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1 .  I n t r o d u c t i o n  

Denote points in n dimensional Euclidean space R", n => 3, by x = (xl, x~, ..., x,). 

Let r =  ixl and x l = r  cos 0, 0<=0<=re. For r > 0  let B ( r )=  {x :lxl <r},  S ( r ) =  {x :Ixl =r},  
and S--=S(1). For 0~_~<=~r, let C ( ~ ) = S N  {x :0<~}. If  E is a set contained in S(r), 
let c~E denote the boundary of E relative to S(r). Let H m denote m dimensional 

Hausdorffmeasure on R". 
I f  f is defined on a set E c R " ,  let O(r) for 0 < r < o o  be defined by 

H"-l(C(O(r))) = H"': l (p(S(r)  N E)) 

where p denotes the radial projection of  R " - { 0 }  onto S. For O<=O<=O(r), let 

f (r ,  0) = sup f r  f ( ry)  dH"- ly ,  

where the supremum is taken over all measurable sets F c p ( S ( r ) N E )  with 

H , - I ( F )  - H,-I(C(O)). 
Given a set E c [ 0 ,  ~o), let 

r~ ~ ~ (1, ,) log r 

[Y log dens E = lira inf 
, ~  co ~ n (1, ,) log r 

Let u be equal H" almost every where on R" to the difference of two subhar- 
monic functions. By the Riesz representation theorem there is associated with 

this difference a unique signed Borel measure v whose total variation on compact 
sets is finite. Let v---v+--v - denote the Jordan decomposition of  v. To simplify 

matters, we will assume that v+(B(1))=0 or equivalently that u is equal H" almost 
everywhere in B(1) to a subharmonic function. 
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F rom [1, Thm.  2] we see there exist functions ux and u2 subharmonic  in R" 

with associated measures - v -  and - v  + respectively, such that  u s ( 0 ) = 0  and u =  

-=Ul-U2, H ~ almost  everywhere in R". Fo r  convenience in making the following 

definitions, we assume that  u = u l - u s  except on the polar  set where ul and us are 
bo th  - c o .  Otherwise, one may  replace u by ux-u2 in the definitions. 

I f  f and g are real valued functions on  R ", let 

( f v g )  (x) = max {f(x),  g(x)}, xER".  
For  0 < r < oo let 

re(r) ---- sup {fi(r, 0): 0<--0<=re} --- f s  (u v O) (ry)dH"-ay ,  
and 

T(r)  = m(r)+~2(r ,  zt) -- f s  (ux v u2) ( ry )dH"- ly .  

w e  note that  ~2(r, rc)=>u2(0)=0 for r > 0  since us is subharmonic.  Hence, 

O<=m(r)<= T(r) for O < r <  ~ ,  

and consequently since ul v u2 is subharmonic,  either m(r)=-0 or T(r)  is positive 
for  r>-ro (to large). In  this paper  we consider only u for which the second possibility 
occurs. 

In  analogy with the case for  meromorph ic  functions we define the deficiency 
6, order  O, and lower order # o f  u by 

m(r)  
3 = limr~inf T(r)  ' 

Q = lim sup log T(r)  
~ log r ' 

# = lim inf log T(r)  
r ~  log r 

Observe that  0-<_#<_-0_-<0% and 0_-<3<-1. We remark that  if hi and h2 are subhar- 
rnonic in R", h2 is harmonic  in B(1), h s (0 )=0 ,  and U = h l - h s ,  except on a polar  
set in R ", then 

lim inf  re(r) <= 3. 

Consider  for  0 <  y < ~ the ultra-spherical differential equation 

(1.1) - ~  (smO) - ~ = - - ~ ( ~ + n - 2 ) ( s i n O ) " - 2 f ( O ) ,  O< O< ~. 
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It is well known and easy to show that  (1.1) has two linearly independent solutions 
~kr, ~or, satisfying 

(1.2a) lim~Or(0) = ~O~(0) = 1, 
0 ~ 0  

(1.2b) lira (sin 0) "-2 d~p~ = _ 1 
0 4 0  d O  " 

It follows f rom (1.1), (1.2a), and (1.2b) that  

(1.2c) ~b r (0) -'gO- (0) - q~r (0) (0) = - (sin 0) z-". 0 < 0 < 7r. 

