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Notation 

/*(y) ( y = a + i b )  denotes the regular extension of / * ( a ) = / ( a ) *  so t ha t  / * ( y ) =  

(/(y*))*, (y* = a - i b ) .  

fstands for f : : .  

f and the like s tand for f:, etc. 

e@) means e ~. 

1 a. Introduction (weighted trigonometric approximation) 

Given a non-trivial,  even, non-negative,  Lebesgue-measurable weight funct ion 

A = A(a) with S A < co, let  Z be the {real) Hi lber t  space L ~ (R 1, A da) of Lebesgue- 

measurable functions / with 

f* ( -a)=/(a) ,  I1,1[ = II/IIA = ( f [ / I S  A) �89 

subject  to  the usual identifications, and put t ing  ZC ~ = the span (in Z) o/e (iat) (c <~ t ~ d), 

in t roduce the following subspaces of Z:  

(a) Z - =  Z -~~ 

(b) g + = g ~162 

(c) Z +/- = t h e  project ion of Z* onto  Z - ,  

(d) Z ' = t h e  class of entire functions / = ] ( y )  @=a+ib) with 

nm R- i  max  lg I ] C R~'~ I <- O, 
Rt, oo 0~<0~<2:~ 

which, restr icted to  the line b = 0, belong to Z, 

(e) Z~ AZ ~ 
6>0 

(f) Z. = the span of (/a) a, d = 0, 1, 2, etc., S a 2d A < r162 

(g) Z - m =  f'lZ-~t. 
t < 0  

Z -~r ~ = Z since / fi Z implies ] A fi L 1 (R1), and in tha t  case / A = 0 if ] / A e ( - iat) = 0 

(teR1); the  functions /fiZ" are of 0 (minimal) exponential  type,  so-called. 

Z" is ei ther  dense in Z or a closed subspaee of Z ;  the second al ternat ive  holds 

in  the case of a Hardy weight: 
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and under this condition 
f lgA > 

Z - ~ Z + I - ~ Z  - NZ+~Zo§ = Z . ~ Z . .  

Given a Hardy weight A, the problem is to decide if some or all of the above 

subspaces coincide; for instance, as it turns out, Z+I-=Z" if and only if A - I = [ / ]  2 

with ] entire of minimal exponential type, while Z*= Z ~ for the most general Hardy 

weight. 

Z # Z -  in the Hardy case, while in the non-Hardy case Z = Z - N Z + = Z  -:r and, 

if AE ~ also, then Z = Z  ~ too. (AE~ means that  A(a)>~A(b) for 0 < a < b . )  

Z +j- and Z ~ receive special attention below for reasons explained in the next  

part of the introduction.  

S. N. Bernstein's problem of finding conditions on a weight A < 1 so that  each 

continuous function / with liml~ I ?.~ ILIA=0 should be close to a polynomial p in the 

sense that  I / - P l  A be small, is similar to the problem of deciding if Z. = Z or not, 

and it turned out that  S. N. Mergelyan's solution of Bernstein's problem [10] and 

I. O. Ha6atrjan's amplification of it [5] could be adapted to the present case. 

1 b. Introduction (probabilistic part) 

A da can be regarded as the spectral weight of a centered Ganssian motion with 

sample paths t--->x(t)ER 1, universial /ield B, probabilities P(B) ,  and expectations E(/) :  

E [x (s) x (t)] = fe  'a(' ") A 

Bring in the (real) Hilbert space Q which is the closed span of x (t) (t E R 1) under 

the norm [[/[[=[E(/2)] �89 and map x(t)-->e(iat)EZ. Q is mapped 1:1 onto Z, inner 

products being preserved, and with the notations QCa=the span o/ x(t) (c~t<~d)and 

B ca= the smallest Borel sub/ield o/ B measuring x(t) (e ~< t ~< d), a perfect correspondence 

is obtained between 

(a) Z-,  Q - = Q - ~ ~  and B - = B - ~ ~  past, 

(b) Z +, Q+= QO~, and B += B ~ =the /uture, 

(c) Z ~/-, the projection Q+J- of Q+ onto Q-, and B +/- =the smallest splitting [ield 

o/ past and /uture, 
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(d) Z ~ Qo+= N Qo~, and B ~  ['1 B ~ =the germ, 
(~>0 (~>0 

(e) Z.,  Q. = the span of x (d) (0), d = 0, 1, 2, etc., E [x (d) (0) 2] < co 

field g., 

([) Z - ~ ,  Q - ~ =  f )O- .c t ,  and B -~r N B - ~ t = t h e  distant laast. 
t<O t<O 

, and the associated 

B-, B +, B ~ etc. do not just include the fields of Q-, Q+, Qo+, etc., but  for in- 

stance, if /EQ is measurable over B ~ then it belongs to QO+; the proof of this fact 

and its analogues is facilitated by use of the lemma of Tutubalin-Freldlin [11]: if the 

field A is par t  of the smallest Borel field containing the fields of B and C and if 

C is independent of A and B then A c B. 

B +/- ( = t h e  splitting field) needs some explanation. Given a pair of fields such 

as  B- ( = t h e  past) and B + ( = t h e  future), a field A c B -  is said to be a splitting 

field of B- and B +, if, conditional on A, B + is independent of B-. B- is a splitting 

field, and as is not hard to prove, a smallest splitting field exists, coinciding in the 

present  (Gaussian) case with the field of the projection Q+/- (see H. P. McKean, Jr .  

~9] for the proof). B +/- and so also Z +/- is a measure of the dependence of the 

future  on the past. 

Because Z ' = Z  ~ for a Hardy  weight, the condition A-I=[/] 2 (/ entire of mini- 

mal  exponential type) for Z + / - =  Z" is equivalent in the Hardy  case to the condition 

t ha t  the motion split over its germ (B + / -=  B~ this is the principal result of this 

paper  from a probabilistic standpoint.  Tutubalin-Freldlin's result [ l l ]  tha t  if A ~> [a] -d 

as  [a[ ~ ~ for some d~>2 then B~ is the sole fact about  B ~ tha t  has been 

published to our knowledge. 

2. Hardy functions 

An even Hardy  weight A can be expressed as A = [h[ ~, h belonging to the Hardy  

class H a+ of functions h=h(y) (~=a+ib) regular in the half plane ( b > 0 ) w i t h  

]t*(-a)=h(a) and S Ih(a+ib)I~da bounded (b>0) ;  such a Hardy  function satisfies 

limflh(a+ib)-h(a)12da=O and flh(a+ib)l~da<flh(a)l~d~ (b>0) .  
b~0 

Hardy  functions can also be described as the (regular) extensions into b > 0 of the 

Fourier transforms of functions belonging to L ~ (R 1, tit) vanishing on the left half line 

(t,,<0). According to Beurling's nomenclature, each Hardy  function comes in 2 pieces: 

an outer factor o with 
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if  b lg Io (?)1 = ~ (c - a) ~ + b ~ lg I h(c) I dc (? = a § ib) 

and an inner factor ~ with 

] i ( ? ) l < l  (b>0),  I~(? ) l= l  (b=0) ;  

the complete formula for the outer factor of h is 

[, ~  ~ J ? + c  l g l h ( c ) l ~  . 

Z+h = H  2+, i.e., e(i?t)h (t>~ 0) spans out the whole of H ~+, if and only if h is outer. 

T/~- stands for the analogous Hardy class for b < 0. L ~ (R 1, da) is the (perpendicular) 

direct sum of H ~- and H ~+. Hardy  classes H 1~ are defined in the same manner 

except tha t  now it is ~ l h ( a + i b ) ] d a  that  is to be bounded. H 1+ can be described as 

those functions h belonging to L 1 (R 1, da) with ~ e ( - i a t )  hda = 0 (t <. 0); it is characteristic 

of the moduli of such functions that  ~ l g i h i / ( l + a ~ ) > -  oo (see [7] for proofs and 

additional information). 

3. Discussion of Z-~Z+I-:DZ-NZ+ 

Given A as in 1 a, Hardy or not, the inclusions Z D Z-  D Z +/- D Z-  fi Z + are obvious, 

so the problem is to decide in what circumstances some or all of the above subspaces 

coincide. As it  happens, 

(a) either ~ lg A/(1 +a~) = - oo and Z = Z -  N Z + = Z  - ~  

or ~ lg A/ / ( l+a2)>  - c ~  and Z 4 Z - # Z - A Z + ;  

in the second (Hardy) case, S lg A . / ( l + a 2 ) > -  ~ ,  A = l h l  2 with h outer belonging to 

H 2+, and the following statements hold: 

(b) Z - 4 Z  +l- i/ and only i/ i = h / h * ,  restricted to the line, coincides with the ratio 

o/ 2 inner /unctions, 

(e) Z +1- = Z - N  Z + i/ and only i/ i=h/h*, restricted to the line, coincides with an 

inner /unction. 

(a) goes back to SzegS; the rest is new. 
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Proo[ o/ (a) adap ted  f rom [7]. Z # Z -  implies t h a t  for  the  coproject ion / of 

e(ias) upon Z - ,  / A # 0  for  some s > 0 .  Because the  project ion belongs to  Z - ,  

e ( -  ias)/e(iat)E Z - ( t  < 0) and  so is perpendicular  (in Z) to / ;  also, / is perpendicular  

to e (iat) (t < 0), so 

fe'~176 f/Ae-'"'da=O (t<.o). 
Bu t  in view of f l f i i < l l f t l ~ ( y i ) + < ~ ,  it foUows that  fA belongs to the  Hardy  

class H I+, whence ~ lg ( I / I A ) / ( l + a 2 ) >  - co. B u t  also ~ Ig ( I / ] 2 A ) / / ( l + a Z ) <  ~ since 

/ E Z, and ~o ~ lg A/(1  + a ~) > - ~ ,  as s ta ted.  On the  o ther  hand,  ~ lg A/(1  + a ~) > - oo 

implies A - - ] h i  ~ with h outer  belonging to H 2+, and  Z ~ Z -  follows: indeed, since A 

is even, h*(-a)=h(a),  and since h~EH 1+, 

f e -'a' h" da = f e  - '~  i A da = 0 (t < 0) (i = h/h*),  

s ta t ing  t h a t  i E Z is perpendicular  to Z - .  Z - 4 :  Z -  N Z + follows, since, in the opposi te  

case, Z - c Z  + so t h a t  Z + = Z  and hence also Z - = Z ,  agains t  the  fact  t h a t  A is a 

H a r d y  weight. Z -00= f ) Z - ~ 1 7 6  follows in the n o n - H a r d y  case. 
t<0 

Proo] o] (b). Given ] l g  A/(1  + a  ~) > - oo, let  A = [hi 2 with h outer  as before and  

prepare  3 simple lemmas.  

Z + h =  H 2+ since h is outer  as s ta ted  in 2. 

Z -  h = i  H~-  because Z -  h* = (Z + h)* = (H~+) * = H ' - .  

Z+~-h=ipi- iH 2+, p being the project ion in LZ(R 1) upon  H2- ;  indeed, ip i  -1 is a 

project ion and  coincides wi th  the  iden t i ty  jus t  on i H z-. 

