
Some good unirational families of space curves 

Mei-Chu Chang* 

The problem of classifying space curves, which goes back to Halphen and 
Noether, may be roughly divided into 3 parts: 

(i) list the maximal families (i.e. Hilbert scheme components) of smooth curves 
in p3; 

(ii) describe the properties of a general member Y of a given maximal family 
(e.g. number of moduli, vanishing of HZ(Nr), maximal rank etc.); 

(iii) describe Y "explicitly" (e.g. by equations). 

To date, little progress has been realized on part (i), while part (ii) has been 
answered in many cases. Part (iii), on the other hand has been answered, apart 
from curves which are (or almost are) complete intersections, only in a handful 
of cases. This is in part explained by the results of Harris and Mumford [6] showing 
that for g large, Mg, the moduli space of curves of genus g, is not unirational; hence 
a curve of genus g with general moduli cannot be described by equations depending 
on free parameters. 

The purpose of this paper is to add some further cases to the list of those for 
which part (iii) above has a positive answer. Namely we prove the following result. 

Theorem. For d~_15, 5d-55<-g~_2d-9, and (d,g)#(13, 11), the Hilbert 
scheme Hd, g has a unirational component H such that the curve Y corresponding to 
a general point in H is linearly normal, of maximal rank, has ~o of maximal rank and 
H z (Ny) = O. 

The case (d, g)=(13, 11) is still open. 

The cases (d, g)=(12, 10), (11, 9) of the Theorem are proved using the method 
of monads, as in [3], [4]. The idea is to construct a curve Y with good properties, 
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construct a reflexive sheaf from Y using the Serre construction, and then to describe 
this sheaf by means of a monad, where the family of  monads involved is unirational. 
These arguments are carried out in w 1 (where the monad technique is presented) 
and w 2 (where the necessary curves Y are constructed). 

The eases (d, g)=(12,  10), (11, 9), by contrast, are proved using the method 
of  liaison (cf. [8], [9]). This is curious because this was apparently the method envis- 
aged bySeveri for proving the unirationality of Mgin general. The failure of Severi's 
method was established by Lazarsfeld and Rao [71 who proved that in "most" cases, 
doing liaison on a general curve leads to curves of larger degree and genus. This 
also turns out to be the ease for (d, g)=(12,  10) and (11, 9), namely liaison leads 
to curves of degree 13 (resp. 14), genus 13 (resp. 18). Fortunately, however, these 
curves have already been dealt with in [3] (resp. w 2), where the existence of a uni- 
rational component H of//t~, 1~ (resp. H~4,1s) was established. Using this and other 
properties of  the curves in t i ,  we construct a unirational component of  H~,~o 
(resp. Hl1, 9). 

Finally, we mention some notations and conventions to be used in this paper. 
A curve is, unless otherwise mentioned, a connected, reduced curve Y with nodes 
only. I rdenotes  the ideal sheaf, N r the normal bundle, and Or the dualizing sheaf. 
Y has maximal rank if the restriction H~176 is either injective or 
surjective for all k. Ha, o denotes the Hilbert scheme of nonsingular curves of degree d, 
genus g in p3. 

1. Monads  for space curves 

Our method for parametrizing space curves is to associate to the curves a reflexive 
sheaf using the Serre construction, and then to represent the Sheaf as the cohomology 
of  a monad (see [1]). 

Theorem 1.1. Let Y be a smooth curve in p3 with the Jbllowing properties: 
(i) Hl(Iy( ~n))=O; 

(ii) p: H~174176176 1)) has maximal rank; 
(iii) H~ 1))=0; 
( iv)  H l ( ~ ) y ( n - F  - 1))=0; 
(v) Y can be specialized to a curve Y" which has a k-secant line L, 3r >= k->_- n + 1, 

disjoint from the base points of o r , ( - n  ) and from the singular points of Y', 
and LevY" imposes min {k, r} conditions on or , ( -n ) ,  also r:=h~ 

(vi) m case g is not injective, themuttiplication map v: H ~ (It  (n+ 1)) | H a ~)r(1)) -~ 
HI(It(n+2)) has maximal rank. 