It is also easily shown that  
(1.3a) Each ~k~ has at least one zero in (0, 7r) and if ~=~(~)  denotes the first zerc 
of  ~br, then @r is decreasing on [0, ~]. 

(l.3b) I f  0 < v < y ,  then ~,r<~k, on (0, c~(~)], 

(1.3c) lim~_.r ~b~--~Or uniformly on conpact subsets of  [0, re). 

It follows from (1.3a) that  given ? and 6, 0~6<_ - 1, there is a unique 0o=0o(6, ?) 
with 0<_-00<_-~(y) and @r (0o )= l -6 .  In w we will prove 

Theorem 1. Let u be as above with deficiency 6, order Q, and lower order I~. Given 
y, 0 < ? < 0 %  let E(?) denote the set of  all r>O such that 

H"-~({y  : u(ry) > 0} G S) ~= H"-~[C(Oo(6, ?))]. 
Then, 

and 

log dens E(7) ----> 1 - -  /z  
? 

log dens E(?) ~ 1 - __0 
7 

Theorem 1 implies that 

lim sup H n- l ({y : u (ry) > 0} N S) => H " - I  [C(00 (6, V))] 
r ~ c o  

whenever ? >/~. From (l.3c) it follows that  

(1.4) lim sup H " - I  ({y: u (ry) > 0} f-) S) => H " - I [ C  (0o (6, #))] 

for 0</z<oo.  In w we show that  (1.4) is sharp. The inequality (1.4) is analogous 
to a spread conjecture made by Edrei and proved by Baernstein [2] in R z. 

Considering ~r as a function defined on S, we let 

A (?) -~ fc(,(~)) ~ dH"-l .  



94 Ronald Gariepy and John L. Lewis 

Suppose now that u is subharmonic in R ~, i.e. u2=0, and let 

M(r)  = max {u(x ) :xES(r ) } ,  r > 0. 
In w we prove 

Theorem 2. I f  u is subharmonie in R" with order ~, lower order It, and ~ is given, 
0 < y < o o ,  let 

E1(7) = {r : T(r) >= A(y)M(r)} .  
Then 

and 

log dens E1 (y) => 1 It 
7 

log dens E1 (Y) > 1 e 
7 

We note that Theorem 2 has been obtained by Ess6n and Shea [7], using a 
different method. Theorem 2 implies that if ~>It, then 

T(r) 
limr~=sup M(r)  >= A (7). 

Letting ~ ~ # ,  we have by (1.3c) that 

lim sup T(r) >-_ A (It) 
, ~  M(r )  

when 0 < # < * o .  This result has been obtained and shown to be sharp by Dahlberg [5]. 
In w we prove 

Theorem 3. I f  u is subharmonie in It" with lower order It, order O, and 0 < 7 < 0 %  
let E~(O, 7) denote the set o f  r > 0  for which 

H " - l ( { y :  u(ry) >-- ~r(O)M(r)} (~ S) ~ H"-I(C(O)), 

when 0<0<-~(7) .  Then 

log dens E2 (0, 7) -> l - H ,  
y 

log dens E2(O, 7) >= 1 e 

for 0<0<=~(~). 
We note that Theorem 3 can be obtained in R 2 by using a method of  Baernstein 

(see [6, Ch. 8]). 
In the proof of Theorems 1 3, we first use a method of the authors [8] to 

obtain a differential inequality (see (2.6)). Using this inequality, and methods of 
Ess6n [6], and Ess6n and Shea [7], we obtain an integral inequality (see w 3). Finally, 
using this integral inequality and a method of Barry [3, 4] we obtain Theorems 1 3. 
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2. Spherical Symmetrization 

Given a closed set F = R "  define the spherical symmetrization F* of F as follows: 
If F N  S(r)=~o, then F* A S(r)=q~. Otherwise, 

H"-afF*f~S(r))  = H' -a(F(qS(r) )  

and F*O S(r) is either the point (r, 0 . . . . .  0) or the closed cap on S(r) centered 
at (r, 0, ..., 0). Let u = u l - u 2  where Ul, u2, are subharmonic in B(R), R > 0 ,  with 
continous second partials. Given t , - o o < t < ~ ,  let F(t)={x:u(x)>=t} and note 
that F(t) is closed. Define an associated function u* by letting 

u*(x) = sup{t: xEF*(t)}  whenever xEB(R) .  

