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Introduetion

Let (2,7, P) be a probability space and let FycZ1c...cZ ..

a sequence of o¢-fields such that 7 = U2, 7,.

v=0 "9

For a random variable f € L,(Q, 7, P) we shall set

fn = E(flgn)’ Afn :fn —fn—l’
fi& =max |f|, f*=sup|f.,

v<n

8.f) =V i AfL S(f) = sup 8,(f).
We also introduce the spaces

KX, = {f: B(IS(N)]P) < oo}

with norm
Iflls, = [BESHTN® (p = 1)
Furthermore, we let
BMO = {f: up [E(If — faurPITalllo < o0}
with norm** -

[fllswo = sup | VE(f — fuor P70

be

(L.1)

1.2)

* This work was supported by the Air Force Office of Scientific research under Grant

AF-AFOSR 1322-67.

** Strietly speaking, these functionals are norms in the usual sense only when restricted, to

{f: B(f|Fy) = 0}.
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The reason for this notation lies in the fact that with an appropriate choice of
(2,7, P) and {7}, the spaces in (I.1) can be identified with the classical 9C,
spaces of function theory, while at the same time the space defined in (I.2) can be
identified with the class of functions of Bounded Mean Oscillation introduced by
John and Nirenberg [6].

This given, Burgess Davis [3] proved the following remarkable inequalities

1
c; E(f*) < B(S(f)) < GE(f*) (V[ E(f|7) = 0), (I.4)

where C; and C, are universal constants.

More recently, Charles Fefferman [4] showed that there is a universal constant
C; such that for any two martingales f, = E(f|7.), ¢, = E(p|?,) with f,=0,
we have

‘ f fn%dP’ < Gyl Al sl pllmaros (I.5)

- Actually, in [4] Fefferman only states the corresponding inequality in a classical
function theoretic setting, however, we understand that Fefferman had also proved
(1.5).

The object of this paper is to show that both sides of (I.4) follow in a rather
natural manner from (I.5).

We hope that our arguments here, in addition to throwing some new light on
this matter, will actually provide what is perhaps one of the simplest ways of
establishing the Burgess Davis inequalities.

For sake of completeness, at the end of this paper we shall include a proof of
(L.5) with C; = V/2, this will yield (I.4) with C; = 4/10 and C, =2 + V5.

Perhaps it is worthwhile to include some historical remarks. First of all, it was
Burkholder, Gundy and Silverstein [2] who made it apparent that the 9, spaces
of classical function theory could be viewed in a most natural manner in a martingale
setting.

This has become even more apparent now after some recent work of Getoor and
Sharpe [5].

Burkholder and Gundy [1] conjectured the Burgess Davis inequalities for general
martingales after proving them for the class of regular martingales*.

The space BMO as in (1.2) was introduced (after John-Nirenberg’s paper)
by R. Gundy a few years ago. We also understand that after learning of Fefferman’s
analogous functional theoretical result, R. Gundy and C. Herz worked together
on a proof of (I.5). Indeed, the proof of (1.5) we shall present here is essentially a
simplified version of Herz’s proof we learned from Gundy.

* For the definition see [1].
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In this connection, we wish to acknowledge here our gratefulness to the Mittag-
Leffler institute for making possible during the summer of 1971 our mathematical
exchanges with Burkholder, Fefferman and Gundy which provided us not only
the stimulus but also the information without which this work could not have been
carried out.

1. Construetion of some BMO functions

Our arguments will be based upon two results that should be of independent
interest.

Lemma 1.1. Let {0,} be a sequence of random variables satisfying

v 0, < 1. (L.1)
Then, the function
¢ = 2,2, 5,19, (1.2)
is BMO and indeed
E(lp — @naP17) <5, Vo> 1. (1.3)

Proof. Clearly ¢ € L, since
E(lp) < 2,2, B(l6,) < 1.

