Space analogues of some theorems for subharmonic
and meromorphic functions

Ronald Gariepy and John L. Lewis

1. Introduction

Denote points in z dimensional Euclidean space R®, n=3, by x=(xy, X5, ..., X,).
Let r=|x| and x,=r cos 8, 0=0=mn. For r>0 let B(r)={x:|x|<r}, S(r)={x:|x|=r},
and S=S(1). For O0=a=n, let C(x)=S0 {x:0<a}.If E is a set contained in S(r),
let OF denote the boundary of E relative to S(r). Let H™ denote m dimensional
Hausdorff measure on R".
& If fis defined on a set ECR", Jet 6(r) for O<r—<-<c be defined by

H"H(C0(r)) = H* (p(S(INE))

where p denotes the radial projection of R"— {0} onto S. For 0=0=0(r), let

[, 0) = sup [, f(ry)dH""1y,
where the supremum is taken over all measurable sets FCp(S(r)NE) with

H""}(F) = H""Y(C(6)).
Given a set EC{0, o), let

—_— dt
logdens £ = limsu ——/ ]
g lr—»cc P [fEﬂ(l, r) t 1Ogr

log dens E = liminf [f —di/ ]
R— r—co EN(Q, r) t lOg r

Let u be equal H" almost every where on R" to the difference of two subhai-
monic ‘functions. By the Riesz representation theorem there is associated with
this difference a unique signed Borel measure v whose total variation on compact
sets is finite. Let v=v*—v~ denote the Jordan decomposition of v. To simplify
matters, we will assume that v*(B(1))=0 or equivalently that u is equal H" almost
everywhere in B(1) to a subharmonic function.
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From [1, Thm. 2] we see there exist functions #, and wu, subharmonic in R”
with associated measures —v~ and —v* respectively, such that #,(0)=0 and u=
=u;—u,, H" almost everywhere in R", For convenience in making the following
definitions, we assume that u=u, —u, except on the polar set where u, and u, are
both —eo. Otherwise, one may replace u by u;—u, in the definitions.

If fand g are real valued functions on R”, let

(fvg)(x) = max {f(x), g(x)}, xER"

For 0 <r< let

m(r) = sup {i(r, 0): 0=0=n} = fs v 0) (ry)dH" 1y,
and
T(r) = m(r)+idy(r, ©) = fs (g vuy) (ry)dH" 1y,

We note that ily(r, ;) =1, (0)=0 for r=0 since u, is subharmonic. Hence,
O=m@r)=TF) for 0<r=< o,

and consequently since u; v u, is subharmonic, either m(r)=0 or T'(r) is positive
for r=r, (ry large). In this paper we consider only u for which the second possibility
occurs.

In analogy with the case for meromorphic functions we define the deficiency
3, order g, and lower order u of u by

m(r)
6 = liminf —=
e TR

0= lim sup _l_o_‘_g_]:.(_r_)_

2
riroo logr

4 = liminf 208 TC)

e lOgr

Observe that 0=p=¢=-, and 0=0=1. We remark that if #, and %, are subhar-
monic in R" A, is harmonic in B(1), 4,(0)=0, and u=h,—h,, except on a polar
setin R”, then

lim in f——ﬂ(L— = 0.
oo m(r)+hy(r, 7)

Consider for 0<y<o the ultra-spherical differential equation

(1.1) [(sm ) f] =—y(y+n—-2)(sin 020, 0<0<n.



Space analogues of some theorems for subharmonic and meromorphic functions 93

It is well known and easy to show that (1.1) has two linearly independent solutions
¥y, ¢,, satisfying .

(1.2a) lin; l//y(e) = l/"y(o) =1,
L. do
n-299y _ _
(1.2b) 391_{2 (sin 0) 70 1.
It follows from (1.1), (1.2a), and (1.2b) that
(1.2¢) wy(e)%(e)—cpy((a)%‘ﬁe—? 0) = —(sin62", 0<0<n.

It is also easily shown that
(1.3a) Each ¥, has at least one zero in (0, #) and if a=w(y) denotes the first zerc
ofy,, then ¥, is decreasing on [0, «].