It is easily seen that u* is symmetric with respect to the xl axis, and {x: u* (x)~t}  = 
= F*(t). It follows that u and u * are equimeasurable and 

(2.1) fi(r, 0) = fclo)u*(ry)dH"-lY 

whenever rE(0, R), 0E[0, re]. Also for fixed r, rE(0, R), u*(r, O) is a nonincreasing 
function of  0 on [0, rc]. We note that Gehring [9] has shown that u* is Lipschitz in 
B(Ra) whenever Ra < R. 

Let f be a function defined on (0, R). Define f+  on (R z-", ~o) by f~  (s)=f(r)  
when s=r  2-" and rE (0, R). Let 

r 4 -2, lim inf [ f *  (r2-n -r h) +f,~ ( r  2 - n  __ h) - 2f,~ (r 2-") ] Lf(r)  (n 2) 2 
h~o [ h 2 J 

for rE(0, R). Note that if f has a second derivative on (0, R), then 

a - .  d [ . - 1  df]  
1 . f  ( r ) ---- r -Yrr [ r --d? j ' ?'E (0~ R). 

Let 
P(r, O) = ~t(r, O)+a2(r, ~) 

for rE (0, R) and 0E[0, re]. Given roe (0, R) we shall show that 

LP(ro, O) >= O for 0--<=0<=72, (2.2a) 

and 

(2.2b) 
6~//* 

LP (ro , O) ~= - c (sin 0)"-2 --frO- (r0, 0), 

for almost every 0 with respect to one dimensional Lebesgue measure on [0, n]. 
Here c is the surface area of  the n - 2  dimensional unit sphere, and for each fixed 
O, LP(r, O)=Lf(r), w h e r e f ( r ) = e ( r ,  0). 
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To prove (2.2a) let G(O)cS  be such that 

(i) SN {y : u(roy) > u*(ro, 0)} c G(O) c S N  {y : u(roy) >-- u*(ro, 0)}, 

(ii) H'-~(G(O)) --- H",I(C(O)), 

(iii) a(ro, 0) --- fG(o) u(roy) d H ' - l  y = f c(o) u* (roy) dH'-~ y, 

for 0 E [0, re]. Let 
q (r, O) = fa(o) u (ry) dH"- l y  + a~ (r, zr) 

for rE(0, R) and 0E[0, re]. Clearly, q(r, O)<=P(r, 0), with equality holding at (ro; 0). 
Hence for fixed 0, 

(2.3) LP(ro, O) >-- Lq(ro, O) = L[fG(o)Ul(roy)dH" "ty+ fs_G(o)u~(roy)dH"-ly ] = 

--~ r - --~ ulJ (roy) dH"- l  y + 

+ f : o(o) ( : : o . o 
] (r ~ r -  - f f ; % ( ~ o y ) d n ' - l y .  

Let A denote the Laplacian in R n and let zT be the spherical part of  A defined by 

A = r l - n - - ~ r r " - i  + r - ~ .  

Observe that for H "-1 almost every xEG(O)fq {y :U(roy)=u*(ro, 0)}, we have 

0 = Xu (rox) = Xu~ (rox) -  ~u~ (rox). 

Using this fact, the subharmonicity of u~, u2, and (2.3), we obtain 

(2.4) LP (ro, O) >-- - f s n ~:, (to,) >,, (to. o)} gul (roy) dH n - ly  _ 

- f ~  n u :,(,o~)-~,* (~o. o)) Xu~(roy) dH" -iy. 

