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Jaak Peetre

0. Introduction

In this note we study certain spaces of distributions Fy?= F;?(R") where s real,
0<p, g=<. They are intimately related to certain spaces studied by Triebel [10]
and Lizorkin [5] (cf. also [6]) when 1 <p, g=oo. Qur main result is a certain equivalen-
ce theorem (see Sec. 3) which says that the spaces do not depend on the special
sequence of testfunctions {¢,},¢z entering in their definition. This extends Triebel’s
corresponding result. But we have to give an entirely new proof, relying on two
deep results by Fefferman & Stein: 1° their real variable characterization of the
Hardy classes H,[1], 2° their sequence valued version of the Hardy & Littlewood
maximal theorem [2]. (Incidentally it follows from [1] that FP=H, if 0<p<ee
while as F®?=B. M. O.!) As an application we prove (see Sec. 5) a multiplier theorem
of the Mikhlin type, extending the one by Triebel and Lizorkin. We also give (see
Sec. 6) an application to approximation theory related to a theorem of Freud’s
[3]. Finally we briefly indicate (see Sec. 7) how the result might be extended to the
case of a Riemannian manifold.

1. Definitions

By L, where 0<p=< we denote the space of measurable functions f=£(x)
(x€R") such that

1/, = (f 17 dx)? < .

By 1% where 0<g=o we denote the space of sequences t= {t,},¢ such that

e = (e 6,077 < .

We consider also spaces of sequence valued measurable functions L,(/?) and /?(L,),
defined in the obvious way. If 1=p, g=oo these are all Banach spaces, in the general
case only quasi-Banach space.
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By & we denote the space of rapidly decreasing functions in R* and by &’
the dual space of tempered distributions.

We choose a sequence of testfunctions {¢,},¢z, With ¢,(x)=2"¢(2"x), where
@€c& with supp ¢={2-'=|¢|=2). For convenience let us also assume that {¢.,},cz
is normalized in the sense that

ez (@ @R =1 (or 2vez o, %0, = ).

We can now define our principal spaces.

Definition 1.1. Let s real, 0<p, g=o-o. Then we set (the spaces of Triebel—
Lizorkin type) '
Ft = {f1feS &{2" @, % f}vez € L, (ID}.

We equip F,? with the quasi-norm
Iflgza = 2" @v % }vezll, a0

Definition 1.2. Let s real, O0<p, g=o0, a=0. Then we set (poised spaces of
Besov type)

B(a) = {f1 /€S & {25 (L + 2] @, %[ }yez € 19(L,)}-

We equip B}!(a) with the quasi-norm

1flgse ey = 27 A+ 2" [xD @y % hvezliow,-

If a=0 we simply write B}/(0)=B3! (Besov space).

Remark 1.1, Conformally with the notation of [7] we should perhaps have
written F and B, rather than F and B. We also, as is customary in the case of
“homogeneous” spaces, have to work modulo polynomials. Thus the above quasi-
norms are genuine quasi-norms only after such an identification.

Let us now rapidly state some propertes of these spaces which can be proven
in a more or less standard way (cf. [10]).

1. The spaces F}? and B3 (a) are complete. The embeddings from & and into
&’ are continuous. They are thus quasi-Banach (Banach if 1=p, g=<) spaces of
tempered distributions.

2. & is a dense subspace of F and B(a) if O<p, g<eo.

3. We have embedding theorems, e.g. the embedding Bj!(a)—B3%(a) if
S—nfp=s—np;, s=51, =q;.

4. We have duality theorems, e.g. the duality (F;“)’%F;s‘" if 1=p, g=oo.
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2. Some lemmata

The following elementary result will do us a great service.

Lemma 2.1. Let u be any C* function in R* and let O<r=oo. Then we have the

inequality
= CMT (MUY 4 S (Vu)*), S =1

where M denotes the Hardy & Littlewood maximal operator and where we have defined
u** by
u*(x) = Sup u(x = p)i/(1 -+ Ly
y n
and (Vu)** in a similar fashion.

