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1. Introduction 

The two set functions are the Hausdorff measure and a set function denoted 
by #. Both set functions are defined for all point sets in the plane (or in Euclidean 
n-space). The definitions are here given in sections 2 and 3. The set function/~ first 
appeared in connection with some problems for exceptional sets for entire func- 
tions and meromorphic functions, [3, 4, 5]. 

The results in this paper (Theorem 1 and Theorem 2, section 4) are given in.a 
unified (simplified) form. The results in S. J. Taylor's [6] are here presented in the 
same (simplified) form, in Theorem A and Theorem B below. The similarities are 
obvious, and the conclusion must be that the set functions # and Hausdorff measure 
are (essentially) different in the same way as the set functions generalized capacity 
and Hausdorff measure are essentially different. 

For  the three set functions considered here, there is a real function associated 
to each one of them. This real function is like a parameter, and what we have called 
a set function is actually a whole family of set functions. 

The Hausdorff measure, here denoted by h*, is defined with respect to a real 
measure function h, so that for h(t)=t ~, the corresponding Hausdorff measure is 
an e-dimensional outer measure. 

The generalized capacity, here denoted by C, is defined with respect to a kernel 
function q~, which for non-generalized capacity is q ) ( t ) = - I n  t. 

The set function # is defined by means of  a real function g. In this paper, as 
well as in existing applications [3, 4, 5] this real function is g (x )=exp  ( - e x p  (x)). 

The connections between the set functions Hausdorff measure and generalized 
capacity, as given in the four theorems in S. J. Taylor's paper [6] imply the following 
Theorem A and Theorem B. The functions h and q~ must satisfy reasonable regularity 
assumptions, see [6]. 
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Theorem A. Let the functions h and q~ be given. Then 

lim inf h (t) r (t) > 0 
t ~ 0  

i f  and only i f for all bounded sets A 

h*(A) = o ~ C ( A )  = o. 

Theorem B. Let the functions h and ~o be given. Then 

- -  f o h (t)  dcp (t) < o~ 

i f  and only i f  for all bounded sets B 

C(B) = 0 ~ h* (B) = O. 

The function theoretic application of  the set function g can be illustrated in 
this way: Let U be any set of  complex numbers. For  all entire functions f ,  and for 
all aE U, consider the lower order of  the entire function f ( z ) e x p  (az), take the 
supremum over a and the infimum over f This gives a real number, t, 0~ t<=l .  
The main result in [4] is that # (U)  = - l /In t. (With #(U)  = • co if t =  1 and # ( U ) = 0  

if t = 0.) 
An application to value distribution theory for meromorphic functions is the 

following: For a meromorphic function of finite order in the plane, the set U of 
those complex numbers a which are deficient in the sense of  Valiron, i.e. 
lim sup (T(r, f )  -- N(r, a))/T(r, f )  > t, 0 < t < 1, is a set with ~t (U) < 0% and each set 
U1 with p(U~) < oo is contained in such a set of deficient values. This is a simplified 
form of  the result in [5]. As a consequence of  the results in this paper, the above 
set of  Valiron deficient values can not be equally well described in terms of  the set 
function Hausdoff measure. The results in [3] on properties of  the set function # 
show that the set functions # and generalized capacity are essentially different. 
Therefore the best description of  the above set of  Valiron deficient values for a 
function of finite order, can not be given in terms of some generalized capacity. 

For  meromorphic functions of  unrestricted growth (infinite order), the situation 
is different. The set of  Valiron deficient values can be much larger than what was 
possible with finite order. The appropriate set function is the logarithmic capacity. 
This was proved by W. K. Hayman,  [2]. 

