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Let Y P be an irreducible, n dimensional, projective variety with a smooth
normalization «: M—~Y and let ¥=a*0p(l)y. Recent results of [5], [6], [16]
imply that either (M, £) is one of a list of specific, well understood polarized vari-
eties or there is a projective manifold X and an ample line bundle L on X such that:

a) M is the blowup n: M—~X of X at a finite set F,

b) Ky @FL* *=n*(KxyQ@L"") where Ky®L" ' is ample and spanned by
global sections,

¢) L=[r(S)] for a smooth S€|Z|, or equivalently ¥ =n"(L)Q[z"1(F)]72,

d) Kx®L"? is semi-ample and big, i.e. some positive power (Ky®L"~?
is spanned by global sections and the map o: X—P. associated to
I'((Kx®L"?%") has an n dimensional image.

The pair (X, L) is called the first reduction of (M, &) and is very well be-
haved, see [12], [14] and [17]. It is easy to convert information between (X, L)
and (M, &2).

Let Gos=a be the Remmert—Stein factorization of the map a (in d) above)
where @: X—X’ has connected fibres for a normal projective X”, and s: X' —>P¢
is finite to one. There is an ample line bundle 2 on X’ such that &*# =KyQL">
The pair (X’, o) is known as the 2™ reduction and the map @ is called the second
adjunction map. Such pairs have been studied by the authors [4], [15]. X” has only
isolated singularities, is 2-factorial and Gorenstein in even dimensions. Thus for n
even, n=4, A =Ky QL™ % where for a smooth A¢|L|, 2&(4) is Cartier, ie.
[2®(A)] is invertible and L’ is 2-Cartier. This pleasant circumstance makes the ond
reduction almost as easy to use as the first reduction when » is even, and allows
us to use the results of Fujita [5] in this case. Combining this with a recent result
[2] we can push the known classification a good deal further. To state our main
result it is useful to recall the notion of the spectral value of a pair.
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Let # be a nefand big line bundle on a normal projective variety £ of dimen-
sion n=1. In[16] the spectral value, o(%, #), of the pair (%, #) is defined as the
smallest real number 7 such that given any fraction p/g=1, [(KY@#"+1-P/9N)=0
for all integers N=0 with g|N.

Note that ¢(M, ¥)=0(X, L)=06(X’, L")=0.

The normalization used in the above definition of spectral value is very useful in
organizing the known results, e.g. o(M, £)=0 if and onmly if (M, 2)=(P",
Op.(1)), and (M, £)=1 if and only if (M, £)=(Q, Og(1)) where QCP"** is
a quadric or (M, %) is a scroll over a curve. The known classification is for
o(M, £)=3. In [2] this is pushed to o (M, ¥)<4—3/(n+1). Our main result is

1.1, Theorem. Assume o(M, F)=>3 (see [16] for the case o(M, ¥)=3). Let
M be of dimension n where n is even and n=4. Either h(K{+tD® grn-Dr-0)..(,
in which case (M, £)=4—(n+3)/(n2+1) and Ky QHA™ ' is semi-ample and big
or (X', L") is one of the following list:

(X, L)=3+% and (X’,L) = (P, Op(3)).
o(X’, L) = 3 and either a), b), ¢), or d), holds:

a) (X', L)=(P, 0p:(2)),

b) Kyt=L", dim X’=4, and there is an ample line bundle H on X’ with
H3=K3},

c) there exists a holomorphic map ¥: X’ —~C, where C is a curve, KZQL'*=
Y*E for an ample line bundle E on C. Further the general fibre of ¥ is
(Q2, 00:(2)),

d) there exists a holomorphic map ¥: X’—~S, where S is a surface, Ki®
L3=Y*E for an ample line bundle E on S. Further the general fibre of ¥ is
(P2, 0p:(2)).

o(X’,L)=3% and Kz?=L"°, dim X’=6, and there is an ample line bundle
H on X’ with H’=Kg'.

By passing to a general H€|.?| we get information about odd dimensional M.

1.1.2. Corollary. Assume that ¢(M, #)=3. Let M be of dimension n where n
is odd and n=5. Either

((n—12+ DKy +(n*—5n2+9n—4) Z] - &
and
[(n— 12+ 1)Ky +(n*~5n*+9n—4)L]-L
are effective, or one of the following is true:
a) (X', L) is the cone on (P%, Ops(2)),
b) X’ is 5 dimensional and Ky QL™ =0y,
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c) there is a morphism ¥: X—~C where C is a curve, Ly=05p,(2) for a gen-
eral fibre F which is biholomorphic to P*,
d) X’ is 7 dimensional and K3, QL'*=0y..