Coming to the  ac tual  proof  of (b), if the inclusion Z - m  Z +/- is proper ,  then  

Z -  h = i H2-  contains a funct ion / = i(i~ o~)* perpendicular  to Z +/- h = iP i -1H2+, i :  being 

an inner  and  026H 2+ an  outer  function.  Because i p i - l = l  on i H  2-, i t  follows t h a t  

/ is perpendicular  in L2(R 1) to / ~ + ,  so /EH +-, i.e., /=(ji01)*, Jl being an  inner and  

o~EH ~+ an  outer  funct ion;  in brief, i(j202)*=(~01) *. Because ]0~[=]02] on the  line 

b = 0, the  outer  factors  can be cancelled, proving  t h a t  i = 72/?'1. On the  o ther  hand,  

if i=?jJl ,  then  /=i(jzh)*4:0 belongs to  iH~-=Z-h .  Also /=(]~h)*EH 2- so t h a t  / 

is perpendicular  in L~(R 1) to H ~+, and since / e i / P - ,  i t  mus t  be perpendicular  to 

i p i - H  2+ =2+~-h  - also. Z -  g=Z +/- follows, complet ing the  proof.  

Proo/ o/ (c). Z - # Z -  f~ Z + in the  H a r d y  case, so if Z +l- =Z-  fl Z +, then  Z - 4 : Z  +/-, 

and  according to  (b), i=h/h* is a rat io  ~2/~'1 of inner funct ions wi th  no common  
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factor. / E Z - h = i H  ~- is perpendicular in L2(R 1) to Z + / - h = i p ~ - l H  2+ if and only if 

i -1 /EH ~- is perpendicular to p i - l H  ~+, or, and this is the same, to i - l H  2+, and so, 

computing annihilators in i H  ~-, (Z +/- h) ~ =iH2-N H 2-. Now / e  i l l 2 - n  H 2- can be ex- 

�9 " "* O*  pressed a s  ( ~ 2 / ~ 1 ) ~ 3  3 "* * = 74 o4 and the outer factors have to match, so i2 i4 = il ia, and since 

il  and i2 have no common factors, i l  divides ~4 [1, p. 246] and /eiH2-n (1/i l)H ~-. 

Because i*H 2- ~ H 2-, Z +/- h can now be identified as [ i l l  2- N (1/i~) S2-]  ~ = iH  2- N (1/i l)H ~+, 

the annihilator being computed in i/t2-; this is because (1/i~)H 2- =i~'*H ~- ~ i H  2- and 

(1/ i~)H~-r  iH2-N (1 / i l )H  2+ is a perpendicular splitting of i H  ~-. But  according to 

this identification, if Z +l- = Z-  N Z +, then i(11h)* = (1/i l)hEZ+l- h c Z +  h= H2+, and h 

being outer, it follows that  ~1 has to be constant, completing half the proof; the 

opposite implication is obvious using the above identification of Z+~-h in conjunction 

with (Z- ~Z+)h=~H 2- ~ H  ~+. 

Example. h = ( 1 - i y )  -3/2 is outer belonging to H 2+ and Z-=Z+I-;  indeed, 

[(1 + i~)/(1 - ir)] '/2 = i~/?'1 would mean that  i~ [(1 + iy)/(1 - i~)]a = i22, and this would make 

i22 have a root of odd degree at  y = i. 

An outer function h belonging to H ~+ is determined by its phase factor i = h / h  * 

if and only if dim Z-  N Z + =1;  indeed, if dim Z-  N Z + = 1  and if o is an outer func- 

tion belonging to H 2+ with o/o*=i, then o E i H 2 - N H 2 + = Z - N Z + h  and, as such, 

is a multiple of h. On the other hand, if o/0"= i implies o=cons tan t  • h, then 

dim Z - N Z + = I  because if o is the outer factor of / E Z - N Z + h = ~ H 2 - f i H  2+, then 

o/o* =i/? with ~ an inner multiple of the inner factor of ]. ( i §  1)0 is outer [7, p. 76], 

and since ( i§247  it is a multiple of h. i ( i - 1 ) o  is likewise a multiple 

of h, and so o itself is a multiple of h, ?'= 1, and / too is a multiple of h. 

4. Discussion of Z" 

Before proving the rest of the inclusions Z - N  Z+DzO+Dz" D Z. ,  Mergelyan's 

solution of Bcrnstein's ploblem, and his proof also, is adapted to the present needs. 

Given A, Hardy or not, let Z ' =  Z~ be the class of entire functions / of minimal 

exponential type which, restricted to b=O, belong to Z, let A + =A(1  +a2) -1, suppose 

S A+ = 1, and putting 

a" (~) = the lea,~t upper bound o/] /(F) l: / e Zk+, II/11 § < 1, 

let us check that  the following alternative holds: 
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either ~" -- ~ (b 4 0), 

sup f lg+ It] ~" lg ~" 
1 + a 2 = J i~-~a *= 
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~, /or /~zX+ ~th llfll~.~1, 

and Z" is dense in Z, 

or lg a" is a continuous, non-negative, xubharmonic /unction, 

f lga" < 
i;-~a* oo, 

1 
f b lga ' (c)dc  ( y = a + i b ,  b>0),  l g a ' ( ~ ) < ~  ( c - a )  2+b  2 

lim R- 1 max ]g a" (Re ta) ~< 0, 
Xt~  0~<0<2~ 

and Z" is a closed subspace o / Z ;  

the second alternative must hold in the case of a Hardy weight as will be proved 

in 6b. Because ( / ( ~ * ) ) * = ] ( - r ) E Z "  if / e Z ' ,  

a" (~) = a" (r*) = a" ( - ~); 

this fact is used without additional comment below. 

Break up the proof into simple lemmas. 

(a) a" (r) -- oo (b =4= 0) i / a n d  only i /Z"  is dense in Z. 

Proo/ o/ (a). a" (fl) = oo (fl = a + ib, b @ 0) implies that  / e Z~,+ can be found with 

O/IIA+ < 1, I/(fl) l > ~-1, and hence 

I 1 /-/(~) ] / _, c - i  

Breaking up [ l - / ( f l ) ] / (~- f l ) / ( /~)  into the sum of its odd and even parts 11 and t2 
and then into the sum (with coefficients of modulus 1) of 4 pieces: 

1 i i + .  1 
111 = 2 (11 -~ 1~), 112 = 2 (11 --  1~), 121 = 2 (12 12 ), 122 = 2 (12 --  1~), 

each of which belongs to Z~, it follows that  if g E Z is perpendicular to Z~, then 

S g A / ( c - f l ) = O  (fl-=a+ib, b:~O), whence 
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( c_a )2+b  2 g A d c = O  (b>0) ,  

and g A = 0  as desired. On the other  hand, if Z~ is dense in Z, then  it  is possible 

to find an entire function / of minimal exponential  type  with ] l l / ( c - f l ) - / ] ] a < ( ~  

(fl = a + ib, b =~ 0). Bring in an entire funct ion g with [g - g (~)]/(~ - fl) g (~) = - / ;  then  

> (c - >1 a positive constant depending upon ~ alone • I g (----~i]' 

and so ]g (fl)[ > constant  • r [[ g[[A+" 

g is now split into the sum (with coefficients of modulus 1) of 4 members  gm gl~, 

g21, g2~ of Z~+, and i t  develops tha t  

constant  x (~-1 Ilg I1~+ < Ig(~)l < ]gil(fl)I + lal~(~)l + Ig~,(~)l + Ig~(~)l 

~ 0"'(~)(n gi1[[A + + Hgl$HA + + Hg~IHA+ § HgU~HA+) 

~<2~. (11 g~llA§ + II g~.ll,,§ ~< 2 V~ ~-(ll gl II~- + Ilg~ll~+) * 

= 2 v'~ ~" ]1 g I1~§ 

making use of ] g~' g~ A +=  0. Bu t  since (~ can be made small, a" (fl) is in fact  = oo. 

(b) Z" dense in Z implies 

sup f l g + ~  r i g a -  - - oo, ]or  / e Z'~+ w i th  I1! I1,,+ < 1. 
l +  l + a  ~ 

Proo/o/  (b). Given ! e Zk+, if fl = a + ib (b > 0), then  

lg I/(fl)] < ~ ( c -  a) * + b e lg+ [1 (c)[ dc 

as follows from Nevanlinna 's  theorem [2:1.2.3] on let t ing R ~ ~ and using 

lim R -~ max  lg I/(R~'~ <0 .  
R~oo 0~0<2~ 

Now apply  (a). 

~" (~) < 1 ( b 
(e) lg (c_a)2+b~lg  a'(c)dc ( f l = a §  b > 0 ) .  r 
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Proo/o/  (c). Obvious from (b). 

(d) Z" non-dense implies that a" is bounded in the neighborhood o/ each point 

fl = a + ib (b > O) ; in /act, i/ Z" is non.dense lg a" is a non.negative conti- 

nuous subharmonic /unction (b # O). 

Proo/ o/ (d). Given f l = a + i b  (b>O) and a point  ~ near  it, take g E Z ~ .  with 

[[g[Ia+ ~< 1 and Ig(~)[ close to a" (a), and let / =  1 + [ ( ~ - f l ) / ( y -  a)] [ ( g - g ( ~ ) ) / g ( a ) ] ,  

observing tha t  / need not  belong to Z~+ since / * ( - a ) = / ( a )  can fail. 

and so, as in the second par t  of the proof of (a), 

[ l [ /~ -~  (1 + [g (~)l-1) + Ig(~)l-1], I=I/(~)I<2V~(, '@II/II~+<2V~o'@ ~ .. 

proving t ha t  a" (~) is bounded on a neighborhood of fl if a" (fl) < ~ .  Because 1 E Z'~+, 

a'>~ 1 (~ A + =  1 is used a t  this place), so lg a'~>0, and since lg I/I is subharmonic for 

each /EZ'a+, lg a" is also subharmonic.  Bu t  now it follows tha t  if a ' ( f l ) =  ~ a t  one 

point  f l = a +  ib (b > 0), then  it  is also ~ at  some point  of each punctured  neighbor- 

hood of fl, and arguing as in the first pa r t  of the proof of (a) with / perpendicular  

to Z'a, ~ / A / ( c - a ) d c  is found to vanish a t  some point  of each punctured  neighbor- 

hood of fl and hence to  be -~0. Z" dense in Z follows as before, so Z" non-dense 

implies the (local) boundedness of a ' .  I t  remains to prove tha t  a" is continuous 

(b#0) .  On a small neighborhood of ~ = a + i b ,  I/I (/~zx+) nes under a universal 

bound, a' .  An application of Cauchy's  formula implies tha t  [/'[ lies under  a universal  

bound on a smaller neighborhood of ~, and so [/(fl~)-/(fli)[ lies under  a universal  

constant  B t imes [f12- fl~[ as fll and fl~ range over this smaner neighborhood. Bu t  then  

I1(~)1 ~< I1(~i) I + B I ~  - ~,l < (x. (~1) + B I~  - ~ I, 

so t ha t  a" (fl~) ~< a" (ill) + B I fl~ - ~1 [, 

and interchanging the roles of fll and fl~ completes the proof of (d). 

(e) Z" non-dense implies S lg + [/]/(1 + a 2) ~< S lg a'/(1 + a 2) < oo. 