(1.3b) If 0<t<7y, then ¥, <y, on (0, a(y)],
(1.3¢) lim,,, ¥, =y, uniformly on conpact subsets of [0, 7).

It follows from (1.3a) that given y and §, 0=0=1, there is a unique 0,=0,(3, 7)
with 0=6,=0a(y) and ¥, (0,)=1—0. In §4 we will prove

Theorem 1. Let u be as above with deficiency S, order g, and lower order u. Given
y, O0=<y=<oo, let E(y) denote the set of all r>0 such that

CH ({p:u(ry) = 0} S) = HUC(6,(8, )]-
Then,

log dens () =1~
and

logdens E() = 1-2Z.
Theorem 1 implies that ’

tim sup H*~({y: u(ry) = 0} S) = H*1[C(6,(6, ))]

F+00

whenever y >u. From (1.3c) it follows that

(1.4) lim sup H* ({y: u(r3) > 0}N\S) = H"[C(6, )]

for O0<p<oo. In §5 we show that (1.4) is sharp. The inequality (1.4) is analogous
to a spread conjecture made by Edrei and proved by Baernstein [2] in R2,
Considering ¥, as a function defined on S, we let

AW) = [cqay Yy dH"
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Suppose now that u is subharmonic in R", i.e. u,=0, and let

M(r) = max {i:(x):xeS(r)}, r=0.
In§6 we prove

Theorem 2. If u is subharmonic in R" with order o, lower order u, and 7y is given,
O<yp<oo, let

Ex() ={r:T(r) = A(p) M(r)}.
Then

logdens E;(y) = 1 ——%.
and
logdens Ey(y) = 1— -—e;—

We note that Theorem 2 has been obtained by Essén and Shea [7], using a
different method. Theorem 2 implies that if y=p, then

tim sup A]}(rr)) = A(®y).

Letting y -, we have by (1.3c) that

lim sup ]l?(?)

when 0< p< =0, This result has been obtained and shown to be sharp by Dahlberg [5].
In §7 we prove

= A(p)

Theorem 3. If u is subharmonic in R* with lower order u, order ¢, and 0<y-<oo,
let E,(0, y) denote the set of r=0 for which

H" Y({y:u(ry) = ¢,0) M(r)}NS) = H(C)),
when 0<60=ua(y). Then

Tog dens E,(0, ) = 1 — -,

logdens Fy(6,y) = 1 —

< =

for 0<@=u(y).

We note that Theorem 3 can be obtained in R? by using a method of Baernstein
(see[6, Ch. 8]).

In the proof of Theorems 1—3, we first use a method of the authors [§] to
obtain a differential inequality (see (2.6)). Using this inequality, and methods of
Essén [6], and Essén and Shea [7], we obtain an integral inequality (see §3). Finally,
using this integral inequality and a method of Barry [3, 4] we obtain Theorems 1—3.
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2. Spherical Symmetrization

Given a closed set F—R" define the spherical symmetrization F* of F as follows:
If FNS(r)=0, then F*N S(r)=¢. Otherwise,

H" Y (F*NS(r)) = HY(FNS(r)

and F*(1S(r) is either the point (7,0, ..., 0) or the closed cap on S(r) centered
at (,0,...,0). Let u=u,—u, where u,, u,, are subharmonic in B(R), R=0, with
continous second partials. Given ¢, —oo<f<oo, let F(f)={x:u(x)=t} and note
that F(z) is closed. Define an associated function u* by letting

u*(x) = sup {r: x€ F*(t)} whenever x¢€B(R).

It is easily seen that #* is symmetric with respect to the x, axis, and {x:u*(x)=t}=
= F*(¢). Tt follows that u and u* are equimeasurable and

2.1 i(r, 0y = [ u* ry)dH" 1y

whenever r€(0, R), 0€[0, n]. Also for fixed r, r€(0, R), u*(r, 6) is a nonincreasing
function of 8 on [0, z]. We note that Gehring [9] has shown that «* is Lipschitz in
B(R,) whenever R, <R.