The material in this paper is organized in 10 sections. Definitions are given in 
sections 2 and 3. The results are given in section 4 and proved in sections 6, 7, 8 
and 9. Some comments and discussion of related topics are found in sections 1, 5 
and 10. The concept of  an approximating sequence in metric space, studied by 
R. J. Gardner  in [1], is here discussed in section 10. 
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2. The Hausdorff  measure 

The words covering and majorizing are here used in a rather strange way. 
A given point set B in the complex plane is said to be covered (majorized) by a 
given sequence D =  {d,}~= 1 of positive numbers if there exists a sequence {an}~~ 
of complex numbers, so that each a~B satisfies a-anl<d~ for some (infinitely 
many) n. The sequence D is called a covering (majorizing) sequence for the point 
set B. A majorizing'sequence is also a covering sequence for the same set. An infinite 
disjoint union of  covering sequences is a majorizing sequence. Throughout this 
paper, all covering or majorizing sequences are assumed to be decreasing (non- 
increasing). (This assumption is technically convenient, but otherwise irrelevant.) 
All non-trivial covering or majorizing sequences have limit zero. 

The Hausdorff measure of a point set is defined by means of covering sequences 
for that set. In the definition of  the set function #, majorizing sequences are used. 
This indicates that the two set functions are different. 

The Hausdorff measure h* (B) of a point set B is defined as the limit when 
max~ dn ( =  d0 tends to zero of the infimum of ~ =  1 h (d,) over all covering sequences 
with given dl, for the point set B. 

The assumptions on the measure function h : R  + ~ R  + are: 
(1) h is continuous and increasing, 
(2) the inverse function h -x exists, 
(3) the function t~--~t-lh (t) is decreasing, 
(4) h ( t ) 4 0  when t~0 ,  
(5) t - l h ( t ) ~ + o o  when t-~0. 

A function denoted by h or hi is called admissible if it satisfies the above five as- 
sumptions. 

3. The set  function # 

The word majorizing is defined in section 2 of this paper. For  the definition 
of  the set function #, a real function g is needed. We here simply put 

(6) g(x) = exp ( -  exp (x)), x > 0. 

(With minor changes the proofs in this paper are valid for more general g. The 
function g just needs to be smooth and rapidly decreasing.) This function g is here 
called admissible. 

For  a given point set B in the complex plane, the value p (B) of  the set func- 
tion is defined as the lower bound of  positive numbers 1/k for which {g(nk)}~'= 1 
majorizes the set B. I f  no such majorizing sequence exists, (the set B is too large) 
then # (B) = + oo. 
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The set function 12 is defined for all point sets in the plane (and similarly in R"). 
It  is countably subadditive, but not strongly subadditive. I t  is translation invariant 
in a strong sense. I t  is finite only for very small sets, but of  course a set B with 12 (B) = 0 
need not be finite or countable. 

I f  we prefer not to use the word majorize, the definition of  the set function 12 
can be written: For  a given point set U in the complex plane, the value 12(U) of  
the set function 12 is defined as the lower bound of l / k > 0  for which there exists a 
sequence {a,}~= 1 of  complex numbers so that ]a-a,l<g(nk ) for infinitely many n 
whenever aE U. 

4. Resets  

In sections 6 and 7 we prove: 

Theorem 1. For given admissible real functions h and g and corresponding set 
functions h* and 12, the following three statements are equivalent: 

(d) For arbitrary point sets B in the plane, h*(B)=O=~12(B)< 0% 
(e) lim inf,_= nh(g(n))>O, 
(f) For arbitrary point sets B in the plane, h*(B)< oo=~12(B)=0. 

The corresponding results in the other direction are proved in sections 8 and 9. 
They are: 

Theorem 2. For given admissible real functions h and g and corresponding set 
functions h ~ and 12, the following three statements are equivalent: 

O) For arbitrary point sets B in the plane, 12(B)-O=,,h*(B)<oo, 
(j) ~ = l  h(g(n))<~176 
(k) For arbitrary point sets B in the plane, # ( B ) <  oo=~h*(B)-0. 

5. Commems 

One consequence of the results in Theorems 1 and 2 is that 

( h *  = 0 = ~  u < o o )  : ~  ( h *  < c o  = ~  12 = 0), 
and 

(12 = 0 =:~ h* < co) ::, (12 < ~o ::~ h* = 0). 