Proo] o/ (e). Z" non-dense implies the  existence of g E Z perpendicular  to Z~, 
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and since, if /EZ~+, ( f - / ( [ l ) ) / (y - f l )  is the sum (with coefficients of modulus 1) of 

4 members of Zk, 

f g*/ (g*a 
Because ~ is regular and bounded (b >~ 1), ~ lg ]~(a + i)I/(1 + a 2) > - c~ ; also 

c - i  
+ i)l < llgll  ll/ll + 

so that  a* (a + i) ~< constant x (1 + aS) t I g (a § i) 1-1 and ~ lg a" (a + i)~(1 § a s) < ~ .  But  

as in the proof of (b), 

l (/eZi+), 

and so 

flg.'(a) f ;fd  1 = 2  da<~ l g a ' ( c + i ) d c  l + a  2 ( c - a ) z + l  j cS+4 dc<oo, 

as stated. 

(f) 11 Z" is non-dense in Z then it is a closed subspace ol Z and 

lim R -1 max lg a" (Re to) <. O. 
. ~ ' ~  0~<0<2~ 

Proo/ o/ (f). 

R_llga.(Re~O)<~ l _ f  s i n 0 ( l + c  s) lga" dc ( 0 < 0 < ~ )  
r~ ( c - R c o s 0 )  2 + R  zsin s 0 1 + c  ~- 

according to (d). A simple estimate, combined with a ' ( ? )=a ' (~*)  verifies 

l i m  R -1 lg a'(Re~~ ( 0 = g / 4 ,  3g/4 ,  5 g / 4 ,  7~/4). 
R t ~  

Phragm6n-LindelSf is now applied to each of the sectors between ~z,/4, 3 g / 4 ,  5g /4 ,  

7g /4 ;  for instance, in the sector [g/4, 3g/4] ,  each /s with I I / t l a+<l  satisfies 

I[ (7) e~V2�89 <- I/(Re~~ e-R~ < A (~/4 ~< 0 ~< 3 ~/4) 

I1 (Y) e~rSt~ I <~ ~" (Re~~ e- Ra < B (0 = ~r/4, 3 ~r/4) 

with a constant B not depending upon 1, and so 



1]0 N. LEVINSON AND H. P. MCKEAN, JR. 

11(7) e'V(~)�89 [ ~< B (~/4 ~< 0 ~< 3~/4) ,  

or a" (Re t~ <<. Be s(~)~ (~/4 ~< 0 ~< 3 ~/4).  

Z" closed follows since 1/I (/EZ~) lies under a universal bound (a') on any bounded 

region of the plane. 

Mergelyan's alternative is now proved; several additional comments follow. 

Given / E Z~+, (7 + i) -1/h E H 2§ while (~ + i)-1 E/r/~+ is an outer function, so that  

lg[lh(i'12~ f lg [ (c -F i)- 1/h 12 -t- ] 1- :-F ~- ~-~ ,Jr ]g ] c -F i[21-~c2 

1 flgllhP< lip IIII1 ,+), 
=; , j  1+c  

and so zcla'(i)<~lh(i)1-1. Now it is proved that  this upper bound is attained if and 

only if h -1 is entire o/ minimal exponential type. Using the compactness tha t  

lira R -1 max lg a" (Re ta) <~0 
R~o~ O~O<2g 

ensures, it is possible to choose f E Zk+ with / ( i )=  ~" (i) and II/11~+ = 1 As befog, 

rljl' _, 
, ]  : l + a  ~'j J l + a  ~ ~' 

so if ~�89 then the converse of Jensen's inequality implies tha t  lh is 

constant; the other implication is trivial. 

a" (i) can also be computed from a Szeg5 minimum problem: 

1 =i flliz4t   for/EZ.a+ w i t h f ( i ) = O  ' 
a" (i)" 

as the reader can easily check. 

Because of the compactness Of z- used above, it  is possible in the non-dense case 

to find t = lv E Z~x+ with l (~) = a" (~) and II/Ila+ = 1. Iv is unique and is perpendicular 

(in Z~+) to each IEZ*A+ vanishing at  y. /~(/3)a'(~) acts as a Bergman reproducing 

kernel for Z~+ since 

f l : [ l - / ( oO]A+  =O (IEZ'~+) 

implies f !*a+= (~) J'(It'I'A+- /(a) " '  o" (a)  
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5. Proof of Z ' C Z  ~ (A Hardy or not) 

To begin with, each / E Z" can be split into an even par t /1  = �89 [/(y) §  - y)] E Z" 

and an odd part  /8 E Z' ;  the proof is carried out for an even function /EZ" with 

Hadamard factorization 

the odd case being left to the reader. A simple estimate justifies us in ignoring the 

root of / at  ~ = 0 ;  indeed / o = ~ e ~ ( 1 - ~ / ~ ) m / / ~ 2 m  is an even entire function of mini- 

mal exponential type, tends to 1 as r oo so  that  /~EZ', and II/~-lll~ tends 

to 0 as ~ ~ 0 so that  if ]~EZ ~ then so does ]. 

Bring in the function 

(a) I/-gl<  
(b) IgI<BIII 
(c) Ig]<B 
(d) gELS(R1). 

depending upon a small positive number ~ and a large integral number d. Given 

>0,  ~>0,  and A < o o ,  it  is possible to find d 1 =d  I ( o , e , A )  and a universal con- 

stant B so that  for each d~>dz, 

( l a [<A)  

(A < < d / 2 )  

(lal>~d/2) 

I t  is best to postpone the proof of (a), (b), (c), (d) and to proceed at  once to the 

Proo/ that /E Z ~ Using (a), (b), (c) above, 

III-gIIX <e* f A + 2(B + I)= f:'*I/12A + 2 f~j (B+III)*A 

tends to 0 as d ~' oo, A ~' oo, and e ~ 0 in tha t  order. Because the entire function g 

differs from sin ~Sy by a rational factor and, as such, is of exponential type gS, it 

follows from (d) in conjuetion with the Paley-Wiener theorem that  

e*~(t)dt with f~ IOl~dt <oo. 
g(a)= ~1<~ tl<~ 

But  f I* I<~ e (iat) ~ dt E Z It I<~, as is obvious upon noting the bound 
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and so /fi I1 Z l t l < ' ~ = Z  ~ (see 6a). 
~>0 

Coming to the proof of (a), (b), (c), (d) above, it is convenient to introduce 

and to check the existence of a universal constant B such that Q - I s i n  (~a)/p(a)l 
is bounded as in 

[ e la l<m 
(e) Q/B< e -'l~ m<lal<2m 

e-m-2m 1r ]al>~2m. 
Proof o/(e). 
Q=l-I~>m (1-a2/n ~) for lal<m, and since 1 - c < e  (-c),  Q<e (-a2/(m+ l)). 

Stirling's approximation is now used to estimate p below for lal>>-m, removing first 

a factor a - m  in case m<~]a]<mq-l~, and then Isin ~a]  is estimated ahnve bv 1 nr 
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on this range. On the other hand, if m is the biggest integer <dO and if ]a I <d//2, 

then ~ ] a ] < m  so that  the first appraisal listed under (e) supphes us with the bound 

Q (a0) = YI (1 - a s OS/n 2) < Be-a'~'t(m+l) < Be-a'~ 
.>de} 

and it follows that  

-Bll(a),> ly,dE~ j ] -~ l .> I ]  (1 a20'~ 
- - ; r / =  Igl, 

as desired. 

Proo/ o/ (c) and (d). 

lg I-I I h'-I < a 

On the range l al > d/e, 

a; f0' 1 lg 1 + # (dR) 

=#(d) lg 1 + ~  + a s+R 2R 

fi# <2 # (d )  lg (3 ]a]/d) + 2 -R dR 

=o[d +d lg (]al/d)] 

for large d, while according to (e), if ]a I >~ d/2 and if m is the biggest integer < dO, 

then 
Q(a~) < Be [ - �89 d~ (1 + lg (a/d))]. 

But then [ g l < B  for large d as stated in (c), while for d>8/O 

[g l<Be[ - - �88  +lg (a/d))] (lal>d/2). 
But for still larger d, dO (1 + lg (a/d)) - 8 lg a > 0 for a > d/2,  since the left side is positive 

at  a = d /2  and increasing for a > d/2.  Thus 

I g l < B / a  2 ( [a l>d /2 )  

so that  g E L  s(R 1) as stated in (d ) .  

6a.  Proof of Z-NZ+~Z~ (AHardy or not) 

Given / E Z ~ c Z +, then e ( - iaO) / E Z -~176 c Z- ,  and 

II (e-'~ < lal<nmaX le-"~~ IIIIIA + 2 (~=,>. Ill= A) ~ 

< ~0 II/"A + 2 (f~o,> '/l= A) * 

is small for 0 = n  -s and n f ~ ,  so that  I~EZ - also. Our proof justifies 
8--642906 A c t a  ma thema t i ca  112. Imprimfi lo 22 septombro 1964. 
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Z ~  Z ~ =  N ZJ~I<6; 
6<0 O>O 

this fact wiU be used without additional comment below. 

6 b. Proof of Z ~ -- Z" (A Hardy) 

Z ~ c Z" is proved next  for a Hardy weight A. Combined with the previous result 

Z ~247 D Z', this gives Z ~ = Z'. 

Given / E Z  ~ it is possible to find a finite sum 

and hence II/.Ib, < 1/n + Illlb, < 1 + Illll~,. 

e~agm~n-Lindel~f  is now applied to obtain bounds on I t . l .  Because I IJ  is bounded 
(b ~> 0) and In is entire, /n h E H ~+, so 

f lt,,h(a + ib)[ 9" da <~ f ]fn[~ A 

is bounded (b>0,  n>~ 1), and an application of Cauchy's formula to a ring supplies 

us with the bound 

[ t n h l < B  1 (b>~l ,n~>l) .  

Also, I~(-i~,/n)l.I is bounded (b<0), so 

I~-'~'n/nh*l<B~ (b<-X, ~>1) 

with a similar proof. Next, the underestimate 

l g ] h ( a + i b ) l = ~ l g [ h * ( a - i b ) l > ~  ( blg~Jh I~dc ( l + a  s' (lg-lhl 
J(c-a)  +b >~Ba , j l + c ~  dc 

>~B.]~-B'~'I ( 1 < 5 < 2 ,  B . > 0 )  

justifies the bound 

Ign[~<B6 for 1 < 5 < 2 ,  n>~l with gn-e(-Bsr2)s  

Because ]gn] tends to 0 at  the ends of the strip ]b[ ~< 2, it is bounded (~<Be) in the 

whole strip according to the maximum modulus principle. In particular, I f~] ~< B~ on 

the disc [7] ~< 2. A second underestimate of ]h[ is obtained from the Poisson integral 
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for lg lhl: limRt ~ R -~ lg Ih(Re'~ = 0  (0 =#/4, 3#/4), and i t  follows f rom the resul t ing 

bound  
I s  "" (R>~l, 0=#/4,  3#/4) 

and  its  companion  

l e - ' " ' / n l < B ~ d  ~ (1r o=5#/4, 7#/4) 

combined with  an  appl icat ion of Phragmdn-Linde lh f  to  each of the  4 sectors be tween  

#/4, 3 #/4, 5#/4, 7 #/4, that 
I1.1 < BlO e(~+l/n) R 

B u t  now it  is legi t imate  to suppose t h a t  as n ~ oo, it. tends on the  whole plane to  an  

entire funct ion it~ ; moreover ,  this funct ion is specified on the  line b = 0 since II • - i t  Ha 

tends  to 0 as n ~ c r  Accordingly,  the  entire funct ion /~  is an  extension of /, a n d  

since I/~r I < B10 e (~ R), i t  is clear t h a t  / e Z~ as desired. 

