \int_C \frac{dB}{B^2} \int_1^B \frac{\lg|h|^{-1}}{A} dA \right] \\ &= e \left[3R \frac{1}{C} \int_1^C \frac{\lg|h|^{-1}}{A} dA + 3R \int_C^\infty \frac{\lg|h|^{-1}}{B^2} dB \right] \\ &\leqslant e^{eR} \end{aligned}$$

and use the obvious $|\cos a| < e(-a^2/3)$ ($|a| \le 1$) to bound |g(a)| for large |a| as follows:

$$\begin{split} e^{\frac{a}{8}} \left| g(a) \right| &\leq \prod_{\gamma_n \geq |a|} e^{-a^2/3\gamma_n^2} = e \left[-\frac{a^2}{3} \int_{|a|} \frac{\#(dR)}{R^2} \right] \\ &= e \left[\frac{a^2}{3} \int_{|a|} \frac{\#(R) - \#(|a|)}{R^3} \right] \\ &\leq e \left[\frac{a^2}{2} \int_{|a|} \int_{|a|}^R \frac{-\lg|h|^{-1}}{A} dA \, \frac{dR}{R^3} + \frac{a^2}{3} \int_{|a|} \frac{dR}{R^3} \right] \\ &= e \left[-\frac{a^2}{2} \int_{|a|} \frac{\lg|h|^{-1}}{R^3} dR + \frac{2}{3} \right] \\ &\leq \frac{a^2}{2} \int_{|a|} |h| \frac{dR}{R^3} e^{\frac{a}{8}} \\ &\leq |h| e^{\frac{a}{8}}. \end{split}$$

 $f_{\delta}g$ is then entire of exponential type $\delta + \varepsilon$ and $|f_{\delta}g(a_n)| < B_2$ with a constant B_2 not depending upon δ . An application of the Duffin-Schaeffer theorem [2, 10.5.3] implies $|f_{\delta}g| < B_3$ on the whole line b = 0 if $\delta + \varepsilon$ is small enough, B_3 being likewise independent of δ . Phragmén-Lindelöf now implies that $|f_{\delta}g| < B_3 e[(\delta + \varepsilon) R]$, and since $|g| \ge \frac{1}{2}$ on the two 45° lines, $|f_{\delta}| < 2B_3 e[(\delta + \varepsilon) R]$ there. Phragmén-Lindelöf is now applied to each of the 4 sectors between the 45° lines; this supplies us with the bound $|f_{\delta}| < 2B_3 e[2(\delta + \varepsilon) R]$, establishing the compactness of f_{δ} as $\delta \downarrow 0$, and it follows that each limit function f_{0+} is entire of exponential type $\le 2\varepsilon$ with $||f - f_{0+}||_{\Delta} = 0$. But this means that f is the restriction to b = 0 of an entire function of exponential type $\le 2\varepsilon$, and since ε can be made as small as desired, $f \in Z_{\Delta}^{\bullet}$, and the proof is complete.

13. Entire functions of positive type

Given a Hardy weight $\Delta = |h|^2$ and a positive number ϱ , let Z^{ϱ} be the class of entire functions $f = f(\gamma)$ of exponential type $\leq \varrho$:

$$\overline{\lim_{R \uparrow \infty}} R^{-1} \max_{0 \leqslant \theta < 2\pi} \lg |f(Re^{i\theta})| \leqslant \varrho,$$

which, restricted to the line b=0, belong to Z. Then

$$Z^{\boldsymbol{\cdot}\varrho} = Z^{|t|\leqslant \varrho+} = \bigcap_{\varrho'>\varrho} Z^{|t|\leqslant \varrho'}.$$

Proof. We first prove the inclusion

$$Z^{\cdot \varrho} \supset Z^{|t| \leqslant \varrho +}$$
.