Then there is a reflexive sheaf E of rank r +  1 = h ~  1 on pa and an exact 
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sequence 

(1) 0 ~ H~ | ~ E(2) ~ Iv(n+4)  ~ 0 

Moreover, i f  # is surjective, then we have an exact sequence 

(2) 0 -,- E--,- ( -0 )d ) ( -1 ) |  --,- "c0(1) -,-0 

i f  v is surjective or 

0 -~ E - -  (--uo)O(-- 1) --,- (--o)0 | --,- 0 

i f  v is injective. 
I f  # is injective, then E is the cohomology of  a monad 

0 ~ 0 0 ( - 1 )  ~ ~0 -~ a0(1) -~ 0. 
Here 

0 = h~176 - n +  1))-4h~ - n)) 

(z = 4h~( Ir(n + 1))-h~Uy(n + 2)) 
"~ ~- h l ( I y ( n +  l)). 

The proof  is largely contained in [3] and [4], but for comoleteness we sketch 
it here. First, E is constructed using the standard Serre construction. 

Lemraa 1.2. Let E and Y be as in sequence (1). Assume Y has the properties 
H1 (It ( ~  n)) = 0 and H 1 (Or (n + 1)) = 0. Then H ~ (E( . ) )  is generated by H I ( E ( -  1)) 
and Hi(E). 

Proof. Restricting (1) on a general line L, we conclude HI(EL(~I))=O hence 
H~(E| 1))~HI(E(->- 1)) is surjective. Also H2(E(>= - 1))=H2(lr(>=n+ 1)) = 
H a ( 0 r ( - > n + l ) ) = 0  by hypothesis, so from the Koszul resolution of Ix. we get 
H~(E(>--O))|176176 surjective, hence Ha(E( . ) )  is gener- 
ated by HI(E(<=O)). But (1) yields immediately Ha(E(<= - -2))= 0 hence the Lemma. 

Lemma 1.3. Let E and Y be as in Lemma 1.2. Assume for some k, 3r~=k>=n+ l, 
Y has a k-secant line L disjoint from the basepoints of m r ( - n )  andfromthe singular 
points of Y, Lc~Y imposes min {k, r} conditions on O~r(-n ), then Ext ~ (E, 0 ( * ) )  
is generated by Ext I (g, O ( -  1)). 

Proof. By restricting (1) on L, it is easy to see that the image of Ez(2)-- 
Ir(n+4)| is OL(n+4--k). (Note that n + 4 - k ~ 3 )  and the kernel is GOz(ki) 
where 0~_ki_--3. It follows that H~(E~(>-O))=H~ <--2))=0. Now it is easy 
to see in general that HI(E2(~0) ) -~Ext  1 (E, 0L(=>0)) (note that EL is locally free); 
hence we get Ext ~ (E, Iz(=>0))~Ext 1 (E, ~(=>0)) surjective. Now using the Koszul 
resolution of Iz and the vanishing of  Ext2(E, 0 ( ~ - 2 ) )  (Serre dua l  to 
Ha(E(<--2))=Hx(Ir(~n))),  we see that ExO(E, 0 ( - 1 ) )  generates 

ZxO (E, r -1)). 
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On the other hand, it follows easily from the construction and assumption that 
Ext I (E, @(k))=H*(E(-k-4)) * =0 for k ~  -2 .  

Remark 1.2.1. For n + l  small, e.g. n+l~_3, the restrictions on k and L are 
not essential, because 0~_k,~_3 is trivially true. 

Proof of  theorem. Let O-,-A~B~C~O be the minimal monad for E (cf. [1]). 
First assume/~ surjective. Then Ext a (E, @(-1))=H*(E(--3))=O implies that A=O, 
so we have O--E-~B-~C~O exact. By Lemma 1.2 and hypothesis (vi), C is as 
stated in the theorem. By assumption (iii), we have H~ hence 
H~ Also, H~ by construction, hence H3(B( -2 ) )=  
H3(E(-2))=O. This implies B =  @@(-1)@ (9@. Now by comparingChern classes 
and ranks we conclude B is as stated in the theorem. 

Now assume/t injective. By Lemma 1.3 A=Q@(-1). By Lemma 1.2, we have 
C =  @@@z@(1). Let the display of the monad be 

0 0 

O--,-A--,-K--,.E~O 
II ~ 

O--,- A -,- B--,- P--,-O 

C = C  

0 0 

Applying H o m ( , 0 ( - 1 ) )  to the sequence O--,A~K--E~O and using the facts 
that tt~ and Ext l (K,r  we conclude that 
H~ Hence H~ and B=@@(n~), 
ni_->0. But by minimality, rain {n~} is smaller than the smallest degree of a line 
bundle appearing in C. It follows that C=z@(1). Note from the display that 
H~ hence B=O@@O@(1). Now finally a Chern class computation 
yields B=aO. 

