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Let @ be a (Noetherian) local ring with maximal ideal m, and let b be a prime
ideal in @ such that dim p +rank p=dim @. Serre showed, using homological means,
that if @ is regular, then the local ring @, is also regular ([8], Theorem 5, p. 186).
Under a special assumption Nagata obtained what might be considered a quantitative
extension of this result. He proved that if p is analytically unramified, then the mul-
tiplicity of b is not larger than that of m ([5], Theorem 10, p. 221). In the present
paper it will be shown that under a slightly different special assumption much more
can be said. In fact, under that assumption there holds an inequality between certain
sum-transforms of the Hilbert functions of p and of m. One seems free to believe
that a similar inequality would hold true also in the general case. To prove this it
would suffice to prove an analogous statement concerning flat couples of local rings.
We shall actually derive a theorem which implies a particular instance of that state-
ment. As a consequence we obtain a generalization and a new proof of Serre’s result.
Introducing a natural measure of how much a local ring deviates from being regular,
we prove that @, is not more irregular than @. Our methods of proof are non-homo-
logical in the sense that they do not involve any homological resolutions.

We shall now describe our results more closely.(1)

Let @ be a local ring with maximal ideal m. For each non-negative integer =,
define H(m;n) as the length of the @-module m"/m"*'. Put

(*) The necessary facts about local rings can be found in Nagata’s book [6], where however the
terminology is different in some respects. In particular the concepts which we have called rank and
dimension of an ideal and dimension of a ring, are termed height and depth of an ideal and altitude
of a ring. Concerning flatness, which is dealt with in the Sections 18 and 19 of the book, cf. e.g. the
appendix of [4].
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HO®(m;n)=H(m;n), n=0,1,2,...,
H**Pm;n)= > HP(m;») n,k=0,1,2,....
»=0

As functions of # the H®(m;n) (k=0,1,2,...) were referred to above as sum-trans-
forms of H(m;n), which itself is called the Hilbert function of nt. All these functions
record some information about @ and are equivalent in this respect. In particular
their behavior for large values of n determines the dimension and multiplicity of @,
and their values for n =1 give the minimum number of generators of m. In fact, for
large values of n each H™(m;n) is a polynomial in n, and if we denote the degree
and leading coefficient of this polynomial by d(k) and «(k) resp., then, for k>1, @
has the dimension d(k)+1—% and the multiplicity d(k)!a(k). The minimum number
of generators of m is equal to H®(m;1)—%. We shall call the difference between
the minimum number of generators of m and the dimension of @ the regularity defect
of @, or, of m. Like the multiplicity, the regularity defect of @ can be calculated
from H®(m;n) without any reference to the index k. It is a non-negative integer,
which is equal to zero if and only if @ is regular, and gives a measure of how much
this ring deviates from being regular.

If p is a prime ideal of a Noetherian ring R, then by the local ring associated
with p we shall understand the ring of quotients R, of R with respect to p. We
extend our notation by putting H(p;n)=H(pRy;n), H® (p;n) = H® (pRy; n). Similarly
we define the regularity defect of p by putting it equal to that of pR,, ie. to
H(p; 1) —rank .

An integral domain S with field of quotients K will be said to have a finite
sntegral closure if the integral closure of § in K is a finitely generated S-module.

Now we can state our first theorem.

THEOREM 1. Let 1t and P be two prime ideals of a Noetherian ring, m containing .
Assume that rank m/p=1 and that the local ring associated with m/p has a finite inte-

gral closure. Then there exists a non-negative integer k such that
H*Y(p:n) < H®(myn) #=0,1,2,....

The proof can shortly be described as follows. We show by direct calculations
that the result holds true with k=1 if the local ring associated with m/p is regular.
Then we reduce the proof of the theorem to this special case by utilizing the pro-
perties of suitably chosen prime ideals in a free polynomial extension of the origi-

nal ring.
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The significance of the theorem is most readily seen if one makes the additional
hypothesis that rank p=rankm— 1. This condition is necessary and sufficient in order
that H**P(p;n) and H® (m;n) shall have the same degree as polynomials in n for n
large, and if it is fulfilled, one can conclude from the theorem, by taking n=1 and
n—>oo, that the regularity defect and multiplicity of p do not exceed the corre-
sponding numbers for m. (The multiplicity part of this conclusion is contained in the
above-mentioned result of Nagata, cf. below.)

The assumption that rankm/p=1, does not indicate an absolute limit for the
applicability of the theorem. It has rather the effect of restricting the attention to
a crucial case. For suppose that m and p are prime ideals in a Noetherian ring such

that m>p and rankm/p=r>1. Then there is a chain of prime ideals,
MmM=p,>p,>P>...00 =,

in which rank p;_y/Pi=1 (i=1,2,...,r). If now the theorem is applicable to each
link of this chain, i.e. if, for i=1,2,...,r, the local ring associated with p;_1/p; has
a finite integral closure, then, putting together the results for each link, we infer that

there exists a non-negative integer % such that
H**(p;n) <H®(m;n) n=0,1,2,....