This means that the set functions h* and 12 are fundamentally different. Precise in- 
formation about one set function implies only vague information about  the other 
set function, and from the theorems in this paper we know exactly how vague. One 
other reason (which seems to be sufficient but not necessary) for the set functions to 
be fundamentally different, is that they have entirely different (additivity) properties. 
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In order to compare Theorems A and B with Theorems 1 and 2 we introduce 
the set function C1, the capacity with respect to the kernel function ~ol, 

~Ol(t) = In In I / t  = g -~( t ) .  

For  the kernel function qh we obtain equivalence between the conditions in Theo- 
rems A and 1 as well as in Theorems B and 2. 

l i m i n f  h ( t ) q h ( t )  > 0 ~ l i m i n f  nh(g(n) )  > O, 
t ~ O  n ~  

- f 0  h(t) ael( t )  < oo o Z =I h(g (/ '/)) < e o  

The following equivalent conditions can be added in the theorems: 
In Theorem 1 ; for arbitrary bounded sets B, 

h*(B)  = 0 :=~ CI(B ) ~- 0. 

In Theorem 2; for arbitrary bounded sets B, 

CI(B ) ~ -  O =~ h* (B) = O. 

The remaining part of  this paper consists of  the proofs of  Theorems 1 and 2. 
The proofs of  (d)=*(e) and ( i )~( j )  are constructions, similar to that of  the 

Cantor set. A set is defined so that one set function (h* or #) is large and the other 
set function is small. The details of these proofs seem to have negligible independent 
interest. 

In the proofs of  (e) =~(f) and (j) =~(k) we use properties of  majorizing and covering 
sequences. 

The remaining steps, (f)=~(d) and (k)=~(i) are trivial. 

6. Proof of (d)=~(e) in Theorem 1 

It  is here proved that if admissible functions h and g are given so that 

(7) lim inf nh (g (n)) = O, 

then there exists a point set A, so that for the corresponding set functions h* and/z 

(8) h * ( A ) = 0 ,  ~ ( A ) = c o .  

This means not (e) implies not (d), which is the same as (d)~(e) .  
For admissible real functions h and g satisfying (7), there will be defined a 

sequence {Np}p= 1 and a sequence {Op}~~ of open sets, so that (8) can be proved for 
the set A = l i m  O v. 

The assumption (5) is used only in this p roof  of  (d)=*(e), i.e. to obtain (9) 
and (12). Similarly, the assumption (3) on the function h is used only in the proof  
of  (i)=~(j), to obtain (36). 
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The assumption (5) can be written: 

(9) lira Th-I(1/T) = O. 

Let N x = l .  For  p > l ,  let np>l be an integer so that the inequalities (10) and (12) 
are satisfied for Np=npNp_l. (Thus Np>-2P-1.) 

(10) p-2Nph(g(p-2Np)) < p-3  (cf. (7),) 

i . e .  

~ p 2  ~ 

(12) / ' /  pNph_~ 1 < Np-~h-~ ( p -  1)N/,_I " 

These np and Np exist as desired, since (12) holds for all sufficiently large pN~ ( =  T) 
because of (9), and (10) holds for an unbounded set of  admissible p-2Np(=n), as a 

consequence of (7). 
Let lp =h-l(1/pNp). This definition of  lp gives 

(13) Nph(lp)=--I ~ 0  as p - ~ o .  
P 

The inequality (12) can be written 

(14) pnplp-< Ip_~. 

The set Op will be defined as the union of Np disjoint open intervals of  length 
Ip on the real axis. If this construction is performed in a natural way, then we obtain 
(8). The details of the construction are: 

Let Oa be the interval (O,/1). For  p > l  the set OpCOp_~ is defined so that 
each component of Op_x contains np components of 0 v. Let the distance between 
any two components of Op be at least 

(15) Ap = (Ip_l-nplp)/(np-- 1). 