Now as in [8, w we may apply Green's formula for almost every tER to 
obtain 

-- f s ~u i ( roy)dH' - ly  = r~-" f OUi dH "-~ 
n(r:u(,oy)>t} a S(,o)n.-~(t) On 

and 

- f s ~u2(roy)dH._ly = _r~)_. f Ou~ dH"- '  
n{y:U(roY)~_t} j S(ro)Nu-t(t) ~n 
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where i)ltgn is the normal derivative taken into S(ro)fq {x:u (x )>  t}. Hence for almost 
every t E R, 

(2.5) - f sn~y:,(roy)>t) Xu l ( roy )dH"-2y -  f sn(r:,(,oy)~_t) Xu~(roy)dH"-ly = 

J S  (r0) f) U -  (t) On ,J 8 (r0) I"1 u-  1 (t) 

where ~r denotes the spherical gradient of  u on S(ro). Letting t-~u*(r o, O) from the 
fight through a properly chosen sequence and using (2.4), (2.5), we see that (2.2a) 
is true. 

Let J be the set of  0 E [0, re] where 

0u* 
O0 (ro, O) = -ro[~Tu*(ro, 0)l < 0. 

Since LP(ro, 0)_->0, we see that (2.2b) is valid for almost every 0E[0, 7z]-J. Let 
K =  {u*(r o, O):OEJ}. Then in [8, (2.2)] it was shown for almost every t=u*(ro, O)EK 
that 

where C1 (0) = {roy :y E C(O)}. Note that if J1 c J has positive one dimensional Lebesgue 
measure, then {u*(r o, O):OEJ1} has positive Lebesgue measure. Thus it follows 
from (2.4), (2.5), and the above inequality that (2.2b)is true. 

Let 

T(r, O) = (u v O) (r, O) + ~ (r, •) 

for 0 E [0, zr] and rE (0, R). For given r0 E (0, R), let 02, 0-< 01 ~-re, be such that 

n"-1(c(ol))  = Hn-l({y: U(roy) > 0} ~ S). 

Note that P(r, O)<=T(r, O) for 0E[0, z] and rE(0, R), with equality holding when 
r = to, 0 E [0, 01]. Hence, if 0 E [0, 01], then 

LT(ro, O) >-_ LP(ro, 0). 

If 0 E (01, zc], then T(ro, O)= P(ro, 01) and 

LT(r  o, O) > LP(ro, 02) --> 0 = ~ (u v 0)*(r0, 0). 
= aO 

From these inequalities and (2.2) we obtain 

(2.6a) LT(r, 0) ->0 for 0<[0,~], r<(0, g), 

(2.6b) LT(r,  O) ~_ - c(sin 0) "-3 ~ 0  (u v O)*(r, O) 

for almost every 0 E [0, n] when rE(0, R). 
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3. Differential and integral inequalities 

Let  u be as in w and observe that  

T(r, O) = f c(o) ( u~ v O) (ry) dH"-l y + ~ (r, 7r) 

is cont inuous in B(R)--{0},  since u* is Lipschitz in B(Ra) whenever Ra-<R, and 
us is subharmonic.  This observat ion and (2.6a) imply for  fixed 0E[0, zc] see ([10, 
Ch. 10, w that  T=(s, O) is a convex funct ion o f  s on (R 2-", oo). Hence for each 
h > 0 ,  

(3.1) Te(s+h,  O)• T e ( s - h ,  O)-2Te(s,  O) ~-- 0 

when sE(R~-" + h, co). 
Given zE(0, ~o) and /~E(0, e(z)), let g be a solution of  (1.1) with z replacing 

and suppose that 

(3.2a) g ' ( 0 ) =  dg < 0  on (0,]~), 
-d-g= 

(3.2b) a(r) = - f o  p T(r, O)g'(O)dO, is a bounded cont inuous function on (0, R), 

(3.2c) lim(sinO)"-2g'(O) and l imT( r ,  O)g(O) exist finitely for rE(0,  R). 
0 ~ 0  0 ~ 0  

F r o m  (3.1), (3.2), the Fa tou  lemma, and (2.6b) we obtain 

fo' < La(r) >- - LT(r, O)g'(O)dO _-> c u v O)*(r, O) (sin O)"-2g'(O)d& 

Since for  fixed r, (u v 0)* (r, O) is absolutely continuous on [0, lr], we may integrate 
the right hand integral twice by parts. Using (3.2c) and (1.1), we obtain 