To illustrate the use of these results which actually requires only that & be
ample and spanned on M we give a single representative application in §2. Let
M be an n-fold with n=4 and assume that there is a family of lines on M with a line
through most and hence all points of M. Let ¢+n—1 be the dimension of the
family where =0 by the hypothesis on the last line. Then (M, %) has a 2°? reduc-
tion on the above lists if

n(n—1)(n—2) < (#+2)(n2+1) and n is even,
or if

B —5m24+9n—4 < (t+2)[(n—1)*+1] and nis odd.

This should be contrasted with the work of Sato [10].

If & is very ample and the variety of singular hyperplane sections # c|Z|
has codimension k+1 then using a theorem of Ein’s ([3], see (0.5) for a statement
and short proof) it follows that (M, #) has a 2™ reduction on the list for k>0 if

n(n—-1)(n—2) < (ﬁ%_—lzc_—l_-_Z_] (n*+1); nis even

n—5nt+9n—4 < (ﬂi];—tz

)((n— 1)2+1); nis odd.

Thus we are reduced to studying varieties on the above list and that of [16]
if n is even and k=n—7 (see also [8]).

It should be noted that the detailed classification of varieties on the lists with
a special property, e.g. defect k discriminant locus, requires some further work,
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0. Background material

Throughout this paper (M, &) will denote a pair, consisting of a smooth
projective n-fold M, and an ample and spanned line bundle % on M such that the
map X-—P, given by I'(¥) is generically one to one.

0.1. Let L be a line bundle on M. We say that L is nef if ¢,(L)-[C]=0, for
all effective corves C on M. We say that a nef line bundle L is big if ¢;(L)"=0. We
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say that L is semi-ample if there exists an m=0 such that Bs|mL|, the base locus
of |mL|, is empty.

0.2. A reduction (X, L) of a pair (M, &) is a pair (X, L) consisting of an
ample line bundle L on a projective manifold X such that:

a) M is the blowup n: M—~X of X at a finite set F,

b) Z=n*(L)R[r"1(F)]~! or equivalently Ky ®#" '=n*(Kxy®@L" ™.

The pair (X, L) is also called the 1st reduction of (M, %) if KyQL"! is
ample.

For the following theorems we refer to [3], [6], [12], [13], [16].

Theorem 0.3. Let (M, &) be as above. Then there exists a reduction (X, L) of
(M, &) such that Ky®@ L'~ is ample and spanned by global sections unless one of
the following holds:

a) (M, £)=(P", Op.(1)) or (P? 0p:(2)),

b) (M, £)=(Q", 0y~(1)), where Q" is a smooth hyperquadric in P"**,

¢) (M, &) is a scroll over a smooth curve,

d) (M, &) is a del Pezzo manifold, ie. Ky® L"'=0y,

e) (M, ) is a hyperquadric fibration over a smooth curve,

f) (M, &) is a scroll over a surface.

Theorem 0.4. Let (M, %) be as above. Assume that dim M=n=3. If (M, %)
is not as listed in 0.3 there exists a reduction (X, L) of (M, ¥) such that Ky®L"™*?
is semi-ample and big unless one of the following holds:

a) (X, L)=(P*, 0p:(2)) or (P° Op:(3)),

b) (X> L)=(Q39 0Q3(2))a

c) there is a holomorphic surjection @: X’—~C onto C, a smooth curve where

K3, QL3~@*{ for an ample line bundle { on C; in particular the general
fibre of ¢ is (P2, Op:(2)),

d) Kxy~L~®"? je. (X,L) is a Fano manifold of co-index 3 (see [9]),

e) (X, L) is a del Pezzo fibration over a curve,

f) (X, L) is a hyperquadric fibration over a surface,

g) n=4 and (X, L) is a scroll over a threefold.

We need the following basic result (see [4], [15]).