Corollary 1.4. Let notations be as in Theorem 1.1. I f  Q~_ -3 ,  then v is injective. 

Proof. In the proof of Theorem 1.1, the map B = ( - Q ) @ ( - 1 ) @  @@-~C= 
@@@z@(1) cannot be surjective unless C =  @@(1), if - Q ~ 3 .  

We now show how under suitable hypotheses, monads as above can be used to 
produce tmirational components of the Hilbert scheme. 

Theorem 1.5. Let Y be as in Theorem 1.1. Assume 

(i) H*(Nr)=0; 
Oi) H~(Ir(n+4))=O; 
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and either 

(iii) /1 is surjective; or 
(iii)" H 1 (It  (n + 3)) = 0. 

Then Y belongs to a unique component of the Hilbert scheme, which is unirational and 
smooth of  dimension 4d near Y. 

Proof. In case (iii), it is clear that the set V of bundles E '  coming from monads 
as in Theorem 1.1 is irreducible and unirational. In case (iii)', note that if 
K = k e r  (B~C) ,  then H*(K(1))=H'(E(1))=O, for i>0 ,  so the set of bundles E '  
coming from monads can be parameterized by the choice of a map (p : B ~ C  whose 
kernel K '  satisfies Ht(K'(1))=0 i>0,  plus 0 general sections of K'(1); so again 
the set of E" is irreducible and unirational. Finally, the set of curves Y' in a neigh- 
borhood of Y in the Hilbert scheme can be parameterized by a bundle E '  in a neigh- 
borhood of E plus r general sections of E'(2). As Hi(E'(2))=H*(Ir,(n+4))=O 
for i>0 ,  we have h~176 hence the set of Y' is unirational. 

2. Construction of  good curves 

In this section we shall prove the following theorem which, together with the 
result of w 1, will prove the main theorem stated in the Introduction for the case 
(d, g)~(12, 10), (11, 9). 

Theorem 2.1. There exists a smoothable curve Y of  degree d and genus g in pa 
satisfying the hypotheses of  Theorem 1.5, for n =  1, d<-15, 5d-55<=g<-2d-9, and 
(d, g)~(13, 11), (12, 10), (11, 9). 

The curve Y we shall construct will be a reducible one. The main step in the  
construction of Y is to attach a 4- or 5-secant conic to a given curve, so we begin 
with some general properties of this operation, 

Lemma 2.2. Let Y be a curve in p3, C a 4- or 5-secant conic of Y on a general 
plane and Y '=Y~)C.  I f  Y has any of  the properties (i).~(vi) below, so does Y'. 

(i) Y is linearly normal; 
(ii) ~r(2) is nonspecial; 

(iii) Po, r is surjective; 
(iv) Y is not in a quadric; 
(v) Y is smoothable; 

(vi) HX(Nr)=0. 
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Moreover, i f  C is a 4-secant conic and :to, y has maximal rank, so does :to, r ' ;  i f  
C is a 4-secant conic andv r is surjective, then so is Vr,; i f C  is a 5-secant conic and vr, 
is injective, so is vr,. 

Proof. The assertion about  linear normality follows from general position, 
those about kt0, smoothability, and H i ( N )  are contained in Sernesi [10] (cf. also 
[5]), and (iv) is trivial. To verify (ii), let Z =  Yn C, and note the exact sequence 

H~ -~ H~  -- H I  (0c (2 - Z ) )  -~ m ( ~ , ( 2 ) )  -~ H 1 ( ~ ( 2 ) ) - ~  0. 

If  ~. Z-<_5, then H~((gc(2,Z))=O, hence 0r,(2) is nonspecial if d~r(2) is. Finally 
the assertions about v follows from the sequence 

0 --,- Ir.(k) --; Iy(k) |  --'- Iz(k) -'- 0 

for k = 2 ,  3, plus the fact that Iz is generated by quadrics (4-secant case) while 
H~ ~ H~ (5-secant case). 

Next we show that under suitable conditions, a curve Y w C  as above has 
maximal rank if Y does. 