This means that the gaps in each Op are equal (=Ap). It follows from (14) that lp 
is small enough, so that Av>O. Let A = l i m p ~  Op. This defines the set A and (8) 
is now to be proved. From (13) we obtain h*(A)=0, and it remains to prove that 
/~(A) = co. The definition in section 3 of the set function # says that we shall prove 
the following: For given k>-0 is {g(nk)}~=~ not a majorizing sequence for the set A. 

To see why or how this majorization fails, we study for given p the set of those 

n for which 
lp-1 >= g(nk) :> ll,. 
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Let sp be the number of  those n. 

(16) sp --<_ -~-g- (Ip) = ~ - g -  h -1 < kp 2 , 

where the last part  of  the estimate is (11). We also need an estimate for the sum of  
2g(nk) over those n. This sum gives an upper bound for the total length of that 
part  of  the real axis that can be contained in the corresponding discs. This sum is 
no greater than 4l~_ 1 i f p  is sufficiently large, since g is rapidly decreasing. (In the 
case of  a more general g, this is one place in the proof  where assumptions on g are 

needed.) 
The total number  mp of components of  Op intersected by the union of these 

discs can be estimated. The last term in (17) corresponds to the number of  covered 

gaps in Op, each gap of length At. 

4l._1 
(17) mp <= spq- Ap 

To obtain an estimate for mp/Np we use (17), (16), (15) + (14), p_->2 and Np->2 ~ _x 

mp < sp 41p_~ 1 4lp_~(np 1) < 1 8 1 

Np : '~p+ ApNp < -~p~7 ( lp_l__l  lp_x)Np : kff'--" ~ q" Np-------~l <= kp 2+25-p" 
g.. 

The sum Z*~=lmp/Np is convergent. For  some Po is ~=pomp/Np < 1. 
To see if majorization is possible, we need only consider what happens for 

P >P0. (Any finite number of  discs may be disregarded in this context.) Let a posi- 
tive unit mass be uniformly distributed over A so that each component  of  Op has 
the mass 1/Np. Then the mass in the union of discs of  radius g(nk)<lpo is no greater 
than the corresponding sum of mJNp which is less than the total mass of  A. There 
is always some point in A that is not contained in sufficiently (infinitely) many discs. 
Therefore the majorization fails and the desired result (d)=~(e) follows. 

7. Proof of (e) ~ ( f )  in Theorem 1 

Let admissible real functions h and g be given so that 

(18) lira inf nh(g(n)) > O. 

Let there be given a point set A so that  

(19) h* (A) < co. 

(In the proof  of  (e)=~(f), the set denoted by A is just an arbitrary point set in the 
plane with the property (19). I t  must not be confused with sets A in other proofs 
in this paper.) 
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We here prove that (19) and (18) imply that p(A)=0,  which is equivalent to 
proving (e) ~( f ) .  

An auxiliary set function h.  (which will turn out to be trivial) is introduced. 

Definition. Let B be a point set with h* (B)< ~. Then h.(B) is defined as the 
infimum of sup, nh(d,) over all sequences {d,}~=~ that cover the set B and have 

Zn=~ h(dn)<~. 

If  h*(B)=~,  then h.(B) is not defined. Monotonicity gives 0<sup,  nh(d,)<= 
~_~h(d,) and O<--h.(B)<--h*(B). 

We first prove that h. is identically zero. Then # (A)=0  is proved, i.e. (e)::~(f). 
(Proof of h~ = 0.) 

Let B and C be given point sets with 

h* (B) < ~ ,  h* (C)  < co. 

Let e>0.  The definition of the set Iunction h. implies that the set B has a covering 
sequence {d~}~=~ with ~ = x  h (d~)< ~ (which gives (21) because of monotonicity) and 

(20) 

There exists d > 0  so that 

(21) 

nh(d~) < h. (B)+e for all n. 

nh(d~) < e for d'. < d. 

For the point set C we use the definition of the set function h*, and this gives 
a covering sequence {d,"}~=l for the set C so that d,~'<d for all n, and 

Z~=~ h (d;') < h* (C) + 8. 
Monotonicity gives 

(22) nh (d~') < h*(C) + ~ for all n. 