Theorem 0.4.1. Let (M, #) be as above. Assume there is a reduction (X, L)
with Kx®L*™* ample. Assume that Ky®L""® is semiample and big and that n=4.
Let ®: XX’ be the second adjunction map, i.e. there is a birational morphism,
D, and an ample line bundle A" on X', a normal projective variety, such that &*H =
KyQL"® Then X’ has isolated singularities. Precisely there exists an algebraic
set ZC X' such that dim Z=1 and Px_g-1zy: X— P HZ)—~X'—Z is a biholo-
morphism. If CCZ is a pure one dimensional subvariety, then C is smooth, CCX],

reg?
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and in a neighborhood U of C, ®: ®~Y(U)~U is simply the blowup of C. If x is
a zero dimensional irreducible component of Z then ®7(x) is one of the following,
a) P with normal bundle Opn-1(—2), Lpn-1= Opn_1(1),
b) Q biholomorphic to an irreducible quadric in P* with Lo=0p(1)q, and
normal bundle Op.(—1)q.

Letting Z=2Z,+7Z, where Z,=set of points x with #~1(x) as in a) and Z,=
Z—7,, and letting L'=(PxL)** it can be seen that using Q-Cartier divisors
S L'~ P (Zy)—1/2071(Z)=L.

0.4.2. Let L’= (@+L)**. This is a 2-Cartier divisor. Indeed except for points
x with @~1(x) of the form a) it is Cartier. Similarly Ky. is 2-Cartier and Cartier if
n=dim X’ is even. We often write L' for the line bundle (2L")".

0.4.3. Often we will have a surjective map f: X’'>Y where . 0=<dim Y=<
dim X’. If dim Y>1 then by 0.4.1 we choose a general fibre FcX’ of fsuch
that @ gives a biholomorphism of ¢~*(F) and F. Thus F can be identified with a
general fibre of fod: X7

If dim Y=1, then a general fibre F of fis smooth, FCX},, and meets the set
Z of 0.4.1 in a finite number of points & ={x,, ..., x,}C F obtained by intersecting
F with a smooth curve CcZ. Note &: ®~1(F)—F expresses @ 1(F) as F with
& blown up and since Ky, =K,

Ko-1r®@ Ly = O*(KrQLP~?).

Lemma 0.4.4. Let A be a nef and big line bundle on a normal projective Goren-
stein variety Y. Assume Irr (Y) is finite and (K§@A")'=0y for some a=0, b=>0,
t>0. Then K{®@A°=0y. Further bla=n+1.

Proof. Choose the smallest integer ¢>0 such that (K;@A4%)'=0y. Let
g: Y’—Y Dbe the unramified cover associated to the #-th root of the constant func-
tion. By choice of 1, ¥’ is irreducible and K{®@X =0, where H’'=g*A .
Since K¢f=x""", K§{,=A4""" we see that K;*, K;' are nef and big. Thus by
the Kawamata—Viehweg vanishing theorem (see [16], (0.2.1)), A(Op)=h (0y)=0,
i>0. Thus y(0y)=x(0y)=1. But since ¢ is an unramified cover y(Oy)=13(O0y).
This implies t=1.

To see that bla=n+1 is a simple modification of an old Hirzebruch—X odaira
argument. Note that since A is nef and big, the polynomial p(t)=x(K,®A™)
is an nth degree polynomial with nth degree term nonvanishing. By the Kawa-
mata—Viehweg vanishing theorem used above, p(£)=h"(Ky®@H4") for all t=0.
If bla=n+1, then (Ky@A")*'=(K¢QA)@ A4 P=24""" has a nef and big in-
verse for 7 between 1 and - 1. Thus we have the absurdity that p(1)=h°(Ky @ %) =0
for n+1 integer values. 0O
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0.5. Let &£ be a very ample line bundle on M. Let AC|%| be the variety of
singular hyperplane sections. If 4 has codimension k+1 then for a general point
x€4, the set of singular points of the hyperplane section A4 corresponding to x is a
linear o =P* of non degenerate quadratic singularities. Thus the two jet 7 of a
section s€I'(¥) gives on @ a section of Np*(2)®.% which is non degenerate as a
symmetric form at all points of g. Thus

Theorem 0,5.1. (Ein.) Nik@ ®ZL=Ng. In particular given a line ACp, N,=
N)./go GBN@,).%/ OPl(l)@(k-—-l) ) 0p1(1)®("_k)12 @ Of?l("—k)/z,
Thus
deg Ky, =—(n+k+2)/2 and 0= (n+k) mod?2.