I f  A is n o n - H a r d y  then  it  is possible for Z ~ to contain Z" properly.  Indeed  let  

A(a) be even, non-increasing for a > 0, and  non-Hardy .  Then,  as will be p roved  in 8, 

Z ~ = Z # Z ' .  

A n o n - H a r d y  does not  ensure t h a t  Z" is dense in Z; in fact  if S~-1 lg A /1  + a 2) = - oo 

while A/> 1/a S (I a 1 >~ 1), then  it E Z" satisfies ~ 1/12/(1 + a 2) < ~ ,  and  a simple apphea -  

t ion of Phragmdn-Linde l6 f  implies t h a t  it is constant;  in short,  d im Z ' =  1. 

6 c. A condition that Z-NZ+--Z" (It Hardy) 

Z - n Z + = Z  �9 i/ A is a Hardy weight and iit S + ~ A - I < c r  ( d <  cr 

Proo/. The idea is t h a t  i t E Z - N  Z + is regular  for b # 0  and  can be cont inued 

across b = 0  if A is not  too small  (see T. Car leman [3] for a similar a rgument ) .  

Given / E  Z - R  Z +, then  /h E H +2, limb~0 it(a+ ib)=it(a) except  a t  a set  of points  

of Lebesgue measure  0 [7, p. 123], and  so the  Lebesgue measure  of 

A=-(a: sup I/(a+ib)l>~-l, lal<d) 
O~b<6 

tends to 0 as ~ and  ~ ~ 0; i t  is to  be p roved  t h a t  

sup f,I/(a+ib)lda 
O<~b<~ 

is small  for  small ($ and  e for  each d < ~ .  Bring in the  summable  weight  
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B = A  -~ ( ]c l<2d)  

= (1-~ e2) -1 ( l e l > 2 d ) ;  
then for larged, 

< ftlh(a + ib) I=aa f~ [a(a + Cb)] ' da 

< Illlli L da e [~ f,o,-<,, (~ - a)'b + b ~' lg A-I dc] 

<'ellZll&fJa~[~f,c_ab),+b, lg Bd~] 
and an application of Jensen's inequality implies 

]' sup ][(a+ib)lda 
0~<b<6 

e[ f b A_ 1 ] 
c 1>2 d (c - a )  2 + b ~ lg dc 

f b .<< 2 II/II~, BdCoSU 5 (c - a) ~ + b" 

211tll~ f25oBdC=O (~, ~ 4 0). 

da 
7/: 

Using this appraisal, i t  follows that  

lim ]/(a+ib)-l(a)lda=O; 
b~0 - 

the analogous result for b < 0  follows from a similar appraisal. Choose c so that  

/(c+ib) tends boundedly to l(c) as b ~ 0 and define 

g@)= f[[(~+ib)d~+i f[/(c+i~)d~ (y=a+ib). 

y is regular (b:VO) since / E Z - N  Z + is such, it is continuous across b=O and hence 

entire, so / = g '  is likewise entire, and all that  remains to be proved is that  / is of 

minimal exponential type. 

Because /heH 2+, 5 Ilgl/hl I/( 1 +aS) < or and since lg + I/I ~<lg + I/hl-lg-Ihl, the 

integral 511gl/ll/(1 + a  S) is also convergent; a~o, lg I/hi is smaller than its Poisson 

integral, so 

lg+]/(Rd~ 1 [ Rsin O-lg+-]/(-c)lde ( 0 < 0 < ~ ) ,  
J R" - 2 Re cos 0 + c ~ 

lg ]h I being expressible by its Poisson integral since h is an outer function. According 

to this bound, 
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~r lg+ ]](c)llg R - e  7 

and 

f2"aRfoaOlg+l,(R '~ f "' lg '+1 ~r olg §162 ~ dt 

< B  1 (1 +//2) folg + 1+c2 ' 

as a simple appraisal justifies. A similar bound holds for lg+lf] in the lower half 

plane b < O, so that  

--I'2ndR --t'2~dO lg + ]f(Ret~ < B z (1 + R2), 
J R  do  

and it  follows that  between each large R and its double 2 R can be found a n  R 1 with 

f~ " lg + i f (R1 e~~ < B 2 R r  dO 2 

An application of the Poisson~lensen formula now supplies us with the bound 

lg+l/l<BaR (R~oo), 

and a second application of the fact tha t  lg + I/[ is smaller than its Poisson integral 

supplies the additional information that  

lim R -~ lg +' I/(Re'~ ( 0 = ~ / 4 ,  3~/4 ,  57e/4, 7z /4 ) .  
Rtr162 

Phragmdn-Lindel6f is now applied to each of the 4 sectors between, with the result tha t  

lim R - 1  m a x  lg + [/(Re'~ 
Rtor 0~<0<2~ 

and the proof is complete. 

A second proof of Z ~ c Z" can be based on the above; indeed, if / E Z  ~ and if 

fn is chosen as in 6b, then 

f ](f - fn)h(a + i)]~da <~ 1]/~-/n]]~ < 1In ~, 

and so f(a+i) EZ~ with A(a+i)=]h(a+i)] ~. But A(a+i) is positive and con- 

t i n u o u s ,  s o  
0 +  - Z +  _ Z A ( a + i )  c:: ZA(a+i)  N A(a+t) --  Z'A(a+t)~ 

proving that  /(a+i) is entire of minimal exponential type. 
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Z" 4 = Z- f3 Z + if, for instance, j'_+] A / a  ~ < ~o ; indeed in this ease, 

1 - f~e -~ te~ t~ td tEZ  J: (~t>O), 
+ /a+(~ Jo 

while 
i a §  ,a A ,,1>1 lal<1 ag+ 

tends to 0 as 8 5 0 ,  so that  1 / i a f Z - N Z  +. 

The Hardy weight A = a ~ e ( - 2  [a[-�89 + a  4) illustrates the point that  /E  Z-  N Z § 

van be regular in the punctured plane but have an essential singular point at  y = O. 

Define / = 7 - ~  cos (1/7t); then / ~ = / ( y + i S )  (5>0) is of modulus ~[a[ - l e (1 / la[  �89 on 

the line so that  n / - / d n a  tends to 0 as 5 4 0 ,  while, as an application of the Paley- 

Wiener theorem justifies, /~ = f ~  e (/at) fa (t) dt with fo and t[~ E L 2 [0, oo). /0+ = / E Z + 

follows and a similar argument with ~ < 0 proves that  /E Z-  also. 

6d. A condition that genus Z'--0 (A Hardy) 

Each / E Z" is o/genus 0 and $1 lg maxo<o<~ I / ( Re '~ [ / R S < c~ i /Sx  lg-A ( ib ) / b S > - oo 

or, and this is the same, i/  ~x l g - A l g  a/a~> - c~. 

Proo/. To begin with, J'l lg- A (ib)/b 2 and $1 lg- A (a) lg a /a  ~ converge and diverge 

together; indeed, since S~ lg + A (a) lg a/a  ~ ~< j'~ A < oo, the convergence of ~ lg- A (a) lg a /a  S 

combined with the Poisson formula 

1 f b 
lg A (ib) = ~ J a ~  lg A (a) da, 

leads at  once to the bound 

I db fl[lgA(ib)[-<~ f , lg A(a)[da fl  b(b ~. "~ + a~) ' 

the second integral converging, since 

f l  db ~ lg a 
b(b ~ - a  S) -~V ( a 1 ' ~ ) .  

On the other hand, if ~1 lg-A (ib)/b2> - oo, then ~1 lg -A (a) lg a/a  S is not smaller 

than a positive multiple of 
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db fllg- A(a)dal fl b(b,~a~)>~ fl 

=fl 
> fl 

Given S1 lg- A (ib)/b 2 > - oo, if / 

dbl f b ~ a ~  lg-A(a)da 

b-~ lg A (ib) - ~- a ~  lg + A (a)da 

lg- A (ib)/b 2 - constant • f l g  + A (a) 

6ZX, then / is of genus 0 and 
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> - -  o o .  

fllg max ; [](Rei~ < o o  

indeed, since A(ib) is bounded (b>~l), 

A ~  ~  ~ (b> l )  

= 1 (0~<b~< 1) 

is a Hardy weight, and if ] 6 ZX, then I/hi is bounded (b >~ 1), I/h*[ is bounded (b ~< - 1 ) ,  

and S I/(ib)]8 Ao db < oo, i.e., ] (it) fi Zk,. But  then SI ]lg ][ (ib)[ ]/b e < oo, and combining 

this with S1]lg ]](a)[I/a2<~ and an ap]plieation of Carleman's theorem, one finds 

that  the sum of the reciprocals of the moduli of the roots of )t has to converge 

[2; 2.3.14], i.e., that  the genus of I is 0. Because /+ = ] + ] *  eZX satisfies 

f lg+l/+(ib)[b'< oo and f lg+l/+(a)[/a'<oo, 

it  is of genus 0. I t  is also even, so ~l lg max0.<o<~, ]/+(Re~~ [2; 2.12.5]; the 

same holds fo r /_  = / -  ]* 6 Z~ since ?/_ is entire, even, and of genus 0, so 

J'l lg max ]/(Rd~ ~ ,  0~0<2~ 
as stated. 

lg-A(ib)/b ~ can diverge even though each ]6Z~ is of genus 0, as can be seen 

from the Hardy weight A: 

e a t A = l  on [0 ,1 )+[2 ,3 )+e tc .  

= e [-- a/ lg  z (a + 1)] on [1, 2) + [3, 4) + etc. 

A is Hardy since (a lg2(a+l))  -1 is summab]e, while 

~1 ~d+l lg- A lg aid s <~ a~--d,,, Jd (a ]g (a + 1)) -1 = -- oo, 
d~>l 

so that  ~i lg A (ib)/b z = - cr Given ] 6 Z~, 
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/:? 
a t  some poin t 2 d ~< a < 2 d + 1 (d >~ 0), so an  appl icat ion of the  Duff in-Schaef fer  theo- 

rem [2; 10.5.1] appl ied to / e ( - ? � 8 9  on the half  plane a>~0 supplies us wi th  the  bound  

[/I e ( - a  t) < B ~  on the half  line a>~O. [/I e ( la l �89  on the  left  half  line for similar rea- 

sons. Phragmdn-Linde lh f  appl ied to / e ( - ( 2 ? ) t e - t , / 4 )  on the  half  plane b>~0 toge ther  

wi th  an  analogous a rgumen t  on b > 0 supplies the  bound I/[ < B 4 e [(2 R) t / o n  the  whole 

plane, and  it  follows t h a t  / is of genus 0. 

6e. Rational weights 

d i m Z + / - = d <  c~ i /  and  only  i~ A is a rational /unct ion  o/ degree 2d .  

See, for example ,  Hida  [6] f rom whom the following proof  is adapted .  