If $f \in \mathbb{Z}^{|t| \leq \varrho^+}$, then it is possible to find (real) sums of trigonometrical functions:

$$f_n(\gamma) = \sum_{k \leqslant n} c_k^n \, e(i\gamma t_k^n)$$

with $|t_k^n| < \varrho + 1/n$ and $||f - f_n||_{\Delta} < 1/n$. Given $\delta > 1/n$, $f_n e[i\gamma(\varrho + \delta)]h$ belongs to H^{2+} , and much as in Section 6b,

$$\left|f_n h\right| < B_1 e^{(\varrho+\delta)R} \quad (b \ge 1), \qquad \left|f_n h^*\right| < B_2 e^{(\varrho+\delta)R} \quad (b \le -1),$$

and

$$|f_n| < B_3 \quad (|\gamma| \le 2)$$

with constants B_1 , B_2 , B_3 not depending upon n. An appraisal of h on $\theta = \pi/4$, $3\pi/4$ and of h^* on $\theta = 5\pi/4$, $7\pi/4$ leads to

$$|f_n| < B_4 e^{(\varrho + 2\delta)R}$$

much as in Section 6 b, B_4 being likewise independent of n, and since $||f - f_n||_{\Delta} < 1/n$, it follows that as $n \uparrow \infty$, f_n tends on the whole plane to an entire function f_{∞} of exponential type $\leq \varrho$, coinciding with f on b = 0. But then $f \in \mathbb{Z}^{*\varrho}$, and the inclusion is proved.

As in Section 5, it suffices for the proof of the opposite inclusion:

$$Z^{\cdot \varrho} \subset Z^{|t| \leqslant \varrho +}$$

to consider even functions $f \in Z^{\cdot \varrho}$ with Hadamard factorization

$$f(\gamma) = \prod_{n=1}^{\infty} \left(1 - \frac{\gamma^2}{\nu_n^2}\right).$$

Because

$$\lg^+|f(a)|^2 \le \lg^+(|f(a)|^2\Delta) - \lg^-\Delta \le |f(a)|^2\Delta - \lg^-\Delta,$$

f satisfies

$$\int \frac{\lg^+|f(a)|}{1+a^2} < \infty;$$

it follows that

$$\overline{\lim_{R \uparrow \infty}} R^{-1} \lg |f(Re^{i\theta})| \leq \varrho |\sin \theta|$$

[8, p. 27] and that the roots of f in the half-plane a>0 have a density $D \le \varrho/\pi$:

$$\lim_{n\to\infty} n/|\gamma_n| = D$$

[8, Theorem VIII]. Also, it is permissible to assume that the roots of f are real. Consider for the proof

$$f_1(\gamma) = \prod_{n=1}^d \left(1 - \frac{\gamma^2}{\gamma_n^2}\right) f_2(\gamma) \quad \text{ with } \quad f_2(\gamma) = \prod_{n>d} \left(1 - \frac{\gamma^2}{|\gamma_n^2|}\right).$$

Then $|f_1(a)| \le |f(a)|$ and the roots of $f_2(\gamma)$ have the same density D; this implies [2; 8.2.1] that f_2 is of type πD . Hence f_1 is also of type πD and so $f_1 \in Z^{\bullet\varrho}$. But then $(\gamma^2 - 1)^d f_2 \in Z^{\bullet\varrho}$, so $(\gamma^2 - 1)^n f_2 \in Z^{\bullet\varrho}$ ($n \le d$). All these functions have real zeros and hence we may assume them in $Z^{|t| \le \varrho^+}$. f_1 is a sum of these, so $f_1 \in Z^{|t| \le \varrho^+}$, and since $||f - f_1||_{\Delta}$ is small for large d it follows that $f \in Z^{|t| \le \varrho^+}$ also. From here on the roots of f are real: $0 < \gamma_1 \le \gamma_2 \le \text{ etc.}$

Given $\varrho' > \varrho$, let us grant the existence of an entire function g of exponential type $\leqslant \varrho'$ with $||f-g||_{\Delta}$ as small as desired and $g \in L^2(\mathbb{R}^1)$. As in Section 5, an application of the Paley-Wiener theorem implies $f \in \mathbb{Z}^{|\ell| \leqslant \varrho'}$, and $f \in \mathbb{Z}^{|\ell| \leqslant \varrho+}$ follows. Accordingly, it suffices to produce such an entire function g.