Let f be a function defined on (0, R). Define f, on (R*™", =) by f, (s)=f(r)
when s=r?""and r¢(0, R). Let

Lf(r) = (n—2%r*"* liminf

h—>0

[f_# 2R S BT = ) =2 e (P27
hz

for r€(0, R). Note that if / has a second derivative on (0, R), then
1 [r"'—l _‘_{L‘

Lfr) =t~

- dr], re(, R).

Let
P(r, 0) = d(r, ) +1dy(r, @)

for re(0, R) and 6¢€[0, n]. Given r,€(0, R) we shall show that

(2.2a) LP(ry,H =0 for 0=0 ==,
and

*
(2.2b) ‘ LP(ry, 0) = —c(sin 6)* 2 33”0 (ro, 0),

for almost every 6 with respect to one dimensional Lebesgue measure on [0, n].
Here ¢ is the surface area of the n—2 dimensional unit sphere, and for each fixed
0, LP(r, 0)=Lf(r), where f(r)=P(r, ).
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To prove (2.2a) let G(A)c S be such that

@ SOy urey) > u*(ro, O} GO SNy u(rey) = u*(ro, )},
(iD) H"‘l(G(G)) = H"‘l(C(H)),
(ii) i(ro, 0) = [ uroy) dH" 2y = [o o u* (roy)dH" 2y,

for 6¢[0, n]. Let
g9(r, 0) = [ u(ry)dH" "y + s (r, 7)

for r€(0, R) and 0¢][0, n]. Clearly, g(r, 6)=P(r, 8), with equality holding at (r,, 6).
Hence for fixed 8,

@23) LP(ry, 0) = Lq(ro, 6) = L[ fG(,,) u (ro)dH" 1y + [s_ s uz(roy)dH"‘ly] =
7] 0
— 8-n n—1 n—1
= f oo [r PR ul] (roy)dH" 1y +

0 b
8-n_" _n-1_Y_ ne1
+/ 5-G(9) [r o or ”2] (roy)dH"'y.

Let 4 denote the Laplacian in R” and let A be the spherical part of 4 defined by

0 0 -~
— pl—n n—1 -2
A=r o r o +r24.

Observe that for H"~* almost every x€G(0) N {y u(ryy)=u*(ry, 6)}, we have
0 = Au(ryx) = Auy (rox) — Aus (rox).
Using this fact, the subharmonicity of u,, u,, and (2.3), we obtain

(2.4) LP (10, 0) = — [0 0utpyon o At01 (Foy) dH" 2y —

-1
—fSﬂ{y:u(roy)éu*(ro, )] ZuZ(roy) dH" Y.

Now as in [8, §3], we may apply Green’s formula for almost every ¢€R to
obtain

- 0
_f Auy (roy)dH" 1y = r%"‘/ T dH"~2
SN ulrgy) =1} SeroNu-1¢) ON

~ U
—f Auy(roy)dH" 'y = —r:”;"'f Duy dH" 2
SN{y:u(ryy)st) St Nu-1(® an

and
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where 8/0n is the normal derivative taken into S(ro) N {x:u(x)>¢}. Hence for almost
every t€R,

(2.5) Auy (roy) dH" 1 Auy(roy)dH" 1y =

y "fsn(y:u(roy)ét}

] .
= r%“”[ ?,}—(ul—uz)al’H"‘2 =r3" IVu|dH"~2,
St Nu-1( O S Nu-1()

where V denotes the spherical gradient of # on S(r). Letting #-—~u*(r,, 6) from the
right through a properly chosen sequence and using (2.4), (2.5), we see that (2.2a)
is true.

Let J be the set of 6¢[0, n] where

"fsn{y:a(roy)>t}

du* -
3“0—(;«(,, 0) = —ro|Vu* (ro, 0)| < O.

Since LP(r,, 0)=0, we see that (2.2b) is valid for almost every 6¢[0, n]—J. Let
K={u*(ry, 0):0€J}. Then in [8, (2.2)] it was shown for almost every t=u*(ry, )€K
that

f"“(’)ﬂs(ro) VuldH"™* = ./acl(c» |Vu*|dH" =2

where C;(0)={r,y:y€ C(0)}. Note that if J; ©J has positive one dimensional Lebesgue
measure, then {u*(ry, 6):0€J;} has positive Lebesgue measure. Thus it follows
from (2.4), (2.5), and the above inequality that (2.2b). is true.