Proo/.  dim Z +1- = d  < cr implies Z +/- # Z ,  so A is a H a r d y  weight  and  can be 

expressed as [h [3 wi th  h outer.  Define the  Four ier  t r ans form h t ) =  (1/2 zt)j" e ( -  i a t ) / (a )da  

and no te  t h a t  if i = h / h  * and  if p is the  project ion u p o n / / 2 - ,  then  Z + / - h = i p i - l H  2+ is 

of the  same dimension d as 

[ p i - l H ~ §  ^ = span [p~- i  etch  : t > O/^ = span [pe~Uh * : t > O/^ 

= span [(e~th*)^i  (s) : t >  0] 

= span  [(~(t - s) i (s) : t > 0], 

where i(s) is the  indicator  of s ~ O. [p i -1 / /2+]  ^ has a uni t  perpendicular  bas is /1  . . . . .  /a, 

and  ~(t - s) = c 1 (t) /1 (s) + . . .  + ca (t) /a (s) (s ~< O) wi th  (real) coefficients c 1 . . . . .  ca. Choose 

gl . . . .  , g d E C ~ (  - c~,O] vanishing near  - c ~  and  0 wi th  det  [ j '~  then  

c, f0 = (o  (j d , t >  0), 5 
t~<d J - ~  . / -  oo  

so t h a t  c 1 . . . . .  Cd e Cr162 (0, ~ ) ,  and  it  follows t h a t  ~ e C~(0,  ~ )  also. Given 0 < t 0 <  ... < t~ ,  

a dependence with  non-t r iv ia l  (real) coefficients mus t  prevai l  be tween s 0 - s) . . . . .  ~(t~ - s) 

( s < 0 ) ,  and  since )~ fi C~(0,  ~ ) ,  i t  is possible to f ind a differential  opera tor  D with  con- 

s t an t  (real) coefficients and  degree ~< d annihi lat ing ~ on the  half  line t > 0. B u t  this 

means  t h a t  ~ is a sum of ~<d te rms  tae bt cos ct, the  permissible a filling out  a series 
Sln  

O, 1, 2, etc., b < O ,  and the  t r igonometr ica l  factors  ei ther  absent  or  bo th  permissible.  
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A ra t ional  of degree ~< 2d follows a t  once upon  tak ing  the  inverse Four ier  t rans form.  

On the o ther  hand,  if A is ra t ional  of degree 2d, then  it  is a H a r d y  weight  [hi 2 

wi th  h outer,  h is also ra t ional  (of degree d), )~ is a sum of te rms  tae bt cos ct as above,  
sin 

the  n u m b e r  of t h e m  coinciding with  deg h and  the  t r igonometr ical  factors  ei ther  absen t  

or present  in pairs, and  d im Z +j- = d follows f rom dim span [~(t:- s) i (s) : t > 0] = d. 

A rational o/ degree 2d implies that 

(a) h =POPl/P2, P0, Pl, P2 being polynomials in i 7 with roots on the line in the 

case o/ Po and in the open hall plane b < O in the case o/ Pl and p~, and 

of degrees do, dl, d 2 ( = d) w/th d o + d 1 < d2, 

(b) Z" = Z ~ = Z.  = polynomials in i7 o/ degree < d~ - d I - d 0, 

(c) Z -  N Z + = l i p  o • polynomials in i7 o/ degree < d 2 -  dl, 

(d) Z +/- = 1/pop~ • polynomials in i r o~ degree < d2(=d) ,  

esp . , 

(e) Z ' = Z -  fi Z + i/ and only i/  h has no roots on b=O, 

(f) Z -  N Z + = Z  +/- i/  and only i/  h has no roots in b<O, 

(g) Z +/- = Z -  N Z + = Z ' - Z  ~ = Z .  i/ and only i/  h has no roots at all. 

Proo/ o/ (a). Obvious.  

Proo/ o/ (b). / e  Z;~ implies S [/[~/(1 + a2)~< o~, and  a simple appl ica t ion of Phrag-  

m~n-LindelSf  implies t h a t  / is a polynomial ;  the  bound on its degree is obvious.  

Proo/ o/ (c). / e Z -  N Z  + implies p o / e Z T ,  oNZ~xo (A~ and  since A ~ is 

bounded  f rom 0 on bounded  intervals ,  P o / e  Z'ao (Section 6 c). B u t  then  P 0 / h a s  to  be 

a po lynomia l  as in the  proof  of (b) above,  the  bound on the  degree of this poly-  

nomial  is obvious,  and  the  rest  of the proof  is a rout ine  appl ica t ion of Z - N  Z+h = 

i g ~ -  n H 2+ (i = h/h*). 

Proo/ o/ (d). Use the  formula  Z+~-h = i H  ~- N ( l f i l )  H 2+ (i = i , / i l )  of Section 3 and  

ma tch  dimensions.  

Proo/ o/ (e), (f), (g). Obvious.  

7. A condition that Z + / - =  Z" (A Hardy) 

Given a Hardy weight A = [h] 2 (h outer), Z +/- =Z"  i/  and only i/  h is the re- 

ciprocal o/ an entire /unction o/ min imal  exponential type. 
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Proof. Suppose h is the reciprocal of an entire function / of minimal exponential 

type; then h = l / f  implies ~ l a l < d A - l < ~  (d< cr so Z '=Z- f3Z  + (6c), and to com- 

plete the proof of Z +/- =Z ' ,  it is enough to check that  j =h/h* =/*If is an inner 

function (Section 3(c)). But  1/f=h being outer, it is root-free (b>~0), and 

lgl/l=~ (c_a),+b, lgllldc (b>O), 

while ]*, as an entire function of minimal exponential type with ~lgl/*l/(l+a2)< ~ ,  
satisfies 

b lg If*ldc (b > 0), ]g If*l<~ 
so f*/f is regular (b> 0) with 

I I * / f l=  l (b=O) 

] I/*//l<e (c_a)2+~lg[/*//Idc = 1  (b>O), 

i.e., f*/ /  is inner. 

On the other hand, if Z +1-= Z" and if p is the projection upon / ~ - ,  then the 

projection of e (/at) (t > O) upon Z-:  

h-liPi-l~h (i= h/h*) 

= h-1 ~p e~th * 

1 
=h-li-~-~ ; e~"ds fe-~" e'~th* dc 

; (f )" 1 e ~s ds e-l~(t-S)h dc 

belongs to Z', and since its conjugate also belongs to Z', 

e-tat f Z  ~ 
2~ h e~8 s & -= h(a) ~ Zk (t > 0). 

�9 - 1  t + ( ~  Choose t > 0  belonging to the Lebesgue set of )~ so that  hmz~0~ St ~ = ~ ( t ) # 0  

and -~-: ct+~ , ,  I~l ds is bounded as (~ ~ O. 
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= I < + - - 1 ) f , : : = , ~  ~,,~+o, + I f /+~  l / ( l +a  l) 

: { i-  d.  i , , .  -<oon"= ~" I IL:=~I I  +f:+",",~.,~-~, 
< constant x ~, 

and it follows, thanks to the bound limR t ~ R-1 max0_<0<~ lg a" (Re ~~ < O, tha t  ~-l(/t+~ - / t )  

can be made to tend on the whole plane to some / ' e  Z~+ as 0 ~ 0 via some series 

~1 > 5~ > etc. Going back to the definition of /t = / ,  it develops tha t  

- ~(t)/2zth(a) = [ia] + ]'] e Z'A+, 

and the proof is complete. 

8. A condition that Z ~ = Z  

z ~  # Laa/a~Ig;=A~ -~B=-~ with 0 < B e t ,  
L B~ a~ < ~. 

A has to be non-Hardy for this integral to diverge since 

f ~ l g  f.~e-~>~ ( a 

~1 e-2s < cr and 

=fl]~a)daA-fl da--~lg [~- j a -'~'~_[ [a' ~" A e-"'m 

( lg (2a) d a +  1 fl da ( lg- A 

> constant + ~ lg- A / a  s; 

also, if A E ~ ,  then S l d a a - 2 1 g S a A e  -~B and S l l g - A / a  2 converge or diverge together, 

since under this condition, 
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- ~ l g  f a A e  -2B dl a 

<< f lgA/a'+ lg flda -j f e -~B 

< f l  lg A//a 2 + constant 

esp., if A E .1,, then ~ + = Z  if and only if S1 lg A//a 2= - - ~ .  

As to the proo/ o/ the original statement, if .~1 da a -2 lg ~,~ A e -~B= - ~  with B as 

above and if Z ~ # Z ,  then Z l t l < ~  :: Z for small d, and it is possible to find /E Z 

with l / e ( i a t ) A d a = O  ([t]<O). But  

foillAeB<ll/H~(foAe-~') * (a >~ 1), 

f daf~ so that  -~  lg I[[ A e-"  = - oo, 

and according to Levinson [8, p. 81], this cannot happen unless / =  0. 

9. Discussion of Z. 

I. O. Ha~atrjan's contribution to the Bernstein problem [5] is adapted as follows. 

Consider the span Z . = Z . n  of (real) polynomials p of i~ belonging to Z, let 

j ' a 2 d A < ~  (d~>l), let a.(?) be the least upper bound of IP(Y)[ for pf iZ.n+ with 

]lplla+~< l, and let us prove that  the following alternative holds: 

either a.=- c~ (b#O), 

flg+lpl flg~. 
s u p j  i~--~ = J1-T~a 2=~  /or peZ .~+ with Ilpll~,+<~, 

and Z .  = Z ,  

or lg ~. is a continuous, non.negative, subharmonic /unction, 

f lga .  < 

lg ~. ( r )  < 1~ f b 
( c _ ~ + b 2 1 g a . ( c ) d c  @ = a + i b ,  b>O), 

lim R -1  m a x  lg (r.(Re t~ <~0, 
R1'oo 0~<0<2~ 

and Z . # Z ;  

in the second case, Z. ~ Z', the two coinciding i/ and only i/ a. =-a" (b #0) .  
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Proo/. The proof is identical to the discussion of Z" (Section 4), excepting the 

final statement to which attention is now directed. 

Given a . = a ' <  ~ while Z.#Z ' ,  then it would be possible to find ] EZk, / ~ 0 ,  

with ~ / * a a A = 0  (d~>0); this implies 

f /*P-P(fl)  A=o  
c -  fl 

and it follows that  

f c , ' ,  = CAp  <llc-i 

esp., 

(fl=a+ib, b#O), 

Ip@l-'ll ,ll,,+ b.0), 

f L~-- =o(ff.(ib) -1) as Ibl 1' oo. 
c -  ib 

Chose 9EZ'~+; then ~/*gA(c-f l )  -1 tends to 0 at both ends of a = 0  so that  

[1" g - g(~) ,x 
9 c -  f l  

IfrAI satisfies [~(ib) l < o(1) + [g(ib)[ J c -  ib I 

= o(1) + Ig(ib) I o(~. (ib) -1) 

= o(1) + Ig(ib) l o((r" (ib) -1) 

=o(1) ( Ib I f ~), 

and since ~ is entire of minimal exponential type, Phragmdn-LindelSf implies ~----0. 

But  then ~/*g(c- f l ) - lA=g(~)~/*A(c- f l ) - l=O if fl is a root of 9EZ'~+:(b:4=O), so 

taking g=  (7- i ) /EZ '~ .  and f l= i ,  11/ll2=~/*g(c-i)-lA=O, and the proof is complete. 

10a .  Special case ( 1 / A = l + c l a 2 +  etc.) 

Ha~atrjan [5] states the analogue for the Bernstein problem of the following result: 

I/  1/A=l+cla2+c~a4+ etc. (c~,% etc.>~O) and i~ j ' a ~ a A < ~  (d>~0), then 
either A is non-Hardy and Z. = Z or A is Hardy and Z. =Z'. 

