Asymptotic value sets of bounded holomorphic
functions along Green lines

Mikio Niimura

In this note we shall study asymptotic value sets, along Green lines, of bounded
holomorphic functions on hyperbolic Riemann surfaces. As their applications to
the case of the open unit disc, we shall obtain some results on radial limits.

Let R be a hyperbolic Riemann surface and let G(a, b) denote the Green
function for R with pole at a point b€ R. For any number a=0, let R(x, b) denote
the region {acR|G(a, b)>a} and let B(x, b) denote the first Betti number of
R(x, b). In this note we assume the following conditions (1) and (2):

(1) The closure of R(x, b) is compact for any b€R and any «=0.
(2) f7 B(x, b)da<o> for some bER.

Let R* denote the Martin compactification of R and let 4, denote the set of
all minimal points in A=R*—R. Let f be a nonconstant bounded holomorphic
function on R and let f(g) denote the fine limit of fat gc4,. We consider Green
lines issuing from a fixed point chosen arbitrarily in R (see [2], p. 259). The asymptotic
value of f along a Green line terminating at a point g€4 is called the radial limit
of fat gq.

It follows from Theorem 4.2 of [2] that f exists almost everywhere on 4,, and
that fis identical to the solution of the Dirichlet problem for R with the boundary
function f, since R* is a resolutive compactification. It therefore follows from
Theorem 7 of [3] that f has radial limits at almost all points of 4,, and that the
fine limit and the radial limit at the same point of 4, are identical almost every-
where on A4,. Hence we obtain the following extension of classical Fatou’s theorem
on radial limits:

Lemma 1. [ has radial limits at almost all points in 4,.

By Lemma 1 and Theorem 14.1 of [I1] we obtain the following extension of
classical Riesz’ uniqueness theorem:
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Lemma 2. The set of radial limits of f at all points of a set of positive harmonic
measure in A, is of positive capacity.

Let p be a point in 4. The cluster set of f at p is defined as
Cf,p= ﬂof (R U(p, 1),

where U(p, r) denotes the r-neighborhood of p and where the bar denotes closure.
We put A(p, ¥)=AnU(p,r). Let E* be any set, in 4, of harmonic measure zero.
Let E be the set, lying in 4 and containing E*, of harmonic measure zero and such
that by Lemma 1, f has radial limits at all points of 4,—E. Let Agx(f, 4(p,r))
denote the set of radial limits of f'at all points of A(p, r)nd4,~—E. We define the set

Xi(fip)= n Ag(f. A(p, 7))

We call that w'€X p(f, p) if for any U(p,r) and for any neighborhood U of
we{lwl=c<}, dg(f, A(p,r))nU is of positive capacity. For each g€4,, let F,
be a filter tasis on R with respect to the fine topology. For an open set G, we put

4,(G) = {qEA1|GEFq}~

Aregion D C R issaid to be of class SOy if there is no nonconstant positive bounded
harmonic function in D which vanishes continuously at every point on the relative
boundary D of D with respect to R.
If there is a function s which satisfies the following conditions (i), (ii) and (iii),
then we call s a barrier at p:
(i) s is positive and superharmonic in R U(p, r), where r>0 may be sufficiently
small.
(i) lim,.,s(a)=0.
(iii) There is a sequence r>r=>ry>...>r,>..., r,~0 such that infs=0 on
oU(p, r,) for each n.
Henceforth we assume that for any r, 4(p, r) is of positive harmonic measure.
Clearly X, :(f,p)cX;(f,p)cC(f,p). We shall show more detailedly this topo-
logical relationship by the Theorem and Corollary 1.

Theorem. If there is a barrier at p, then

oC(f,p) € X, z(/, D)

Proof. We suppose, on the contrary, that there is a w,€dC(f,p) not in
X, e(f,p). There are then a U(p,r,) and a neighborhood U of w, such that
Ag(f, 4(p, rp)) U is of capacity zero. Let ¥ be an open disc centered at w, with

radius d and such that Ve U. Now p&f—1(¥).
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We first consider the case that p¢df—*(V). It is possible to find a U(p, ry),
O0<ry<ry, such that f(RnU(p,r))cV. By Lemma 2, Ag(f, A(p,r))nV is of
positive capacity. This is a contradiction.