To prove 1.3 set
D, =>> K@

vy=n

I‘C}v)‘

v

This given, from (1.2) we get

Py = B(pl7, 1) = 2771 B6,17,) + E(D,]7,_)).
So
P — Pn1 = Qn - E(Qnrgn—l)

and, using (1.1), we obtain

E(lp — ¢.1*17,) = B(P(7,) — 2B(D,|7,)E(D,|7,_,) +

+ [E(q§n|c‘¥n——l)]2 S E(@ilgn) + 3.
On the other hand, again using (1.1),
B@L7,) <235, >0, BUE(6,117,)B(9,]17,)17,} = (1.5)
=222, 2.0 BUE(I0,[[7)E(0,[[7)17,} < 2 32 B{E(16,117,)7,} <2

Combining (1.4) and (1.5) we obtain (1.3) as asserted.
Our next result can be stated as follows:
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Lemma 1.2. Let {y,} be a sequence of random variables such that for each » > 0,
I(y,) c ¥, and set y* = sup,., |y,|. Then the function

¢ = 22 v, {B(Qy*7) — E(1ly*|7,_))} (1.6)
s BMO and indeed

E(lp — 9.11%17,) < 2. (1.7)

Proof. Set for convenience vy, = E(1jy*|7), Ay, =y, —y,_,.
We then have

E(lg — ¢._11%|7) = By, Ay)7,) < 2, B2 Av)17,), (1.8)

where
%
y¥ = max !yﬂl.
0<u<vy

Now, note that
— 1 < —yr By, 0) < yioidy, <yi BQyHF,) <1,
Thus
y¥2 Ay < 1. (1.9)
Finally

Z£v=n+l E(yv lA’lpyl ) = y= n+1 (yv 1[% - 1/)11 l]l ) S
< 2olnt BOFW17,) — 205 B 17,) < Blv'esl?) <1

Letting » — o© and combining with (1.8) and (1.9) our inequality (1.7) im-
mediately follows.

These two lemmas provide some rather general methods of generating BMO
functions. In fact, it can be shown that all BMO functions can be obtained in the
manner given by Lemma 1.1.

Before closing this section, it is worthwhile to point out that these two lemmas
are somewhat related.

Indeed, suppose we use Lemma 1.1 with 6, = (p* — p* ))/»* where »F, y*
are defined as in Lemma 1.2. Then we get that

¢ = 2L By — v )yt
is BMO. However, summation by parts yields
Z:=1 7B y*|7) — B(fy*|7, )} =

_ BT — BT — o, B

) (1.10)
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So passing to the limit as n — o, we obtain
VB (7)) — BAp* 7,0 =1 — Bily*19) —e. (111)

Since any bounded function is clearly BMO, and the BMO norm of the left
hand side of (1.11) is (as we have seen in the proof of Lemma 1.2) larger than that
of the function in (1.6), we can see that »essentially» Lemma 1.1 implies Lemma 1.2.
Unfortunately, it does not seem possible by this approach to derive as good an
estimate as in (1.7).

Alternatively, suppose the functions ¢, in Lemma 1.1 are of the form

—

0,= @, —7,0* (ro=0,7()c?).
Then the identity
Z:=1 E(BVICJV) = ‘E(yn/ly*lgn) - Z::l '}/,,_]_{E(l/'})*r;,,) - E(]'/y*l?v—l)}

shows that in this case, Lemma 1.2 essentially implies Lemma 1.1 This seems to
suggest that perhaps Lemma 1.1 might still remain true if the condition 1.1 is
slackened to

sup (Do ] < L

However we shall have to leave this as an open question.

2. The »easy» side

Although in Burgess Davis paper the proof of the two inequalities is somewhat
symmetrical in f* and S(f), historically the left hand side of (I.4) has been easier
to prove.

Our proof here should be reminiscent of H. Weyl’s »n(xz)» method. Indeed, set
for v=1,2,...,n

B, ={o:ff <[5 =1}

We then have, assuming f, =0
fr:k - Z::l lfy} = z;l:l ava = fn[zs=l E(OV‘?V)]dP, (2‘1)
Jroze i ]

where we have set
ev = XE” Sign (fv)
Since

Z:=l levl = 1’
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from Lemma 1.1 and (I.5) we get

f £ < CBS,(f) V5.