Lemma 2.3. Let Y, C, Y" be as in Lemma 2.2 and let s+ 1 = ~ (Yc~ C). Sup- 
pose Y" has maximal rank and let l =  min {k: H ~ (It (k)) = 0}. Suppose moreover that 

(i) i f  H is the plane of C and Z ' = ( H n Y ) \ C ,  then Z '  has maximal rank as a 
subscheme of H; 

(ii) [ l + 3 ] - - l d - l  ~-g<=21-s, where d and g are the degree and genusq f  Y: 
\ - -  j 

Then Y has maximal rank and l + l  =rain {k: Hl(Ir,(k))=O}. 

Proof Note the exact sequences 

o Iy(r) Iz, c(O o 

0 -,- It(1) ~ I t , ( /+  1) ~ Iz,,n(l--1) ~ 0. 

In view o f  hypothesis (i), hypothesis (ii) implies, by looking at H ~ terms, that 
H~ while hypothesis (iii) implies H~(Ir,(l+ 1))=0, SO Y '  has maximal 
rank. 

Next, we consider the operation of  obtaining a 6-secant twisted cubic to a 
given curve. 

Lemma 2.4. Let Y be a smoothable curve in pa with H~(Nr)=O and let Z be 
6 distinct smooth points on Y which are linearly in generalposition (i.e, :no 3 collinear, 
no 4 coplanar). Let D be a twisted cubic meeting Y precisely in Z and Y , = Y u D .  
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Then Y" is smoothable and if vr is surjective, then so is vr,; if H~ and vr 
is injective, so is vy,. 

Proof. Smoothability follows from Sernesi (see [5], [1 t]) and the rest by observing 
the sequence 

o -~ I y u ~ ( k )  -~ I ~ ( k ) ~ l . ( k )  - .  I z ( k )  - -  0 

for k = 2 ,  3 plus the fact that HI(ID(2))=HI(Iz(2))=O and Io and I z are gen- 
erated by quadrics. 

Given these general results, the proof  of Theorem 2.1 can be divided into 
3 steps. First, we construct, using mainly attachment of 4- and 5-secant conics, 
curves satisfying all of the conditions of Theorem 1.5 except perhaps for (vi). Second, 
we construct, using mainly attachment of  6-secant twisted cubic, curves satisfying 
the aforementioned condition (vi). Finally, we show that the above two types of 
curves possess good common specializations. 

In Step 1 we successively add 4- or 5-secant (resp. 4-secant) conics to curves 
I:0 with (do, go) = (9, 9), (9, 8) (8, 7), (resp. (do, go) = (8, 6), (8, 5), (8, 4), (7, 4), (9, 6), 
(9, 5)) to produce curves Y with all possible (d, g) such that 5d-55<=g<=2d-9. 
It follows from Lemma2.2 that Y=YowiC, has all the properties listed in the 
lemma, because Yo does (cf. [2]). In particular Po is surjective (resp. injective). Y 
being of maximal rank follows from Lemma 2.3, except for the cases (d, g)=(11,  10), 
(12, 10), (13, 11), (13, 12), (14, 16), (15, 21) where some further degeneration is 
needed. To illustrate the argument, we consider the case (15, 21), as the other 
cases are similar. We start with a curve 1:0 of  degree 9 and genus 9, then the attach 
a 5-secant conic C,, then a conic C2 meeting C1 in 2 points and Y0 in 3 points, then 
a conic Ca meeting C1 in 2 points, C~ in 2 points and Y0 in 1 point. Maximal rank 
for Y=YoVoClwC=v:Ca means h~ and h~ We prove the 
second assertion, as the first is similar but simpler. First, it is easy to see that at 
least 6 of the points of  YonH1 can be chosen generically, where HI is the plane of  
C1 (e.g. by degenerating 1:0 to a twisted cubic plus three 4-secant conics). By Lemma 2.3 
it follows that h~ (4))= 3. Now specialize C2 and Ca to conics on the same 
general plane H=, thereby adding to Y two embedded points at two of the intersections 
of C= and C3, say P1, P2. Now if F5 is any quintic containing I:, then FsoH2 con- 
tains CzwC a plus a line L containing YovoCln(H=\(C~vaCa)) which is 3 noncol- 
linear points. Hence Fs=HzuF 4, where F4 is a quartic containing YowC, uP, uP2. 
Since/'1 and / '2  are general w.r.t. YovoC1, we have h~ hence 
h~ 1, as desired. 