Given a small positive number $\varepsilon < 1$, define

$$\delta = (\varepsilon/8)^2$$
, $D_* = D - \delta/2$, $D^* = D + \delta/2$,

$$g_1(\gamma) = \prod_{\gamma_n \leqslant d} \left(1 - \frac{\gamma^2}{\gamma_n^2}\right), \quad g_2(\gamma) = \prod_{n > D * d} \left(1 - \frac{D^{*2}\gamma^2}{n^2}\right), \quad g_3(\gamma) = \prod_{n > ed} \left(1 - \frac{\varepsilon^2\gamma^2}{n^2}\right),$$

and let us check the following lemmas leading to the properties of $g = g_1 g_2 g_3$ needed for the proof of $f \in Z^{|t| \le \varrho +}$ indicated above; in the lemmas, c_1 , c_2 , etc. denote positive constants depending upon ε alone, and it is understood that if ε and/or d is unspecified, then ε has to be small enough and d large enough, the smallest admissible d depending in general upon ε . At a first reading, just note the statements of lemmas (a)–(g) and then turn to (h).

(a) g is an entire function of exponential type $\pi(D^* + \varepsilon) \leq \rho + \pi(\delta/2 + \varepsilon)$.

Proof of (a). Obvious.

(b) |f-g| tends to 0 as $d \uparrow \infty$ independently of $\varepsilon(<1)$ and of $|a| \le A$ for each A > 0.

Proof of (b).

$$e(-2A^2\varepsilon^2/n^2) \leq 1-a^2\varepsilon^2/n^2 \leq 1 \quad (|a| \leq A)$$

for $n \ge \epsilon d$ and $d \ge 2A$, so that as $d \uparrow \infty$

$$e(-2A^2\sum_{n>cd}\varepsilon^2n^{-2}) \leq g_3(a) \leq 1$$

is close to 1 independently of $\varepsilon(<1)$ and of $|a| \leq A$.

(c) $|g| \le B|f|$ for $|a| \le d/2$, B being the universal constant involved in the appraisal (e) of Section 5.

Proof of (c). Because the roots of f have density D,

$$n/D^* < \gamma_n < n/D_{\star} \quad (n \geqslant n_0)$$

with n_0 depending only upon D_* and D^* and so only upon ε . Given $d > n_0$ and $0 \le a \le d/2$, if δ is so small that $D^*/D_* < 2$, then

$$\left|f/g_1\right| = \prod_{\gamma_n \geq d} \left(1 - \frac{a^2}{\gamma_n^2}\right) > \prod_{n > D_* d} \left(1 - \frac{D^{*2}a^2}{n^2}\right)$$

so that

$$|f/g_1g_2| > \prod_{\substack{p_1,q_2 p \neq q}} \left(1 - \frac{D^{*2}a^2}{n^2}\right),$$

and since, in this product,

$$D^{*2}a^2/n^2 < \frac{(D+\delta/2)^2}{4(D-\delta/2)^2} < \frac{1}{2}$$

for small δ , the bound 1-c > e(-2c) $(0 < c \le \frac{1}{2})$ implies

$$\big|f/g_1g_2\big| > e\big[-2a^2D^{*2}\sum_{\substack{D_*d < n \leq D^*d}} n^{-2}\big] > e\big[-3a^2(D^*-D_*)/d\big] = e\big(-3a^2\delta/d\big).$$

On the other hand, the appraisal (e) of Section 5 implies

$$g_3 < Be(-a^2\varepsilon/d)$$
 $(0 \le a \le d/2)$,

and since $3\delta < \varepsilon$ for small ε , the desired bound follows.

(d)
$$|g| < c_1$$
 $(d/2 < |a| \le D_* d/D^*)$.