3. The hard side

The idea here is to start from the estimate

B(S(f)) <V E(f*)VBSUHI) (3.1)

which is a simple consequence of Schwarz’s inequality. This given, we use the
identity

Si(f) :f: — 2 Z::lfv—lAfv
and write the right hand most term of (3.1) in the form

BSU NI = BRI — 2 20 BALL ).
We thus get

E(8.(f) <V E(f*) V E(f*) + 21Q|. (3:2)

where
Q = 20 B, £ f*) = 251 BULTE(f,_o/f*17,) — B(f,lf*17,_0D)
Since for u >v 4+ 1 we have
E(Af, -/, [BA[f*)|7,) — EQ[f*7,_)])) = 0

we can write
e— [faap
Q

where
P = o1 ol BQ*(Y,) — B(1[f*(F,_,)]-
So by Lemma 1.2 with 9, =f, and (I.5) we get
Q1 < CLH(S,(f) V2.
Substituting in 3.2 we get

BS(f) < VA | B(*) + 2 V2 CES,(f)

and this is easily seen to yield

B8 < (V205 + V1 4 20)E(f*).
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4. A proof of Fefferman’s inequality

Let f, = E(f|?,), ¢, = E(p|?,) with f€9(, and ¢ € BMO. Let fy=¢, =0
and set as before

Afn :fn _fn—D A(pn =@p— Pp_1 Sn = Sn(f) = z:Jl:l [Afv]z'

Note then that, since

(A9 = |E(p — 9._1|7) 1> < E(lp — 9._1*17.) < llglbuos

the product f,p, is integrable V»n >1 and we have
[tap =52, [ apanap. (4.1
2 0

A very clever idea due to C. Herz is to write the right hand side of 4.1 in the
form

4f, <
Z::l f—/‘ A(pv SvdP
2 S"

and use Schwarz’s inequality to obtain

I f fop.dP

a-3, [B
2

Ay .
5 dP, B =Y, , | [ApR8,dP.
Y Q
As we shall readily see this leads to a remarkably simple proof of Fefferman’s
inequality.
Indeed,

<VAVB (4.2)

where

Si - 83—1
a=sp, [P ar <o, [1s,— 8 0P 2. s
I v 0

While, on the other hand we have

B=>", f A 5" (S, — 8, )dP = S"_, f (S, — 8, ) Sr_ [ApJdP =
0

n ? y (4.4)
— >t f Sy — 8, )E(Ips — Bus PFITIEP < oo B(S,(F)).
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Combining (4.2), (4.3) and (4.4) we obtain

f f.p.dP

which yields (I.5) with C; = \/ 2 as asserted.

<V 2E(S,(f))l¢llsaro

5. Further remarks

Before closing it migh be good to point out another interesting way of establishing
the hard side of the Burgess Davis inequalities. :

However, we shall only give an outline of the arguments here since some of the
details are quite intricate and the resulting constant is not as good as that obtai-
ned in section 3.

The idea consists in establishing first the converse of Lemma 1.1, namely

LemMa 5.1. There is a universal constant ¢ > 0 such that each ¢ € BMO with
lplamo < 1 can be written in the form

i

= 2,2, E0,%)
with
alfl <e.

This given, when E(f*) < oo and |gllguo <1 we can write

ff,.%dP ffn © B(0,[7)dP = S vanode<

/f*w P < ¢ /f*dP

f Jo®n
On the other hand, we have

ElS.(f) =20 f [Af,R/S, dP =

And this yields

sup
llelipMo <1

<o f F*dP. (5.1)

=S [ ALABALIS, ) — BALS, 17, )P,
Q

In other words
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BS,(f)) = [ f.pdP

with

¢ = 2, {BAL,18,17,) — B(41,]8,17,_1)}

Now, it is easy to show that the following result, somewhat analogous to that of
Lemma 1.1 holds.

Lemma 5.2. Let {0,} be a sequence of random wariables satisfying

2o 16,2 <1

then the function

¢ =D {E0,7) — E(evl?v—l)}

1s BMO and indeed

lgllzo < V5.
This given we get

ES.(f)) <V5 sup

lellBMo =1

f f,,q;dP: , (5.3)

2]

and combining with (5.1) we finally obtain

B(S,(f) < V5cH(fF).

Finally, we should mention that Lemma 5.2 like Lemma 1.1 has also a converse.

But we hope to come back on this matter in a forthcoming publication.
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