If, in addition, rank m=rankm/p+rank p, then H**"”(p;n) and H® (m;n) have the
same degree as polynomials in = for n large and it follows in particular from the
inequality that the regularity defect and multiplicity of p do not exceed the corre-
sponding numbers for m. Thus we can state results for rank m/p>1 that are quite
analogous to those for rankm/p=1. Let us note that when rank m/p equals one, our
asstimptions, including the additional hypothesis that rank p=rank m —1, are equivalent
to those of Nagata in his result on the multiplicities of m and p. For, by a theorem
of Krull, a one-dimensional local integral domain has a finite integral closure if and
only if it is analytically unramified (see [1]).

In view of what has been said. the generality of the theorem is restricted pri-
marily by the assumption that the local ring associated with m/p has a finite inte-
gral closure. One may ask if not to a large extent the theorem would be valid also
without this assumption. Trying to show this, we are lead to the following considera-
tions. Let m and p be prime ideals in a Noetherian ring R such that m>)p and
rank m/p=1. Denote by R* the completion of the local ring associated with m, by
m* the maximal ideal of R*, and by p* a minimal prime ideal of pR*. Consider the
diagram of prime ideals,



72 CHRISTER LECH

m—m*

p————¢°

By the theorem of Krull just mentioned, we can apply Theorem 1 to m* and p*.
We should like to transfer the result to m and p. Since the Hilbert functions of m
and m* are identical, it would suffice to prove a suitable inequality interrelating the
Hilbert functions of p and p*. Now Ry is Ry-flat, as is easily derived from the well-
known fact that R* is Ry-flat (see [6], (18.10)). Hence we see that it would suffice
to prove, and apply to the couple (R, Rjs), the following statement (cf. [4], the in-
troduction):

Let (€, @) be a couple of local rings with maximal ideals (ut,, m). Suppose that
@ contains @, and is a flat @y module and that myQ is an m-primary ideal. Then
there exists a non-negative integer k such that

H®myn)<H®m;n) n=0,1,2,....

Thus we arrive at the problem fo decide whether this statement is true, or,
rather, to what extent it is true; by proving a part or a weakened form of it, we
will in general get a corresponding result concerning our original question. From one
point of view this new problem seems advantageous. Without loss of generality we
can assume that @, and @ are complete, since, if they are not so from the beginning,
we can pass to their completions. Thus for instance the structure theorems of Cohen
are available.

The supposition of the statement entails that ¢, and ¢ have the same dimen-
sion (see e.g. [4], p. 85). The statement therefore says in particular that the regularity
defect and multiplicity of m, do not exceed the corresponding numbers for m. We
can partly confirm these assertions. In a previous paper we have shown that if the
dimension of @, and @ is not larger than two, then the multiplicity of m, does not
exceed that of m ([4]). Here we shall show, this being one of our main objects, that
the regularity defect of m, in no case exceeds that of m. Actually we shall prove

the following theorem which has this result as an immediate consequence.

THEOREM 2. Let @ be a local ring, m its maximal ideal, and q an m-primary
tdeal. Assume that the ring Q/q is equicharacteristic and that q/q® is a free Q/q-module.
Then the minimum number of generators of q is not larger than the minimum number
of generators of m.
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We get the result on the regularity defects of m, and m by applying the theo-
rem to the local ring @ and the m-primary ideal m,@. This application is possible:
the ring @Q/m,Q is equicharacteristic since it contains a subring isomorphic to the
field Q,/my, and m,Q/m;Q is a free @/m,Q-module since Mm,/m? is a free Q,/m,-
module and @ is @,-flat (see below p. 78). It is also true that m, and m,Q have
the same minimum number of generators. Thus, by the theorem, H(m,; 1)< H(m;1),
hence also H(m,; 1) —rank m, < H(m; 1) —rank m.

Returning to our original question, we obtain the result that follows.

THEOREM 3. Let m and p be two prime ideals of a Noetherian ring, m con-
taining . Then
H(p; 1) +rank m/p < H(m; 1).

In particular, if rank m=rank m/p+rankp, then the regularity defect of b is not larger
than that of m.

This theorem contains the announced generalization of Serre’s result. It also shows
the correctness of a conjecture by Guérindon ([3], p. 4144) stating that the supremum
of H(p;1) taken over all prime ideals p of a fixed local ring, is finite.

The proof of Theorem 2 is divided into two cases. When @/q is a ring of charac-
teristic p>0, we give a direct proof by taking advantage of the simple formula for
the pth power of a sum in such a ring. When @/q has characteristic 0, we reduce
the proof to the first case by introducing a coefficient field of @/q® and specializing
that field. Thus in the second case we use the structure theorems of Cohen. By the

aid of these theorems it is also possible to derive the following complementary result.

ADDENDUM TO THEOREM 2. If the minimum number of generators of q is mot
more than .one unit less than the minimum number of generators of m, then there exists

a non-negative integer r such that Q/q has the form

Ki[2), ..., 2]1/(Cs «--s €1,

where K is a field and K[[z,, ..., .]] @ ring of formal power series in r indeterminates
over K.

The proofs of Theorem 1, Theorem 2, and the Addendum to Theorem 2 follow
below, each in a separate section. We conclude the paper by some remarks which
especially concern the statement about @, and @ on the preceding page.
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Proof of Theorem 1

We begin by proving two lemmata, of which the first represents a special case
of the theorem and the second states a fundamental fact concerning Hilbert func-

tions of prime ideals in free polynomial extensions.

LeMma 1. In a local ring @ with maximal ideal m, let p be a prime ideal strictly
contained in m such that m=(f)+p for some element f of Q. Then

H®(p;n) <HY(m;n) n=0,1,2, ....