O<=cf]O(uvO)*(r,O)(sinO)"-~g'(O)dO= 
= e(u v 0)* (r, 0) (sin O)"-2g'(O) + ~(~ +n - 2) T(r, O)g(O)lPo+ 

+ z(z + n -- 2) tr(r) ----- -- h(r) + z(z + n - 2) tr(r) 

for  r E (0, R). Hence,  

(3.3) La(r) >= - h ( r ) +  z(z + n - 2 ) a ( r )  >= 0 

when rE(0, R). F r o m  (3.3) and (3.2b) we deduce that o-~ is convex on (R 2-', co). 
Thus o- is a convex funct ion o f  r ~-" on (0, R). It  follows that  the left and right hand 
derivatives o f  o" exist at each rE(O, R) (denoted by o-'(r), o'+(r)), and r"-la'__(r) is 
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a nondecreasing fuct ion on (0, R), M o r e o v e r ,  

La(r) =- r3-" ~d [r ,_la[ (r)] 

except possibly on a set o f  Lebesgue measure  zero in (0, R). Since we have (3.2b), 
we also see tha t  a is nondecreasing on (0, R). Hence,  the left and  right hand  deriv- 
atives o f  a are nonnegative.  

We now argue as in [7]. Fix RIC(0, R) and let 

f r  ~1 
�9 (r) = h(!!,~_~ dt, rE(O, RI]. 

t 
F r o m  (3.3) we obtain 

d 

�9 (r) => " r ( z + n - 2 )  d t -  dt 
J r  t J r  t,+~_ 2 dt. 

Integrat ing the second integral twice by  parts ,  we obtain  

(3.4) # (r) > - t 1 - ' o ~  (t) - (z + n - 2) t -~(t)] ,  R1. 

Next  we use a me thod  o f  Barry  [3, 4]. Let  

(r) = r ~ [~  (r) + RI-~ a'_ (Ra) + ( z  + n - -  2) Ri-'  o- (R1)] 

for  rE(0, R1]. F r o m  (3.4) we have 

(3.5) ~(r)  >= ra'_(r)+(z + n - 2 ) a ( r ) ,  r~(0 ,  R1]. 

Assume that  

(3.6a) h is cont inuous  on (0, R1], 

(3.6b) o- v 0 5 0  on (0, R0 .  

Then since a is nondecreasing on (0, R1), there exists r~, O<rx<R1, such tha t  o- is 
positive on [rl, R1]. F r o m  (3.5) and (3,6a) it follows tha t  kg is positive with a con- 
t inuous derivate on [r 1, RI). Using (3.5) and  (3.3) we obtain  

r7  ~' (r) = z~g (r) - h (r) => zra'__ (r) + z(z + n - 2) ~ ( r )  - h (r) -> zrr  2 (r)  _-> 0 

when r ~ [rl, R1). 
Le t  

F : { r : h ( r )  <= 0}. 

Observe f rom the above  inequali ty tha t  

rT~'(r) >= ~Tt(r) for  rEFN[rI,R1].  
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Thus 

L  rfr A[rl,  Rt] F O[rl ' 

Using (3.5) it follows that 

~"(~) f [  ~"(~) , f V(RO ] rd T(r)  dr <= ~ T(r)  dr = mg l I 

f r  dr (3.7) ~ - -  <= log (Rt a :  (R t) + (z + n - 2)a  (R0) - 
A [r l ,  R l] r 

--  log  (r~ a :  (r~) + (r + n - 2) a(ra) ). 

4. Proo f  o f  Theorem 1 

Let u = u l - u 2 ,  H" almost everywhere, be as in Theorem 1 with order 0, lower 
order p, and deficiency 6. From Fubini's Theorem we see that it sufficies to prove 
Theorem 1 for u l -u2 .  Hence we assume that u=ux-u2  off of a polar set. Define 
T(r, O),rC(O, oo), 0E(0, 70, relative to u as in w Observe that T->0 in R"-{0} ,  
since u~(0)=0 and uz is subharmonic. Also, T(r)=T(r,  re) is nondecreasing on 
(0, co), and by assumption T ( r ) > 0  for sufficiently large r, say r>=ro . 