Proof. By the mean value theorem we have for any x, z¢ R"

u(x—z) = C{‘S_'"/'[f,x_z-yjd]”(J’)V dy)l/r+5 Ixﬁsgpld 1Vu(y)|}.
By definition of M and (Vu)** follows
u(x~—2)| = C{8~"(Mur (x))r + 8 (Vuy* (x)} (1 + 6 4 |2}y,

If 6=1 we clearly get the desired inequality.
We also need a few results connected with M. First we recall the following
elementary

Lemma 2.2. Let f by any measurable function in R* and let b>n. Then holds
SO +x =y dy = CMF().

We need also the following extension of the Hardy & Littlewood maximal
theorem.

Lemma 2.3. (Fefferman & Stein [2]) Let f={f},cz be a sequence of measurable
Sunctions in R* and let 1<p, g=co. Then holds

IME|lz,q0 = Cli€lL,a9
where of course ME={Mf},c4.

3. The equivalence proof

If fe F3* and if {p,},¢ is the sequence of test functions of Sec. 1 we set

e f(x) = o3 fX)}vezlla,
oy f(x) = sup 2%, #f(x— (L +2v] ¥
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We also set

o*f(x) = {os ezl
@y f(x) = 2%, * f(x).

Clearly ¢* feL,. Below we show that also ¢**fc L,, at least if a is sufficiently large.
More generally, let {s,},cz be a general sequence of test functions, with o,(x)=
=2"¢(2"x) (but with no restriction on supp #) and define ¢**f, 6¥*f, o f as
above. Then we have the following

Theorem 3.1. Assume that o€B;*(a) N\ B] sta 4 (g) with a=n/min (p, q), ¢;=
=min (1, q). Then holds:
JEFE = o*fcL,. 3.1

In particular (3.1) holds with =¢.
Proof. (Cf. Fefferman & Stein [1], pp. 183—187.) Let us start with the identity

oukf = Dvez (0,%0,) % (@, %f).
We then get

28lo, % f(x—2)| = 2 2% [ou* ) D)@y f(x—z— )| dy =
= 22 [ 205w, (2P (1+2°|y)dy @3 F(x) (1 +2°|2])* =
= 372095 [ (0% ¢, YOI +22H [y} dy @3+ FE) (L4271 (1 +2¢|2])¢
where we have used the elementary inequality:
max (1+u-+v, 1+u) =(14+uw)(l+v), u=0, v=0.
In other words we have
S = 2 1y, 07 () (3:2)

with £, = 2 27(1+2" [ (1+2'|5)*|o * ¢, (»)| dy. Here by hypothesis

(2 e l)e = c.

o**f = Co**f. (3.3)

Therefore follows

Thus we have reduced ourselves to proving (3.1) with o=¢. To this end we first
note that (3.3) in particular entails

(Vo)™ f = Co™ /.

On the other hand lemma 2.1 implies (with »=n/a)

¥ f = C{6~"r(M(p] fYVr+6(Ve)i*f}), 6=1.
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Thus we get
lo** iz, = C{6="" ||(M (@7 fY V|| an+ S 10** FllL, }-

By lemma 2.3 we have (since r<min (p, q))
H(M((P\Tf)')l/'HLp(zq) = ||M(<Pv+f)'”11r‘/;,,(lq/*) =

= Cl(os FYIL,00m = Clod flz,an = Cfllgza-
Thus we have '

lo** flle, = CL" 1 flpsa+0ll0™fl,), 6=1.

If we knew already that ||**f]| ,<° we could, taking & sufficiently small, con-
clude that
0™ flle, = Cllflpsa (3.4)

and we were through. But if |¢p**f|, =<o this argument does not apply. To cir-
cumvent this difficulty we use an apli)roximation argument. The above proof at
least shows that (3.4) is valid if f¢%. For a general f¢ F3* we find a sequence {f;};=,
in & such that f;~fin &’ as i >0, with sup; | £ pya<eo. It is easily seen that

lo**fle, = Hm o™ £,

i—>co

so an application of (3.3) to f; effectively yields [|p**f|| L= The proof is complete.

Corollary 3.1. The space F} is independent of the particular sequence of test
Sunctions {®,}, ¢z chosen.

Proof. Obvious.
4. Some variants of the above result

We begin with the following simple variant of th. 3.1.