Remark. The parity result had earlier been observed by A. Landman. The
number k is also called the defect of M, def (M) (see [3] for details).

1. The main Theorem

Let % be an ample and spanned line bundle on a smooth projective manifold M.
Assume the map M—P. associated to I'(¥) is generically one to one. Assume
dim X=n is =4 and even. Assume o(M, £)=3 and let X, L be as in 0.4. This
section is devoted to proving the main theorem stated in the introduction.

Proof of Theorem 1.1. Recent results of [5], [6], [16] imply that the pair (M, &)
has a 2" reduction (X’, &) unless (M, %) is as listed in 0.3 and 0.4. It is easy
to see from [4], [15] that X’ has only isolated rational singularities and in fact X’
is 2-factorial and Gorenstein in even dimensions. Thus for n even, n=4, the ample
line bundle " is Ky ®@L™ % where L’ is as in the introduction.

Hence we can apply the results of Fujita [5], to the pair (X’, ). From ([5],
Thm. 1, 2) we see that Ky ®#™ " is nef unless

a) (X', A)=(P", Ops(1)),

b) X’ is a hyperquadric Q" in P"*!* and #'=0¢n(1),

o) (X', &) is a scroll over a smooth curve.

Noting that # =Ky ®L™ % in a) we have Kpn®L™ *=0pn(1). Hence
—(n+1)+(n—2)d=1, where dcZ and d is such that L'=Opn(d). Using the
ampleness of L', d is seen to be an integer =0. It follows that 3=n=6. By assump-
tion » is even, thus we have either

a;) (X', L) = (P*, Opu(3)),
or
ay) (X', L) = (P°, Op:(2)).
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Note that L’ is Cartier in case b) since the only singularity of 0.4.1 for which
L’ would not be Cartier doesn’t occur on hyperquadrics.
Identical reasoning can be carried out for b) and c¢) and we obtain in b) either

bl) (X,a L,) = (Q3’ OQs (4))9
or

b) (X', L) =(Q% 04:(2))

and in c¢) we see that n=dim X’=3, 5. Note that both b) and c) cannot occur
since n is even. Thus Ky.® #™ ! is nef unless (X’, L") is as in a,) and a,). We will
denote, for simplicity, Ky @ #™ ' by 4. From (2.6) of [7] it follows that the linear
system |[m.#| is base-point free for all m>-0. Let ¥ be the morphism associated
to |mA#| for m=0.

Let W=¥(X’). Note that dim W=2 or dim W=n (see [16]). To see that
dim W=2 note that the restriction of # =Ky @H4™ " to a generic fibre, F, of
¥is Kp®A2™! and (Kp@AFH)™ if Op for some positive m. Now use lemma
0.4.4.

d) If dim W=0 then (Kx®HA ™" Y)'=0y. Thus by 0.44 Ky®A4™ =0y
Thus K3®QL)*-De-32=0,,. If n is relatively prime to (n—1)(n—2)/2 then
there exists an ample H such that H®-DO-3Pg-1=_ Since (n—1)(n—1)/2=
n+1 and n=4 and even we conclude that n=4. In this case K5 ®L'®=0y..
It is easy to see that if n and (n—1)(n—2)/2 have a common factor it is 2 and then
n/2, (n—1)(n—2)/4 are relatively prime. Thus there exists an ample line bundle H
such that HC-Dt-D4=g-1 Since n=4 and even and (n—1)(n—2)/4=n+1
by Lemma 0.4.4 we conclude that n=6. In this case we have H°=K3', and
H3=2L’.

e) If dim W=1 and if we let F be a general fibre of ¥ we have (Kp® A ) =0
for some ¢>0. By (0.44, Kz®@A2 '=0g. Since F is smooth as noted in 0.4.3,
Fis a smooth quadric QCP" and K;=04(1). Since L'r=0q(d) for d a posi-
tive integer, this gives —(m—1)+(n—2)d=1 or (n—2)(d—1)=2. Since n is =4
and even, we conclude that n=4, d=2.

f) If dim W=2 and F denotes a general fibre of ¥ then by 0.4.3 W is smooth.
We have Ky®@A7 ‘=0, ie. (F, #3)=(P""?% Opi—2(1)). As before we can see
that n=4 and d=2.