Proof of (d). Given $d>2n_0$ with n_0 as in the proof of (c), it is possible to find c_2 and c_3 depending upon $n_0=n_0(\varepsilon)$ (and so upon ε) such that

$$|g_1| < c_1 a^{c_1} \prod_{n < D < a} \left(\frac{D^{*2} a^2}{n^2} - 1 \right) \prod_{D^* a < n < D < d} \left(1 - \frac{D^2_* a^2}{n^2} \right)$$

for $d/2 < a \le D_* d/D^*$. Define $c_3 = c_1/(\pi D^*)$; then

$$|g_1g_2| < c_3a^{c_2-1}|\sin \pi D^*a|J_1/J_2J_3,$$

$$J_1 = \prod_{D*a < n < D_*a} \frac{n^2 - D_*^{\ 2}a^2}{n^2 - D^{*2}a^2}, \quad J_2 = \prod_{D_*a \leqslant n \leqslant D*a} \left(\frac{a^2D^{*2}}{n^2} - 1\right), \quad J_3 = \prod_{D_*d \leqslant n \leqslant D*d} \left(1 - \frac{D^{*2}a^2}{n^2}\right).$$

 J_1 is supposed non-void since the proof simplifies in the opposite case; also, it is supposed below that the smallest integer $n_1 > D^*a$ does not exceed $D^*a + \frac{1}{2}$, the discussion of J_1 being simpler and that of J_2 just a little more complicated if $n_1 > D^*a + \frac{1}{2}$. Bring out the leading factor of J_1 :

$$\frac{n_1^2 - D_*^2 a^2}{n_1^2 - D^{*2} a^2} < \frac{n_1 - D_* a}{n_1 - D^* a} \le \frac{1 + a\delta}{n_1 - D^* a} < \frac{e^{a\delta}}{n_1 - D^* a};$$

the product of other factors of J_1 does not exceed

$$\begin{split} \prod_{D*a+\frac{1}{2} < n < D_* a} \frac{n-D_* a}{n-D^* a} &= e \left[\sum_{D*a+\frac{1}{2} < n < D_* a} \lg \left(1 + \frac{a\delta}{n-D^* a} \right) \right] \\ &< e \left[2 \int_0^{D_* d-D_* a} \lg \left(1 + a\delta/c \right) dc \right] \\ &< e \left[2a\delta \int_0^{D_* / \delta} \lg \left(1 + 1/c \right) dc \right] \end{split}$$

since $D_*d < 2D^*a$, and using the bound $\lg(1+1/c) < 1/c$, it follows that

$$J_1 \!<\! e \left[\left. 2a\delta \left(\int_0^1 \! \lg \left(1 + 1/c \right) dc + \lg D^*/\delta \right) \right] \frac{e^{a\delta}}{n_1 - D^*a} \! < \! \frac{e^{a\delta^{\frac{1}{2}}}}{n_1 - D^*a}$$

for small δ . Stirling's approximation is now applied to obtain an underestimate of J_2 for small δ , using $D^*a - (n_1 - 1) > \frac{1}{2}$:

$$\begin{split} J_2 > & \prod_{D_* a \leqslant n \leqslant D^* a} \frac{D^* a - n}{n} > \frac{\Gamma(a\delta)}{(D^* a)^{a\delta + 1}} \\ > & c_4 (a\delta)^{a\delta - \frac{1}{2}} e^{-a\delta} (D^* a)^{-a\delta - 1} \\ > & c_4 (D^* a)^{-\frac{3}{2}} (\delta/eD^*)^{a\delta} \\ = & c_4 (D^* a)^{-\frac{3}{2}} e \left[-a\delta \left(\lg \frac{D^*}{\delta} + 1 \right) \right] \\ > & c_4 (D^* a)^{-\frac{3}{2}} e^{-a\delta^{\frac{1}{2}}} \end{split}$$