These two covering sequences together make one new monotone sequence 
{d~"}~=l which becomes a covering sequence for the union BUC. We can estimate 
nh (rift) for small n, (23) and for large n, (24). 

For d~">=d is d~"--:d: (since d~'<d) and the inequality (20) gives 

(23) nh (d J') < h, (B) + 8. 

For ds it works like adding the two inequalities (21) and (22), since it is 
the number of elements of any given magnitude that counts, and those numbers are 
added when sequences are put together. The resulting inequality is 

(24) nh (a~') < h* (r + 28. 
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For  arbi t rary  n is (because of  (23) and  (24),) 

nh (d~") < m a x  (h.  (B) + 8, h* (C) + 28). 

Therefore ,  for  arbi t rary  sets B and C o f  finite Hausdo r f f  measure  

h ,  (B U C) < max  (h.  (B), h* (C)). 

Repea ted  use of  this inequality gives the formula  

h, (A1 U A2 U . . .  U A,) < m a x  (h~ (At), h* (As) . . . . .  h* (A,)). 

Since a set o f  finite Hausdor f f  measure  can be writ ten as a finite union of  sets o f  
arbi t rar i ly  small Hausdor f f  measure,  it follows tha t  the set funct ion h ,  is identically 
zero, 

h* (A) < ~o =~ h .  (A) = 0. 

The set A is given so that  h* (A) < ~ .  Fo r  m = 1, 2, 3 . . . .  we use the fact  tha t  
h ~ ( A ) < 2  -=  to obtain  a covering sequence D,.={d, , . , }~=l  for  the set A so that  

~ =  1 h (din,,) < ~ and nh (din, ~) < 2 -  " for  all n and rn. 
Let  {d~};= 1 be the union o f  this countable  collection of  covering sequences, 

thus a major iz ing sequence for  the set A. We apply  obvious addit ivity rules for  sup 
and  lira sup to the following est imates:  

lim sup nh (d,,,,,,) .--= 0 m = 1, 2 . . . . .  M 
n ~  

(which holds for  the same reason  as (21),) and  

sup nh (arm,,,) < 2 - "  m = M ~ 1, M + 2 . . . . .  
n 

The sum over  r n > 0  gives 
lim sup nh(dn) < 2 -M 

where M is any posit ive integer. 
The  assumpt ion (18) implies that  for  arbi t rary  k > 0  

lim inf  nh(g (nk ) )  > O. 

As a result o f  these two inequalities, for  large enough n 

d,, < g(nk) .  

The  conclusion is that  {g(nk)}'~=~ is a major iz ing sequence for  the point  set A, since 
{d~}~= 1 is majorizing. Therefore  #(A)<=l /k .  Since k > 0  is arbi t rary,  /~(A)=0 and 
we have established (e)=*(f). 
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8. Proof of (1) =~(j) in Theorem 2 

It is here proved that if admissible functions h and g are given so that 

(25) , ~ '= l  h(g(n)) = oo, 

then there exists a point set A with 

(26) U(A) = 0, h*(A) = co. 

This is equivalent to proving (i)=~(j). 
The assumption (25) can be improved in two ways, via (27) to (29). (These two 

steps together are roughly equivalent to (i)=*(k),) There exists an unbounded in- 
creasing sequence {k,}~= I of positive numbers (e.g. k,,+1=~,~=1 h(g(nk,) ) , )  so that 

(27) ~ = ~  h(g(nk, ) )  = oo. 

There also exists a function hi, admissible in the same sense as the function h and 
such that 

(28) lira h(t)  
,-o hi( t)  = o% 

and 
(29) . ~ = l  hl (g(nkn)) = co. 

The main partial result in this proof is: 

Lemma. Let  h~ be a given admissible real function. Let  {l.}~=~ be a sequence o f  
positive numbers so that ~~ hi(/ ,)=to. Then the sequence {l,}~= a majorizes some 
point set A with h~ (A) >0. 

The set function h~ is the Hausdorff measure with respect to the measure func- 
tion hi. 