Remark. Obviously one can express part of the assumption by saying that @/p
is regular.

Proof. H®(m;n) is equal to the length of the ideal (f,p)"*'.(1) We shall estimate
this length from below. Since for k=0,1,2,... the power p* is contained in the sym-

¢5]

bolic power p®, ie. P*Qy N Q, we can, as a first simplification, exchange the ideal

(f, p)n+1= z fipk

i+k=n+1

for > e,
itk=n+1

Consider the operation of adding to this ideal successively f'p™®, 0 <i+k<n, in order
according to decreasing lexicographic height of (i+k, k). By this operation the length
of the ideal is successively reduced to zero. Denote by D(s, k) the decrease in length
that corresponds to the addition of f'p®. The total length of the ideal is then equal
to the sum of the D(i, k), 0<i+k<n, and it suffices to estimate each of these
numbers. Using an isomorphism of the form a+b/b~a/anb, we see that D(i, k) is
equal to the length of the @-module

fﬂﬁ/ﬂﬁ“n(ﬂ;wfw”+ 2 fﬂﬂ.

ttx=i+lk, x>k
The denominator of this factor module is contained in

£p®n () +p*),

(!) The length of a p-primary ideal q in a Noetherian ring R is defined as the length of the
Ey-module Ry/qR,. We shall use this notion only when p is a maximal ideal, in which case it can be
equivalently defined as the length of the R-module R/q.
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which, in view of the fact that p®:f=p® (k=0,1,2,...), can be written on the form

FE® () +pE0y),

or, still simpler, F (% + p®eby,
Thus D(:, k) is at least as large as the length of the @-module

Fp@/f (fp® + p®D).

Since (0):f'<p**P: f'=p**D, this module is isomorphic to
p""/(fp"" + p(k+1)),

or, since m=(f,p) and pp® < p**d o
p®/(p% D + mp®).

The length of a @-module which can be written on this form is equal to the number
of elements in a minimal system of generators of the @-module p®/p®*P. Such a
system represents in a natural way a system of generators of the @,-module p*@,/p***Q,.
The number of elements is therefore not less than H(p;k). Thus we have shown that
D, k)= H(p; k). It follows that

Huw> 5 DGR> 3 HE k=5 HO(wn—i) = HOpn)

Ogitkgn

and the proof is complete.

Lemma 2. Let @ be a Noetherian ring, Q[z] a polynomial ring over @ in one
variabel z, and m and M prime ideals in Q and Q[z] resp. such that M N Q=m. Then

H(myn) for M=mQ[z]

=0,1,2,....
H®myn) for M+mQ[z) n=0,12

HM; n)={

Proof. Without loss of generality we can assume that @ is a local ring with the

maximal ideal mi, for if necessary we can replace @, m, and I by Qn, M@y, and

When It=mQ[z], it suffices to observe that Q[z] is a free and hence a flat
@-module and that therefore Q[z)ly is @-flat (see [6], (19.1)).

Assume then that IR =+m@[z]. By factoring the ring homomorphism Qfz] —Q[z]/M

on the form Qz]—(Q/m)[2]—>Q[z]/IM we see that I is generated by m and a poly-
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nomial f€ Q[z] of positive degree and with the leading coefficient 1. We further see
that M is a maximal ideal and that consequently

H(M; n) = lengthgp, (M"/M"*1).

Form the ideal (m,f) of the ring Q[f]. As a @-module (m,f)"* is a direct sum

0
Z mﬂ—va’
»=0

where m"™*

shall be understood as @ for v>n. By comparing this expression with
the corresponding one for (m,f)"*! we find that, as a @-module, (m,f)"/(m,f)**! is
isomorphic to the direct sum of H®(m;n) copies of @/m. In view of this and of the
fact that Q[z] is a free and hence a flat @Q[f]-module (the number of basis elements
is equal to the degree of the polynomial f), we get by the fundamental laws for

flatness and for tensor products the @[z]-isomorphisms
e /MM e ((m, H/(m, )™ ®aun QL] ~ ((m, )7/ (m, ™) @a(QL21/()

~ the direct sum of H® (im;n) copies of (Q/m) ®q (Q[z]/(f))
~ the direct sum of H® (1m;n) copies of Q[z]/IM.

Thus lengthgp, (M"/M* 1) = HP (m; n),
which gives the result.

To prove Theorem 1 we can assume without loss of generality that the prime
ideal m of the theorem is the maximal ideal of a local ring @. The supposition then
means that p is a one-dimensional prime ideal in @ such that @/p has a finite inte-
gral closure, say (@/p)[c,,...,¢;], and we have to show that there exists a non-negative
integer k& such that

H* D () <H®(m;m) n=0,1,2, ...

Let z;,...,2, be a system of j independent indeterminates over @ and consider

the naturally formed, composed homomorphism

Q[zl’ ’zi]'_)(Q/p) [zl’ ’zl]_)(Q/‘p) [Cl, ceey cj]s

where for 1=1,2,...,7 the indeterminate z; is carried into the element ¢,. Let P and M

be the inverse images in @[z, ...,2;] of the zero ideal and an arbitrary maximal ideal

resp. in (Q/p)[c,, ..., ¢l
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It is clear that Y and IN are prime ideals and that P N Q=p. Moreover, it is
not difficult to show that I NQ=m and that rank IM/P=1 (see [6], Section 10).
Since (Q/P) [y, -..,¢;] is integrally closed, the local ring associated with IR/B is also
integrally closed. Hence its maximal ideal can be generated by a single element (see [6],
Section 12). Thus we can apply Lemma 1 to the local ring associated with I and
the prime ideal in this ring generated by %B. This gives

H®PB;n) <HPM;n) n=0,1,2,....