Next, we establish property (vi) in each case. For (d ,g )=(13 ,  15), (13, 16), 
(14, 16), (14, 17), (14, 18), (15, 20), we specialize Y to YwD, where D is a 6-secant 
twisted cubic. For (d,g)=(ll, 12), (12, 14), (14, 15), we specialize Y to YuC, 
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where C is a 4-secant conic. In each case it follows by Lemmas 2.2 and 2.4 that 
the reducible curve is smoothable and has v of maximal rank. The rest of cases have 
v of maximal rank either for trivial reasons or by Corollary 1.4. 

Finally, we show that the curves of each degree and genus, (d, g)=(13, 15), 
(13, 16), (14, 16), (14, 17), (14, 18), (15, 20), possess a good common specialization. 
To see this, note that by [2], the Hilbert scheme corresponding to Yo in Step 1 is 
irreducible, and from this it follows easily that Y0 can be specialized to YIuD, 
where D is a 6-secant twisted cubic of 1"1, and we may also assume that the conics 
attached to Y0 specialize to conics meeting Y1 but not D. Note that ?7=Y~uiC~ is 
smoothable, so Y = D w Y  is as in Step 2. 

3. Liaison 

In this section we shall use techniques of liaison (cf. [8], [9]) to establish the 
following result. 

Theorem3.1. For (d,g)=(12,  10), (11, 9), the Hilbert scheme H~, o of  non- 
singular curves of  degree d, genus g in p3 has a unirational component H whose gen- 
eral point corresponds to a curve Y which is linearly normal, of  maximal rank and 
has p; injective. 

Proof. Our starting point is a unirational component 111 of H1~,13 (respectively, 
H14,1a) whose general curve 1"1 is linearly normal, of maximal rank and has Po of 
maximal rank; the existence o f / / 1  is established in [3] (resp. w 2). 111 is contained 
in precisely 3 independent quintics, necessarily irreducible. Let E(2) be the rank 
r+l=h~ bundle on P~ corresponding to cot1(-1); i.e. we have an 
exact sequence 

(3.1) 0 -* rd) -~ E(2) -* It,(5) -* 0 

with dual 

(3.2) 0 --* r  -* EV ( -2 )  --- re  ~ rorx(- 1) ~ 0. 

Now choose 2 general quintics F, F '  containing Y, and let X =  FnF' .  Then we 
have an exact sequence 

(3.3) 0 ~ d)(--S) ~ 20 -,- Ix(5) ~ 0 

with dual 

(3.4) 0 ~ r  --* 2d) -* 0(5) ~ O)x(- 1) ~ 0. 

The natural maps Ix(5)~lr , (5) ,  e ) r l ( - 1 ) ~ m x ( - 1  ) extends to (dual) maps 
of complexes (3.1)--(3.3) and (3.2)-*(3.4) and taking the mapping cone of each 
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gives us dual sequences 

(3.5) 0 - .  E v ( - 2 )  -~ ( r + 2 ) ( 9  -* Iy~(5) -* 0 

(3.6) 0 -+ (9(-5) ~ (r+2)(9 -~ E(2) -+ ~or~(-1) ~ 0 

where Yz is residual to Y1 in X; thus }72 is Cohen--Macaulay. 
We claim, in fact, that Y2 is reduced. To see this note that we may assume the 

map r(9~E(2) in (3.1) corresponds to r general sections of E(2), and since the 
map (r+2)(9~E(2) in (3.6) corresponds to the previous r sections plus 2 sections 
lifting F, F '  respectively, it follows that this map is general, and since its dependency 
locus is, by (3.6), just Y~, Y2 will be reduced provided E(2) is generated by its sec- 
tions except on a finite set. By (3.1), the latter condition is equivalent to assertion 
that lr~(5) is generated by its sections except on a finite set. Now this last assertion 
is largely established in [3] (resp. w 2) (cf. Proposition 3.2, 3.3 (resp. Lemma 3.2 
below)): namely it is shown there that Y~ can be degenerated to YuC where 
has degree 11, genus 10 (resp. degree 12, genus 14), C is a conic on a general plane 
H meeting ~ in 4 (resp. 5) points, and Z =  ~c~//'XC is 7 generic points on H; 
moreover, it is shown that h~ and that the restriction on H of 
H~ is [C]H~ n(3)). But now it is well-known and classical that 
Iz, n(3) .is generated by its sections. This implies that I-l~ generates 
I~ruc~nn, n(5); hence it generates Iruc except on a finite set. 