Let ~, 0 < 7 < ~ ,  and 0o=0o(6, ?) be as in Theorem 1. We assume that p < ?  
and 0 <  6 ~ 1, since otherwise the first part of  Theorem 1 is trivially true. Let �9 satisfy, 
# < z < ?. Note that 

. a2 (r, ~) 
lm sup - - -  - 1 - 6 = ~O~ (0o) < q/, (0o), 

r - =  T ( r )  

thanks to (1.3b). Hence for sufficiently large r, say r>=ro, we have 

(4.1) a2 (r, ~t) < ~, (0o) T(r) + 1 [~r (0o)-- r (0o)] T(r) <= 

<-- ~ (0o) T(r) + 1 [~9~ (0o) -- ~0~ (0o)] T(ro). 

There exist nonincreasing sequences {v j}, {w j} of subharmonic functions in 
R", with continuous second partial derivatives and pointwise limits u~, u2, respect- 
ively. Let pj = (v j -  w j) v 0 and put 

Tj (r, 0) = pj (r, O) + ~j(r, ~), r E (0, ~) ,  0 ~ [o, ~]. 

As in w wesee that T~ is continous in R n -  {0} and for fixed 0 q 0 ,  =] that Tj[r, O] 
is convex as a function of  r 2-" on (0, ~).  Since 

(4.2) 0 <: Ti(r, 0)-- T(r, O) ~_ ~j(r, ~)-- ill(r, 7z)+l~j(r, 7~)-~a(r,~), 
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it follows from the subharmonicity of the above functions, and Dini's Theorem 
that Tj converges to T uniformly on compact subsets of R"--{0}. 

With g = ~ , ,  0o--0o(6, 2;), define a i and h i relative to pj as in w with fl=Oo. 
Let a be the corresponding quantity for u. From (1.3a) and (1.3b) we see that g = r  
satisfies (3.2a). Also (1.1) and (1.2a), imply that limo_,og'(O)=O. Using this fact, 
and the fact that Tj is continous in R n -  {0}, we find (3.2b) and (3.2c) are true with 
Tj, o-j, replacing T, a, and R > 0  arbitrary. Moreover (3.6) is true with hj, trj, rep- 
lacing h, o-, provided Rl>-_ro, as we see from (4.2). 

Since Tj converges uniformly to T on compact subsets of R"-- {0}, it follows 
that aj converges uniformly to o- on compact subsets of (0, ~).  Hence tr is non- 
decreasing, convex as a function of r ~-" on (0, ~), and a t  each rC(0, co) where 
a'__(r)=o'+(r), we have l im j~=a~ ._ ( r )=a ' ( r )  (see [11, p. 46, Lemma 1]). Also 
o- (r0) >0  since T(ro) >0. 

We note that 

(4.3) hj(r) = -cp*(r ,  0o) (sin 0o)"-2~0~ (0o)+ r(z + n - Z )  [l~j (r, r e ) -  

- Tj (r, 00) ~ (00 ) ] ,  r ~ (0, ~). 

Let K~= {r:hj(r)<=O} and let K be the set of  r > 0  where 

H " - l ( { y :  (u v O) (ry) > O} ~ S) < H"-~(C(Oo)), 

Let q ,  R,,  be fixed points where the left and right hand derivatives of a are equal, 
and ro-<r1<R 1. If  rEKA[r l ,  R1], then l imj~=p*(r,  Oo)=O, since pj converges 
pointwise to u v 0 off of a polar set. Since for rCKO[r~, Ra], we have 

lim Tj(r, 0o) = T(r, 0o) = T(r), 
j~oo 

it follows from (4.1), (4.3), that r~KjA[ra,  Ra] for sufficiently large j. Hence by 
theFatou lemma, 

< lira inf 
fq[rl, R1 ] r j ~  ,] Kjfq[rl, Rl ] r 

We now replace F, ~r, in  (3.7) by Kj, crj. Letting j-+oo in (3.7) and using the 
above inequality, it follows that 

(4.4) <=log(Rla'_(Ri)+(z+n--2)(r(Rd)-- 

- log (rx ~'._ (rl) + ( ,  + n - 2) ~ (rO). 