We next consider the case that pcof~ (V). We take an r,, O<ry<r,, and
put G=U(p, ry)nf(V).

If there is at least one component D of G such that 4,(D) is of positive har-
monic measure, then by Lemma 2, Ag(f, 4(p, ry))nV is of positive capacity. This
is a contradiction.

If, for every component D’ of G which is not relatively compact on R, A,(D")
is of harmonic measure zero, then by Lemma 4 of [4], D’ is of class SOgp. Further
every component of G which is relatively compact on R is also of class SOgp. It
will be next shown that we have a contradiction.

Thereisa w*¢ C(f, p) with |w,—w*|<d/2. Itis possible totakean ry, O<ry<ry,
such that w*é{f@ where G'=U(p, r;) nf~2(V). The function v=1/| fg.—w*|,
where ;. denotes the restriction of f to G, is bounded above and subharmonic
in G'. We put m:ﬁrﬁwaaﬂ, v(a). For any positive ¢<1, we choose an r*, 0<
r*<ry, such that v=m+¢ on U(p, r*)ndG’. There is a positive superharmonic
function s in RN U(p,r*) with the properties that lim, ,s(e)=0, and that
c=infs=0 on QU(p, ry) for some ry, O<ry<r*. We choose an M=m+1 with
v=M in G’. Then v*=v—(M—(m+e))s/c is subharmonic in Gy=G"nU(p, ry).
It isseenthat v*=m+e ondGy,and that v*=M in Gy. Since each component
of Gy is of class SOy, it holds that

v*—m—e=0 in Gy.
Since lim,_ ,s(a)=0, a€ Gy, it holds that

im v(a)= aGll—i;arﬁ»pv(a).

G 3a—p
Thus
lwo—w*| = lim | f5- (@) —w"|
a—-p
= lim [f(a)—w"]
4G’ 3a—~p
= d/2.

This is a contradiction.
The assertion of the Theorem is proved.
The following Corollary 1 is immediately obtained:

Corollary 1. If there is a barrier at p, then
aC(f;p) < Xg(fs p)-

We call p a singular point if C(f, p) contains at least one nondegenerate con-
tinuum lying in f(R). From Corollary 1, the following Corollary 2 is obtained:
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Corollary 2. Let p be a singular point of f and let there be a barrier at p and
an r=0 such that

Ae(f, 4(p, 7)) < I (R).
Then

C(f, p) = f(R).

The following result of W. Seidel is obtained from Corollaries 1 and 2 (see [5],
p. 211): Let w=Ah(z) be a holomorphic function in {|z]<1} with |A(z)|<1. Let
0=c,<@<c,<2m, r=1, be an arc of {|z]=1} such that lim,_, [A(re’®)|=1 for
almost all values of ® in {c;<@<c,}. If 9" is a singular point of /(z) lying in
{c,<@=c,), then it holds that C(k, ¢®")={w|=1}. Indeed, since X; (h, ¢"®")c
{w|=1}, it follows from Corollary 1 that f({z|<1})={lw|=1}. From Corollary 2,
we immediately obtain the result of W. Seidel.

To illustrate the Theorem and Corollary 1 in the case that R={|z]<1}, we
consider the Blaschke product

B(2) = I(|a,l/a,)(a,—2)/(1~a,2)

with a,=1—1/n%. B(z) has a radial limit of modulus 1 everywhere on {Jz|=1}
except at z=1, and has the radial limit zero at z=1. Now z=1 is a singular point
of B(z). We choose {z=1} as E*. As stated above, it holds that C(B, 1)={|w|=1}.
By the Theorem and Corollary 1, it is seen that X,z(B, 1)=X; (B, I)={w|=1}.
If we choose an empty set as E*, then it holds that X, (B, 1)={w|=1} and
X5 (B, D={w|=1}u (w=0}.
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