We first show that this Lemma implies (i)=~(j). For k, as above, apply the 
Lemma to l .=g(nkn).  The point set A, which exists according to the Lemma, is 
majorized by {/,}~=1= {g(nk.)}~=~ and therefore, for arbitrary N, it is also majorized 
by {g(nkN)}~= 1. This gives ll(A)<=l/kN and #(A)=0.  The remaining part of (26) 
follows since (28) implies h* (A) >0  =ah* (A) = oo. 

The Lemma remains to be proved. It can be assumed that ~ = 1  In < co, since 
the Lemma is trivial otherwise (let A be an interval on the real axis). The sequence 
{ln}~'=a can be assumed non-increasing. The point set A is to be defined. An auxiliary 
sequence {fn}~=l of continuous piecewise linear real functions is introduced. For 
some sequence {a,}~=x of positive numbers, not yet defined, let 

0 if x - < a ,  

(30) f , ( x ) =  linear if a . ~ x < = a . + l .  

/h(l.) if a.+1.<=x. 
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For  some positive integers g~n<Lm<gm.cl<Lm+l<.. ,  we denote 

(31) F.,(x) = S ''=L" z.~.=K, f . (x )  m = 1, 2, . . . .  

a The sequence { .}.=a will be given indirectly, by means of conditions on the point- 
wise convergence of F,.. 

The intervals (a., a .+l . )  on which F,. is non-constant are assumed to be dis- 
joint, a.+l.<a,,+l.  These intervals are also assumed to be contained in the (union 
of  the) corresponding intervals for F, .-1,  supp dF, .=suppdFm_l.  Let Fo(x)=x  
for 0<-x<=50. Let O<~,m<�89 -m, m = 2 ,  3, . . . ,  and let the e,, be as small as 
will be required in the sequel. For  m = l ,  2 . . . .  it is assumed that 

(32) IF,,(x)--F,,-l(X)l < ~,,, 0 ~_ x ~_ 50. 

The next assumption on the F,, is stronger and more complicated. For each 
interval (a, b) which intersects only one component of  supp dF,,,_x but intersects at 
least two components of  supp dF,,, it is required that 

(33) F,. (b) -- Fm (a) < 10 (Fro_ 1 (b) - Fro- 1 (a)), 

and  it is assumed that e, .+~+a,.+~+.. ,  is so small that (33) implies 

(34) V(b) -- F(a) < 20 (F,,_ ~ (b) - Fro- a (a)). 

The inequality (33) will follow if the a.  are chosen in an adequate way, e.g. 
F,,,(a,,+�89 l,,)=F.,_l(a,+�89 (It is sufficient to have (33) at the critical points a=a,,, 
b=a,,+l+l,+l for all admissible n.) 

' F 

I 

i 

'a Ib 
[ 

Let A =lim,.~oo supp dF . ,= l im sup.~= [a., a.+l.]. (It is convenient to assume 
that all n are not used, i.e. Lm<<Km+x- The sum of hl(l.) is divergent like O(m).) 
The sequence {/.}~*=a is a majorizing sequence for the point set A, as was required 
in the Lemma. What  remains to prove in the Lemma is h~' (.4)>0. For this purpose 
we estimate what part  of  the set A can be contained in a circle Ci of  radius r t. The 
intersection of  the circle Ci with the real axis (which contains A) is an interval of  
length at most 2rl. The end points of  this interval are called a and b, and can be 
identified with a and b in (33) and (34). This defines m as above. (If  C~ intersects A, 
which may be assumed, then the above conditions on the number of  intersected 
components of  supp dF,. and supp dF.,_l determine m.) 
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Let [a,, a,+l,] be the component of  supp dFm_ 1 that intersects (a, b). In the 
interval [a,, a,+l,] is the function Fro-1 linear, Fm_l(x)=f,(x)+const, with deriva- 
tive hl(l,)/l,, because of  (30), i.e. 

hx(l.) 
(35) Fm_i(b)-Fm_~(a) ~ (b -a )  1, 

It  can be assumed that the circle C~ is not too large, (e.g. b-a<=l,) and then (3) 
and (35) give 

(36) Fm_l(b)--Fm_l(a) <-- h i (b-a)  <= hi(2r,). 