Next since r"- la ' ( r )  is nondecreasing on (0, ,~), we have 

a(2R1) . . . . .  > tr(2Rl)-- tr(R1) = /*2R1 0"t_. (r) dr > ")*--n Ol . ,_  ~" (Ra). 
d Rx 
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From this inequality and (4.4), we obtain 

I t .  dr - -  i nt,l, R1] r _-< log[ (2~- l+z+n-2) t r (2R1)]  log[r l t r_(rO+(z+n-2) tr (ra)]  ' 
log R1 - log R1 log R1 

Letting 2 R ~ - ~ ,  through a properly chosen sequence and observing that o-(2R0~ 
<- T(2RO, we get 

z log dens K <= #. 
Hence, 

(4.5) log dens [(0, oo) _ K] ~ 1 P 

Letting "c~?, we obtain the first part of Theorem 1. The proof of the second part 
of Theorem 1 is similar, We omit the details. 

5. Some examples 

We now show that (1.4) with 6E(O, 1] and #E(O, ~)  is sharp. Let ~ , ,  cp~, be 
solutions to (1.1) and satisfy (1.2) with p--?.  Let 

u (r, o)  = r ~ [ ~ .  (0o) ~o~ (0) - q,.  (0o) g'.  (0)1 

when r E (0, oo), 0 <= 0 ~ Oo = Oo (6, g), and 

u (r, 0) = 0 

for rE(0, co), 0E(00, rr). Using (1.2c) we find that ~o,/~O u is decreasing on (0, 00) 
and consequently u(r, 0)>0 whenever rC(0, ~),  0E(0, 00). Using (1.2), one Can 
verify that u = u l - u 2  in R"-{0},  where Ul, u2 are subharmonic in R" and satisfy 

(i) The measure associated with Ul is concentrated on {y :y l=r  cos 00, 0<r<~o},  

(ii) The measure associated with u2 is concentrated on the positive Xl axis, 

(iii) u2(0)=0 and u 2 = - o o  on the positive Xl axis. 

From (1.2) and Green's second identity, it follows that 

r"-i  da~ (r, ~) -d? 

Thus, 

t" Ou 
= -- c lira (sin 0 ) " - 2 1  o4o . to  - ~  (s, O)s "-3 ds = c~,u(Oo ) (# + n - 2)-1r "+"-2. 

t~(t~ + n -  2)adr, ~) = cq~.(Oo)r~, 
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where c is as in (2.2b). From (1.1) and (1.2) we see that 

# ( # + n - 2 ) m ( r )  = cr [(rp,(0)~k,(0o)-~,(00)(p~(0)) (sin 0)~-2]o ~ = c(1-~,(Oo))r" .  

Hence u has lower order # and 

a2 (r, ~) 
T(r )  - ~b,(0o) = 1-<L 

By suitably redefining u in B(1), we obtain a function which satisfies the hypo- 
theses of Theorem 1 and for which equality holds in (1.4). Hence (1.4) is sharp. 

6. Proof of Theorem 2 

Given zE(O, 5) let ~ and go, denote solutions of (5.1) as in w with y=z .  By 
(1.2a) we have 

(6.5) (sin ct(z))"-~$~ (a(,)) = 

= -* (*+n-2) fo  (~ ~,(0) (sin O)~-2dO = - - c - l z ( z - e n - - 2 ) A ( * )  

where A is as in w Let 

g ( O ) = ~ o ~ ( ~ ( T ) ) g , , ( O ) - r  for 0E(0,~), 

and note that g is a solution to (1.1) with V=z. We claim that 

(6.2a) lim (sin O)~-2g(O) = 0 and lira (sin O)~-2g'(O) = ~,~ (a(z)), 
0 ~ 0  0 ~ 0  

(6.2b) g ' < 0  on (O,~(z)) and g ' (~(z) )=O,  

(6.2c) g(~ (,)) = -- (sin ~ (z))2-n. 

Statement (6.2a) follows from (1.1) and (1.2). Using (1.3a) and (1.2c) we see that 
~ < 0  on (0, ~(~)3 and that ~p~/~k~ is decreasing on (0, ~(-r)]. Thus (6.2b) follows. 
Letting 0=~(~) in (1.2c) we obtain (6.2c). 