We can calculate H(B;n) by applying Lemma 2 to the j extensions which are
obtained by successive adjunction of the indeterminates z,,...,2; to Q. The definition
of (@/p)[cy, ...,¢;] implies that for 1=1,2,...,7 there are elements a;, b, in Q/p with
a;+0 such that a;c;—b,=0. This means that there are elements z;, y; in @ with
2, ¢ P such that xz,—y, €PB. It follows that LN @[z, ..., 7] for no value of 7 is gen-
erated by BN Q[z, ...,2z-1]. Hence we obtain

H(B;n)=H?(p;n) »=0,1,2,....

By a similar but less detailed discussion one finds that among the numbers

0,1,...,7 there is a number 7 such that
HW;n)=HPm;n) »=0,1,2, ...,
so that certainly HW;n)<HPm;n) n=0,1,2,....

(Actually one can show that equality holds.)
Insertion of the expressions for H(B;n) and H(I;n) that have now been ob-

tained, in the inequality previously derived gives
HO?(p;n) <HD(m;m) #=0,1,2, ...,

which completes the proof of Theorem 1.

Proof of Theorem 2

Let us first introduce a new notion and settle a question of notation.
Let R be a commutative ring with unity element and let f,, ..., f; be elements
of R. The elements f,,...,f; are called independent in R, or if no confusion is to be

feared, ¢ndependent, if for every system a,,...,a, of s elements in R it is true that

af; ... tafs=0 implies a,,...,a,€(f, ..., fs).
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This condition can also be expressed by the inclusions

(fl’ ...,fi_l, fi+1, ...,fs) Zf,-g(fl, ...,fs) ’l:= 1,2, ey S,

It entails, if we put (f,,...,f)=gq, that q/q® is a free R/q-module in which f,,...,f;
represent a basis. Conversely, if R is a local ring and if g is an ideal in R such that
q/q% is a free R/q-module with a basis consisting of s elements, then every minimal
system of generators of q consists of s elements which are independent in E. Let us
finally note that if f,...,f; are independent in R and if R, is a unitary R-flat exten-
sion of R, then f,,...,f, are independent also in R, (cf. e.g. [4], the appendix).

The length of a primary ideal q=(g,, ..., ¢s) of a Noetherian ring (cf. note (*) p. 74)
will be denoted by L(q) or, alternatively, L(q,,...,q;). If g=1(g;,...,¢)=(1) we put
L(CI) =L(q1’ vees gs) =0.

We shall prove four lemmata, the last of which represents that case of the theo-

rem in which the characteristic of @/q is positive.

Lemma 3. Let f,...,[s g, be elements in a commutative ring with unity element.
Suppose that f,, ...,f. are independent and that f,€(g,). Then g¢,.f5 ..., fs are also inde-
pendent. Moreover,

(far - fs) 11 S (frs -5 1)

Proof. Given a relation a,g,+a,f,+ ... +a.f;=0, it follows from the supposition,
by multiplication with an element A, for which ¢k, =f,, that a,€(f,,...,f,), say
a,=b,f,+ ... + bsf,. Insertion of this expression for a, in the given relation results in
a linear relation between f,,...,f, with the coefficient a;+b;g, for f; (i1=2,...,9),
whence, by the supposition, a; € (g,, fs ..-»fs) (¢=2,...,5). What has now been estab-

lished concerning a, ...,a; proves the lemma.

Lemma 4. Let f,, ..., {5 g1, b, be elements of a local ring. Suppose that f,,..., f; are
independent, that the ideal (f,, ...,f;) is zero-dimensional, and that f,=g,h,. Then

L(fb -~-’fs)=L(g1!f2a '--9fs)+L(h1’ f27 "‘7fs)'

Proof. The length of (f,,...,f;) equals the sum of the lengths of (f,, ..., f, 9,) and
(fyr «-s fs) 19y (cf. [6], (1.5), p. 3). By Lemma 3 the latter ideal is equal to (h,,f, ..., fs).

Hence the result.

Lemma 5. Let f,, ..., [, be elements of a local ring Q with the maximal ideal m =
(%, ..., %u,). Let p be a prime number, n a natural number, and k a non-negative integer.

Then there exists an extension Q, of Q with the following properties:



INEQUALITIES RELATED TO CERTAIN COUPLES OF LOCAL RINGS 79

(i) @, is a free Q-module;
(ii) @, is a local ring whose maximal ideal is generated by m;
(iii) each of the elements f,,...,f; can be wrilten on the form
Bty UL o U g,
fht...tir<k

where g €m*Q, and where the coefficients ai,,...;, are p":th powers of elements

m Q.