with a universal constant c_4 . Similarly

$$\begin{split} J_{3} \geqslant & \prod_{D_{*}d \leqslant n \leqslant D^{*}d} \left(\frac{n-aD^{*}}{n}\right) \geqslant \frac{\Gamma(D^{*}(d-a))}{\Gamma(D_{*}d-aD^{*}+1) \cdot (D^{*}d)^{\delta d+1}} \\ \geqslant & c_{5} \frac{[D^{*}(d-a)]^{D^{*}(d-a)-\frac{1}{2}} e^{-D^{*}(d-a)}}{(D_{*}d-aD^{*})^{D_{*}d-aD^{*}+\frac{1}{2}} e^{-D_{*}d+aD^{*}} (D^{*}d)^{\delta d+1}}, \\ \geqslant & c_{5} \frac{e^{-\delta d}}{(D_{*}d-aD^{*}) \cdot D^{*}d} \left[\frac{D^{*}(d-a)}{D_{*}d-aD^{*}}\right]^{D_{*}d-aD^{*}-\frac{1}{2}} \left(\frac{d-a}{d}\right)^{\delta d} \\ \geqslant & c_{5} \frac{e^{-\delta d}}{D^{*}D_{*}d^{2}} \left(1-\frac{a}{d}\right)^{\delta d} \geqslant c_{5} e^{-2\delta a} a^{-2} \left(1-\frac{D_{*}}{D^{*}}\right)^{\delta d} / (4D^{*}D_{*}) \\ \geqslant & c_{5} a^{-2} e [-2\delta a - \delta d \lg (D^{*}/\delta)] / (4D^{*}D_{*}) \geqslant c_{5} a^{-2} e (-\sqrt{\delta}a) / (4D^{*}D_{*}) \end{split}$$

with a universal constant c_5 . Combining the bounds for J_1 , J_2 , J_3 and using $0 < n_1 - D^*a \le \frac{1}{2}$, it follows that

$$\left|g_1g_2\right| < c_6 a^{c_1+3} \left|\frac{\sin \pi D^*a}{n_1-D^*a}\right| e^{3a\delta^{\frac{1}{4}}} < c_7 a^{c_1+3} e^{3a\delta^{\frac{1}{4}}} < c_7 e^{4a\delta^{\frac{1}{4}}}$$

with c_7 depending upon ε alone, d being increased if need be so as to achieve $a^{c_1+3} < e(a\delta^{\frac{1}{2}})$. But now the familiar appraisal (e) of Section 5 implies

$$|g_3| < Be^{-4a\delta^{\frac{1}{3}}},$$

and so

$$|g| = |g_1g_2g_3| < Bc_7 \equiv c_1$$
,

completing the proof of (d).

(e)
$$|g| < c_8 (D_* d/D^* < |a| \le d)$$
.

Proof of (e).
$$|g_1| < c_g a^{c_{10}} \prod_{n < D_A a} \left(\frac{D^{*2} a^2}{n^2} - 1 \right)$$

for $D_*d/D^* < a \le d$ with constants c_9 and c_{10} depending upon $n_0 = n_0(\varepsilon)$ alone, so

$$|g_1g_2| < c_{11}a^{c_{10}} |\sin \pi D^*a|/J_4$$

with

$$\begin{split} J_4 &= \prod_{D_* \, a \leqslant n \leqslant D^* d} \left| \, 1 - \frac{D^{*2} a^2}{n^2} \right| \geqslant \prod_{D_* \, a \leqslant n \leqslant D^* d} \left| \, 1 - \frac{D^* a}{n} \right| \\ &\geqslant \left| \frac{n_2 - D^* a}{n^2} \right| \, \frac{\Gamma(D^* d - D_* a) \, \Gamma(a \delta)}{(D^* d)^{D^* d - D_* a + 3}}, \end{split}$$

 n_2 being determined from $-\frac{1}{2} < n_2 - D^*a \le \frac{1}{2}$. Both gamma functions contribute to this underestimate if, as is supposed below, D^*a is not too close to D_*a or to D^*d ; the appraisal of J_4 is similar in the opposite case. Stirling's approximation is now applied to obtain

$$J_{A} > c_{12} |n_{2} - D^{*}a| (D^{*}d)^{-5} J_{5} J_{6}$$

with

$$\boldsymbol{J_5} = e \left[-D^* d \left(\frac{d-a}{d} \right) \lg \left(\frac{d}{d-a} \right) \right]$$

and

$$\boldsymbol{J_6} = e \left[-D^* d \left(\frac{a \delta}{D^* d} \right) \lg \left(\frac{D^* d}{a \delta} \right) \right].$$

Because $d-a \le d(1-D_*/D^*) = d\delta/D^*$ and $a\delta \le d\delta$, both J_5 and J_6 are bigger than $e(-a\delta^{\frac{1}{2}})$ for small δ , so

$$J_4\!>\!c_{13}\,\big|\,n_2\!-\!D^*a\,\big|\,a^{-5}\,e\,(\,-\,3\,a\,\sqrt[]{\delta}),$$

and the proof is completed as in (d) above.