Now let u be as in Theorem 2 with order 0 and lower ~. Then u is subharmonic 
in R" (i.e. u s -0 )  and T( r )>0  for r>-ro . Assume that u=>0 since otherse we can 
consider u v0.  Let vj be as in w where now w j - 0 .  Put fl=ct(,) and define Tj,  trj 
and 7', a relative to vj and u as in w 

Observe that, for rE(0, ~)  and 0E[0, ~(~)], 

0 <= Tj(r, O) <- cM(r ,  vj)f~ (sin ~),-2 d~ <= k(sin O)"- lM(r ,  vj) 

where k is a positive constant. From this observation and (6.2) we see that (3.2) 
is valid with T i,  o-~ replacing T, a. Let hj correspond to vj as in w and note that 
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by (6.1) and (6.2) we have 

(sin ~ (z)) "-2 hj (r) --- z (z + n - 2) I T  i (r, o~ ('c)) - A (z) M(r ,  vj)]. 

Hence hj is continuous and as in w we see that  a and a s are nondecreasing convex 
functions of  r 2-" on (0, ~) which are positive for r>-ro . 

Let 
Kj = {r :h j ( r )  <= 0}, 

K = {r : T(r,  c~ (z)) < A (v) M(r ,  u)}, 

and let rx<R1 be such that  o ' ( r l )>0,  ~r'_ ( r l )=  o% (rl) and a 2 (R1)=~r+ (Rx). 
Arguing as in w we obtain (4.4) and then (4.5). Hence 

log dens {r : T(r )  = > A ( z )M(r ,  u)} = > 

logdens{ r :  T(r,  ~('c)) >= A ( z ) M ( r ,  u)}-- -> 1 # ,  T 

and the first part  of  theorem 2 is valid with ~ = z. The proof  of  the second part  is 
similar. We omit the details. 

7. Proof of Theorem 3 

Given zE(0, co) and 01E(0, ~(z)], let 

g (8) = - 9~ (81) ~,  (8) -2F ~ (81) ~O, (8) for 

and note that  g is a solution to (1.1), We assert that  

(7.1a) 

(7.1b) g '  < 0 on (0, 01) and g(O~) = O, 

(7.1 c) g" (01) --- - (sin 81) 2-". 

o~(o, .) 

lira (sin O)"-2g(O) = 0 and lim (sin 0)"-2g'(0) = - ~,(01), 
0~0 0 ~ 0  

Statements (7.1a) and (7.1c) follow immediately f rom (1.1) and (1.2). Using (1,3a) 
and (1.2c) we see that  ~,~<0 and that  ~o~/~k~ is desreasing on (0, 81]. Thus, using 

(1.2c), 
. . . .  9;(8) / < 

g'(O) = - q , ;  (0) ,tUl  q," ( 0 ) )  = 

[q),(01) ~o; (01) ] ~k~ (8) (sin 81) 2-" < 0 for 0 ~ (0, 81]. 
- - I~  (8)~r (81) ~ - ~ - ~  ~r (81) -- ~/~ (81) 

Thus (7.1 b) is valid. 
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Let  {vj} be as in w and  let  h s cor re spond  to vj as in w with f l=01 .  Let  K denote  

the set o f  r > 0  such tha t  

H" -1 ( { y  : u(ry) >= O,(01)M(r, u)} Yl S) < H"-I(C(01)) 
and  let  

Ks = {r :h j ( r )  o}. 

F r o m  (7.1) we find tha t  

K s = {r :v*(r ,  01) <= ~b,(O1)M(r, v2) }. 

Since {vy} i s a  nonincreas ing  sequence wi th  pointwise  l imit  u, it  fol lows for  r l < R 1 ,  

as in w tha t  

L l n(,1, R1) T ~= lira inf  - - .  
j ~  ,1 KsN(rl, RI) r 

Argu ing  as in w 4 we ob ta in  

log dens  [(0, ~ )  - K] ~ 1 - / ~  

which is the first ha l f  o f  the conclus ion o f  Theorem 3 with 0 =  01 and  ? = z .  The  

p r o o f  o f  the second ha l f  is similar.  We  omi t  the details.  
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