Proof. By induction on primarily s and % the proof of the lemma can be reduced
to a proof of the following assertion: If a is an element of a local ring ¢ with maxi-
mal ideal m=(u,,...,%,), and if p is a prime, then there is an extension ¢, of @
such that the conditions (i) and (ii) of the lemma are fulfilled and such that a is
congruent modulo m@); to a pth power in @,. This assertion is trivially true if a
represents a pth power in @/m in which case we can take @, =@. Otherwise we can
choose @, =Q[z]/(z" —a) where 2z is a variable over @. Obviously this choice makes
@, in a natural way an extension of @ satisfying the condition (i). Since moreover ¢,
is integral over ¢}, every maximal ideal of @, must contain mg, (see [6], Section 10).
On the other hand, m@, is a maximal ideal, since @,/m@, has the form (Q/m) [2]/(z* — @),
where @ is the residue class represented by ¢ in @/m, and where consequently the
polynomial z?—@ is irreducible (cf. [9], the end of §56). Hence the condition (ii) is
also satisfied. It is finally evident that a is congruent modulo m@, to a pth power
in @,.

LeMMaA 6. Let Q be a local ring, m tts maximal ideal, and q an m-primary ideal.
Assume that Q/m and Q/q have the characteristic p>0 and that q/q® is a free Q/q-
module. Then the minimum number of generators of q is not larger than the minimum

number of generators of m.

Proof. Denote by r and s the minimum numbers of generators of m and q resp.
Put m=(u,,...,u,) and q={f,,...,f;). Choose natural numbers » and % such that
p">L{g) and m*=mg. Determine @, according to Lemma 5 so that the conditions
(i)—(iii) of this lemma become fulfilled for the quantities now actual. Put

Q2=Q1[z17 ey zr]/(zfﬂ-ul’ ey zf"—u,),

where z,,...,2, are independent indeterminates over . Then @, is in a natural way
an extension of @ and is free and hence flat over this ring. Moreover, @, is a local

ring, say with the maximal ideal m,, and L(mQ,)=p"". Each of the elements f,, ..., f;
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can be written as a sum of p"th powers of elements in m, plus an element of
m“Q,=m,q. Since p€gq, it follows that there are elements g, ...,g, in m, such that
fi is congruent modulo m,q to the p™"th power of ¢, (i=1,2,...,5). This implies that
0@, is generated by the p"th powers of g,, ...,g; (cf. [6], (4.1)).

Since @, is @-flat, it follows that

L(aQy) = L(m@,) L(q) = p" L(q)
(see [6], (19.1)).
On the other hand, f,,...,f, are independent in @ and therefore, on account of
the flatness, also in @,. This implies that also the p"th powers of g¢,,...,¢, are in-

dependent in @,. Hence, by repeated application of Lemma 3 and Lemma 4,
L(qQe) = 0™ L((9y, - -, 95) @2) = P™.

This gives a contradiction for s>r as, by our choice of n, p™ is larger than L(q).

Thus s<r, and the lemma is proved.

To prove Theorem 2 we shall show that if there were a counter-example to this
theorem, we could construct one to Lemma 6.

Let @ be a local ring, m its maximal ideal, and q an m-primary ideal. In order
that this triplet of objects shall be a counter-example to Theorem 2 it is necessary
and sufficient that there exist integers r and s such that r=lengthg(m/m?), s=
lengthg (q/mgq), lengthy(q/9%) =sL(q), and s>r. The necessity is obvious. Suppose on
the other hand that the conditions are fulfilled. Then q/q* can be generated by s
elements, and consequently there is a ¢-homomorphism of the direct sum of ¢ copies
of @/q onto q/q% This homomorphism must be an isomorphism as the modules con-
stituting its domain and range have the same length. Thus q/q% is a free /g-module.
Hence the sufficiency. We note that to test if the condition is satisfied in a special
case, it suffices to know the lengths of the ideals m?, g, mgq, and qz.

Suppose that the triplet @,, m,, g, is a counter-example to Theorem 2. Without
loss of generality we can assume that qf=(0), so that in particular @, is zero-dimen-
sional and hence complete, for if necessary we can pass from @, to @,/q3. On account
of Lemma 6 the characteristic of @,/m; must be zero. Denote the minimum number
of generators of m, by r. By the structure theorems of Cohen there is a ring homo-
morphism K[x]->@, (onto), where K[z] is a polynomial ring in r variables z,, ..., z, over a
field K- of characteristic zero, and where the inverse image of m, is (z,, ..., z,). Using
from now on a notation which does not quite agree with that of the theorem, let

us denote the inverse images of m,, g,, and (0) under K[x]— @, by m, q, and a resp:,
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so that especially m=(x,,...,,). Then m*=a and, for a suitable choice of the natural
number n, g2a29*2m". When m is given as (x,,...,,), these inclusions assure us
in particular that the ideals q and a are m-primary. Let now K be a field of positive
characteristic and let K[#]=K[Z,, ..., %] be a polynomial ring over K in r variables.
Let further @ and § be ideals in K[#] and put T =(&,, ..., %,). Applying the necessary
and sufficient condition derived above, we see that the triplet K[£]/a, m/a, q/a will
be a counter-example to Lemma 6 if the following conditions are fulfilled: m*24;
g2a=29*2m"; the lengths of the (mm-primary) ideals §, M3 +@, and @ coincide with
the lengths of the ideals g, mq+a, and a. We shall show how one can construct K,
g, and & from K, g, and a so that these conditions become satisfied.
Refine the chain

Kz]og2mg+a2a2¢?2m”
to a composition chain o2 012 ... DG,
Choose elements f,=1, f,, f,, ..., fe-1 of K[x] such that
€6, [0 (»=0,1,....k—1).