(The same conclusion holds if b - a > l . . )  
From (34) and (36) and (3) we obtain 

I ( )) (37) 20 F(b)--F(a ~ h~(2r3 <= 2hi(r3. 

This estimate shows how much of  A can be contained in a circle Ci of radius ri. 
Let {r~}~~ be a covering sequence for the point set A. Then (37) gives 

Z?=I h, (r,) = > T 0  (F(50) - F(0)) > 1. 

The conclusion is 
h* (A) _~ 1. 

This proves the Lemma, which was sufficient for (i)=~(j). 

9. Proof of (j) ~ 0 t )  in Theorem 2 

The set B is given so that/~(B)<oo. The functions h and g are given so that 
for k = l ,  N = I ,  

27,-_, ,  < 

The functions h and g are monotone, and therefore the above sum is convergent 
for any k > 0 .  Let 1/k>l,(B). For this k and for any N > 0  the sequence {g(nk)}~= u 
is majorizing and therefore also covering for the point set B. The above sum tends 
to zero when N increases, i.e. h* (B)=0.  This proves (j)=~(k). 

10. Approximating sequences 

In [1], R. J. Gardner studies the concept of an approximating sequence for a 
metric space. This concept is (because of its definition) closely related to the set 
function/z. Gardner studies the connection with Hausdorff measure. The results in 
[1] will here be compared with our Theorems 1 and 2. 
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Let h be a real function, as before in this paper. This is the main definition in 
[1] : A sequence {a,}~= 1 o f  points in a metric space f2 with metric 0 is called an app- 
roximating sequence o f  order  h if each a satisfies nh(Q(a,,, a ) ) < l  for  infinitely 

many  n. With the notat ion h - ~ ( 1 / n ) = g ( n ) ,  it follows that  the existence o f  an app- 
roximating sequence is roughly equivalent to #(f2) <- 1 or  # ( f 2 ) <  1. There is one 

impor tan t  distinction, since Gardner  requires the points a, to  belong to the set f2, 
so that  the proper ty  o f  having an approximat ing sequence is no t  inherited by sub- 

sets o f  ~. 
Gardner ' s  Theorem 1 corresponds to (e)=~(f) o f  this paper, a n d - G a r d n e r ' s  

Theorem 2 corresponds to (j)=*(k). In  bo th  cases it is obvious f rom the proofs  in 
this paper  that  the assumptions can be reduced to a minimum, the functions h and 

g need only have l i m t ~  h ( t ) = 0  and l i m ~  g ( x ) = 0  and monotonici ty .  The space 
need not  be Euclidean or  metric, since no t  all axioms for  such a space are used. 

For  the converse results, Examples 1 and 2 in [1], Gardner  assumes Y2cR 1. 

References 

1. GARDNER, R. J., Approximating sequences and Hausdorff measures, Proc. Cambr. Phil. Soc., 
76 (1974), 161 172. 

2. HAYMAN, W. K., On the Valiron deficiencies of integral functions of infinite order, Ark. mat., 
10 (1972), 163 172. 

3. HYLLENGREN, A., Ober die untere Ordnung der ganzen Funktion f (z)  exp (az), Festschrift Karl 
Weierstrass, 555 577, Westdeutscher Verlag, K61n, 1966. 

4. HYLLENGREN, A., Oil the lower order off(z)exp ((0(z)), Ark. mat., 6 (1966), 433--458. 
5. HYLLENGREN, A., Valiron deficient values for meromorphic functions in the plane, Acta Math., 

124 (1970), 1 8. 
6. TAYLOR, S. J., On the connexion between Hausdorff measure and generalized capacity, Proc. 

Cambr. Phil. Soc. 57 (1961), 524--531. 

Received March 3, 1974 Anders Hyllengren 
Kgl. Tekniska H6gskolan 
Matematiska Inst. 
Fack S-100 44 Stockholm 70 
Sweden 


