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In this note we shall study asymptotic value sets, along Green lines, of bounded 
holomorphic functions on hyperbolic Riemann surfaces. As their applications to 
the case of the open unit disc, we shall obtain some results on radial limits. 

Let R be a hyperbolic Riemann surface and let G(a, b) denote the Green 
fdnction for R with pole at a point bER. For any number c~>0, let R(e, b) denote 
the region {aERIG(a, b)>c~} and let B(e, b) denote the first Betti number of 
R(e, b). In this note we assume the following conditions (1) and (2): 
(1) The closure of R(~, b) is compact for any bER and any c~0 .  
(2) fo  B(~,b)d~<o~ for some bER. 

Let R* denote the Martin compactification of R and let Ax denote the set of 
all minimal points in A = R * - R .  Let f be a nonconstant bounded holomorphic 
function on R and le t f (q)  denote the fine limit of f a t  qEA1. We consider Green 
lines issuing from a fixed point chosen arbitrarily in R (see [2], p. 259). The asymptotic 
,~alue o f f  along a Green line terminating at a point qEA is called the radial limit 

of f a t  q. 
It follows from Theorem 4.2 of [2] that f exists almost everywhere on At, and 

that f is identical to the solution of the Dirichlet problem for R with the boundary 
function f ,  since R* is a resolutive compactification. It therefore follows from 
Theorem 7 of [3] that f has radial limits at almost all points of A1, and that the 
fine limit and the radial limit at the same point of A t are identical almost every- 
where on A t. Hence we obtain the following extension of classical Fatou's theorem 
on radial limits: 

Lemma 1. f has radial limits at almost all points in At. 

By Lemma 1 and Theorem 14.1 of  [1] we obtain the following extension of 
classical Riesz' uniqueness theorem: 
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Lemma 2. The set of radial limits o f f  at all points of a set of positive harmonic 
measure in A1 is of positive capacity. 

L e t p  be a point in A. The cluster set o f f a t p  is defined as 

C(f  p) = ~ f (R  n U(p, r)), 
r>-O 

where U(p, r) denotes the r-neighborhood o f p  and where the bar denotes closure. 
We put A(p, r)=A n U(p, r). Let E* be any set, in A, of  harmonic measure zero. 
Let E be the set, lying in A and containing E*, of  harmonic measure zero and such 
that by Lemma 1, f has radial limits at all points of  A1-E .  Let A~(f, A(p, r)) 
denote the set of  radial limits of f a t  all points of  A (p, r ) n A 1 - E .  We define the set 

X~ (f, p) = ~ & (f, A (p, r)). 
r > 0  

We call that w'EX, E(f, p) if for  any U(p, r) and for any neighborhood U of  
w'E{Iw]-<_o~}, A~(J~ A(p, r ) ) n  U is o f  positive capacity. For  each qEA~, let F~ 
be a filter basis on R with respect to the fine topology. For  an open set G, we put 

AI(G) = {qEA~IGEFq}. 

A re~;ion D c R is said to be of  class SO~B if there is no nonconstant positive bounded 
harmonic function in D which vanishes continuously at every point on the relative 
boundary 0D of  D with respect to R. 

I f  there is a function s which satisfies the following conditions (i), (ii) and (iii), 
then we call s a barrier at p:  
(i) s is positive and superharmonlc in R n  U(p, r), where r > 0  may be sufficiently 

small. 
(ii) lima~ps(a)=O. 
(iii) There is a sequence r>rl>r,,>...>r,> .... r,-~O such that i n f s > 0  on 

OU(p, r,) for each n. 
Henceforth we assume that for any r, A (p, r) is of  positive harmonic measure. 

Clearly X.E( f ,p)cX~(f ,p)cC(f ,p) .  We shall show more detailedly this topo- 
logical relationship by the Theorem and Corollary 1. 

Theorem. I f  there is a barrier at p, then 

Oc(f, p) c X,E(f, p). 

Proof. We suppose, on the contrary, that there is a woEOC(f,p) not in 
X.~(f,p). There are then a U(p, ro) and a neighborhood U of  w0 such that 
AE(f, A(p, r0))n U is of  capacity zero. Let V be an open disc centered at Wo with 

radius d and such that Vc  U. Now pEf-~(V). 
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We first consider the case that p~Of-l(V). It is possible to find a U(p, rl), 
0 < r l < r 0 ,  such that f (R~U(p ,  rO)cV. By Lemma 2, AE(J; A(p, r0)c~V is of  
positive capacity. This is a contradiction. 