It is easy to see that ¢(X’, L')=3+if (X", L) isas in a,), and o(X’, L)=3 %
if (X’,L’) is as in a,), €), or f). In the first example of d) ¢(X’, L)=3%; in the
second 3 —i— . Hence (X’, L") is as in Theorem 1.1 above.

If dimW=n then #=KyQ® #™ " is nef and big. Consider the line bundle
Kp @M.

Either h°(Kx® #")0 or h°(Ky.®.#4™=0.
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In ([2], Theorem 2.2) it is shown that if A =K,®L""* is nef and big and
K (Kx®A™)=0 then thereis a birational morphism @: X->P" with # = &* Opx(1).
The argument used there works for any line bundle " on a normal Y such that:

a) A" is spanned by global sections for all sufficiently large ¢,

b) o is big,

¢) H(A7)=0 for i=0, j=0.

Since X’ is Gorenstein with rational singularities Kawamata’s base point
free theorem and the fact that o and .# are nef and big imply a) and b). Since
M=Ky @A QM7 for j=1, dim Sing (X)=0, and &, .# arc nef and
big, the Kawamata—Viehweg vanishing theorem implies c).

Thus if 4 =0 Opn(1), then & x (L)*=0pn(d) where

—+D+E—D((n—2)d—n—1) =1

or (n—1)((n—2) d—n—2)=3. Since n=4, this implies n=4 and 2d=7. This
is clearly not possible.

Proof of Corollary 1.1.2. Let A¢|L] be a general element. Corollary 1.1.2 will
follow from (1.1) if we show that (4’, L/,) can be one of the exceptions of (1.1)
only if

a) (X', L") is the cone on (P%, 0p:(2)),

b) X’ is 5 dimensional and K3 ®L'*°=0y.,

c) there is a morphism ¥: X—-C where C is a smooth curve, Ly=0p:(2)

for a general fibre F which is biholomorphic to P*,

d) X’ is 7 dimensional and K;,®L'*=0y..

Note if 4’=P* then X’ is smooth in a neighborhood of 4’. This follows by
looking over the possible singularities of 0.4.1. Since 4" is therefore Cartier and
ample it follows from Scorza’s theorem (see [1]) that X” is a cone over P*. The only
singularity on X" is the vertex. Checking the list in 0.4.1 it doesn’t occur.

If Ki*=L)., with dim A’=4, A€|L|, A'=&(4), then (Ki®L"), has
a section zero only on the inverse image of the positive dimensional fibre of A4’
and W((Ki®@L™),)=1. Consider 0-Ky@(K3®L")~KiQL®~(Ki®LY),~0.
Since Ky®L? is nef and big by assumption, we conclude h(K§®L%)=0 by the
Kodaira vanishing theorem. Also since 4 is a general element of |L] and
R ((Ky®LY),)=1 we conclude h®(K:®L¥)=1. Thus 4Ky+10L=D where D
is an effective divisor supported on the set of positive dimensional fibre of ®: X~X".
From this we conclude the Cartier divisor 4Ky +10L" is trivial.

Assume now that for A€|L|, A"=®(4) there existsa ¥: A'—~C, C a curve,
KL ®L®=Y*E for an ample line bundle £ on C with general fibre F of ¥ equal
(Q% 0(2)). By [11], the map Pod,: 4—S extends to a map f: X—S. By
0.4.3 we can assume that for a general fibre f of X—~C, (f, L,) has a first reduction
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(f',L}) with Fe|L}|. Since K®L;F=0p we conclude by the first Lefschetz
theorem, (Kn®L})*®L7E=0;.. Thus there is an ample line bundle H with
H’=K;'. Thus f'=P* Since H*=L}, L},=0p(2).

Similarly the 4 case leads to a map X’ —S with Kz*®L’;"=0; for a general
fibre F with dim F=3. This implies K;'=H"® for an ample line bundle H which
is easily seen to be impossible. In the last case we conclude as in the 3™ case that
6Ky=26L=D where D is an effective divisor supported on the set of positive dimen-
sional fibre of X—~X’. Thus K{®L*=0,. O

Theorem 1.2. Let YCP. be an n dimensional irreducible projective variety
whose normalization M is smooth of dimension nz=4. Assume that (M, %) is not as
listed in 0.3 and 0.4. Let S={(\;2;=,—o H; for the general H,c|&|. Then if n is even
either

— n+3
deg b= (6= 1)1+
and

n+3
Koor= (1450 K8

or (M, %) has a 2nd reduction (X', &) such that (X', L) is as in Theorem 1.1.
If n is odd then either

o n+2)
deg bt = =143

and
n+2
n?—3n

KS-L§(1+ ]Kg

or (M, %) has a 2nd reduction (X', #") such that (X’, L") is as in Corollary 1.1.2.