(f)
$$|g| < c_{14}$$
 $(d < |a| \le 2d)$.

$$Proof \ \ of \ \ ({\rm f}). \qquad \qquad \left|g_1\right| < c_{15} \, a^{c_{16}} \prod_{n < D_{\Phi} d} \left(\frac{D^{*2} a^2}{n^2} - 1\right) e^{2n\delta}$$

for $d < a \le 2d$, the exponential accounting for the factors of

$$\prod_{\substack{D_{*}d\leqslant n\leqslant D^{*}d}} \left(\frac{D^{*2}a^{2}}{n^{2}}-1\right)$$

that exceed 1; the rest of the proof is similar to but simpler than that of (e).

(g)
$$|g| < c_{17}$$
 ($|a| > 2d$), and $g \in L^2(\mathbb{R}^1)$.

Proof of (g).
$$|g_1| < c_{18} a^{c_{19}} \prod_{n \leqslant D^*d} \left(\frac{D^{*2} a^2}{n^2} - 1 \right)$$

for
$$a > 2d$$
, so $|g_1g_2| < c_{20}a^{c_{10}} |\sin \pi D^*a| \le c_{20}a^{c_{10}}$,

and using the familiar appraisal (e) of Section 5 to bound g_3 , it develops that

$$|g| < Bc_{21}a^{c_{22}}e^{-\varepsilon d(1+2(\lg a/d))}.$$

But

$$d \lg (a/d) > \frac{d \lg 2}{\lg (2d)} \lg a \quad (a > 2d),$$

and so

$$|g| < c_{22} a^{c_{22} - 2\epsilon d \lg 2/\lg(2d)}$$

is bounded (a>2d) and belongs to $L^2(\mathbb{R}^1)$ if d is large enough.

(h) $||f-g||_{\Delta}$ can be made as small as desired by appropriate choice of ε and d.

Proof of (h).

$$\tfrac{1}{2} \, \| \, f - g \, \|_\Delta^2 \leqslant \int_0^A | \, f - g \, |^2 \, \Delta + (2B + 1)^2 \int_A^{d/2} | \, f \, |^2 \, \Delta + \int_{d/2}^\infty (c_{24} + | \, f \, |)^2 \, \Delta$$

with an adjustable number A, a universal constant B, and c_{24} (= the greatest of c_1 , c_8 , c_{14} , c_{17}) depending upon ε alone, provided ε is small enough and d(>2A) is large enough, the smallest admissible d depending upon ε . A is now chosen so large that $(2B+1)^2 \int_A^\infty |f|^2 \Delta < 1/n$ and then ε is chosen so small that $c_{24} = c_{24}(\varepsilon) < \infty$ and d is made so big that neither $\int_0^A |f-g|^2 \Delta$ nor $\int_{d/2}^\infty (c_{24}+|f|)^2 \Delta$ exceeds 1/n, with the result that $||f-g||_\Delta^2 < 6/n$.

14. Another condition for $Z^{+/-} = Z^{0+}$ (Δ Hardy)

Because $Z^{|t| \leq \varrho +}$ is closed so is $Z^{\cdot \varrho}$, but it is possible to go another step and prove that,

if
$$\sigma^{\bullet \varrho}(\gamma) = \sup |f(\gamma)| \quad f \in Z_{\Lambda}^{\bullet \varrho}$$
, $||f||_{\Delta^+} \leq 1$,

then $\lg \sigma^{\bullet \varrho}$ is a non-negative, continuous subharmonic function such that

$$\overline{\lim}_{R \uparrow \infty} R^{-1} \max_{0 \leqslant \theta < 2\pi} \lg \sigma^{\bullet \varrho} (Re^{i\theta}) = \varrho.$$