We next consider the case that p~Of-l(V). We take an r2, O<r~<ro, and 
put G =  U(p, r~) c~f-~(V). 

If  there is at least one component D of  G such that At(D) is of positive har- 
monic measure, then by Lemma 2, A t ( f ,  A (p, r0))ca V is of  positive capacity. This 
is a contradiction. 

If, for every component D' of G which is not  relatively compact on R, A~(D') 
is of  harmonic measure zero, then by Lemma 4 of [4], D' is of  class SOI~B. Further 
every component of G which is relatively compact on R 'is also of class SOns. It 
will be next shown that we have a contradiction. 

There is a w* ([ C( f ,  p) with IWo-W*l <d/2. It is possible to take an r3, O<r3<ro, 
such that w*([f(G'), where G'=U(p, rs)~f-~(V). Thefunct ion v=l/If~,-w*], 
where fa, denotes the restriction of f to G', is bounded above and subharmonic 
in G'. We put m=lT-moa,?,~pv(a ). For  any positive ~<1, we choose an r*, 0 <  
r*<ra ,  such that v<=m+~ on U(p, r*)c~OG'. There is a positive superharmonic 
function s in RnU(p,r*)  with the properties that l im,_ps(a )=0 ,  and that 
c = i n f s > 0  on OU(p, ru) for  some rN, O-<rN<r*. We choose an M > m + l  with 
v<=M in G'. Then v*=v-(M-(m+e))s/c  is subharmonic in GN=G'c~ U(p, rN). 
It isseenthat  v*<=m+e on0GN,and that v*<=M in GN. Since each component 
of GN is of  class SOHn, it holds that 

v * - m - ~  <= 0 in GN. 

Since lim~_ps(a)=O, aEG~, it holds that 

1-~ v(a) <= oa!~gm~pv(a). 
G" ) a ~ p  

Thus 
[Wo-W*[ >= lira IfG,(a)-w*P 

a ~ p  

=> li__mm If(a)--w*[ 
~G" ) a ~ p  

>= d/2. 
This is a contradiction. 

The assertion o f  the Theorem is proved. 
The following Corollary 1 is immediately obtained: 

Corollary 1. I f  there is a barrier at p, then 

aC(f  p) c X; (f, p). 

We call p a singular point if C( f ,  p) contains at least one nondegenerate con- 
tinuum lying in f(R). From Corollary 1, the following Corollary 2 is obtained: 
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Corollary 2. Let p be a singular point o f f  and let there be a barrier at p and 
an r > 0  such that 

AE(f, A (p, r)) c Of(R). 
Then 

c ( f ,  p) = f(R).  

The following result o f  W. Seidel is obta ined  f rom Corollaries 1 and  2 (see [5], 
p. 211): Let  w=h(z)  be a ho lomorph ic  funct ion in { l z l< l}  with ]h (z ) l< l .  Let  
O<=_q<O<c~<2rc, r = l ,  be an arc o f  { Iz t= l}  such tha t  l imr~ 11h(re i~  fo r  
a lmos t  all values of  O in {c1<0<c2}. I f  e i~ is a singular poin t  o f  h(z) lying in 
{c~<0-<c2}, then it holds tha t  C(h, e*~ }. Indeed,  since X~(h, f l~ 

{Iw t = 1}, it follows f r o m  Corol la ry  1 that  f ( { l z l <  I } ) =  {Iw[ =< 1}. F r o m  Corol la ry  2, 
we immedia te ly  obta in  the result  o f  W. Seidel. 

To  il lustrate the Theorem and Corol la ry  1 in the case tha t  R = { l z [ < l } ,  we 

consider  the Blaschke p roduc t  

B(z) = H(la,,lla,) (a, - z ) / ( 1 - 5 ,  z) 

with a , = l - 1 / n  ~. B(z) has a radial  l imit o f  modulus  1 everywhere  on { [z I= l  } 
except a t  z = 1, and  has  the radial  l imit zero at  z = 1. N o w  z = 1 is a singular  point  
o f  B(z). We choose {z = 1} as E*. As stated above,  it holds tha t  C(B, 1) = {Iwl_-< 1}. 
By the Theo rem and Corol la ry  1, it is seen tha t  X.~(B, 1 )=X~(B ,  1)= {]w] =1}. 
I f  we choose an empty  set as E*,  then it holds tha t  X. t (B ,  1 ) = { [ w l = l }  and  
x (B, 1)={Iwl =l}u {w=O}. 
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