Denote the power products of degree n iﬁ Xy, ooy Ty BY fry ooos fne Then a,= (fu, fre1y ooos fin)
(»=0,1,..., k). Determine %, ¢, and § such that q,=gq, g;=mq+a and q;=a. Consider
the following, actually valid inclusions:

@y o) (F)EGr (=0,1,...,k—1);
GSE{Ty, ..., %) qp+ Q53
(@, oo, @) Qn+ ;S 05
%S

Within these inclusions, replace first everywhere g, by (fu, fus1, s fm) (8 =0,1,...,k)
and then every ideal-product of the form (...a,...)(...b,...) by (...a,b,...). In each
of the inclusions thus obtained, express every polynomial that occurs as a basis ele-
ment on the left-hand side as a linear combination of the polynomials that occur as
basis elements on the right-hand side. Let those polynomials which appear as coeffi-
cients in these linear combinations, in conjunction with the polynomials fy,f;, ..., fm
form the set §.

Suppose now that we can find a valuation of K with valuation ring o and residue
class field K such that K has positive characteristic and such that § < o[x]. Let K[#)

be a polynomial ring over K in r variables &, ..., 7. Then there is a natural ring
6 — 642906 Acta mathematica 112. Imprimé lo 21 septembre 1964.
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homomorphism o{z]— K[#] mapping 0 onto K and carrying z, into £, (v=1,2, ..., 7).
For f€op[x], let f be the image of f under this homomorphism. Define the ideals
g, #=0,1,...,k), g, and @ in K[&] by putting G, =(f,, fr+1, .-, fm)» §=0x, and a=7q;.
Obviously, these ideals, except q,, which equals (1), are primary for (£, ..., %,). More-
over, it is seen that the inclusions which were considered above, remain valid if z,,
fu, and g, are replaced by #., f., and q, for all possible values of the index . It
follows, first that L(9,)— L(G,_1)<1 (»=1,2,...,%), and hence, as evidently L(q)—
L(q,) =k, that L(G,)=» (»=0,1,...,k), then that the ideals g, mq+a, and a have the
same lengths &, ¢, and § as the ideals g, mq+a, and a. Furthermore, it is clear that
m?27 and that g2a2¢?2m" Thus K, g, and a satisfy all the conditions posed.

It only remains to find a valuation of the indicated kind. Let «, (v=1,2, ..., N)
be the elements of K that occur as coefficients of the polynomials in the set §. Let
%5, ..., %; be a transcendence basis of the subfield of K generated by the o,, and let
for v=1,2,..., N the element o, be a zero of a polynomial

a, X™+b,X™ 14 ...

with coefficients in the ring Z(x,, ..., x.] generated by %,, ..., over the ring Z of
rational integers. Fix a homomorphism Z[x,, ...,%]—Z and choose a prime number p
such that none of the elements a, is carried into 0 under the composed homomor-
phism
Z{ny, ... ) > Z—>Z/(p).

Obviously every valuation that belongs to an extension K —{K, o} of this composed
homomorphism meets the requirements. That there exists at least one such extension,
follows from the theorem on extension of homomorphisms (specializations) (see e.g. [10],
Chap. 6, Theorem 5', p. 13).

Thus we have shown that a counter-example to Theorem 2 leads to a counter-
example to Lemma 6. This proves the theorem since the lemma has already been
established.

Proof of the Addendum to Theorem 2

The reasoning will largely run parallel to that of the proof of Theorem 2 and
will partly be presented in a summary fashion.

Under the assumptions of Theorem 2 we have to show that if the difference
between the minimum number of generators of m and the minimum number of gen-

erators of q is not larger than one unit, then @/q has the form

K2y, oo 21/ (s oo ).
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The assertion can be given the seemingly stronger but equivalent wording that in any
representation of Q/q on the form K[[x,,...,,]]/¢ the ideal ¢ can be generated by r
elements. For if ¢ is an ideal (not necessarily zero-dimensional) of K[[z,,...,,]], and

if B is a ring and D an ideal of R such that there are ring isomorphisms
R~ K[z, ..., 2,]1], R/v~ K[[x,, ..., 2]1/¢,

then D can be generated by as few elements as ¢. To see this, one can first, by a
simple argument, pass to the case where c¢S(xy,...,2,)%. In R/d there are a well-
determined field and r well-determined elements which correspond by the isomorphism
to K and x,,...,x, resp. By lifting this field (cf. the method in [2]) and these
elements in an arbitrary way from R/D to R, one obtains in a natural manner an
isomorphism between R and K[[z,,...,#,]] which induces the given isomorphism be-
tween R/D and R/c and consequently carries the ideals D and ¢ into one another.
Hence the result.

We shall consider separately the two cases in which the characteristic of @/mt
and @/q is zero and different from zero resp. As in the proof of the theorem, a.
counter-example belonging to the first case can be transformed into one belonging to
the second. To show this, let us suppose that there exists a counter-example belonging
to the first case. Using a temporary notation, we can assume (cf. p. 80) that it has
the form K[z]/a, m/a, q/a where K denotes a field of characteristic zero, z a set
of r variables #,,...,x, over K, m the ideal (x,,...,%,), and q and a ideals such that
m*2a and g2a2¢2m", # being some natural number. The integer length . (q/mq)
which gives the minimum number of generators of the ideal qK[[x]], must be larger
than r. In view of the alternative wording of the assertion, it suffices to derive from
K, g, a a new triplet K, §, a satisfying the same conditions as in the proof of the
theorem and in addition the condition that the length of Tiq shall coincide with that
of mg. To meet these requirements we have, roughly speaking, to find a specializa-

tion which to a sufficient degree preserves the two chains
Kzloq2mq+az2a29?2m7,
Kiz]log2mg=2m”.