Proof. Only the last statement needs a proof. Given $f \in \mathbb{Z}_{\Delta^+}^{\circ \varrho}$, $(\gamma + i)^{-1} e^{i\gamma \varrho} fh \in \mathbb{H}^{2+}$, and so

$$\lg \left| \frac{e^{i\gamma\varrho}fh}{\gamma+i} \right| \leq \frac{1}{\pi} \int \frac{b\,dc}{(c-a)^2+b^2} \lg \frac{|fh|}{|a+i|} \quad (\gamma=a+ib, \ b>0);$$

this leads at once to

$$\lg \left[e^{-b\varrho} \, \sigma^{\bullet\varrho}(\gamma) \right] \leq \frac{1}{\pi} \int \frac{b \, dc}{(c-a)^2 + b^2} \lg \, \sigma^{\bullet\varrho}$$

since $h(\gamma)/(\gamma+i)$ is outer. $\int \lg \sigma^{2}/(1+a^{2}) < \infty$ is now proved as in Section 4(e), and it follows that

$$\overline{\lim_{R \uparrow \infty}} R^{-1} \lg \sigma^{\bullet \varrho} (R e^{i\theta}) \leq \varrho |\sin \theta|$$

for $\theta = \pi/4$, $3\pi/4$; the same holds by a similar argument for $\theta = 5\pi/4$, $7\pi/4$. An application of Phragmén-Lindelöf as in Section 4 (f) completes the proof that $\sigma^{*\ell}$ is of type $\leq \varrho$, and that the equality must hold follows since $e(-i\gamma\varrho) \in Z_{\Delta^+}^{*\varrho}$.

As an application of the bound for $\sigma^{*\varrho}$, it will be proved that if $Z^{|t| \leq \varrho +} \supset Z^{+/-}$, and indeed if the projection of e(ias) upon Z^- belongs to $Z^{|t| \leq \varrho +}$ for a single s > 0, then $Z^{+/-} = Z^{0+}$. Suppose that projection belongs to $Z^{|t| \leq \varrho +}$ for a single s > 0; then it does so far a whole (bounded) interval of s with a larger ϱ , and selecting such an s from the Lebesgue set of

$$h = \frac{1}{2\pi} \int_{0}^{\infty} e^{-iat} \, \hat{h}(a) \, da$$

and arguing as in Section 7 with $\sigma^{\bullet\varrho}$ in place of σ^{\bullet} , it is found that h^{-1} is an entire function of exponential type $\leq \varrho$. But then $\mathfrak{j}=h/h^{*}$ is inner as in Section 7 so that $Z^{+/-}=Z^{-}\cap Z^{+}$; also $Z^{-}\cap Z^{+}=Z^{\bullet}$ since $1/\Delta$ is locally summable (Section 6 c), and so $Z^{+/-}=Z^{\bullet}=Z^{0+}$ as stated.

References

- BEURLING, A., On two problems concerning linear transformations in Hilbert space. Acta Math., 81 (1949), 239–255.
- [2]. Boas, R., Entire Functions. Academic Press, New York, 1954.
- [3]. CARLEMAN, T., L'intégrale de Fourier et questions qui s'y rattachent. Uppsala 1944.
- [4]. DOMAR, Y., Closed primary ideals on a class of Banach algebras. Math. Scand., 7 (1959), 106–125.
- [5]. Hačatrjan, I. O., Weighted approximation of entire functions of degree 0 by polynomials on the real axis. Dokl. Akad. Nauk SSSR, 145 (1962), 744-747; Sov. Math., 3 (1962), 1106-1110.
- [6]. Hida, T., Canonical representations of Gaussian processes and their applications. Mem. Coll. Sci., U. of Kyoto, ser. A, Math., 33 (1960), 109-155.
- [7]. HOFFMAN, K., Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Cliffs, N.J., 1962.
- [8]. LEVINSON, N., Gap and Density Theorems. New York, 1940.
- [9]. McKean, H. P., Jr., Brownian motion with a several dimensional time. Teor. Veroyatnost. i Primenen, 8 (1963), 357-378.
- [10]. Mergelyan, S. N., Weighted approximation by polynomials. *Uspehi Mat. Nauk*, 11 (1956), 107-152; *Amer. Math. Soc. Translations*, 10 (1958), 59-106.
- [11]. TUTUBALIN, V. N. & FREIDLIN, M. I., On the structure of the infinitesimal σ-algebra of a Gaussian process. Teor. Veroyatnost. i Primenen., 7 (1962), 196–199.

Received October 24, 1963