Now (3.6) plus the fact that E(2) is generated by its sections except on a finite 
set show that h~ 1 and the unique section of cot,(-1) generates it 
almost everywhere. Hence Y., is linearly normal and the/t0-mapping H~174 
H~176 is injective. Also (3.5) plus HI(E(~_--2))=0 (cf. [3] and 
w 2) show that Y~ has maximal rank. By (3.5) again, Yz determines E. Now as Y2 
deforms to a general element Y~ of the unique Hilbert scheme component/-/2 to 
which it belongs, E deforms with it (by maximal rank) and since Hi(E(2))=0, 
i>0,  so does Yx. It follows that Y~ is already general in H2, and that H~ is uni- 
rational. 

Now to complete the proof it suffices to prove Y~ is smooth. Since Y~ is linearly 
normal and has P0 injective and is general in H2, it would suffice to prove that Y2 is 
abstractly smoothable, a purely local question. This would follow if we can show 
that F, a general quintic containing Y~, has at most ordinary nodes as singularities, 
because then any curve on F(e.g. Y2) is locally the sum of a Cartier divisor plus a 
smooth curve, hence is abstractly smoothable. 

Since F is irreducible, it would sufficeto prove that F can be degenerated to 
/-/uFa, when H is a plane and F4 is a quartic with nodes only and transverse to H. 
For this, it follows from [3], w 3 (resp. the lemma below) that Yx can be degenerated 
to YXuD where D is a cubic on a plane H meeting y1 in 4 (resp. 5) points and 
it is easy to see that H~ (5))= [H]H~ has Dimension 3, so F degenerates 
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to I t w F  4 where F~ is a general quartic containing y1, and it suffices to prove F 4 
has nodes only. Again by [3] (resp. Lemma 3.1 below), Y1 can be degenerated to 
Y2wD' where D'  is a 4-secant (resp. 5-secant) cubic c,f y2 on a general plane H ' ,  
and H~ uD,(4))=[H']H~ ) has dimension 3, so it suffices finally, to prove 
that a general cubic surface F3 containing y2 is smooth. Now the latter is easy and 
classical: indeed it is easy to see that the Hilbert scheme corresponding to y2 is 
irreducible and a general y2 is the residual intersection of 2 cubics F3, F~ containing 
a conic (resp. a line), and Fa is smooth. 

Lemma 3.1. A general curve Y in the component of  H14,1 s constructed in Theo- 
rem 2.1 can be degenerated to Y~wD'wD, where y2 is a curve of  degree 8, genus 8, 
and D, D" are plane cubic such that ~ (Dc~(Y 2 wD')) = 4+- (D'n Y 3) = 5. 

Proof Recall that in w 2, Y was constructed as the specialization of  YowC~w 
C~wC3 where Y0 is of degree 8, genus 7, Ci's are conics such that # (Clc~Y0)=4, 
and ~-~ ~(Ci(~Yo~Jj=ICj))=5 for i=2 ,  3. Now we choose Y0 to be QwD, where 
Q is a curve of  degree 5, genus 2 with the 5-secant cubic D. Then choose a 3-secant 
line L 1 of Q, a plane H~DL1 and a line L2=H1 such that # (L2c~Q)=I ,  and let 
CI=L~wL2. Then choose C ~ c H  2 such that ~(C2c~Q)=5, and finally H, D L  z 
and C~=H 3 such that @(C3nC2)=2 and # ( C z n Q ) =  1. (Note that #(C3QL2)=2).  
It is easy to see that D'=L2wC3 is a 5-secant cubic of Y~=QuLlwC2.  

Lemma 3.2. A general Y in the component of  ttl,,~ s constructed in Theorem 2.1 
can be degenerated to ffwC, where f~ is of  degree 12, genus 14 with C c H  a 5-secant 
conic, and frc~H\C is 7 generic points on H. 

Proof We degenerate the degree 8, genus 7 curve Y0 to an elliptic quartic 
plus two 4-secant conics. It is easy to see that Yo plus the 4-secant conic Ct has 7 generic 
points on H as a subset of  a general hyperplane section. Now take f =  YowCtwC 2, 
where C2 is a 5-secant conic of  YowC~, and let C be the last 5-secant conic, inter- 
secting C~ in 1 point, and Yo, C~ in 2 points each. 

Acknowledgement: I am grateful to Z. Ran f o r  helpful discussions about 
this topic. 
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