Proo/. pa=~n<<dcn7 2n can be expressed as Iq~l ~, qa being a polynomial in i 7 of 

degree d with no roots in the closed half plane b >~ 0. As d ~ ~ ,  
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1 (paA 
while II qd lib + = ~ j ~ 1' l ,  

so either ~IgA/(l+c~) = -oo,  (~.(i)=oo, and Z.=Z or A is Hardy  (A= lh l  ~ with h 

outer). Because I qal==pa ~<A -1, an application of Lebesgue's dominated convergence 

test  shows tha t  h-X=limdt~qa (b~O) in the second ease. 

Now in the second case, if /EZ;x is perpendicular to Z.~, if g E Z~+, and if 

-- f / *  g -  g(#) A ~(~) 
J c -  fl 

as before, then 

Iqd(ib ) f /*Ade = /*_qaAde I II/llA (f Iqal2Adc%ll2 de 1/2 

ft*q.A  I Igl' A+ de) + in>~ g(ib) I " < l i l l i p u t ' + b =  qd(ib) 2 ~ - i b l  

= o(]) + I gh(ib) I II ! II ~ (~/b)'~. 

Since the Poisson integral applies as an inequality to lgl(7 + i)-lghl and as an equality 

to lg lT+i l ,  

and so limb~oo ]~(ib)]=0. Repeating the proof as b r - o o  justifies l i m b + - .  ]~(ib)[=0, 

and now ~ = / - - 0  follows as in Section 9. 

A special case of the above is the fact tha t  if h is the reciprocal of an entire 

function and if the roots of h -1 fall in the sector -3 :~ /4~<0~<- :~ /4 ,  then Z.=Z';  
obvious improvements can be made, but  Z. = Z" does not  hold without some condi- 

tion on the roots of h -x as the example of Section 11 proves. 

As a second application, it will be proved tha t  

Z.=Z" in case A(a)=e(-2la[ v) ( O < p < l ) ;  

similar but  more complicated cases can be treated in the same fashion (see below). 
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Proo[. I t  suffices to construct a weight A ~  (1 +c la~+e tc . )  -1 with non-negative 

coefficients, positive multiples of which bound A above and below. Define # (R)= 

[0RV+ 1/2] with an adjustable 0 > 0 ,  the bracket denoting the integral part, and let 

- l g  A ~ (a) = lg  1 + R-~ # (dR) = 2a ~ (a ~ + R ~) R 

_ 2a ( + 1/21 dc 

= J l  + J2 

j _ 2a 2 fo[Oc + 1//2] + 1//2 - (Oc + 1//2) dc 
with 1 - ~ (a ~ + c 2Iv) c 

2a~O fo and J2 = ~ -  ( a2 + c~lP) - t  dc. 

In 52, subtitute c = l a I ~ t and let 0-1 = (2/p) S0 (1 + t 2/p)- 1, obtaining J2 = 2 ]al v. Coming 

to J1, note that  the numerator under the integral sign is periodic and that  its average 

over a period is 0, so that  J1 tends to a constant as l al ~' co. J1 is then bounded, 

so A is bounded above and below by positive multiplies of A ~ and the proof is 

complete. 

Z. = Z" also holds in the more general case o/ a Hardy weight. 

provided o~ 6 '~ and ~o(c) lg c tends to ~ as c ~ ~ .  

Proo[. Under the above condition it is possible, according to Y. Domar [4], to 

find a reciprocal weight I / A  ~ 1 +c la~+e tc .  with non-negative coefficients such that  

A is bounded above by a positive multiple of A ~ and below by a positive multiple 

of A~176 with a constant depending upon 0 > 1 alone. Because 

Z.Ao = Z'ao ~ Z'~, 

each [ E Z~ can be approximated in ZA0 by a polynomial 1o so as to have 

fll(a/O)-p(a/O)l < constant • lI/-Pll ,o A 0 
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small, and to complete the proof it suffices to check that  le(a)=/(a/O) tends to t in 

ZA as 0 { 1. But  this is obvious from the fact tha t  

II/~IIX= ofltl~A(oa) ~ II/IIX (o 41) 

while le tends to I pointwise under a local bound. 

By the same method it  is easy to prove that  if A has the above form with 

eo e f and J'x e~ oo (non-Hardy case), then Z. = Z. 

Domar's paper was brought to our notice through the kindness of Professor 

L. Carleson. 

10b .  A special ease ( A = e - ' l " l  �89 

A = e x p  ( - 2  [a] ~) falls under the discussion of lOa, but it is entertaining to check 

Z'= Z. from scratch using the following special proof. 

A = Ihl 2 with 

fo e s 1/2t, h = e [ - (2y) ~ e -~/4] = e '~t dt, 
(2ztt3) ~ 

and h is outer since 

lg I h ( O I  = -2J= ~- f 
lg]h] 

7t 1 + a  S 

(see [7, p. 62]). 

Given ] q Z~x, a simple application of Phragmdn-Lindel6f supplies us with the bound 

l(Y) <~ Be [(V2+ •) ~ ]  (a > 0); 

hence, I/(7~)[<~Be[(V2+O)R], and according to Phlya's theorem [2; 5.3.5], 

,(e)=feog=f   og=fcosh, )gaw, 
i.e., ] ( y )  = fcosh g 

the integral being extended over ] w l = 2 ~ + ~  and g being regular outside [wJ=2~ 

and at  oo. Accordingly, if ] E Z" is perpendicular to Z.,  then 
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o = f la~ ~ da = f e dw f cosh (raw) a~ ~ d~ 

= f g [ f o cosh (Vaw) aa e- ~ ~ + f : cos (VXaw) ( - a)a e- 2"~ ] 

=fgD2d[ffcosh(V-aaw) e-2~�89 -''�89 

=2fgD~d+l[~sinh(aw)e?2a+~sin(aw)e-2"] 

1 lw] 
2 - w  2 + w  A 2i+w 2i 

_- fa  +l 16w 
16 - w 4" 

Because S e vw g = / ( F  ~) is an even function, ~ gur ~ = 0 (d odd) and since w/(16 - w 4) is 

a sum of powers w ~ (d= l (4 ) ) ,  it follows tha t  

and so 

f [ 1  1 , 1 ]  
O =  g.D d 2--w ~ - ~  2i+w 2i ~- (d>~O), 

f [  1 _ _  1 1 1 ]dw 
O= 9 -w+t  2+w-t+ 2i+w-t 2i--w+t 

= g(t + 2) + g ( t -  2) - g ( t -  2 0  - g(t + 2i)  

for  smal l  It I. 

Draw four circles, each of radius 2 t, having centers a t  2, 2i, - 2  and  - 2 i  re- 

spectively. The circles with centers at  2 and 2i are tangent  at  A, which is 1 + i. The 

circles with centers at  2 and  - 2 i  are t angent  a t  B, which is 1 -  i. The point  C is 

- 3  + i and lies on the circle with center a t  - 2 .  Using this d iagram depicting 4 

discs on each of which just  one of the summands  can be singular, it follows t h a t  

g ( t -  2) = - g(t + 2) + g { t -  2i) + g(t + 2i) can be singular only at  A and B since the  

second member  is non-singular on the rest of I t - 2 1  ~<2 ~. Now if 9 ( $ - 2 )  is singular 

at  A, then  g(t§ 2) is singular at  C= A - 4  and tha t  is impossible, so g ( t - 2 )  cannot  

be singular at  A, nor, for similar reasons, a t  B. Bu t  then g is entire, and by  Cauehy 's  

theorem, ](y~) = S cosh (•w) g --- 0, completing the proof. 

Z -  = Z +/- # Z -  N Z + = Z" = Z ~ = Z. can be proved a t  little extra  cost. Z -  N Z + = Z ~ 

is obvious from Section 6, and  so it suffices to prove that i=h/h*= e[2isgu (a)]a] �89 
is no t  a rat io ]~//~i of inner functions (Section 3). Bu t  in the opposite case, i]  e l l2+ 

( ] = i l h ) ,  so tha t  

9--642906 Acta mathematica 112. Imprim6 1~ 22 septembre 1964. 
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1 fe_,o, if da ( t<0)  0=~ 

= Re [ f :  e-'~ e~'~�89 /da] = ~m [ f :  e'~ e(")'('-"/(ib) db], 

n)~e_t~e$8~ e2~a]et0/~ ei0 et0~d ~< I fo /( ~ ) ~ O1 ; '2eR~taOt e-2R�89 e-(2~)�89176 RdO 

tends to 0 as R ~ ~ .  Because ] = / *  (a--0), 

0 = Im [d2b)�89 -~- sin (2b) �89 e-(~b)~](ib) 

and that  is absurd. 

(b >~ o), 

An entertaining illustration of the delicacy of the projection Z +/- is thus ob- 

tained. Z § ~=Z" as was just proved, so naturally the condition tha~ Z § =Z ' ,  to 

wit, that  A=[ / I  -e with [ entire of minimal exponential type, does not hold. But  as 

proved in 10a, e ( - 2  lal �89 is bounded above and below by positive multiples of such 

a weight. 

11. An example (A Hardy, dim Z. - - -~ ,  Z ' =  Z a+ ~ Z . )  

A weig]~t A exists with the following properties: 
(a) S l g A / ( l §  - ~ ,  i.e., A is a Hardy weight, 

(b) S a2~A < ~  (d>~0), i.e., d i m Z . = ~ ,  

(c) Z. ~: Z" = Z ~ 

Consider for the proof 

dt~ = 1/sinh Ten, Y + n = n 2 - idn, 

g2 7 

and break up the proof into a series of simple lemmas. 

(a) 0 < B Z < I]h[ < B~ if [7 • n* I ~ �89 (n >~ 1), while 0 < B a < I/hi [(y - ~,~:~)/(7 T n*)] 
< B  4 i/ {7•189 a similar appraisal holds with h* in place o[ h. 

(b) g e Z s  

(c) A is a Hardy weight and j a~aA < c~ (4>t. 0). 
(d) g ~ g .a .  

 -}hl 2, 
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Proof o/ (a). Obvious. 

Proof of (b). g is entire of minimal exponential  type  with g * ( - a ) =  g(a), so it is 

enough to check t h a t  I l g l ] ~ < ~ .  Bu t  (a) supplies us with the bound  I/h{<B~, so 

Igh] < B ~ / ( 1 - a ~ ) ,  and since ]gh I <B e for small la], IIg]l~< cr 

Proof of (c). h -1 is entire and  free of roots in the closed half-plane b~>0, and 

A ( a + i b ) ~  as a funct ion of b > 0 ,  so it suffices to check 

B u t  on { a -  n21 < �89 

and hence 

n=3 JnZ-n+} 

a - 
(a  --  n2) 2 + ~n 2' 

a - - n 2 1 _  7e2a a - - n  2 

I/I sinh /; sin V/  <B'n  

n2c/+6 e-2nn 

a~a A < Bs ia - n2) 2 + d~ 

e -~n,  

on this range, while on the rest  of n 2 - n + 1 ~< a < n 2 + n + �88 

a2aA < (n + 1)eaB~lfl-2 < Bgn2a+6 e-2,~,~, 
so t h a t  

fnn~+n+ia2aA <Blo[n2a+6e_2nn ( da +n2a+T e_2~n] ~-n+~ J a s + ~n < Bn n~e+~ e-'n' 

which is the general te rm of a convergent  sum. 