Let

P
T(r,0) = (uv0)(r, 0)+dy(r, m)
for 8¢(0, 7] and r€ (0, R). For given ry€(0, R), let 6;, 0=0,=n, be such that
H"Y(C(0) = H Y ({y:u(r,y) = 0} N S).

Note that P(r, )=T(r, 6) for 6€[0, n] and r€(0, R), with equality holding when
r=r¥,, 0€[0, 0,]. Hence, if 6¢[0, 6,], then

LT(ry, ) = LP(ry, 0).
If Be(h;, 7}, then T(ry, 6)= P(r,, 0;) and
LT(ry,0) = LP(ry,0) =0 = %(u v 0Y* (1, 0).
From these inequalities and (2.2) we obtain
(2.6a) LT, 0)=0 for 0¢[0,n], r¢(0, R),
(2.6b) LT, 0) = —c(sin 6" 2 —3% w@v0*(r,0)

for almost every 0¢[0, 7] when r€(0, R).
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3. Differential and integral inequalities

Let u be as in §2 and observe that
T(r,0) = [ @V 0) (ry)dH" Yy +ily(r, )

is continuous in B(R)— {0}, since «* is Lipschitz in B(R,) whenever R,<R, and
u, is subharmonic. This observation and (2.6a) imply for fixed 6¢[0, =] see ([10,
Ch. 10, §7]) that T, (s, 6) is a convex function of s on (R*™* ). Hence for each
h=0,

3.1 Ta(s+h 0)+Te(s—h,0)—2T4(s,0)= 0

when s€(R2"+ h, ).
Given t€(0, ) and B¢(0, a(7)), let g be a solution of (1.1) with t replacing
y and suppose that '

(3.2a) g0 = % =0 on (0,0),.

(3.2b) o(r) = — f 0” T(r,0)g’(0)dd, is a bounded continuous function on (0, R),

(3.2¢) lim(sin 6)"~2¢’(6) and lim T(r, O)g(0) exist finitely for r€(0, R).
6-+0 -0

From (3.1), (3.2), the Fatou lemma, and (2.6b) we obtain

(4 B
Lo(r) = —/ LT(r,0) g’ (6)d0 = cf ;—O(u v 0)*(r, 0) (sin 8)*—2g’ (8) d.
Jo 0

Since for fixed r, (u v 0)*(r, 0) is absolutely continuous on [0, ], we may integrate
the right hand integral twice by parts. Using (3.2¢) and (1.1), we obtain

0= c/:-(-%—(uv 0)*(r, 8) (sin O)*~2g’(0)dO =
= c(uv0)*(r, 0) (sin 6)" 2" (0) + t(t+n—2)T(r, O)g(O)f+
+1(r+n—2)o(r) = —h@)+1(t+n—2)6(r)
for re(0, R). Hence,
3.3 Lo(r) = —h(r)+1(r+n;-2)a(r) =0

when r€(0, R). From (3.3) and (3.2b) we deduce that o, is convex on (R®™", o).
Thus ¢ is a convex function of 727" on (0, R). It follows that the left and right hand
derivatives of ¢ exist at each r€(0, R) (denoted by o’ (r), o7, (r)), and r*~1o”_(r) is
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a nondecreasing fuction on (0, R). Moreover, -
Lo(r) = r3‘"i[r"‘10" @]
dr -

except possibly on a set of Lebesgue measure zero in (0, R). Since we have (3.2b),
we also see that ¢ is nondecreasing on (0, R). Hence, the left and right hand deriv-

atives of ¢ are nonnegative.
We now argue as in [7]. Fix R,€(0, R) and let

Ry
o(r) = / i‘l(Q dt, re(0, Ry].