This can be done by treating separately each of the chains as in the proof of the
theorem, say by introducing the refinements {g,}¢ and {q,}¢ resp., yet choosing a
common valuation which shall moreover satisfy conditions sufficient to preserve the

inclusions
14 ’
CIn S qh, qh. = Qn )
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h being the length of g, so that we can put q=G,=0s,. We content ourselves with
these indications.

It remains to consider the second case. Thus we assume that the characteristic
of @/m and @/q is a prime p. Without loss of generality we can further assume that
@ is zero-dimensional. Let us denote the minimum number of generators of m and q
by r and s resp., and let n be an arbitrary natural number. We introduce new objects

according to the following list.

c a coefficient ring of @ in accordance with the structure theorems of
Cohen;
Cl,, ..., 2] a polynomial ring over C in r variables;

Clzy, ..., 2,]—>Q a ring homomorphism which carries C into itself and xy, ..., z, into a

system of generators of m;
A the kernel of the above homomorphism;

Fy ..., F elements of the ideal (2y,...,%,) of C[z,, ..., r,] which under the above

homomorphism are carried into a system of generators of g;

C, an extension of C with the following properties (cf. Lemma 5):
(i) C, is a free C-module,

(ii) C, is a local ring whose maximal ideal, like that of C, is gen-

erated by p,
(iii) if we form in a natural way the common extension C,[x,, ..., ]
of C;, and C[z,,...,%,], then in this extension each of the ele-

ments F,,..., F; is congruent modulo p(x,, ..., %) to a polynomial
whose coefficients are p"th powers of elements of C;, and whose

constant term is zero;

Cilzy -ens 2] a polynomial ring over C, in r variables, in which Clxz,,...,z] is
imbedded by inclusion of ' in C, and identification of z,, ..., z, with

the p"th powers of z,...,2, resp.;
Gy, ..., G, elements of C,[z,...,2,] such that in this ring the congruences
F,=6{" mod P2y, s 2)

hold true for ¢=1,2,...,7 (cf. the proof of Lemma 6).
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Let us write « for the set {x,,...,x,}, similarly F for {F,,...,F}, etc. f Ris a
Noetherian ring and if 4,,..., 4, are elements or sets of elements in R which together
generate a zero-dimensional primary ideal of R, we shall denote the length of this
ideal by Lgz(4,, ..., 4;).

Obviously C,[z] is a flat C[xz]-module, and it is easy to see that the ideal (p, ) C,[z]
has the length "". Hence (see [6], (19.1))

Lo (F, %) = p" Lo (F, ).

The ideals (F,) and (G, A) in C,[z] differ at most by elements in p(z). As p € (F,N)
and as (A) contains a power of (z), it follows that they are equal (cf. [6], (4.1)).
Thus we can substitute the set of the p"th powers of G,,...,G; for F on the left-
hand side of the equality. Moreover, the elements represented by these p"th powers
in C,[z]/AC,[z] must be independent (cf. the introduction to the proof of Theorem 2).
By repeated application of Lemma 3 and Lemma 4 we therefore obtain (similarly as
in the proof of Lemma 6)

pnchl[Z] (G: m) =meC[I] (F’ QI)

Since the ideals on both sides contain p, we can pass to the respective residue class
rings modulo (p). Denote the images of C, C,, A, F, @, z, and z under the natural
homomorphism of C,[z] onto C,[z}/pC,[z] by K, K, ¢, {, g, «, and z resp. The images
of «,,...,2, and z,...,2, which are thus denoted by the same symbols as their origi-
nals, are obviously each a set of independent variables over K and K,. Observing
that C[z]/pCfix] is naturally included in C,[2]/pC,[z] as C,[z] is C[x]-flat, we deduce

LKl[z] (g: a) =pn(r-s)LK[I] (f: a)'

Let ¢ be the isomorphism of K, [z] into itself that carries every element into its pth
power. Application of ¢" to the ring and the ideal on the left-hand side gives

Lgoniy (1 @) =™~ L/, ).

In this formula we first replace K" and K by an infinite common extension field M.
This does not affect the significance or validity of the formula: the ideals on both
sides remain primary and their lengths unaltered (cf. [6], (19.1)). Evidently we can
then replace M[z] by the local ring R associated with (z) M[x]. Observing finally that
the image of a under ¢" is contained in the p"th power of a, we derive

Lg(f, a™) < p™"® Ly (f, a). *)
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As any (v)-primary ideal of K[x] generates an ideal of the same length in R,
we may express the assertion to be proved as follows: if s=r or s=r—1, then the
ideal (a,f) of R can be generated by r elements. We shall deduce this from (¥).

From now on, let (f), (a,f), (a®, f), and, later, (a, f) be understood as ideals of B.