Proof o/ (d). g e Z.~ implies the existence of polynomials P0 e Z.~ with II g - P ~  ]la < 8. 

po can be supposed even since g is such; also, as ~ ~ 0, p~ tends to g on the whole 

plane under  a local bound (a. < ~ ) ,  so tha t  P0+ (0 )=g(O)=  1, and according to  Hur-  

witz 's  theorem, the roots of p~ tend to  the  roots •  ~, _38  , etc. of g. Ro ta te  the 

roots of p~ onto the line b = 0  a n d  pu t  its bo t tom coefficient = 1, defining a new 

polynomial  q~ with Iq~] <- [P~/Po(O) I (b=0)  and IIq~llA4 IIP~II~/IP~(O) I bounded  as ~ 4 0; 

it is this boundedness of I[q~ll~ t h a t  leads to a contradiction.  

Evalua te  j" q~h*, in tegra t ing  about  the  semicircle Re '~ ( - ~ / 2  4 0 4 a / 2 )  and  then 

down along the segment joining iR to  - i R  with R half an  odd integer. Bound  the  

integral on the arc  with the a i d  of I/h*I<B2 and l e t R  ~' ~o, obtaining 

1 ' 2 * 

--2~ q~h* (ib) db = ~ ' l ~ q ~  (y") *'=~'-  ~ 
n=l  i / ) (yn) 
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Because h* (ib) > 0 and ]q~ (ib) l ~ ]p~ (ib)/p~ (0) 1, an application of Fatou 's  lemma combined 

with I/h* I > B 1 > 0 justifies the under-estimate: 

Qo+ ~ ~ f ,2h* (ib) > B~ f f ib)/b'> B~. f f (2~'  / r  = ,~. 

Q~ is now estimated again with the contradictory result tha t  it is bounded 

as ~ 0 .  

(q~h)2=O, the integral being taken around the are Ret~ down the 

segment joining iR to O, and thence out along the segment joining 0 to R with 

R half an odd integer. Bound the integral along the arc as before and let R ~' ~ ,  

obtaining 

f~ (q~h) 9" (ib) = - i  (~ (qah)2 (a) <~ II q~ I1~ < Bin, 
j0 . t o  

the first integrand being positive. 

S (q~h)2(r-r,,)/(r-7*) is now evaluated along the same curve, giving 

f :  2 . ib-rn i f:(qnh)~(a) a-r"=4niO.(q~h)2(r*); - (q,h) (.b)i-Uy_r. a - r*  

this supplies the bound 

4~O.]q'h(r*)l'~ f :  (q~ f:]qnh]'(a)<2B15=Bl,, 

and it follows tha t  

But,  since 

while 

Qo+ <BI~ ~ e"" h-2(7") ] 
n = l  ( l / h ~ - t ~  n* ) " 

I ( r -  r*) h*l < B, [r-'~2l �9 I1---/-- near r = r . ,  

1 * '  * I - 1 <  e-=/ll(r*)l l( /h ) (rn) 2B, 

Ih(r*) l  -~ < 4Ba -2 I f ( r * )5  

and combining these bounds leads at  once to the desired contradiction: 

Qo+ < BI, YlII(r*)]o < B~s .-1 y n-s < ~" 
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Z" is sometimes closed under f-->'f=if', but this can fail; indeed in the above case, 

B~ ( a -  n~) 2 _ _ nS(~ 
A > Vf ~ (a - n')" + ~ "> ~xa (a - ng)' + o~ ( la -n~[<U~-) ,  

while on the same range, ['gl>B2oe"nn -~ 

so that II'gll = because 

n6(~2n e.2~n-14 I 
.-ot ( a - n ' ) '  + ~  > B ' ln - s  3-~t  a2 +eS~ > l ~ ' n  e 

is the general term of a divergent sum. 

12. Hardy weights with arithmetical gaps 

Consider a weight A that bounds above a decreasing Hardy weight Ih] ~ (h outer) 

on an arithmetical series of intervals: 

l a - ( 2 n - 1 ) c l < d  ( 0 < d < c ,  n = 0 ,  +1 ,  etc.) 

but is otherwise unspecified. Then 

(a) Z" is a closed subspace o/ Z, 

(b) Z" ~ Z  ~ and hence in accordance with Section 5, Z ' =  Z ~ 

As an application, it is easy to derive the lemma of Tutubalin-Freidlin [11]: 

that  if A>~]al -~m (m>0)  far out, then Z~  indeed, according to (b), f e z  ~ is 

an entire function of minimal exponential type, and since ~ >~  I/IV(l+a~) m, a simple 

application of Phragmdn-LindelSf implies tha t  f is a polynomial (of degree < m). Ac. 

tually, it is enough to have A>~la] - ~  on an arithmetical series of intervals, as the 

reader can easily check using (b) and the Duffin-Schaeffer theorem [2; 10.5.1]. 

Proof o/ (a). Similar to tha t  of (b). 

Proof of (b). f E Z ~ implies the existence of a sum f~ of trigonometrical func. 

tions e(iat) with ]tl<(~, real coefficients, and I]f-f61]~<~, and it  follows that  

f:;::/;': B, > II/. >1 h l" 2dl f' h(an)12 

for some l a n - ( 2 n - 1 ) e [ < d  with a constant B 1 not depending upon (~. Bring in an 
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entire function g of exponential type < ~ ~ith [gl<[hl far out o n b = 0  and h i > � 8 9  

on the two 45 ~ lines: to be explicit, let 

g(r) =e-~ ~I cos (r/r.) 
n=n 1 

with 1 < Yl < Yz < etc. 

and #(R)= ~ 1 = 0  ( R < l )  yn<R 

the bracket denoting the integral part and Ih(1)l being supposed <1,  choose n 1 so that  

Ig($)] <~ fi eah"=e[R f #(dB) 1 
n=n, L Jc U J (C=yn, ,  ]y]=R)  

< VeR~ 

and use the obvious Icosal < e ( - a ~ / 3 )  (la] ~< 1) to bound Ig(a)l for large [a[ as follows: 

a2  ( #(dR)] 
L 

~e[a~ fla[#(R)R--8#([aD ] 
~e[a-~-- fla[ ~f:, -lg[h[-1A 

= e [ - ~ f a l l g l h l - l R  a 

a 2 

<lhl~J. 

dR a 2 

- - d R + ~ ]  
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/~g is then entire of exponential type (~+e and [/~g(a~)[<B2 with a constant B 2 not  

depending upon (~. An application of the Duffin--Sehaeffer theorem [2; 10.5.3] implies 

[/~gl<B3 on the whole line b = 0  if ~ + e  is small enough, B 3 being likewise inde- 

pendent of 8. Phragmdn-Lindelbf now implies tha t  I/ag[<B3e[(8+e)R], and since 

Igl>~�89 on the two 45 ~ lines, I/~1 <2Bae[(~+e)R] there. Phragmgn-Lindel6f is now 

applied to each of the 4 sectors between the 45 ~ lines; this supplies us with the 

bound I/~] <2B3e[2((~+e)R], establishing the compactness of /~ as 8 4 0, and it  follows 

tha t  each limit function /0+ is entire of exponential type ~< 2e with I [ / - /0+ [[a = 0. 

But  this means tha t  / is the restriction to b = 0 of an entire function of exponential 

type ~<2e, and since e can be made as small as desired, /EZ~x, and the proof is 

complete. 

13. Entire functions o f  positive type 

Given a Hardy weight A =/hi S and a positive number ~, let Z "~ be the class of 

entire /unctions /=/(7) o/ exponential type <~: 

lim R -1 max lg I/(Re~~ e, 
R~'r O<~O<2n 

which, restricted to the line b = O, belong to Z. Then 

Z ' e  = zttl~<o+ = 17 Z Itl<e', 
O'>q 

Proo/. We first prove the inclusion 

Z ~ ~ Zltl~<e +. 

I f  / E Z  ltl<e+, then it is possible to find (real) sums of trigonometrical functions: 

/~(~) = ~ e~ e(irt~ ) 
k<~n 

with ]t~] < e § 1In and ] ] / -  ].[]a < 1In. Given ~ > I /n ,  ]n e[iT(e + (~)] h belongs to g 2+, 

and much as in Section 6b, 

[/,~hl<Bxe (~+~)R (b~>l), I/,~h*[<B2e (e+~)R (bd-1) ,  

and l/hi<B3 (Irl<2) 
with constants B1, B,, B a, not depending upon n. An appraisal of h on 0 = ~/4 ,  3~ /4  

and of h* on 0 = 5ze/4, 7g /4  leads to 

I/hi< B,  e (~§ 
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much as in Section 6b, B 4 being likewise independent of n, and since 

it  follows tha t  as n "~ c~, / ,  tends on the whole plane to an entire function l~ of 

exponential type ~<~, coinciding with I on b = 0. But  then / E  Z "Q, and the inclusion 

is proved. 

As in Section 5, i t  suffices for the proof of the opposite inclusion: 

Z "Q c Z Iq<e+ 

to consider even functions [ 6 Z "Q with Hadamard  factorization 

( + )  

Because 

lg + Ilia)I s -<< lg + ill(a)IsA) - lg -A <--Ilia)I'A - lg-A,  

I'1 11( )1 
I satisfies J 1 + a s < • ; 

i t  follows tha t  

lira R -a lg ll(Re'~ < o [sin 0l 
Rt~  

[8, p. 27] and tha t  the roots of I in the half-plane a > 0 have a density D ~< ~ / z :  

lira n / I r . I  = D  
n - +  o o  

[8, Theorem VII I ] .  Also, it is permissible to assume tha t  the roots of [ are real. Consider 

for the proof 

Then ]h(a)] ~ ]/(a)l and the roots of 12(r) have the same density D; this implies [2; 8.2.1] 

tha t  t2 is of type ~D. Hence ]1 is also of type ~D and so ll E Z "e. But  then iF2 _ 1)al2 E Z "e, 

so ( ? s  1)nls 6 Z "~ (n ~< d). All these functions have real zeros and hence we m a y  assume 

them in Z Itl<q+. ll is a sum of these, so h 6Zlq<~+, and since ] ] l - h l [ ~  is small for large 

d i t  follows tha t  / E Z Itl<e+ also. From here on the roots of / are reah 0 < ~x ~< ~ ~ etc. 

Given ~' >Q, let us grant  the existence of an entire function g of exponential 

type ~<e" with Ill-gilA as small as desired and g ELS(R1). As in Section 5, an applica- 

tion of the Paley-Wiener  theorem implies ] E Z Iq<~', and ] E Z re<e+ follows. Accordingly, 

i t  suffices to produce such an entire function g. 
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Given a small positive number e < 1, define 

=(e/8)  2, D . = D - O / 2 ,  D * = D + 6 / 2 ,  

= I-I  1 - D , 2 . 2 , ,  ( 1  - e=7~'~ 

and let us check the following lemmas leading to the properties of g=glg2ga needed 

for the proof of //E Z I~l<~247 indicated above; in the lemmas, cl, c2, etc. denote positive 

constants depending upon e alone, and it is understood that  if e and/or d is un- 

specified, then e has to be small enough and d large enough, the smallest admissible 

d depending in general upon ~. At a first reading, just note the statements of lemmas 

(a)-(g) and then turn to (h). 

(a) g is an entire //unction o// exponential type g (D*§  e ) ~  § § e). 