From (3.3) we obtain

d
R; el A (3]
O'(t) f Rar it

¢(") = T(T+n 2)/ t1+¢ tn+r—2

¥

Integrating the second integral twice by parts, we obtain
3.4 O(r)=—t'""0_(t)—(z+n—-2)t "o ()R
Next we use a method of Barry [3, 4]. Let
Y(r) =r{@@r)+ R Fo_ (R)+(t+n—2)Ri*a(Ry)]
for re(0, Ry]. From (3.4) we have
3.5) Yr)zro_ (r)+(+n—2o@), re(0, R
Assume that
(3.6a) A iscontinuous on (0, R,],
(3.6b) v 0z00n(0, Ry).

Then since ¢ is nondecreasing on (0, R,), there exists r,, 0<r;<R,, such that ¢ is
positive on [ry, R;]. From (3.5) and (3.6a) it follows that ¥ is positive with a con-
tinuous derivate on [ry, R;). Using (3.5) and (3.3) we obtain

) =tPr)—h@) = e () +1(t+n—2)o@)—h(r) = re’(r) =0

when r€[r;, R,).

Let
I'={r:h(r) = 0}.

Observe from the above inequality that

r¥’ (r)y = t¥(r) for reI'N[r, Ry
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Thus

Tf g’isf LG / ) [W(Rl)]
rorLrd P J ro, rg P0) n P@) V() |

Using (3.5) it follows that

3.7 r[ ar = log(RioZ(R)+(t+n—-2)0(Ry))—
ey,

Ry T

—log (raoZ (r)+(t+n=2)a(r)). -

4. Proof of Theorem 1

Let u=u,—u,, H" almost everywhere, be as in Theorem 1 with order ¢, lower
order u, and deficiency 6. From Fubini’s Theorem we see that it sufficies to prove
Theorem 1 for u; —u,. Hence we assume that u=u,—u, off of a polar set. Define
T(r, 0), r€(0, =), 0€(0, w), relative to u as in §2. Observe that 7=0 in R"—{0},
since u,(0)=0 and u, is subharmonic. Also, T(r)=7'(r, ) is nondecreasing on
(0, =), and by assumption 7T'(r)=0 for sufficiently large r, say r=r,.

Let y,0<y<oo, and 0,=0,(3, y) be as in Theorem 1. We assume that u<y
and 0<d=1, since otherwise the first part of Theorem 1 is trivially true. Let © satisfy,
i<1~<1y. Note that

lim sup By (r, ™) =

msup =y = 10 = ¥,00) = . (6),

thanks to (1.3b). Hence for sufficiently large r, say r=r,, we have

@1 dy(r, 1) < Y. (6o) T (r)+ [, (60) — ¥ (0] T(r) =

= Y00 TC)+ 3 [, 0) — b O 7).

There exist nonincreasing sequences {v;}, {w;} of subharmonic functions in
R", with continuous second partial derivatives and pointwise limits #,, u,, respect-
ively. Let p;=(v;—w;) v 0 and put

T;(r, 6) = p;(r, ) +0;(r, 1), r€(0, ), 0O€[0, 7).

As in §3 we see that T is continous in R"— {0} and for fixed 6¢[0, =] that T[r, 6]
is convex as a function of r2™" on (0, =). Since

4.2) 0=T;(r,)—T(r, 0) = 0;(r, ;) — ity (r, ©)+ W; (r, ®) — da(r, W),
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it follows from the subharmonicity of the above functions, and Dini’s Theorem
that T; converges to T uniformly on compact subsets of R*— {0}.

Wlth g=Y,, 0,=0,(9, y), define o; and 4; relative to p; as in §3 with ﬁ B,-
Let o be the corresponding quantity for u. From (1.3a) and (1.3b) we see that g=y,
satisfies (3.2a). Also (1.1) and (1.2a), imply that lim,_, g"(6)=0. Using this fact,
and the fact that T is continous in R”— {0}, we find (3.2b) and (3.2c) are true with
T;, 0;, replacing T, o, and R>0 arbitrary. Moreover (3.6) is true with 4;, ¢;, rep-
lacmg h, o, provided R,=r,, as we see from (4.2).

Since T; converges uniformly to T on compact subsets of R"— {0}, it follows
that o; converges uniformly to ¢ on compact subsets of (0, e). Hence o is non-
decreasing, convex as a function of r®7" on (0, ), and at each r¢(0, =) where
6_(r)=0,(r), we have lim, t_(F)=6"_(r) (see [11,p.46, Lemma 1]). Also
o (ro)=0since T(ry)=0.