Assume first that s=r. Then, by (*), a < (f,a”"). As a is contained in the maxi-
mal ideal of R and as n may be taken arbitrarily large, we deduce that a<(f) (cf.
[6], (4.2)), whence the result. :

Assume then that s=r—1. In view of (*) the dimension of the local ring RB/(f)
cannot be larger than one. This ring must therefore be a one-dimensional Macaulay
local ring (see e.g. [6], Section 25, esp. (25.4)). Since M was chosen as an infinite
field, we can, by a result of Northcott and Rees, find an element a of (a,f) such
that (a,f)/(f) is integral over (a,f)/(f) and consequently has the same multiplicity as
this ideal (see [7]). Then

e((a,/)/ () = lim ]%.L((a””, M < L((a, /) < L{(a, H) =e((a, /)/(f)) = e((a. /()

where e ) denotes the multiplicity of the ideal within the parentheses. The second
step of this chain of equalities and inequalities follows by (*), and the two last steps
by the fact that R/(f) is a Macaulay local ring and by the choice of a resp. Since
the outer terms of the chain are equal, the two middle ones must also be so. This
gives (a,f)=(a,f) and hence the result.

The proof of the Addendum to Theorem 2 is thereby finished.

Remarks
1. Concerning Theorem 2.

I do not know if it is necessary to assume that Q/q is equicharacteristic. I should

rather expect that it is not.

2. Concerning the Addendum to Theorem 2.

One cannot cancel the assumption that the minimum number of generators of q
is not more than one unit less than the minimum number of generators of n. Example:
Q=Klz,y,2]/((x)*+ (y,2)") (K a field, x, y, z variables, n>2), g = the ideal generated
by the element represented by x.

3. Some alternatives to the statement about @, and @ on p. 72.
If p is a prime ideal of a Noetherian ring, let f(p;z) denote the function

§0H(p; )2 O<z<l.
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(Samuel’s result on the polynomial behavior of H(p;») for » large entails that f(p;z)
can be represented by an element of P[z, (1—2)"'], P being the field of rationals.)

In the statement on p. 72 it is assumed that (@, @) is a couple of local rings
with maximal ideals (m, m), that Q contains @, and is Q,flat, and that m,@ is
m-primary: It is asserted that there exists an integer k& such that

HPmg )< H®(m;n) #=0,1,2,....
Instead of this assertion one may consider the following alternative assertions:
A,. HPmgn)<HP(m;2) 7=0,1,2,....

A, fmgz) <f(m;z) for O<z<l

unless f(m,; z) = f(m; z).
A,. fmg 2) <fim;z) for O0<z<l.

One can show that A, is equivalent to the original assertion. Thus A,, A,, and A,
form a sequence of assertions of decreasing strength. Each of them would, if valid,
make it possible to extend Theorem 1 or, in case of A,, an essential part of this
theorem to the general case where there is no restriction on the integral closure of
m/p. The consideration of A, is suggested by the proof of Theorem 1 which seems
to indicate that the least value of k answering the claims of that theorem, may in-
crease indefinitely with the minimum number of generators that are needed to form
the integral closure of the local ring associated with m/p, and that therefore only a
limit result, corresponding to k= co, can be valid if this integral closure is allowed
to be infinite. As to A,, cf. below.—A priori, none, one, two, or all three of the state-
ments A;, A,, A; might be valid. I have no clear opinion about which of these four

possibilities is most probable.

4. A case in which A, is valid.
Keeping the notation just employed, I can show that if, for some natural num-
ber 7, @/myQ has the form

K[y, .5 2,11/ (cq, -- 05 C),

K[[x,, ..., 2]] being a ring of formal power series in # indeterminates over a field K,
then A, holds true. Thus, in view of the Addendum to Theorem 2, A, will in par-
ticular hold true if H{mgy;1)> H(m;1)—1.

In outline the proof runs as follows. One may assume that ¢, and @ are zero-
dimensional. These rings can then be represented on the forms Cy[[«]]/a, and C[[z]}/a
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resp., U, and C being coefficient rings, » and z standing for sets of r indeterminates,
and the inclusion of @, in @ being induced by an injection ¢ : Cy[[u]] > C[[z]] which,
as a result of the special assumption about Q/m,Q, can be chosen so that a = p(a,) C[[2]].
By varying ¢ in a way that reminds of specialization in algebraic geometry, one can
reduce the demonstration to the trivial case in which @ carries each of the inde-

terminates % into a corresponding indeterminate z.

5. On the connexions between generalizations of Theorem 1 and statements of the
types A, 4,, A,.

We know that A,, A,, and A; each would imply a generalization of Theorem 1.
I can prove the following partial converse.

Suppose (as in A;, A,, A,) that (Q,, @) is a couple of local rings with maximal
ideals (mg, m), that @ contains @, and is Q. flat, and that m,Q is m-primary. Suppose
further that @, and @ are equicharacteristic and that Q/nt is a separabel extension
of its natural subfield @,/m,. Then there exists a Noetherian ring with prime ideals
m, and p, such that m;>p,, rankm,/p, =1, and

H(p;n)=H(myn), =»=0,1,2,...,
Hmgn)=H®mn) n=0,1,2,....

This means that any result similar to Theorem 1 but general enough to apply to m,
and p,, would imply a corresponding result concerning ¢, and Q.

The Noetherian ring that contains m, and p, is obtained by a variation of
Akizuki’s example of a one-dimensional local domain without finite integral closure ([1]);
actually the local ring associated with m,/p, will not have a finite integral closure
except when m,Q=m. As to the réle of the assumption that @/m is a separable
extension of Q,/m,, cf. [2].
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