Proo// oil (a). Obvious. 

(b) ]//-g[ tends to 0 as d f oo independently o// e(< ] )  and o// lal<A //oreach 

A > 0 .  

Proo/ o// (b). 
e( - < I -a=e2/n=<.  1 (lal <a)  

~for-n ~d.-a~ad.d-> 2A, so that  as d ~ 

e ( - 2 A  2 ~ e2n -2) <~ga(a) <~ 1 
n>ed 

is close to 1 independently of e ( < l )  and of ]a]<<.A. 

(c) [g[ ~< B ]//[ ~~or l a/<~ d/2,  B being the universal constant involved in the appraisal 

(e) o// Section 5. 

Proo// o// (c). Because the roots of // have density D, 

n/D* < 7,  < n / D .  (n >i no) 

with n o depending only upon D.  and D* and so only upon e. Given d > n  o and 

0 ~<a ~<d/2, if ~ is so small that  D*/D.  < 2, then 

I / / /g l l=  > I ]  1--  
d n>D,d n2 / 

that  [///gi if2 ] > l-I [ 1 SO 
D,d<n~D*d ~ " - ~  / ' 
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and since, in this product, 
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D.~a2//u ~ < (D + ~/2) 2 
4 ( D _  ~/2)2 < �89 

for small 5, the bound 1 - c > e ( - 2c) (0 < c ~< �89 implies 

[ / / g l g ~ [ > e [ - 2 a ~ D  .2 ~ n - ~ ] > e [ - 3 a 2 ( D * - D . ) / d ] = e ( - U a ~ ( ~ / d ) .  
D,d<n<~D*d 

On the other hand, the appraisal (e) of Section 5 implies 

g z < B e ( - a 2 e / d )  (O<~a<~d/2), 

and since 3~ < e for small e, the desired bound follows. 

(d) Igl<cx (d/2<[al-<<D,d/D*). 

Proo/ o/ (d). Given d > 2 %  with n o as in the proof of (c), i t  is possibl0 to find 

c, and c 3 depending upon n o =no(e ) (and so upon e) such tha t  

[D**a~ Igll<Cl a~' i-I 1] n ( 1-D2*a'~ 

for d / 2 < a < ~ D . d / D * .  Define c3=cl / (ZD*);  then 

]glg~] < c3 at•-1 ]sin gD* a I J1/J~J~,  

n z _ D.Za 2 /a2D .2 ~ D*Za~ 
= 1-I - a*' J * = 1 - I .  - l J ,  = 1-I . ( 1  

D*a<n<D,d  D,a<~n<<.D a \  D,d<~n<<.D d \  ----~-~ /" 

J1 is supposed non-void since the proof simplifies in the opposite case; also, it is 

supposed below tha t  the smallest integer n 1 > D * a  does not exceed D ' a +  �89 the 

discussion of J1 being simpler and tha t  of J~ just a little more complicated if n 1 > 

D*a + �89 Bring out the leading factor of J~: 

n ~ - D . Z a  2 n x - D . a  l + a ~  e a~ 
, <<. - - - ' - '&-~< 

n~ - D*Z a2 < nl - D a nl  - D a nl  - D* a ' 

the product  of other factors of J1  does not  exceed 
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D*a+�89 n--D*a :e lg 14 

< e lg (I  + a~//e) 

r pD*l~ ] 
<e[2a Jo lg/l+l/c) c 

since D,d< 2D'a, and  using the  b o u n d  lg (1 + I/c) <l/c,  i t  follows t h a t  

j l  <e [2a(~(f~lg(l + l/c)dc+lgD,/(~) ] ea'~ ea~ �89 - - - ~ -  .~ , .  
n l - D  a n l - D  a 

for small  8. S t i r l ing ' s  a p p r o x i m a t i o n  is now app l i ed  to  ob t a in  an  unde re s t ima te  of J~ 

for smal l  8, using D ' a -  (nl-  1) > 1: 

J2 > rI D*a - n F(a~) 
D,a<n<D*a ~ - -  > (D* a)  a~}+l 

> c~ 4 (a(~) a~-�89 e -a'~ (D* a) - a ~ - I  

> ca(D*a)-t (~/eD*) a~ 

=ca(D'a)-' e [ - a ~ ( l g  D* 

> c4(D*a)-I e - ~  

wi th  a u n i v e r s a l  cons t an t  c 4. S imi la r ly  

�9 I n  - aD*' t, >1 F(D* (d - a)) Ja H 
D,,~<<n<<.D*a \ n / F ( D , d -  aD* + 1) (D'd) '~a+l 

[D* (d -a)] D'(a-~)- ~ e -D*(a-~) 

>1% (D,d-  aD*) D*~-aD*+�89 e -D*d+~D* (D'd) ~+1' 

[ D * , d - a ) l ~  oo" 
>~% (D,d - aD*)D*d [D ,d-aD*J 

D ~a e-'~'~ (l-d)*'~>~%e--2'"a-2(1--~) /(4D'D,) ~> c5 D* D. d 2 

>i %a -2 e [ - 2~a - 8d Ig (D*/8)]/(4D* 1),) i> csa -  ~ e ( - ~ a ) / ( 4 D *  D , )  

wi th  a universa l  cons tan t  %. Combining the  bounds  for J~, J~, Ja  a n d  using 0 < n  1 - 

D*a <~ �89 i t  follows t h a t  
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Ig~g~l <cs ac'+sl singD*a s=at ~1--~-  a e < c~aC'+S eSa~�89 c~e4aat 

with c~ depending upon e alone, d being increased if need be so as to achieve 

aC'+a<e(a~�89 But now the familiar appraisal (e) of Section 5 implies 

[gs[ < Be-'=~t, 

Igl = lg, g=g,l < B c , - - c . .  and so 

completing the proof of (d). 

(e) Igl<~, W,d/D* < lal <d). 

/ D*Z a2 ) 
Proot o/(e).  Igll<coa c" 1-I J - - - 1  n<D,a ~ n2 

for D,d/D*<a<~d with eonstants c o and ci0 depending upon no=no(e ) alone, so 

Iglg21< clxaC" [sin gD * al/J4 

with 1-[ 1 /> 1-I , I 1-- J4=D.a<~n<~D'd] D*2a' - ~ 1  

I n~ - D*a F(D*d- D,a) F(a3) 
>1 n ~ (D*d)D*a-v*a+S , 

n 2 being determined from - �89 < n 2 - D*a <~ �89 Both gamma functions eontribute to this 

underestimate if, as is supposed below, D*a is not too close to D,a or to D'd; the 

appraisal of J4 is similar in the opposite case. Stirling's approximation is now applied 

to obtain 
J, > c,, In2 - D* a] (D* d)-6 JsJo 

with Js = e [ - D* d ( ~ -~)  lg ( d~a) ] 

and , a~ (~_d) ]  

Because d-a<~d(1-D,/D*)=d~/D* and a~<dd,  both J5 and J6 are bigger than 

e ( - a O  t) for small ~, so 

J,>caaln2-D*ala-Se(- 3a V~), 

and the proof is completed as in (d) above. 
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If) [g[<e~, (d<lal<~d).  

eroo! o/ (f). Igll<e15aC'n<D.a(D~ _--_2 - 1 )  e~na 

for d <a<~ 2d, the exponential accounting for the factors of 

[ D*~a~ ) 17 \ - ~ - -  1 
D,d~<n~D*d 

tha t  exceed 1; the rest of the proof is similar to but  simpler than that  of (e). 

(g) Igl<ex, (lal>2d), and geL2(R1). 

/D*2a ~ \ 
Prool o/ (g). [gx[<eisa c" I-I I - - - - 1 "  

for a >  2d, so Iglg21<C2oaCl~ c'', 

and using the familiar appraisal (e) of Section 5 to bound ga, it develops that  

lal < Be21 de'" e-'a(l+2(~al~). 

dig 2 
But  d lg (a/d) > i-g ( - -~  lg a (a > 2d), 

and so Igl < c~a ac~'-2~a~211g(2a) 

is bounded (a>  2d) and belongs to L~(R 1) if d is large enough. 

(h) I [ / -g l la  can be made as small as desired by appropriate choice o/ e and d. 

Proo/ o/ (h). 

Io' ;" Y,~ �89 II/-ailX< II-gI~A+(2B+I) 2 III~A+ (c~,+l/I)~A 
/2 

with an adjustable number A, a universal constant B, and e24 ( =  the greatest of 

e 1, %, Cxa, c17 ) depending upon e alone, provided e is small enough and d ( >  2A) is 

large enough, the smallest admissible d depending upon e. A is now chosen so large 

that  (2B+ 1) ~ $7 I l l ' a <  l / n  and then e is chosen so small that  e~,=cga(e)< oo and 

d is made so big that  neither ~ [ / - g l 2 A  nor Sa~2(c~,+I/D~A exceeds I /n ,  with the 

result that II/- g Ill < 6/~. 
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Because Z Itl<Q+ is 

p rove  tha t ,  

i~ 

14. Another condition for Z + / -  = Z  ~ (h  Hardy) 

closed so is Z "~, bu t  i t  is possible to go ano ther  s tep and  

then lg a "~ is a non-negative, continuous subharmonic /unction such that 

l im R -1 m a x  lg a "~ (Re ~~ = ~. 
R~ r 0~<0<2z 

.o Proo/. Only the last  s t a t emen t  needs a proof.  Given / E Za+,  (F § i)-1 etrQ/h E H 2+, 

and so 

[e'YQ/h[.<l ~ bdc lg [/hi 
lg[  j ~ - ~ ] ~  (c_a)2+b 2 ~ [  ( r = a + i b ,  b>O); 

this leads a t  once to 

I f  bdc 
lg [e-bqa'q(~)] ~ < (c_a)2+b21g~'q 

since h(y) / (~+i)  is outer.  Slga ' -~ + a ~ ) <  oo is now proved  as in Section 4(e) ,  and 

it  follows t h a t  

l im R -1 lg a'~ ~~ <~0 [sin 01 
R t : r  

for 0=7e/4, 3z~/4; the  same holds by  a similar a rgumen t  for 0 = 5 ~ / 4 ,  77~//4. An 

appl icat ion of Phragm~n-Linde l6f  as in Section 4 (f) completes  the  proof  t h a t  a "~ is 

of type  ~ e ,  and  t h a t  the equal i ty  mus t  hold follows since e ( -  iy0 ) E Z~+. 

As an appl icat ion of the  bound for a'q, i t  will be p roved  t h a t  if ZItl<q+~Z +/-, 

and  indeed if the  project ion of e(ias) upon  Z -  belongs to Z Itl<a+ for a single s> O, 

then  Z +1- = Z  ~ Suppose t h a t  project ion belongs to Z Itj<Q+ for a single s >  0; then  i t  

does so far  a whole (bounded) in terva l  of s wi th  a larger Q, and  selecting such an  s 

f rom the Lebesgue set  of 

1 foe_,O s h=~ 

and arguing as in Section 7 with g'Q in place of a ' ,  it is found t h a t  h -1 is an  entire 

funct ion of exponent ia l  type  ~<r Bu t  then  i = h/h* is inner as in Section 7 so t h a t  

Z + / - = Z  - N Z+; also Z - N Z + = Z  �9 since 1 /A  is locally summable  (Section 6c),  and  so 

Z +/- = Z" = Z ~ as s ta ted.  
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