We note that

4.3) hi(r) = —cp’(r, 0g) (sin )" 217 (0p) + T (v +n—2) ¥ (r, 1) —
- T'j(r’ 00)‘#1:(00)]7 re (0’ °°)
Let K;={r:h;(r)=0} and let K be the set of »>0 where

H* Y ({y:(uv0) (ry) > 0} NS) < H* HC(6y)).

Let r,, Ry, be fixed points where the left and right hand derivatives of ¢ are equal,
and ro<ry<R,. If réeKN{r, Ry, then lim,; _ pj(r, 6,)=0, since p; converges
pointwise to u v 0 off of a polar set. Since for re KN [r,, R;], we have

oo J

lim T(r, 6) = T(r, ) = T(r),

Jroo

it follows from (4.1), (4.3), that rcK;N[r;, R,] for sufficiently large j. Hence by

the Fatou lemma,
dr . dr
f — = lminf —
K(fry, Ry T Jves S K00, Ry) Y

We now replace I', 6, in (3.7) by X;, Letting j—~c in (3.7) and using the

above inequality, it follows that

J

4.4) TfK ar = log (Ri6_ (R) +(t+n—2)o(Ry))—

Nlry, Ry T
—log(rie (r)+(z + n—2) o (ry).

Next since r"~1g’(r) is nondecreasing on (0, =), we have

¢(2R) = 6 (2R)~o(R) = [ gl (r)dr = 27" Ryo” (Ry).
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From this inequality and (4.4), we obtain

dr
fKﬂ[rl,RllT _log[(2"'+14+n—=2)0c(2R)] log[ro” (r)+(z+n—~2)0(ry)] -
log R, = log R, log R, ’

T

Letting 2R, —oo, through a properly chosen sequence and observing that ¢(2R))=
=T(2R,), we get

tlogdens K = p.
Hence,

(4.5) log dens [(0, <) —K] = 1 —£.

T

Letting t—~y, we obtain the first part of Theorem 1. The proof of the second part
of Theorem 1 is similar, We omit the details.

5. Some examples

We now show that (1.4) with 6€(0, 1] and p€(0, =) is sharp. Let y,, ¢,, be
solutions to (1.1) and satisfy (1.2) with u=y. Let

u(r, 0) = r*[, (66) 9,(6) ~ 9, 00) ¥, O)]
when r€ (0, =), 0=0=0,=0,(, ), and
u(r,0) =0
for r€(0, «), 6€(6,, m). Using (1.2c) we find that ¢,/ is decreasing on (0, 6,)

and consequently u(r, §)=0 whenever re(0, <), #€(0, §,). Using (1.2), one can
verify that u=u,—u, in R"—{0}, where u;,u, are subharmonic in R" and satisfy

(i) The measure associated with u; is concentrated on {y:y;=r cos 0y, 0<r-<co},
(i) The measure associated with u, is concentrated on the positive x, axis,
(iii) #,(0)=0 and u,= — on the positive x; axis.

From (1.2) and Green’s second identity, it follows that

& (r; m) = —clim (sin 6)" éi(sa 0)s"~2ds = e, (0p) (u+n—2)"rrtn-2,
dr 00 00 _

0

rn—l

Thus,
i(p+n—2)d,(r, m) = o, (Bo)r*,



Space analogues of some theorems for subharmonic and meromorphic functions 103

where ¢ is as in (2.2b). From (1.1) and (1.2) we see that
p(p+n—2)m(r) = cr* [(0. 0. (86) — ¥, (B0) 9, (0)) (sin Oy ~*]8 = c(1— 1, (Bo)) 7.

Hence u has lower order u and

do(r,m) _
= U0 =16,

By suitably redefining « in B(1), we obtain a function which satisfies the hypo-
theses of Theorem 1 and for which equality holds in (1.4). Hence (1.4) is sharp.