Proof. From 1.1 it follows that either hO(K® Vg g r-D0-2)£(0 or (M, &)
has a 2™ reduction (X’, #") such that (X’, L) is as listed in the Theorem 1.1 or
in 1.1.2.

If B° (K{P+D @ #"—D@~2y£() then since (Ky Q@ L ?)s=Kg and & is ample
we have
(n+H{n-2)

Ky & = nr+1

Z.ZL.

By the adjunction formula and the above inequality we see that

2nt*—n—1
23—2 = (Ks'f'g)'g:KS'g"!‘gg %Wg'g.
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Hence

_ _ n+3 )
degM—$-$=(g~1)(l+m .

Similar reasoning with Corollary 1.1.2 yields the given result. O

Remark 1.2.1. Assume n=4 and h°(¥)=n+3. Using Castelnuovo’s bound
for the genus of a curve in terms of its degree we get g=8 and further

o s )

a) if n is even then degM = (g—l)[1+2n2_n_1 )
o _ n+2 ]

b) if n is odd then deg M = (g—l)[l-l-m .

2. An application

Proposition 2.1. Let M be an n dimensional manifold. Assume that there is a
Jamily of lines on M with at least a t=0 dimensional subfamily of lines through
most points of M. Then (M, %) is as in 0.3 or 0.4 or has a 2°° reduction as in Theo-
rem 1.1 or Corollary 1.1.2 if

n(n—1)(n—2) < (#+2)(#*+1) and nis even =4
B~5n249n—4 < (t+2)[(n—1)2+1] and nis odd =S5.

Proof. Let A be a line through a general point p of M. Let N, be the normal
bundle of A in M. By hypothesis, N, is generically spanned by global sections. Hence

.1.1) N, = @, 0,(a)) with g =0.

Let I, denote the ideal sheaf on A of germs of holomorphic functions vanishing
at p. Since h(N,®1,,;)=0, where the Hilbert scheme A of lines in X through
p is smooth at the point #, corresponding to 1. Hence there is a unique irreducible
component A, of the Hilbert scheme containing #,. Also

dim A, = (N, ® L)) = X"} a;.

i=1

For simplicity we denote this dimension by ¢.

Unless (M, &) is as in 0.3 or 0.4 or has a second reduction (X', ) as in 1.1
or 1.1.2 it follows that

a) M+ 1) Ky+n(n—1)(n—2)& is effective if n is even and =4,

b) [(n—1)2+1)Kp+ (3~ 5n%+9n—4) L] - £ is effective if n is odd and =5.
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By the adjunction formula K,,-A=—2—deg(det N;)=—=2—¢. Since &£ -i=1
it follows from a) that

o) —(m+DR+H+n(n—1)(n—-2)=0 if nis even and =4,
and from b) that
B —ln—-12+11Q+H)+m—5n24+9n—4)=0 ifnisoddand =5 [

Proposition 2.2. Let £ be a very ample line bundle on an n-fold M with n=4.
Assume that def (M)=k=>0. Then (M, %) has a 2™ reduction as in Theorem 1.1
or Corollary 1.1.2 if

n is even and n(n—1)(n~2) < (n+k+2)[n?+1]/2,
or
nis odd and n¥—5n*+9n—4 < (n+k+2)[(n—1)>4+1]/2.

Proof. From 0.5.1 and the adjunction formula it follows that deg Ky. ,=
—(n+k+2)/2.

Hence as in the proof of 2.1 we conclude that (M, %) has a 2" reduction
as in Theorem 1.1 or Corollary 1.1.2 unless the above inequalities occur.

Conjecture 2.3. Let L be a very ample line bundle on a smooth connected projec-
tive n-fold, X. Assume that the spectral value, o(X, L), of the pair (X,L) is =n.

Then the only possible values of (X, L) are n-i-l——‘li where p, q are integers sat-
q

isfying O<g=p=n+1.
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