Theorem 4.1. Assume that oc€B{*(a) with a>n/min (p, q), ¢;=min (1, q).
Then holds:
feFy=>a*fcL, @.1

Proof. The proof of th. 3.1 clearly also gives in place of (3.2)
o () = 2 1,0t f(x)
with #,=27" [ (14+2'|)])%|o ¢, ()| dy. This gives in place of (3.3):
O—+ fé C¢**f

Since we know already that ¢**f€L, it follows that o*f¢L,.
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Next we want to relax the condition on ¢ in th. 4.1. In this direction we can
prove:

Theorem 4.2. Assume that 6 € B_*~""(a) where a>n/min (1, p, q), g;=min (1, g).
Then holds again (4.1).

Proof. From lemma 2.2 and lemma 2.3 follows readily that
feFg= {2527 [lo % (=9I +2 1) dyf' e L, (19
‘where r<min (p, q), b>n. Fromthis follows again readily
FeFg= {276+ [ o xflac— /(1 +27]3)* dy} € L, (19

with a as in the hypothesis. of the theorem. The proof of th. 3.1 now yields

i f(X) = 2 6,276 oy f(x—p)I(L+27 [y dv

with /=27 (1+2"[y)*[o % ¢,(»)| dy. The rest of the proof is the same.

5.” A multiplier theorem

We have the following

Theorem 5.1. Assume that m¢€BY” (a) where a=n/min (p, q). Then fEF o=
=m*feFL.

Proof. (Cf. Stein [9], pp. 96—99.) Let us set g=m«f. We want to estimate
@tg. Choose ¢ in such a way that th. 3.1. is applicable and that in addition &,(£)=1
in supp @,. Then we have

Py *g = ((Pv*m)*(av*f)
and we get

25|, %g ()] = [ oy xm(»| (1 + 2]y dy oy" f(x) = Coy*f(x)

o*g = Co™f.

Or

‘Since 6™ f€L, we get ¢t g€L, and g€ Fl.
In order to get a true multiplier theorem we have to express the condition
on m in terms of m.
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Corollary 5.1. The conclusion of th. 5.1. is valid in particular if |D*m(&)|=C ||~
for all multi-indices o with |«|=T where T is an integer>n/2+a.

Proof. Use Bernstein’s theorem on absolutely convergent Fourier integrals.

Remark 5.1. Using the results of Sec. 4 it is possible ot relax the assumptions
on m (and ). In particular we can as a special case obtain Hérmander’s version
of Mikhlin’s multiplier theorem [4].

6. An application to approximation theory

We start by recalling the following known result (in the periodic case with
n=1):

Theorem 6.1. (Freud [3]) Let f belong to the closure of P in B<*(TY). Then f’(x)
exists at a point x€T iff @,f (x) tends to a limit as n—oo. Here @, f denote the Fejer
sums of f.

We can now prove the following analogue of th. 6.1, which for 1 <p=< was
given in [8].

Theorem 6.2. Let f be in the closure of & in Fy==F,"(R") where 0<p=co.
Assume that, for some o, 0,%f(x) converges as v—~co a.e. for x in set of positive
measure. Then the same is true for any other kernel such that the difference with the
first one belongs to BZ"™(a) where a=n/min (1, p).

Proof. It suffices of course to prove that ¢, xf tends to 0 a.e. throughout R”,
for every o €B_"(a). Since #(0)=0 this certainly is true if /€. On the other hand
by th. 4.2. sup |o, * f(x)|<< a.e. for a general f. Thus it suffices to apply the usual
density argument.

Example 6.1. Th. 6.2 is applicable notably in the case of Riesz means, i.e.

A—p* if ¢l <1

0 elsewhere

6(&) = {
provided A>a—4%.

7. Concluding remarks

In retrospect we notice that in the preceding treatment only very little of the
structure of the underlying space R" has been utilized. This indicates that there
exist generalizations. In the place of R” we may indeed consider any (complete)
Riemannian manifold Q. The spaces F3!=F;?(Q) are then defined by a condition
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of the type
25 0(V=4/2) f}yez€ L, (19

where 4 is the Laplace—Beltrami operator on Q. (In particular we can thus define
Hardy-classes H,=H, (2).) We plan to return to this topic in a forthcoming public-
ation.
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