6. Proof of Theorem 2

Given 1€(0, 1) let ¥, and ¢, denote solutions of (1.1) as in §1 with y=1. By
(1.2a) we have
6.1) (sin a (o))"~ 27 (a(7)) =
=—t(@+n—=2) [{OU.(0) (sin 0)"2dd = —c 't (z+n—2) A(7)
where 4 is as in §1. Let

g0 = o (x (@Y. (0) ~ ¥/ (2()@.(0) for 9€(0,m),
and note that g is a solution to (1.1) with y=7. We claim that
(6.2a) lim (sin 0)*~2g (@) = 0 and lim (sin 6)*~2g"(6) = ¥, («(7)),
60 6--0

(6.2b) g =<0 on (0,x() and g(a() =0,
(6.2¢) g(a(r)) = —(sina(r))*~™

Statement (6.2a) follows from (1.1) and (1.2). Using (1.3a) and (1.2c) we see that
Y.<0 on (0, a(r)] and that @/, is decreasing on (0, «(z)]. Thus (6.2b) follows.
Letting @=a(z) in (1.2c) we obtain (6.2¢).

Now let « be as in Theorem 2 with order ¢ and lower p. Then u is subharmonic
in R* (i.e. u,=0) and T(r)=0 for r=r,. Assume that u=0 since otherse we can
consider u v 0. Let v; be as in §4, where now w;=0. Put f=«(r) and define T}, o;
and T, ¢ relative to v; and u as in §3.

Observe that, for r¢(0, =) and 0¢€[0, a(7)],

0=T;(r,0)=cM(, vj)f(f (sin)"2dl = k(sin 0y M(r, v;)

where k is a positive constant. From this observation and (6.2) we see that (3.2)
is valid with T;, o; replacing T, o. Let &; correspond to v; as in §3 and note that
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by (6.1) and (6.2) we have
(sin a (D))" 2h;(r) = 1(x+n—2) [T;(r, x()) — A (®) M (r, v))]-

Hence 4; is continuous and as in §4 we see that ¢ and o; are nondecreasing convex

functions of #27" on (0, =) which are positive for r=r,.
Let
K; = {r:hi(r) =0},

K={r:I(r, a(@) < AQ) M, w},

and let r;<R, be such that a(r))>0, 6. (r)) =0 (r;) and o_ (R) =0, (Ry.
Arguing as in §4 we obtain (4.4) and then (4.5). Hence

logdens {r:T(r) = A(D)M(r, w)} =
logdens {r: T(r, a(1)) = A@) M(r, u)}= 1——5—,

and the first part of theorem 2 is valid with y=t. The proof of the second part is
similar. We omit the details.

7. Proof of Theorem 3

Given 1€ (0, ) and 0, €(0, a(r)], let
g2(0) = — 0. (0)Y.(0)+¥.(0) 9. (6) for 0¢(0,7)
and note that g is a solution to (1.1). We assert that

(7.12)  lim(sin6y~2g(0) = 0 and lim (sin 6)"2g’(8) = — v, (8,
80 -0

(7.1b) g <0 on (0,6) and g(0) =0,
(7.10) g, (01) = — (Sin 01)2—71'

Statements (7.1a) and (7.1c) follow immediately from (1.1) and (1.2). Using (1.32)
and (1.2¢) we see that y.<0 and that ¢/, is desreasing on (0, 6,]. Thus, using
(1.20),

@:(6) o: (0)) _

RCERACTAY [ @) =

= o) [E9 O] LD oy <0 for 0c0.0,)

Thus (7.1b) is valid.
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Let {v;} be as in §4 and let 4; correspond to v; as in §3 with f=0;. Let K denote
the set of r=0 such that
H" Y ({y:u(ry) = Y.(0) M(r, )y N S) < H**(C(6y)

K; = {r:h;(r) = 0}.

and let

From (7.1) we find that
K; = {r:vj(r, 01) = ¥.(0) M(r, vp)}.

Since {v;} is-a nonincreasing sequence with pointwise limit #, it follows for r,<R;,

asin §4, that
dr .. dr
f — = lim inf —
KN(@r:Ry T jeo J KNG, RY T

Arguing as in §4 we obtain

logdens[(0, «)— K] = 1— i;—

which is the first half of the conclusion of Theorem 3 with =0, and y=1. The
proof of the second half is similar. We omit the details.
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